Treballem amb simulació avançada per millorar la seguretat nuclear

Descobreix com la Càtedra UNESCO de Mètodes Numèrics lidera la innovació de frontera al Sud Global

Notícies

Enrere

CIMNE researchers propose new methodology to improve tropospheric ozone forecasting

gen. 10, 2024

A group of researchers from the International Centre of Numerical Methods in Engineering (CIMNE) have proposed a new methodology for improving Machine Learning-based model forecasting of gound-level ozone (O3), a pollutant of photochemical origin that affects territories with high exposure to solar radiation, such as the Mediterranean Basin.

In a paper for the Atmospheric Pollution Research journal, David J. Vicente and colleagues compared different Machine Learning based models and presented a method to improve their forecasting ability of daily maximum 8-h average ozone (O3,MDA8). The authors applied two variants of the Random Forest algorithm to 1-day time horizon predictive models for the Plain of Vic (Plana de Vic) in Catalonia, Spain, using datasets from 2002 to 2020.

Example of the BReg approach: Original class predictions with the AReg method (upper plot) and new results for an increasing value of C1,Tol (lower plots).

Example of the BReg approach: Original class predictions with the AReg method (upper plot) and new results for an increasing value of C1,Tol (lower plots).

Machine learning based models can identify complex relationships between ozone levels and relevant variables, but those used until now fell short in predicting extreme events. The novel methodology presented in this paper provided better results in balancing classification metrics and increased the proportion of correct predictions in the higher ranges of O3.

The area studied by the researchers from CIMNE and the University of Barcelona, the Plain of Vic, has the highest number of historical episodes of excess O3, as directed by Catalan environmental legislation, due to its particular orography, climatology, population, and industrial and livestock activity. The plain of Vic is a flat depression 60 km (37 mi) north of Barcelona, surrounded by a mountain system, and suffers from regular climatological situations of deficient atmospheric ventilation.

According to Dr. David J. Vicente and Dr. Fernando Salazar, members of the Machine Learning in Civil Engineering research group at CIMNE and co-authors of the study, the proposed methodology allows for “a better prediction of high pollution episodes”and has the potential to “improve the quality of life” in an area suffering from a “chronic poor environmental quality.”

This research was developed within the PIKSEL project, Portal for the integration of knowledge for sustainable ecosystems and land management, funded by the Department of Territory and Sustainability and the Department of Climate Action of the Catalan Government. PIKSEL is a management and forecasting tool to study environmental, demographic, economic, and social phenomena in Catalonia to support data-based decision-making.
Screenshot of the “Piksel” platform. Catalonia region disaggregated into ZQAs (left) and detail of the orographic plain of VIC with the specific location of the three air-quality monitoring stations considered in this work (right).

Screenshot of the “Piksel” platform. Catalonia region disaggregated into ZQAs (left) and detail of the orographic plain of VIC with the specific location of the three air-quality monitoring stations considered in this work (right).

The paper, entitled Evaluation of different machine learning approaches for predicting high concentration episodes of ground-level ozone: A case study in Catalonia, Spain will be published in the March 2024 edition of the Atmospheric Pollution Research journal and is available online for a fee.


Cover photo: Arnaucc, Wikimedia Commons

Notícies relacionades

CIMNE llança el projecte DAMSHAI per avançar en la seguretat de les preses mitjançant la intel·ligència artificial
CIMNE llança el projecte DAMSHAI per avançar en la seguretat de les preses mitjançant la intel·ligència artificial

El Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE) ha engegat DAMSHAI (Dam Structural Health Monitoring and Safety Assessment with an AI Agent), un projecte de recerca de tres anys que explorarà l’aplicació de la intel·ligència artificial a l’avaluació...

La ciència i les dades: perspectives del Prof. Michael Oritz al seminari de la Càtedra UNESCO
La ciència i les dades: perspectives del Prof. Michael Oritz al seminari de la Càtedra UNESCO

  El professor Michael Ortiz va presentar el passat 28 d’octubre al Palau Robert de Barcelona el seminari “Science Meets Data: Scientific Computing in the Age of Artificial Intelligence”, amb motiu de la seva presa de possessió com a titular de la Càtedra UNESCO...

El CIMNE presenta novetats en simulació sísmica i innovació en realitat virtual al congrés anual de la Societat Nuclear Espanyola
El CIMNE presenta novetats en simulació sísmica i innovació en realitat virtual al congrés anual de la Societat Nuclear Espanyola

  La 51a Reunió Anual de la Societat Nuclear Espanyola (SNE), celebrada a Cáceres, es va consolidar de nou com el principal punt de trobada del sector nuclear a Espanya. Amb 694 assistents, 248 ponències, 42 sessions tècniques, 23 expositors i 31 patrocinadors i...

Etiquetes

Compartiu: