Treballem amb simulació avançada per millorar la seguretat nuclear

Descobreix com la Càtedra UNESCO de Mètodes Numèrics lidera la innovació de frontera al Sud Global

Notícies

Enrere

CIMNE’s new machine learning-based software improves dam structural safety

gen. 29, 2024

Researchers from the Machine Learning in Civil Engineering group at CIMNE have developed a new machine-learning based software to predict structural behaviour of dams, allowing for enhanced decision-making and minimizing safety risks of these critical infrastructures.

The tool, called SOLDIER: SOLution for Dam Behavior Interpretation and Safety Evaluation, uses machine learning models instead of legacy simple linear regression solutions, allowing for greater flexibility, versatility, and precision, making it easier for engineers to detect anomalies.

Doctors Fernando Salazar, Joaquín Irazábal, and André Conde have published a scientific paper detailing the research behind the SOLDIER software and its capabilities, and how it allows for interactive data exploration, model fitting, and interpretation.

The user-friendly application, which can be downloaded for free, follows multi-year research efforts, and it has been tested in different real-world settings. The software has garnered international recognition and won the highly competitive Verbund’s Innovation Challenge in 2017, awarded by the Austrian hydropower company Verbund.

According to its authors, SOLDIER can be used in the structural health monitoring of civil structures other than dams. Various CIMNE research groups have already utilized SOLDIER to perform model accuracy tests.

Scatterplot showing a response variable (displacement) as a function of the reservoir level (horizontal axis) and the air temperature (colors).

Scatterplot showing a response variable (displacement) as a function of the reservoir level (horizontal axis) and the air temperature (colors).

This line of work began with Dr. Salazar's PhD thesis in 2017 and continued under the framework of various local and international projects. 

According to Dr. Salazar, dams are “critical structures” that provide “vital services”, but pose “potential risks” in case of failure “which, fortunately, are highly infrequent”. In Prof. Salazar’s words, “it is essential” to monitor water dams, “not only to avoid accidents, but also to optimise maintenance tasks by detecting anomalies at an early stage”.

The Spanish State Investigation Agency (Agencia Estatal de Investigación), European Commission’s Regional Development Fund and NextGeneration programme, and Catalan Government’s CERCA programme provided funds for this work.

Notícies relacionades

CIMNE llança el projecte DAMSHAI per avançar en la seguretat de les preses mitjançant la intel·ligència artificial
CIMNE llança el projecte DAMSHAI per avançar en la seguretat de les preses mitjançant la intel·ligència artificial

El Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE) ha engegat DAMSHAI (Dam Structural Health Monitoring and Safety Assessment with an AI Agent), un projecte de recerca de tres anys que explorarà l’aplicació de la intel·ligència artificial a l’avaluació...

La ciència i les dades: perspectives del Prof. Michael Oritz al seminari de la Càtedra UNESCO
La ciència i les dades: perspectives del Prof. Michael Oritz al seminari de la Càtedra UNESCO

  El professor Michael Ortiz va presentar el passat 28 d’octubre al Palau Robert de Barcelona el seminari “Science Meets Data: Scientific Computing in the Age of Artificial Intelligence”, amb motiu de la seva presa de possessió com a titular de la Càtedra UNESCO...

El CIMNE presenta novetats en simulació sísmica i innovació en realitat virtual al congrés anual de la Societat Nuclear Espanyola
El CIMNE presenta novetats en simulació sísmica i innovació en realitat virtual al congrés anual de la Societat Nuclear Espanyola

  La 51a Reunió Anual de la Societat Nuclear Espanyola (SNE), celebrada a Cáceres, es va consolidar de nou com el principal punt de trobada del sector nuclear a Espanya. Amb 694 assistents, 248 ponències, 42 sessions tècniques, 23 expositors i 31 patrocinadors i...

Etiquetes

Compartiu: