Trabajamos con simulación avanzada para afianzar la seguridad nuclear.

La Cátedra UNESCO en Métodos Numéricos lidera la innovación de vanguardia en el Sur global.

Noticias

Atrás

CIMNE’s new machine learning-based software improves dam structural safety

Ene 29, 2024

Researchers from the Machine Learning in Civil Engineering group at CIMNE have developed a new machine-learning based software to predict structural behaviour of dams, allowing for enhanced decision-making and minimizing safety risks of these critical infrastructures.

The tool, called SOLDIER: SOLution for Dam Behavior Interpretation and Safety Evaluation, uses machine learning models instead of legacy simple linear regression solutions, allowing for greater flexibility, versatility, and precision, making it easier for engineers to detect anomalies.

Doctors Fernando Salazar, Joaquín Irazábal, and André Conde have published a scientific paper detailing the research behind the SOLDIER software and its capabilities, and how it allows for interactive data exploration, model fitting, and interpretation.

The user-friendly application, which can be downloaded for free, follows multi-year research efforts, and it has been tested in different real-world settings. The software has garnered international recognition and won the highly competitive Verbund’s Innovation Challenge in 2017, awarded by the Austrian hydropower company Verbund.

According to its authors, SOLDIER can be used in the structural health monitoring of civil structures other than dams. Various CIMNE research groups have already utilized SOLDIER to perform model accuracy tests.

Scatterplot showing a response variable (displacement) as a function of the reservoir level (horizontal axis) and the air temperature (colors).

Scatterplot showing a response variable (displacement) as a function of the reservoir level (horizontal axis) and the air temperature (colors).

This line of work began with Dr. Salazar's PhD thesis in 2017 and continued under the framework of various local and international projects. 

According to Dr. Salazar, dams are “critical structures” that provide “vital services”, but pose “potential risks” in case of failure “which, fortunately, are highly infrequent”. In Prof. Salazar’s words, “it is essential” to monitor water dams, “not only to avoid accidents, but also to optimise maintenance tasks by detecting anomalies at an early stage”.

The Spanish State Investigation Agency (Agencia Estatal de Investigación), European Commission’s Regional Development Fund and NextGeneration programme, and Catalan Government’s CERCA programme provided funds for this work.

Noticias relacionadas

CIMNE lanza el proyecto DAMSHAI para mejorar la seguridad de las presas mediante inteligencia artificial
CIMNE lanza el proyecto DAMSHAI para mejorar la seguridad de las presas mediante inteligencia artificial

El Centro Internacional de Métodos Numéricos en Ingeniería (CIMNE) ha puesto en marcha DAMSHAI (Dam Structural Health Monitoring and Safety Assessment with an AI Agent), un proyecto de investigación de tres años que explorará la aplicación de la inteligencia...

La ciencia y los datos: perspectivas del Prof. Michael Ortiz en el seminario de la Cátedra UNESCO
La ciencia y los datos: perspectivas del Prof. Michael Ortiz en el seminario de la Cátedra UNESCO

  El profesor Michael Ortiz presentó el pasado 28 de octubre en el Palau Robert de Barcelona el seminario “Science Meets Data: Scientific Computing in the Age of Artificial Intelligence”, con motivo de su toma de posesión como titular de la Cátedra UNESCO en...

El CIMNE presenta avances en simulación sísmica e innovación en realidad virtual en el congreso anual de la Sociedad Nuclear Española
El CIMNE presenta avances en simulación sísmica e innovación en realidad virtual en el congreso anual de la Sociedad Nuclear Española

  La 51ª Reunión Anual de la Sociedad Nuclear Española (SNE), celebrada en Cáceres, volvió a consolidarse como el principal punto de encuentro del sector nuclear en España. Con 694 asistentes, 248 ponencias, 42 sesiones técnicas, 23 expositores y 31...

Etiquetas

Compartir: