Articles in peer-reviewed journals:

Author Year Title Reference Key words
Aubry R, Idelsohn S, Oñate E 2005 Particle finite element method in fluid-mechanics including thermal convection–diffusion Comput Struct 83(17–18):1459–1475- Particle method, Lagrangian description, Coupled thermo-mechanical analysis,Thermal convection, Rayleigh–Bénard instability with free surface, Incompressible fluid flow
Aubry R, Oñate E, Idelsohn S 2006 Fractional step like schemes for free surface problems with thermal coupling using the Lagrangian PFEM Comput Mech 38(4–5):294– 09- Lagrangian description, Mixed incompressible element, Coupled thermo mechanical analysis, Pressure schur complement, Generalized stokes solve
Bal A, Hoppe U, Dang T, Hackl K, Meschke G 2017 Hypoplastic particle finite element model for cutting tool-soil interaction simulations: numerical analysis and experimental validation Undergr Space 3(1):61–71 - Velocity-based finite elements formulation, Hypoplasticity, Large deformations, Particle finite elements, Cutting tool-soil interaction, Excavation experiments
Becker P, Idelsohn S 2016 A multiresolution strategy for solving landslides using the particle finite element method Acta Geotech 11(3):643–657- K Landslides, Multiphase PFEM-2
Becker P, Idelsohn S, Oñate E 2015 A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the particle finite element method with fixed mesh Comput Mech 55(6):1091–1104- Multi-fluids, FSI, Fixed mesh, Lagrangian particles, Unified approach
Bobach BJ, Boman R, Celentano D, Terrapon V, Ponthot JP 2021 Simulation of the Marangoni Effect and Phase Change Using the Particle Finite Element Method Applied Sciences 11 (24), 11893 particle finite element method (PFEM) multiphysics simulation phase change welding additive manufacturing (AM)
Bravo R, Ortiz P, Idelsohn S, Becker P 2019 Sediment transport problems by the particle finite element method (PFEM) Comput Part Mech 1–11 Erodible beds, Sediment transport, Velocity and acceleration streamlines integration, Avalanches
Cante J, Dávalos C, Hernández J, Oliver J, Jonsén P, Gustafsson G, Häggblad H 2014 PFEM-based modeling of industrial Granular flows Comput Part Mech 1(1):47–70 Granular flow, PFEM, Numerical modeling, Silo discharge, Milling
Carbonell JM, Monforte L, Ciantia MO, Arroyo M, Gens A 2022 Geotechnical particle finite element method for modeling of soil-structure interaction under large deformation conditions Journal of Rock Mechanics and Geotechnical Engineering Particle finite element method (PFEM), Structured soils, Nonlocal elastoplasticity, Contact domain method, Soil penetration problems
Carbonell JM, Oñate E, Suarez B 2010 Modeling of ground excavation with the particle finite-element method J Eng Mech 136(4):455–463 Particle finite-element method; Contact mechanics; Wear
Carbonell JM, Oñate E, Suarez B 2013 Modelling of tunneling processes and cutting tool wear with the particle finite element method (PFEM) Comput Mech 52(3):607–629 Particle finite element method, PFEM, Contact, Excavation, Tunneling, Tool wear
Cerquaglia M, Deliége G, Boman R, Terrapon V, Ponthot J 2017 Free-slip boundary conditions for simulating free-surface incompressible flows through the particle finite element method Int J Numer Methods Eng 110:921–946 fluids; incompressible flow; free-surface flow; particle finite element method; free-slip conditions
Cerquaglia M, Thomas D, Boman R, Terrapon V, Ponthot J 2019 A fully partitioned Lagrangian framework for fsi problems characterized by free surfaces, large solid deformations and displacements, and strong added-mass effects Comput Methods Appl Mech Eng 348:409–442 Fluid–structure interaction, Partitioned approaches, CUPyDO, Added mass, Free-surface flows, Particle finite element method
Marti J, Ryzhakov P 2020

An explicit–implicit finite element model for the numerical solution of incompressible Navier–Stokes equations on moving grids

Computer Methods in Applied Mechanics and Engineering 350, 750-765

Incompressible Navier–Stokes, Accuracy, Particle Finite Element Method, Lagrangian, OpenMP, Benchmark, PFEM2

Mahrous E, Roy RV, Jarauta A, Secanell M

2021

A two-dimensional numerical model for the sliding motion of liquid drops by the particle finite element method

Physics of Fluids 33 (3), 032117

Drops

Marti J, Ryzhakov P

2020

Improving accuracy of the moving grid particle finite element method via a scheme based on Strang splitting

Computer Methods in Applied Mechanics and Engineering 366, 113212

Incompressible Navier–Stokes; Free-surface flows; PFEM; Lagrangian; Strang splitting

Cornejo A, Franci A, Zárate F, Oñate E 2021 A fully Lagrangian formulation for fluid-structure interaction problems with free-surface flows and fracturing solids Computers & Structures, 250, 106532. Fracture mechanics, Free-surface flow, Fluid-structure interaction, Discrete element method, Particle finite element method
Cremonesi M, Ferrara L, Frangi A, Perego U 2010 Simulation of the flow of fresh cement suspensions by a Lagrangian finite element approach J Non-Newton Fluid Mech, 165(23–24):1555–1563 Fresh cement paste, Mortar, Lagrangian approach, Non-Newtonian fluid, Free surface
Cremonesi M, Ferri F, Perego U 2017 A basal slip model for Lagrangian finite element simulations of 3D landslides Int J Numer Anal Methods Geomech 41:30–53 slip boundary conditions,landslide simulation,PFEM,Lagrangian approach
Cremonesi M, Frangi A 2016 A Lagrangian finite element method for 3D compressible flow applications Comput Methods Appl Mech Eng 311:374–392 Compressible flow, Lagrangian methods, Finite elements
Cremonesi M, Frangi A, Perego U 2010 A Lagrangian finite element approach for the analysis of fluid–structure interaction problems Int J Numer Methods Eng 84(5):610–630 particle methods,Lagrangian approaches,fluid–structure interaction
Cremonesi M, Frangi A, Perego U 2011 A Lagrangian finite element approach for the simulation of water-waves induced by landslides Comput Struct 89(11–12):1086–1093 Lagrangian approach, Non-Newtonian fluid, Free-surface flow, Landslide-fluid interaction, Environmental science
Cremonesi M, Meduri S, Perego U 2020 Lagrangian–Eulerian enforcement of non-homogeneous boundary conditions in the particle finite element method Comput Part Mech 7:41–56 PFEM, Slip, Simmetry, Inflow/outflow, Non-homogeneous boundary conditions
Cremonesi M, Meduri S, Perego U, Frangi A 2017 An explicit Lagrangian finite element method for free-surface weakly compressible flows Comput Part Mech 4(3):357–369 Particle finite element method, Volume conservation, Alpha shape, Remeshing
Della Vecchia G, Cremonesi M, Pisanò F 2019 On the rheological characterisation of liquefied sands through the dam-breaking test Int J Numer Anal Methods Geomech 43(7):1410–1425. Bingham fluid, CFD, dam breaking, liquefied sands, PFEM, rheology
Dávalos C, Cante J, Hernández J, Oliver J 2015 On the numerical modeling of granular material flows via the particle finite element method (PFEM) Int J Solids Struct 71:99–125 Granular material, Finite elements, Particle finite elements
Franci A 2020 Lagrangian finite element method with nodal integration for fluid–solid interaction Comp Part Mech Nodal integration, PFEM, FSI, Free-surface
Franci A, Cremonesi M 2017 On the effect of standard PFEM remeshing on volume conservation in free-surface fluid flow problems Comput Part Mech 4(3):331–343 Particle finite element method, Volume conservation, Alpha shape, Remeshing
Franci A, Cremonesi M 2019 3D regularized ­(I)-rheology for Granular flows simulation J Comput Phys 378:257–277 mu(i)-rheology Granular flows PFEM Regularized model 3D numerical simulation
Franci A, Cremonesi M, Perego U, Crosta G, Oñate E 2020 3D simulation of Vajont disaster. Part 1: Numerical formulation and validation Engineering Geology, 279, 105854 Rockslides, Rock avalanche, Vajont, PFEM, Impulse Wave, Multi-hazard, Numerical modeling, Collapse scenarios
Franci A, Cremonesi M, Perego U, Oñate E, Crosta G 2020 3D simulation of Vajont disaster. Part 2: Multi-failure scenarios Engineering Geology, 279, 105856 Rockslides, Rock avalanche, Vajont, PFEM, Impulse Wave, Multi-hazard, Numerical modeling, Collapse scenarios
Franci A, Cremonesi M, Perego U, Oñate E 2020 A Lagrangian nodal integration method for free-surface fluid flows Comput Methods Appl Mech Eng 361:112816 Nodal integration, PFEM, Free-surface, Nodal-PFEM
Franci A, Oñate E, Carbonell JM 2015 On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids Int J Numer Methods Eng 102(3–4):257–277 quasi-incompressible fluid; bulk modulus; mass conservation; ill-conditioning; finite calculus; finite element method; particle finite element method; partitioned scheme
Franci A, Oñate E, Carbonell JM 2016 Unified Lagrangian formulation for solid and fluid mechanics and FSI problems Comput Methods Appl Mech Eng 298:520–547 Unified formulation FSI, PFEM, Lagrangian formulation, Quasi-incompressible materials
Franci A, Oñate E, Carbonell JM, Chiumenti M 2017 PFEM formulation for thermo-coupled FSI analysis: application to nuclear core melt accident Comput Methods Appl Mech Eng 325:711–732 PFEM, Nuclear severe accident, FSI, Coupled problems
Franci A, de Pouplana I, Casas G, Celigueta M, González-Usúa J, Oñate E 2020 Pfem-dem for particle-laden flows with free surface Comput Part Mech 1:1–20 PFEM, DEM, CFD-DEM, Particulate flow, Particle-laden flow, Free-surface
Gimenez J, Ramajo D, Damián S, Nigro N, Idelsohn S 2017 An assessment of the potential of PFEM-2 for solving long real-time industrial applications Comput Part Mech 4(3):251–267 Particle methods, PFEM-2, Large time-steps, Multiphase flows
Gimenez JM, González LM 2015 An extended validation of the last generation of particle finite element method for free surface flows J Comput Phys 284:186–205 PFEM, PFEM-2, Free surface flows, Finite elements, Large time-steps, Enrichment
Gimenez JM, Nigro NM, Idelsohn SR, Oñate E 2016 Surface tension problems solved with the particle finite element method using large time-steps Comput Fluids 141:90–104 PFEM, Surface tension, Two-phase flows, SCLSVOF
Idelsohn S, Marti J, Limache A, Oñate E 2008 Unified Lagrangian formulation for elastic solids and incompressible fluids: applications to fluid–structure interaction problems via the PFEM Comput Methods Appl Mech Eng 197(19–20):1762–1776 Lagrangian formulation, Fluid–structure, Particle finite element method
Idelsohn S, Marti J, Oñate E 2008 Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM Comput Mech 43(1):125–132 Fluid–Structure Interaction (FSI), Free surface flows, Fluid dynamics
Idelsohn S, Mier-Torrecilla M, Oñate E 2009 Multi-fluid flows with the particle finite element method Comput Methods Appl Mech Eng 198(33–36):2750–2767 Particle method, Finite elements, Heterogeneous fluids, Multi-fluids, Lagrange formulations, Multiphase flows Incompressible Navier–Stokes equations, Free-surfaces, Interfaces
Idelsohn S, Mier-Torrecilla M, Marti J, Oñate E 2011 The particle finite element method for multi-fluid flows In: Particle-based methods, pp 135–158 Direct Numerical Simulation Lagrangian Formulation Particle Method Flame Spread Internal Interface
Idelsohn S, Mier-Torrecilla M, Nigro N, Oñate E 2010 On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field Comput Mech 46(1):115–124 Heterogeneous fluids, Multi-fluids, Multiphase flows, Incompressible Navier–Stokes equations, Free-surfaces, Interfaces
Idelsohn S, Nigro N, Gimenez J, Rossi R, Marti J 2013 A fast and accurate method to solve the incompressible Navier–Stokes equations Eng Comput 30(2):197–222 Fluids, Flow, Fluid dynamics, Navier-Stokes equations, Particle methods, Large time-steps, Incompressible fluid flows, Updated Lagrangian formulations, Real time CFD
Idelsohn S, Nigro N, Limache A, Oñate E 2012 Large time step explicit integration method for solving problems with dominant convection Comput Methods Appl Mech Eng 217– 220:168–185 Explicit time integration, Large time-steps, Incompressible fluid flows, Updated Lagrangian formulations, Real Time
Idelsohn S, Oñate E 2010 The challenge of mass conservation in the solution of free surface flows with the fractional step method: problems and solutions Commun Numer Methods Eng 26(10):1313–1330 free-surfaces; fractional-step method; Navier–Stokes equations; mass conservation
Idelsohn S, Oñate E, Pin FD 2004 The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves Int J Numer Methods Eng 61(7):964–989 particle methods; finite element methods; fractional step; lagrange formulations;incompressible Navier–Stokes equations; implicit time integration; fluid–structure interactions; free-surfaces; breaking waves
Idelsohn S, Oñate E, Pin FD, Calvo N 2006 Fluid–structure interaction using the particle finite element method Comput Methods Appl Mech Eng 195(17–18):2100–2113 Fluid–structure interaction, Particle methods, Lagrange formulations, Incompressible fluid flows, Meshless methods, Finite element method
Idelsohn SR, Calvo N, Onate E 2003 Polyhedrization of an arbitrary 3D point set Comput Methods Appl Mech Eng 192(22–23):2649–2667 Polyhedral mesh generation, Particles methods, Lagrangian formulations, Delaunay, Voronoi
Idelsohn SR, Marti J, Becker P, Oñate E 2014 Analysis of multifluid flows with large time steps using the particle finite element method Int J Numer Methods Fluids 75(9):621–644 particle methods; multi fl uids; heterogeneous fl uids; Lagrange formulations; multiphase fl ows; incompressible Navier – Stokes equations
in YF, Yuan WH, Yin ZY, Cheng YM 2020 An edge-based strain smoothing particle finite element method for large deformation problems in geotechnical engineering Int J Numer Anal Methods Geomech. finite element method,footing,large deformation,slope failure,soil collapse,strain smoothing
Kamran K, Rossi R, Oñate E, Idelsohn S 2013 A compressible Lagrangian framework for the simulation of the underwater implosion of large air bubbles Comput Methods Appl Mech Eng 255:210–225 Lagrangian shock hydrodynamics,Variational multiscale stabilization,Two phase flow, PFEM,Bubble implosion
Kempel F, Schartel B, Marti J, Butler K, Rossi R, Idelsohn S, Oñate E, Hofmann A 2015 Modelling the vertical ul 94 test: competition and collaboration between melt dripping, gasification and combustion Fire Mater 39(6):570–584 melt dripping; UL 94; particle finite element method (PFEM); simulation; bisphenol A polycarbonate/acrylonitrile butadiene styrene (PC/ABS); polytetrafluoroethylene (PTFE); bisphenol A bis(diphenyl phosphate) (BDP)
Krabbenhoft K, Lyamin AV, Huang J, da Silva M 2012 Granular contact dynamics using mathematical programming methods Comput Geotech 43:165–176 Contact dynamics, Discrete element method (DEM), Mathematical programming, Optimization, Second-order cone programming
Larese A 2017 A Lagrangian PFEM approach for non-Newtonian viscoplastic materials Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 33(3):307–317 Bingham plastics, Viscoplastic materials, Free surface, Lagrangian techniques Particle Finite Element Method, PFEM
Larese A, Rossi R, Oñate E 2015 Simulation of the beginning of failure in rockfill dams caused by overtopping In: Dam protection against overtopping and accidental leakage, pp 111–118 Dam overtopping, PFEM
Larese A, Rossi R, Oñate E, Idelsohn S 2008 Validation of the particle finite element method (PFEM) for simulation of free surface flows Int J Comput Aided Eng Softw 25(4):385–425 s Flow, Simulation, Fluid dynamics, Finite element analysis
Larese A, Rossi R, Oñate E, Idelsohn S 2012 A coupled PFEM-Eulerian approach for the solution of porous FSI problems Comput Mech 50(6):805–819 PFEM, Level set, Lagrangian–Eulerian coupling, Seepage, Non-linear Darcy, Bingham plastics
Larese A, Rossi R, Oñate E, Toledo M, Morán R, Campos H 2013 Numerical and experimental study of overtopping and failure of rockfill dams Int J Geomech 15(4):04014060 Overtopping; Rockfill dams; Seepage; Slope failure
Larsson S, Prieto J, Gustafsson G, Häggblad H, Jonsén P 2020 The particle finite element method for transient granular material flow: modelling and validation Comput Part Mech. Particle finite element method, Transient granular material flow, Constitutive modelling, Strain-rate-dependent strength, Digital image correlation
Marti J, Idelsohn S, Oñate E 2018 A finite element model for the simulation of the ul-94 burning test Fire Technol 54(6):1783–1805 Dripping, Melt flow, UL-94 test, Particle finite element method (PFEM)
Marti J, Ryzhakov P, Idelsohn S, Oñate E 2012 Combined Eulerian-PFEM approach for analysis of polymers in fire situations Int J Numer Methods Eng 92(9):782–801 Eulerian–Lagrangian formulation; PFEM; particle methods; melting; dripping; polymers; radiation transport; discrete-ordinate method
Meduri S, Cremonesi M, Frangi A, Perego U 2021 A Lagrangian fluid–structure interaction approach for the simulation of airbag deployment Finite Elements in Analysis and Design 198, 103659 Airbag simulation, Fluid–structure interaction, PFEM, Lagrangian approach
Meduri S, Cremonesi M, Perego U 2019 An efficient runtime mesh smoothing technique for 3D explicit Lagrangian free-surface fluid flow simulations Int J Numer Methods Eng 117(4):430–452 Explicit dynamics, Lagrangian formulation, Mesh Smoothing, Particle Finite Element Method (PFEM)
Meduri S, Cremonesi M, Perego U, Bettinotti O, Kurkchubasche A, Oancea V 2018 A partitioned fully explicit Lagrangian finite element method for highly nonlinear fluid–structure interaction problems Int J Numer Methods Eng 113:43–64 Particle Finite Element Method (PFEM); Fluid Structure Interaction; Explicit Dynamics; Explicit Coupling; Lagrangian Formulation Co-simulation
Mier-Torrecilla M, Idelsohn S, Oñate E 2011 Advances in the simulation of multi-fluid flows with the particle finite element method: application to bubble dynamics Int J Numer Methods Fluids 67(11):1516–1539 Particle Finite Element Method (PFEM); Lagrangian simulation; multi-fluid flows; pressure segregation; surface tension; bubble dynamics
Monforte L, Arroyo M, Carbonell J, Gens A 2017 Numerical simulation of undrained insertion problems in geotechnical engineering with the particle finite element method (PFEM) Comput Geotech 82:144–156 Penetration test,Large strains,Particle Finite Element Method (PFEM),Cone penetration test
Monforte L, Arroyo M, Carbonell JM, Gens A 2022 Large-strain analysis of undrained smooth tube sampling Géotechnique 72 (1), 61-77, 2, 2022- clays, numerical modelling, sampling
Monforte L, Arroyo M, Carbonell J, Gens A 2018 Coupled effective stress analysis of insertion problems in geotechnics with the particle finite element method Comput Geotech 101:114–129 Penetration test,Large strains,Particle Finite Element Method (PFEM), Cone penetration test
Monforte L, Carbonell J, Arroyo M, Gens A 2017 Performance of mixed formulations for the particle finite element method in soil mechanics problems Comput Part Mech 4(3):269–284 Particle finite element method (PFEM),Finite deformation, Mixed formulations, Soil mechanics
Monforte L, Gens A, Arroyo M, Mánica M, Carbonell JM 2021 Analysis of cone penetration in brittle liquefiable soils Computers and Geotechnics 134, 104123 CPTu test,Brittleness,Liquefaction,PFEM,Non locl formulation,CASM model
Monforte L, Navas P, Carbonell J, Arroyo M, Gens A 2019 Low-order stabilized finite element for the full biot formulation in soil mechanics at finite strain Int J Numer Anal Methods Geomech 43(7):1488–1515 consolidation, full Biot, low-order stabilization techniques, large strains, poromechanics
Mulligan R, Franci A, Celigueta M, Take W 2020 Simulations of landslide wave generation and propagation using the particle finite element method J Geophys Res Oceans 125:e2019JC015873 landslide, tsunami, wave, channel, laboratory, experiment
Oñate E, Celigueta M, Idelsohn S 2006 Modeling bed erosion in free surface flows by the particle finite element method Acta Geotech 1(4):237–252 Bed erosion, Free surface flows,Particle finite element method
Oñate E, Celigueta M, Idelsohn S, Salazar F, Suarez B 2011 Possibilities of the particle finite element method for fluid–soil– structure interaction problems Comput Mech 48(3):307–318 Particle finite element method,Fluid–soil–structure, Interaction
Oñate E, Cornejo A, Zárate F, Kashiyama K, Franci A 2022 Combination of the finite element method and particle-based methods for predicting the failure of reinforced concrete structures under extreme water forces Engineering Structures, 251B, 113510 Tsunami force, Finite element method, Particle finite element method, Discrete element method, Reinforced concrete, Fluid–structure interaction, Fracture mechanics
Oñate E, Franci A, Carbonell JM 2014 Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses Int J Numer Methods Fluids 74(10):699–731 Lagrangian formulation; finite element method; incompressible flows; quasi-incompressible flows; reduced mass loss
Oñate E, Franci A, Carbonell JM 2014 A particle finite element method for analysis of industrial forming processes Comput Mech 54(1):85–107 Updated Lagrangian formulation,Finite element method, Incompressible fluids, Consistent tangent matrix, Mixed formulation,Stabilized method
Oñate E, Franci A, Carbonell JM 2014 A particle finite element method (PFEM) for coupled thermal analysis of quasi and fully incompressible flows and fluid–structure interaction problems Numer Simul Coupled Probl Eng 33:129–156 Mass Balance Equation Solid Domain Cylindrical Tank Particle Finite Element Method Linear Shape Function
Oñate E, Idelsohn S, Celigueta M, Rossi R 2008 Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows Comput Methods Appl Mech Eng 197(19–20):1777–1800 Lagrangian formulation, Fluid–structure interaction, Particle finite element method, Bed erosion, Free surface flows
Oñate E, Idelsohn S, Pin FD, Aubry R 2004 The particle finite element method. an overview Int J Comput Methods 1:267–307 particle methods; finite element methods; fractional step; lagrange formulations; incompressible Navier–Stokes equations; implicit time integration; fluid–structure interactions; free-surfaces; breaking waves
Oñate E, Marti J, Rossi R, Idelsohn S 2017 Analysis of the melting, burning and flame spread of polymers with the particle finite element method Comput Assist Methods Eng Sci 20(3):165–184 melting, dripping, polymers, particle finite element method (PFEM)
Oñate E, Rojek J, Idelsohn S, Pin FD, Aubry R 2006 Advances in stabilized finite element and particle methods for bulk forming processes Comput Methods Appl Mech Eng 195(48–49):6750–6777 Bulk forming processes, Stabilized finite element method, Particle method, Particle finite element method, Mixing processes
Oñate E, Rossi R, Idelsohn S 2008 Prediction of melt flow and spread of thermoplastic objects with the particle finite element method Fire Saf Sci 9:291–302 melt flow, thermoplastic objects, melt spread, particle finite element method
Oñate E, Rossi R, Idelsohn S, Butler K 2010 Melting and spread of polymers in fire with the particle finite element method Int J Numer Methods Eng 81(8):1046–1072 melting; dripping; polymers; particle finite element method
Oliveira T, Sánchez-Arcilla A, Gironella X 2012 Simulation of wave overtopping of maritime structures in a numerical wave flume J Appl Math. wave, overtopping
Oliveira T, Sánchez-Arcilla A, Gironella X, Madsen S 2017 On the generation of regular long waves in numerical wave flumes based on the particle finite element method J Hydraul Res 55(4):538–556 Gravity waves; hydraulic models; particle finite element method; solitary waves; two-dimensional numerical simulation
Oliver J, Cante J, Weyler R, González C, Hernández J 2007 Particle finite element methods in solid mechanics problems In: Oñate E, Owen R (eds) Computational plasticitySpringer, Berlin Contact Interface Delaunay Triangulation Meshless Method Angular Distortion Penalty Strategy
Oliver J, Hartmann S, Cante J, Weyler R, Hernández J 2009 A contact domain method for large deformation frictional contact problems. Part 1. Theoretical basis Comput Methods Appl Mech Eng 198(33–36):2591–2606 Contact mechanics,Lagrange multipliers,Contact domain method,Interior penalty method,Nitsche method,Friction,Active set strategy
Reinold J, Meschke G 2019 Particle finite element simulation of fresh cement paste: inspired by additive manufacturing techniques Proc Appl Math Mech 19:e201900198 cement, additive manufacturing
Reinold J, Meschke G 2021 A mixed u–p edge-based smoothed particle finite element formulation for viscous flow simulations Computational Mechanics, 1-20 Smoothed particle finite element method, Edge-based gradient smoothing, 3D-concrete- rinting, Elastic–viscoplastic, Fresh concrete
Rodríguez J, Carbonell J, Cante J, Oliver J 2017 Continuous chip formation in metal cutting processes using the particle finite element method (PFEM) Int J Solids Struct 120:81–102 Particle Finite Element Method (PFEM), Metal cutting processes
Rodríguez J, Jonsén P, Svoboda A 2019 Simulation of metal cutting using the particle finite-element method and a physically based plasticity model Comput Part Mech 4(1):35–51 Particle finite-element method, Dislocation,density constitutive models, Metal cutting, Machining
Rodriguez J, Carbonell J, Cante J, Oliver J 2016 The particle finite element method (PFEM) in thermo-mechanical problems Int J Numer Methods Eng 107(9):733–785 particle finite element method (PFEM); thermo-elastoplasticity; IMPL-EX integration; remeshing and geometry update
Ryzhakov P 2017 An axisymmetric PFEM formulation for bottle forming simulation Comput Part Mech 4(1):3–12 Glass manufacturing, Numerical modelling, Lagrangian, Axisymmetric, Final blow
Ryzhakov P, Garcia J, Oñate E 2016 Lagrangian finite element model for the 3D simulation of glass forming processes Comput Struct 177:126–140 Bottle manufacturing, Numerical simulation, Benchmark, PFEM, Counter blow, Thermo-mechanical
Ryzhakov P, Jarauta A, Secanell M, Pons-Prats J 2017 On the application of the PFEM to droplet dynamics modeling in fuel cells Comput Part Mech 4(3):285–295 PFEM, Embedded model, Fuel cells, Droplet,dynamics, Sessile droplet
Ryzhakov P, Marti J, Idelsohn S, Oñate E 2017 Fast fluid–structure interaction simulations using a displacement-based finite element model equipped with an explicit streamline integration prediction Comput Methods Appl Mech Eng 315:1080–1097 incompressible flows, Navier-Stokes, fluid-structure interaction,Particle Finite Element Method, Lagrangian, coupled problems
Ryzhakov P, Oñate E, Rossi R, Idelsohn S 2012 Improving mass conservation in simulation of incompressible flows Int J Numer Methods Eng 90(12):1435–1451 incompressible flows; pressure prediction; fractional step method; mass conservation;Lagrangian fluids; PFEM
Ryzhakov P, Rossi R, Idelsohn S, Oñate E 2010 A monolithic Lagrangian approach for fluid–structure interaction problems Comput Mech 46(6):883–899 Fluid–structure interaction, PFEM,Monolithic FSI, Lagrangian fluids, CFD
Ryzhakov P, Rossi R, Viña A, Oñate E 2013 Modelling and simulation of the sea-landing of aerial vehicles using the particle finite element method Ocean Eng 66:92–100 Fluid–structure interaction, Water landing, UAV, PFEM, Wedge impact, Incompressible flows
Salazar F, Irazabal J, Larese A, Oñate E 2016 Numerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow model Int J Numer Anal Methods Geomech 40:809–826 landslide-generated waves; particle finite element method; non-Newtonian fluid; Lagrangian formulation
Salazar F, San-Mauro J, Celigueta M, Oñate E 2017 Air demand estimation in bottom outlets with the particle finite element method. Susqueda dam case study Computat Part Mech 4(3):345–356 Particle finite element method, Two fluids,Bottom outlets, Air demand
Salazar F, San-Mauro J, Celigueta M, Oñate E 2020 Shockwaves in spillways with the particle finite element method Comput Part Mech 7:87–99 Particle finite element method · Spillways · Shockwaves
Tang B, Li J, Wang T 2009 Some improvements on free surface simulation by the particle finite element method Int J Numer Methods Fluids 60(9):1032–1054 free surface; particle finite element method; adaptive time method; mass correction;pressure oscillations; least-square finite element method
Yuan W, Wang B, Zhang W, Jiang Q, Feng X 2019 Development of an explicit smoothed particle finite element method for geotechnical applications Comput Geotech 106:42–51 Column collapse, Explicit time integration, Footing penetration, Large deformation, Particle finite element method, Strain smoothing
Zhang W, Yuan W, Dai B 2018 Smoothed particle finite-element method for large-deformation problems in geomechanics Int J Geomech 18(4):04018010 Smoothed particle FEM (SPFEM); Strain smoothing; Large deformation; Soil; Numerical
Zhang X, Krabbenhoft K, Pedroso D, Lyamin A, Sheng D, da Silva MV, Wang D 2013 Particle finite element analysis of large deformation and granular flow problems Comput Geotech 54:133–142 Particle Finite Element Method, PFEM, Large deformations
Zhang X, Krabbenhoft K, Sheng D 2014 Particle finite element analysis of the granular column collapse problem Granul Matter 16(4):609–619 Granular flow, PFEM, Axisymmetric problem, Mathematical programming, Large deformation
Zhang X, Krabbenhoft K, Sheng D, Li W 2015 Numerical simulation of a flow-like landslide using the particle finite element method Comput Mech 55(1):167–177 Particle methods, Landslide, Mathematical,programming, Contact
Zhang X, Oñate E, Torres S, Bleyer J, Krabbenhoft K 2019 A unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequences Comput Methods Appl Mech Eng 343:314–338 Submarine landslide; Unified FE formulation; Monolithic coupling; Fluid-solid 36 Interaction; Mathematical programming; PFEM
Zhang X, Sheng D, Sheng D, Sloan S, Huang W 2016 Quasistatic collapse of two-dimensional granular columns: insight from continuum modelling Granul Matter 18(3):41 Particle finite element method, Granularmaterial, Quasi-static collapse, Large deformation
Zhang X, Sheng D, Sloan S, Bleyer J 2017 Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity Int J Numer Methods Eng 112(8):963–989 Sensitive clays; Progressive failure; Elastoviscoplasticity; Strain softening, SOCP
Zhang X, Sloan S, Oñate E 2018 Dynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivity Int J Numer Anal Methods Geomech 42(15):1806–1822 landslides, PFEM, retrogressive failure, sensitive clay, strain softening
Zhang X, Wang L, Krabbenhoft K, Tinti S 2019 A case study and implication: particle finite element modelling of the 2010 Saint Jude sensitive clay landslide Landslides 1:1–11 Sensitive clay, Retrogressive landslide, Progressivefailure, Strain softening, PFEM
Zhu M, Elkhetali I, Scott M 2018 Validation of opensees for tsunami loading on bridge superstructures J Bridge Eng 23(4):04018015 Simulation; Tsunamis; Wave loads; Finite elements; Particle methods
Zhu M, Scott M 2014 Improved fractional step method for simulating fluid–structure interaction using the PFEM Int J Numer Methods Eng 99(12):925–944 finite element methods; fluid-structure interaction; incompressible flow; Lagrangian;particle methods
Zhu M, Scott MH 2014 Modeling fluid–structure interaction by the particle finite element method in opensees Comput Struct 132:12–21 Fluid–structure interaction,Finite element analysis,Wave loading,OpenSees
Zhu M, Scott MH 2015 Direct differentiation of the quasi-incompressible fluid formulation of fluid–structure interaction using the PFEM J Struct Eng 142(3):04015159 Particle finite element method, Fluid-structure interaction, Sensitivity analysis
Zhu M, Scott MH 2017 Unified fractional step method for Lagrangian analysis of quasi-incompressible fluid and nonlinear structure interaction using the PFEM Int J Numer Methods Eng 109(9):1219–1236 Particle methods, Finite element methods, Fluid-structure interaction, Lagrangian