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SUMMARY

A family of rotation-free three node triangular shell elements is presented. The simplest
clement of the family is based on an assumed constant curvature field expressed in terms of
the nodal deflections of a patch of four elements and a constant membrane field computed
from the standard linear interpolation of the displacements within each triangle. An enhanced
version of the element is obtained by using a quadratic interpolation of the geometry in terms
of the six patch nodes. This allows to compute an assumed linear membrane strain field which
improves the in-plane behaviour of the original element. A simple and economic version of the
element using a single integration point is presented. The efficiency of the different rotation-free
shell triangles is demonstrated in many examples of application including linear and non linear
analysis of shells under static and dynamic loads, the inflation and de-inflation of membranes
and a sheet stamping problem.

1 INTRODUCTION

Triangular shell elements are very useful for the solution of large scale shell problems such as
those occurring in many practical engineering situations. Typical examples are the analysis
of shell roofs under static and dynamic loads, sheet stamping processes, vehicle dynamics and
crash-worthiness situations. Many of these problems involve high geometrical and material
non linearities and time changing frictional contact conditions. These difficulties are usually
increased by the need of discretizing complex geometrical shapes. Here the use of shell triangles
and non-structured meshes becomes a critical necessity. Despite recent advances in the field
[1]-[6] there are not so many simple shell triangles which are capable of accurately modelling
the deformation of a shell structure under arbitrary loading conditions.



A promising line to derive simple shell triangles 1s to use the nodal displacements as the only
unknown for describing the shell kinematics. This idea goes back to the original attempts to
solve thin plate bending problems using finite difference schemes with the deflection as the only
nodal variable [7]-[9].

In past years some authors have derived a number of thin plate and shell triangular elements
free of rotational degrees of freedom (d.o.f.) based on Kirchhoff’s theory [10]-[27]. In essence all
methods attempt to express the curvatures field over an element in terms of the displacements
of a collection of nodes belonging to a patch of adjacent elements. Onate and Cervera [14]
proposed a general procedure of this kind combining finite element and finite volume concepts
for deriving thin plate triangles and quadrilaterals with the deflection as the only nodal variable
and presented a simple and competitive rotation-free three d.o.f. triangular element termed
BPT (for Basic Plate Triangle). These ideas were extended and formalized in [21] to derive a
number of rotation-free thin plate and shell triangles. The basic ingredients of the method are
o mixed Hu-Washizu formulation, a standard discretization into three node triangles, a linear
finite element interpolation of the displacement field within each triangle and a finite volume
type approach for computing constant curvature and bending moment fields within appropriate
non-overlapping control domains. The so called “cell-centered” and “cell-vertex” triangular
domains yield different families of rotation-free plate and shell triangles. Both the BPT plate
element and its extension to shell analysis (termed BST for Basic Shell Triangle) can be derived
from the cell-centered formulation. Here the “control domain” is an individual triangle. The
constant curvatures field within a triangle is computed in terms of the displacements of the
six nodes belonging to the four elements patch formed by the chosen triangle and the three
adjacent triangles. The cell-vertex approach yields a different family of rotation-free plate and
shell triangles. Details of the derivation of both rotation-free triangular shell element families
can be found in [21].

An extension of the BST element to the non linear analysis of shells was implemented in an
explicit dynamic code by Onate et al. 26] using an updated lagrangian formulation and a hypo-
elastic constitutive model. Excellent numerical results were obtained for non linear dynamics of
shells involving frictional contact situations and sheet stamping problems [18,19,20,26].

A large strain formulation for the BST element using a total lagrangian description was
presented by Flores and Onate [24]. A recent extension of this formulation is based on a quadratic
interpolation of the geometry of the patch formed by the BST element and the three adjacent
triangles [27]. This yields a linear displacement oradient field over the element from which linear
membrane strains and constant curvatures can be computed within the BST element.

In this paper the formulation of the BST element is revisited using an “assumed strain”
approach. The content of the paper is the following. First some basic concepts of the formulation
of the original BST element using.an assumed constant curvature field are given. Next, the basic
equations of the non linear thin shell theory chosen based on a total lagrangian description are
presented. Then the non linear formulation of the BST element is presented. This is based on
an assumed constant membrane field derived from the linear displacement interpolation and an
assumed constant curvature field expressed in terms of the displacements of the nodes of the four
element patch using a finite volume type approach. An enhanced version of the BST element
is derived using an assumed linear field for the membrane strains and an assumed constant
curvature field. Both assumed fields are obtained from the quadratic interpolation of the patch
geometry following the ideas presented in 27]. Details of the derivation of the tangent stiffness
matrix needed for a quasi-static implicit solution are given for both the BST and EBST elements.



An efficient version of the EBST element using one single quadrature point for integration of
the tangent matrix is presented. An explicit scheme adequate for dynamic analysis is briefly
described.

The efficiency and accuracy of the standard and enhanced versions of the BST element is
validated in a number of examples of application including linear and non linear analysis of
shells under static and dynamic loads, the inflation and de-inflation of membranes and a sheet
stamping problem.

2 FORMULATION OF THE BASIC PLATE TRIANGULAR USING AN
ASSUMED CONSTANT CURVATURE FIELD

Let us consider a patch of four plate three node triangles (Figure 1). The nodes 1, 2, and 3 in the
main central triangle (M) are marked with circles while the external nodes in the patch (nodes
4, 5 and 6) are marked with squares. Mid side points in the central triangle are also marked

with smaller squares. Kirchhoff’s thin plate theory will be assumed to hold. The deflection is
linearly interpolated within each three node triangle in the standard finite element manner as

3

w= Y Liwf (1)
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where L¢ are the linear shape functions of the three node triangle, w¢ are nodal deflections and
superindex e denotes element values.

Figure 1. Patch of three node triangular elements including the central triangle (M) and three
adjacent triangles (1, 2 and 3)

The curvature field within the central triangle can be expressed in terms of a constant
assumed curvature field as
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where k is the curvature vector and & is the assumed constant curvature field defined as
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where A, is the area of the central triangle in Figure 1.
Integrating by parts Eq.(3) and substituting the resulting expression for & into Eq.(2) gives
the constant curvature field within the element as
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where "3/ is the boundary of the central triangle.

Eq.(4) defines the assumed constant curvature field within the central triangle in terms of the
deflection gradient along the sides of the triangle. Equation (4) can be found to be equivalent
to the standard conservation laws used in finite volume procedures as described in [28,29].

The computation of the line integral in Eq.(4) poses a difficulty as the deflection gradient is
discontinuous along the element sides. A simple method to overcome this problem is to compute
the deflection gradient at the element sides as the average values of the gradient contributed by
the two triangles sharing the side [21,29]. Following this idea the constant curvature field with
the element is computed as
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where wP = |wy, w2, w3, wy, ws,wg]! is the deflection vector of the six nodes in the patch. In
Eq.(5) the sum extends over the three sides of the central element M, ﬂ;’}”f are the lengths of the
element sides and superindexes M and j refer to the central triangle and to each of the adjacent
elements, respectively. The standard sum convention for repeated indexes is used.

Note that the constant curvature field is expressed in terms of the six nodes of the four
element patch linked to the element M. The expression of the 3 x 6 Bj matrix can be found in
[14,21].

The virtual work expression is written as

//5ﬁdeA://5wqu
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where m is the bending moment field related to the curvature by the standard constitutive
equations

(6)

_ ER

0
0 (7)

o N

L/
1
0 1

|

4

In Egs.(6) and (7) h is the plate thickness, E is the Young’s modulus, v is the Poisson’s ratio, 0K
and Sw are the virtual curvatures and the virtual deflection, respectively, and ¢ is a distributed
vertical load.



Substituting the approximation for the vertical deflection and the assumed constant curva-
ture field into (6) leads to the standard linear system of equations

Kw="f (8)

where the stiffness matrix K and the equivalent nodal force f can be found by assembly of the
element contributions given by

K® = / / B/ D,B,dA (9)

Ly
ff’=/f g{ L pdA (10)
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Note that K€ is a 6 x 6 matrix, whereas f¢ has the same structure than for the standard
linear triangle.

The explicit form of K¢ and f¢ can be found in [14].

The resulting Basic Plate Triangle (BPT) has one degree of freedom per node and a wider
bandwidth than the standard three node triangles as each triangular element is linked to its
three neighbours through Eq.(5).

Examples of the good performance of the BPT element for analysis of thin plates can be
found in [14,21]. The extension of the BPT element to the analysis of shells yields the Basic
Shell Triangle (BST) [21]. Different applications of the BST element to linear and non linear
analysis of shells are reported in 14,18-21,24,26,27|.

The ideas used to derive the BPT element will now be extended to derive two families of
Basic Shell Triangles using a total lagrangian description.

3 BASIC THIN SHELL EQUATIONS USING A TOTAL LAGRANGIAN
FORMULATION

3.1 Shell kinematics

A summary of the most relevant hypothesis related to the kinematic behaviour of a thin shell
are presented. Further details may be found in the wide literature dedicated to this field 8,9].

Consider a shell with undeformed middle surface occupying the domain Q° in R® with a
boundary I'’. At each point of the middle surface a thickness KO is defined. The positions x”
and x of a point in the undeformed and the deformed configurations can be respectively written
as a function of the coordinates of the middle surface ¢ and the normal t3 at the point as

x (£1,62,¢) = ¢° (€1, €2) + t3 (11)
X(ﬁli‘f?&(;) — (P(é'l}§2) ¥ C’\t’?r (12)

where £, &9 are curvilinear local coordinates defined over the middle surface of the shell, and ¢
s the distance in the undeformed configuration of the point to the middle surface. The product
¢\ is the distance of the point to the middle surface measured on the deformed configuration.

|



This implies a constant strain in the normal direction associated to the parameter A relating the
thickness at the present and initial configurations, 1.e.

h

A convective coordinate system is defined at each point as

gi (€) = 2? i=1,2,3 (14)
g () = LB 1 (Ot)y =12 (15)
o (€) = d (¢ (51,%25-? (At3) Xts (16)
This can be particularized for the points on the middle surface as
aa =8a ((=0) = pq (17)
a3 = g3 (( = 0) = At3 (18)

The covariant (first fundamental form) and contravariant metric tensors of the middle surface
are

Gof = Ag - A4 (19)
a"“ﬁ =ataar = (ﬂpr& : (ﬁfg (20)
The Green-Lagrange strain vector of the middle surface points (membrane strains) is defined
as

E?n — [E'r‘r?.ll'.: 5?n1215m12]T (21)

with

1
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The curvatures (second fundamental form) of the middle surface are obtained by

1
Raff = 5 (tp’c‘r ' t3‘rf3 T Pip t3"t1) = =13 Prap Ct’,ﬁ = 1, 2 (23)

The deformation gradient tensor is

F :[X;]_} X;Q,K;B] = [ Q1 ~+ C ()\t:})fl oy + «f ()\tﬂ)sg At:} ] (24)

The product FTF = U? = C (where U is the right stretch tensor, and C the right Cauchy-Green
deformation tensor) can be written as
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In the derivation of expression (25) the derivatives of the thickness ratio A, and the terms
associated to ¢? have been neglected.

Eq.(25) shows that U? is not a unit tensor at the original configuration for curved surfaces
(H?j #+0). The changes of curvature of the middle surface are computed by

Xij = Kig — H%- (26)

Note that 5)@;,: — 5:"{:1'3:
For computational convenience the following approximate expression (which is exact for
initially flat surfaces) will be adopted

T a1+ 2x11¢A a1z +2x12¢A 0
U? = | a1p+2x12¢A  ag2 +2x22CA 0 (27)
0 0 A2

This expression is useful to compute different lagrangian strain measures. An advantage of
these measures is that they are associated to material fibres, what makes 1t easy to take into
account material anisotropy. It is also useful to compute the eigen decomposition of U as

3
U=ZAQ I‘CL-@I',;E (28)

a=1

where )\, and r, are the eigenvalues and eigenvectors of U.

The resultant stresses (axial forces and moments) are obtained by integrating across the
original thickness the second Piola-Kirchhofl stress vector o using the actual distance to the
middle surface for evaluating the bending moments, 1.e.

om = [N11, Noz, Nio]' = /}D od( (29)
T = [ﬂff[n,ﬂ/[gg,ﬂ/fm]T = / J/\C dC (30)
hO

With these values the virtual work can be written as

//AD [55510:,” + (Sﬁ:To*b] dA = ffﬂﬂ sul tdA (31)

where du are virtual displacements, d&,, is the virtual Green-Lagrange membrane strain vector,

Sk are the virtual curvatures and t are the surface loads. Other load types can be easily included
into (31).



3.2 Constitutive models

In order to treat plasticity at finite strains an adequate stress-strain pair must be used. The
Hencky measures will be adopted here. The (logarithmic) strains are defined as

11 €21 0O 3
Ehl: €12 €22 0 = Z In (/\ﬂc) ra ® g (32)
A 0 0 £34 : a=1

Two types of material models are considered here: an elastic-plastic material associated to
thin rolled metal sheets and a hyper-elastic material for rubbers.

In the case of metals, where the elastic strains are small, the use of a logarithmic strain
measure reasonably allows to adopt an additive decomposition of elastic and plastic components
as

By = ﬁl + Eﬁl (33)

A constant linear relationship between the (plane) Hencky stresses and the logarithmic elastic
strains is adopted giving

T = CE{, (34)

These constitutive equations are integrated using a standard return algorithm. The following
Mises-Hill [30] yield function with non-linear isotropic hardening is chosen here

(G+ H) T% + (F + H) T — 2H T11Tos + 2N Tf, = 0q (eo + €°)" (35)

where F, G, H and N define the non-isotropic shape of the yield surface and the parameters
0o, eo and n define its size as a function of the effective plastic strain e”.

The simple Mises-Hill yield function allows, as a first approximation, to treat rolled thin
metal sheets with planar and transversal anisotropy.

For the case of rubbers, the Ogden [31] model extended to the compressible range is consid-
ered. The material behaviour is characterized by the strain energy density per unit undeformed
volume defined as

N

i ; i
) = %(m NS 2|7 (Z Af”"l) —~ 3 (36)
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where K is the bulk modulus of the material, J is the determinant of U, N, p; and «; are
material parameters, u;, oy are real numbers such that pa; > 0 (Vi = 1,N) and N is a
positive 1nteger.

The stress measures associated to the principal logarithmic strains are denoted by ;. They
can be computed noting that

N _ 3
89 (A) _aa(a_l 115 e
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we define now

3
af =) A7 (38)
=1
which gives
N
B;=K(InJ)+ Z JLLPJ_E:‘%E (}s??’ — %ap) (39)
p=1

The values of 3;, expressed in the principal strains directions, allow to evaluate the Hencky
stresses in the convective coordinate system as

3
1 = Z.@i r; ® I (40)

g=1

The Hencky stress tensor T can be easily particularized for the plane stress case.
We define the rotated Hencky and second Piola-Kirchhoff stress tensors as

T, =R} TRy (41)
S;, =R}I SRy, (42)
where R is the rotation tensor obtained from the eigenvectors of U given by

R,=[r ry r3| (43)

f

The relationship between the rotated Hencky and Piola-Kirchhofl stresses 1s

[SL)oa = 113 i -
Stlop = —22a/A8) () (44)

(e

The second Piola-Kirchhoff stress tensor can be computed by
S = RL SL R}: (45)

The second Piola-Kirchhoff stress vector o of Eqs.(29-30) can be readily extracted from the
S tensor.

4 TOTAL LAGRANGIAN FORMULATION OF THE BASIC SHELL TRI-
ANGLE

4.1 Definition of the element geometry and discretization of the displacement field

The rotation-free BST element has three nodes with three displacement degrees of freedom at
each node. As before an element patch is defined by the central triangle and the three adjacent
elements (Figure 1). This patch helps to define the curvature field within the central triangle
(the BST element) in terms of the displacement of the six patch nodes.

The node-ordering in the patch is the following (see Figure 1)



e The nodes in the main element (M) are numbered locally as 1, 2 and 3. They are defined
counter-clockwise around the positive normal.

e The sides in the main element are numbered locally as 1, 2, and 3. They are defined by
the local node opposite to the side.

e The adjacent elements (which are part of the cell) are numbered with the number associ-
ated to the common side.

e The extra nodes of the cell are numbered locally as 4, 5 and 6, corresponding to nodes on
adjacent elements opposite to sides 1, 2 and 3 respectively.

o The connectivities in the adjacent elements are defined beginning with the extra node as
shown in Table 1.

Element | N1 | N2 | N3
M 1 2 3
1 4 3 2
2 5 1 3
3 6 2 1

Table 1. Element numbering and nodal connectivities of the four elements patch of Figure 1.

The following local cartesian coordinate system can be defined for the patch. In the main
element the unit vector ti(associated to the local coordinate ;) is directed along side 3 (from
node 1 to node 2), t3 (associated to the coordinate () is the unit normal to the plane, and finally
to = t3 X t; (associated to the coordinate &s).

The coordinates and the displacements are linearly interpolated within each three node
triangle in the mesh in the standard manner, 1.e.

3 3
o= Lip;=> Li(g; +w) (46)
=1 |

i=1]

(73] 3 (73]
u = (1) = Z qui , Wy = U9 (47)
us 1=1 us

i
In above ¢, and u; contain respectively the three coordinates and the three displacements of
node ¢.

4.2 Computation of the membrane strains

The Green-Lagrange membrane strains are expressed by substituting the linear displacement
interpolation into Eq.(22). This gives

1 | PP — 1
Em — = WPig * Pro — 1 (48)
29y

10



The membrane strain field is constant within each triangle similarly as in the standard CST
clement. The variation of the membrane strains is simply obtained by

0€,, = B0a°

with
Bm —— [B?n1 3 B?nga Bmg] 9 aE —
and
Bm, = p Lf.e,z‘szM
M, T /s
3x3 | Liypin + Liseiy

4.3 Computation of bending strains (curvatures)

(49)

(50)

(51)

We will assume the following constant curvature field within each element

Hﬂﬁ — f‘i&ﬁ

where fnp is the assumed constant curvature field defined by

1

Rap =

£ - dA°
0 / 3" P Ba
App Jag,

(52)

(53)

where AE%'VI is the area (in the original configuration) of the central element in the patch.
Substituting Eq.(53) into (52) and integrating by parts the area integral gives the curvature
vector within the element in terms of the following line integral

K11

p 1
= K99 — —
AY 0

2;‘%12 M /1y

—1t1 0
0 — 1719
-1t —1b]

-tg-‘prl =

| N3 P

dr (54)

where n; are the components (in the local system) of the normals to the element sides in the

T . U
initial configuration I7,.

For the definition of the normal vector ts, the linear interpolation over the central element
is used. In this case the tangent plane components are

3
Pra= ZLi{tfiﬂoi , a=1,2

g=1

fy — P X P
|(Pfl X ‘:OJQI

= AP X Py

(55)

(56)

From these expressions it is also possible to compute in the original configuration the element
area A?M, the outer normals (n1,7n9)" at each side and the side lengths E,j-_"‘f . Eq.(56) also allows
to evaluate the thickness ratio ) in the deformed configuration and the actual normal ts.

11



In order to compute the line integral of equation (54) the averaging procedure described in
Section 2 is used. Hence along each side of the triangle the average value of ¢/, between the
main triangle and the adjacent one is taken leading to

3 [ —mt 0 1.  §,
! b ts- 5 (@ + @)
Kk = 0 n: % %‘I 1 (57)
Al Izzzl nb “_?211 | ta 5 (i + @) |

where the sum extends over the three elements adjacent to the central triangle M.
Noting that ts - gafg — (0 in the main triangle it can be found [24]

3 | L‘f"{ 0 1 - -
VM t3 @iy
= E |0 Lis i (58)
i=1 | LM L;{ - ERCE

This can be seen as the projection of the local derivatives in the adjacent triangles @i . (where
index 7 denotes values associated to the adjacent elements) over the normal to the main triangle
ts. As the triangles have a common side, t3 -tpfs = 0, where cpf’s is the derivative along the side.
Hence only the derivative along the side normal (¢},) has non-zero component over ts. This
gives

b9 | = (b gi,) (50)

An alternative form to express the curvatures, which is useful when their variations are
needed, is to define the vectors

3

| ,f
J= 30 L (st + Tk @
==

This gives
Kig = hij : t3 (61)

The last expression allows to interpret the curvatures as the projections of the vectors h;; over
the normal of the central element. The variation of the curvatures can be obtained as

-

g (L5 08 7 3, (b out) (L#Pll - L%01)
k=) | 0 L Z Nio(ts - bub) | 2 (Li1P32 - L2 | (ba-5uM) b (62)
=1 | LB} L5 |17 ' (Lo +L£P%2 |

where the projections of the vectors h;; over the contravariant base vectors ¢, have been
included

pg::hij-lﬁrﬂ ey = 1,2 (63)
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with

(ﬁr? = _}\ 281 X t:_?{ (65)

In above expressions superindexes in L;‘F and 611;‘? refer to element numbers whereas subscripts
denote node numbers. As usual the superindex M denotes values in the central triangle (Figure
1). Note that as expected the curvatures (and their variations) in the central element are a
function of the nodal displacements of the six nodes in the four elements patch. Note also that

0
A= }% = % (66)
Details of the derivation of Eq.(62) can be found in [27].
FEq.(62) can be rewritten in the form
ok = Bpoa? (67)
where
jaP = [sul,dul,oul,sul,oul, sug )" (68)
1B %1
is the virtual displacement vector of the patch
By, = [By1, B2 - -+ , Bus]) (69)

is the curvature matrix relating the virtual curvatures within the central element and the 18
virtual displacements of the six nodes in the patch.
The form of matrix By is given in the Appendix.

5 ENHANCED BASIC SHELL TRIANGLE

An enhanced version of the BST element (termed EBST) has been recently proposed by Flores
and Ofiate [27]. The main features of the element formulation are the following:

1. The geometry of the patch formed by the central element and the three adjacent elements
is quadratically interpolated from the position of the six nodes in the patch.

9. The membrane strains are assumed to vary linearly within the central triangle and are
expressed in terms of the (continuous) values of the deformation gradient at the mid side
points of the triangle.

3. The assumed constant curvature field within the central triangle is obtained by expression

(54) using now twice the values of the (continuous) deformation gradient at the mid side
points.

Details of the derivation of the EBST element are given below.

13
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n{0(0|1]1]1]-1

Table 2. Isoparametric coordinates of the six nodes in the patch of Figure 2.

5.1 Definition of the element geometry and computation of membrane strains

As mentioned above a quadratic approximation of the geometry of the four elements patch is
chosen using the position of the six nodes in the patch. It is useful to define the patch in the
isoparametric space using the nodal positions given in the Table 2 (see also Figure 2)

The quadratic interpolation is defined by

o= Nip (70)

with ((=1—-&—n)

Ni=(+én M:ﬁg(c—l)
No=¢&+n(  Ns=3(E—1) (71)
Ns=n+¢ Ne=3(n—1)

This interpolation allows to compute the displacement gradients at selected points in order to
use an assumed strain approach. The computation of the gradients is performed at the mid side
points of the central element of the patch denoted by G, Gy and G3 in Figure 2. This choice
has the following advantages.

Figure 2. Patch of elements in the isoparametric space.

e Gradients at the three mid side points depend only on the nodes belonging to the two
elements adjacent to each side. This can be easily verified by sampling the derivatives of
the shape functions at each mid-side point.

14



e When gradients are computed at the common mid-side point of two adjacent elements,
the same values are obtained, as the coordinates of the same four points are used. This
in practice means that the gradients at the mid-side points are independent of the ele-
ment where they are computed. A side-oriented implementation of the finite element will
therefore lead to a unique evaluation of the gradients per side.

The cartesian derivatives of the shape functions are computed at the original configuration
by the standard expression

Ni 1 Nie

= 72

I Ni,? } " Ni,f} i ( )
where the Jacobian matrix at the original configuration is
0%t Pt

T ¥ ¥ ™ (73)
1(‘9;6‘132 So":q'tz_

The deformation gradients on the middle surface, associated to an arbitrary spatial cartesian
system and to the material cartesian system defined on the middle surface are related by

iy, o) = [@rer ] I (74)

The Green-Lagrange membrane strains within the central triangle are now obtained using a
linear assumed membrane strain field &,,, 1.e.

i = B (75)

with
3 A i
& = (1 —20)€k, + (1 — 20)el, + (1 — )&, = ) Niep, (76)
i=1

where €' are the membrane strains computed at the three mid side points G (2 = 1,23 see
Figure 2). In Eq.(76) N1 = (1 — 2(), etc.
The gradient at each mid side point is computed from the quadratic interpolation (70):

Y Niwi| + Niyzains » @=12 , i=123 (77)
1

3
(99*".:1-)('}5 - 50}:1 —

.

—

Substituting Eq.(22) into (76) and using Eq.(22) gives the membrane strain vector as

3.1 _ f,o,?:l : 993:1 =1
em = 3 Ni{ ¢ly iy~ 1 (78)
i=1 2954 - Py
and the virtual membrane strains as
S _ ‘Pf; ‘ 59"?1
Oem = Y N; o0l (79)
i=1 0l - pig + iy - 05
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We note that the gradient at each mid side point G; depends only on the coordinates of the
three nodes of the central triangle and on those of an additional node in the patch, associated

to the side ¢ where the gradient is computed.
Combining Eqs.(79) and (77) gives

0€m = BpoaP (80)

where da? is the patch displacement vector (see Eq.(68)) and B, is the membrane strain matrix.
An explicit form of this matrix is given in the Appendix.

Differently from the original BST element the membrane strains within the EBST element
are now a function of the displacements of the six patch nodes.

5.2 Computation of curvatures

The constant curvature field assumed for the BST element is chosen again here. The numerical
evaluation of the line integral in Eq.(54) results in a sum over the integration points at the
element boundary which are, in fact, the same points used for evaluating the gradients when
computing the membrane strains. As one integration point is used over each side, it is not
necessary to distinguish between sides (7) and integration points (G;). In this way the curvatures
can be computed by

g L5 0 7. -
3 M t3 - 1y
=1 | LM M | L™ Pr2

In the standard BST element [21, 24] the gradient @' is computed as the average of the
linear approximations over the two adjacent elements (see Section 4.3). In the enhanced version,
the gradient is evaluated at each side G; from the quadratic interpolation

o . + | e |
©n | _ N{_,l N:ii,l Nﬁ_,l f_+3,1 P2 (82)
P ! Nf,z Ni,z 5,2 §+3,2 i P3

L Pit3

Note again than at each side the gradients depend only on the positions of the three nodes
of the central triangle and of an extra node (i + 3), associated precisely to the side (G;) where
the gradient is computed.

Direction t3 in Eq.(82) can be seen as a reference direction. If a different direction than that
given by Eq.(56) is chosen, at an angle 6 with the former, this has an influence of order f? in the
projection. This justifies Eq.(56) for the definition of t3 as a function exclusively of the three
nodes of the central triangle, instead of using the 6-node isoparametric interpolation.

The variation of the curvatures can be obtained as

" IM 0 T (3 o
Sk = 223: 0 LY |« [ Njalts -duy) i | Nirsalts: 5“:?
. M M . | Nijgo(ts - ou™)
i=1 | Lgs Ljj | \i= ’
3 [ (Ldipn + Liget)
— 3| (L{pse + Lispds) | (ts - 6wi) = Byda? (83)
i=1 | (L{ipis + Li%pls) _

1 L2
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where the definitions (61) and (63) still hold but with the new definition of h;; given by 27]

3
k
g = 3 (Ll + k) o
k=1

In Eq.(83)
By, = [Bb,, Bp,, - , B (85)

The expression of the curvature matrix By is given in the Appendix. Details of the derivation
of Eq.(83) can be found in [27].

5.3 The EBST1 element

A simplified and yet very effective version of the EBST element can be obtained by using
one point quadrature for the computation of all the element integrals. This element is termed
EBST1. Note that this only affects the membrane stiffness matrices and it is equivalent to using
a assumed constant membrane strain field defined by an average of the metric tensors computed
at each side.

Numerical experiments have shown that both the EBST and the EBSTI elements are free
of spurious energy modes.

6 BOUNDARY CONDITIONS

Elements at the domain boundary, where an adjacent element does not exist, deserve a special
attention. The treatment of essential boundary conditions associated to translational constraints
is straightforward, as they are the natural degrees of freedom of the element. The conditions
associated to the normal vector are crucial in this formulation for bending. For clamped sides
or symmetry planes, the normal vector t3 must be kept fixed (clamped case), or constrained
to move in the plane of symmetry (symmetry case). The former case can be seen as a special
case of the latter, so we will consider symmetry planes only. This restriction can be imposed
through the definition of the tangent plane at the boundary, including the normal to the plane
of symmetry ¢f that does not change during the process.

The tangent plane at the boundary (mid-side point) is expressed in terms of two orthogonal
unit vectors referred to a local-to-the-boundary Cartesian system (see Figure 3) defined as

[(ppn ) @’5] (86)

where vector ¢ is fixed during the process while direction ¢ emerges from the intersection of
the symmetry plane with the plane defined by the central element (M). The plane (gradient)
defined by the central element in the selected original convective Cartesian system (t,ts) is

[, o] (87)

the intersection line (side i) of this plane with the plane of symmetry can be written in terms of

the position of the nodes that define the side (j and k) and the original length of the side [,
1.e.
; 1
Vs = 1M (1 — ‘Pj) (88)
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original deformed

Figure 3. Local cartesian system for the treatment of symmetry boundary conditions

That together with the outer normal to the side n* = n1,mo]’ =[n-ty,n- to]” (resolved in
the selected original convective Cartesian system) leads to

(Pi”lr - ny —n9 Qﬁﬁg ]9
b= ™ ]| P (89)
R | T2 1 || Pis |

where, noting that X is the determinant of the gradient, the normal component of the gradient
@; can be approximated by

0
i (P"n
Alegr |

In this way the contribution of the gradient at side i to vectors h,g (equations 60 and 84)
results in

w1 TIM o0 7. o TIM 0 7. o

11 2,1 i1 $d s i1

T M P M ni n2 Pin

h —92| 0 L 1 l=2] 0 L ; (91)
22 1.2 il 2,2 n n il

nfy | Loy o)Ll T ] lm o Ile

For the computation of the curvature variations, the contribution from the gradient at side
i is now (see Ref. [27])

B N I 7 S o " ,
0 hgz =2 0 L*{g El e 1 5 5 ,]T (92a)
i Qh:{g ) i Lfyﬁé L{“{ |t 2 N1 || 710Uk u;[
> | w%ﬁm | T
= M L;5m [duy — duy] (92b)
* L Lﬂ"‘;m = Li{"gﬂg i

where the influence of variations in the length of vector ¢, has been neglected.
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For a simple supported (hinged) side, the problem is not completely defined. The simplest
choice is to neglect the contribution to the side rotations from the adjacent element missing in
the patch in the evaluation of the curvatures via eq.(54) [21,24]. This is equivalent to assume
that the gradient at the side is equal to the gradient in the central element, 1.e.

[(P’ilﬁ (P}‘Z] [90"1: 9 ] (93)

More precise changes can be however introduced to account for the different natural boundary
conditions. One may assume that the curvature normal to the side is zero, and consider a
contribution of the missing side to introduce this constraint. As the change of curvature parallel
to the side is zero along the hinged side, both things lead to zero curvatures in both directions.
Denoting the contribution to curvatures of the existing sides (5 and k) by

, - j—k

[t can be easily shown that to set the normal curvature to zero the contribution of the simple
supported side (z) should be

" k11 ] T ) ()’ () m)Pne 1 [en P
ko | =— | (n) (ne)®  (mo)’ n1 (ng)” 92 (94)
K12 - 2(n1)® ng o (ng)” 2(n1)? (ng)® | | k12 _

For the case of a triangle with two sides associated to hinged sides, the normal curvatures
to both sides must be zero. Denoting by n* and n’ the normal to the sides, and by m‘ and m’
the dual base (associated to base ni— n’), the contribution from the hinged sides (¢ and j) can
be written as a function of the contribution of the only existing side (k):

e s w g "

K11 “ mim:; , _ ; ; ML

K29 = — | My, o [ oInin 2nind ning 4+ ning ] K29 (95)
K12 mYm?, -+ mhmy K12

For a free edge the same approximation can be used but due to Poisson’s effect this will lead
to some error. The curvature variations of these contributions can be easily computed.

For the membrane formulation of element EBST, the gradient at the mid-side point of the
boundary is assumed equal to the gradient of the main triangle.

7 IMPLICIT SOLUTION SCHEME

For a step n the configuration ¢™ and the plastic strains € are known. The canﬁgm ation "
is obtained by adding the total displacements to the or 1g1na1 configuration ¢" = ¢" 4+ u”. The
stresses are computed at each triangle using a single sampling (integration) point at the center
and N integration points (layers) through the thickness. The plane stress state condition of
the classical thin shell theory is assumed, so that for every layer three stress components are
computed, (011,092, and o12) referred to the local cartesian system.

The computation of the incremental stresses is as follows:
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(] |

. Compute the metric tensor a,g; and the curvatures s 3

. Evaluate the incremental displacements: Au” = Kr"™ where K is the tangent stiffness

matrix and r is the residual force vector defined by for each element

r; =f/L1;tdA—// (Bﬁiam+B’£ab)dA (96)
A o

The expression of the tangent stiffness matrix for the element is given below. Details of
the derivation can be found in [24],[27].

. Generate the actual configuration ¢"+! = @" + Au”

n+41 n+1

. Compute the total and elastic deformations at each layer &

[5-5 f;:+1 = EE+1 o [E?J]E

. Compute the trial elastic stresses at each layer k

o7 = Clelp™! (98)

. Check the plasticity condition and return to the plasticity surface. If necessary correct the

plastic strains [g, E’H at each layer (small strain plasticity)

. Compute the generalized stresses

hY N
| |
ﬂ'g{l_ s "-N.— ZO’E+ Wi
L oy
+1 h? al +1
oyt =5 Dok aw (99)
L =1

Where w;. is the weight of the through-the-thickness integration point. Recall that zj 1s
the current distance of the layer to the mid-surface and not the original distance. However,
for small strain plasticity this distinction is not important.

This computation of stresses is adequate for an implicit scheme independent of the step
size and it is exact for an elastic problem.

Compute the residual force vector. The contribution for the Mth element is given by

- 1 nn+1
Om

Oy

(eMy+l = — 4, [ B, BY ™" (100)
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7.1 Tangent stiffness matrix

As usual the tangent stiffness matrix is split into material and geometric components. The
material tangent stiffness matrix is simply computed from the integral

K¥ = ] / BCBdA (101)
AM

where B = B,,, + B} includes:
e - a membrane contribution B,, given by Eq.(51) or Eq.(80).

e - a bending contribution By, given by Eq.(69) or Eq.(85) which is constant over the element.

A three point quadrature is used for integrating the stiffness terms BZ CB,, (recall that for
the EBST element the membrane strains vary linearly within the element) whereas one point
quadrature is chosen for the rest of the terms in KM,

7.2 Geometric tangent stiffness matrix
The geometric stiffness 1s written as
K¢ =K% + K{ (102)

where subscripts m and b denote as usual membrane and bending contributions. For the BS'T
element the membrane part is the same than for the standard constant strain triangle, leading
to

5 TKG A _Af'-{f < 5 LJ‘L&' Lﬂf H Nll N12 1 L‘?‘:Il - A
u m OW = ZZ u; [ Bl i,?] No;  Nao M W

i o s Tl

i=1 j=1
(103)

While for the EBST element the membrane part is computed as the sum of the contributions
of the three sides, 1.e.

T AM S CNEONE [ NG
Ty G — , k k 11 12 il .
su' K Au = E {511,,, [ Ny N | NE N Njkg [_\uj}

4 L0

(104)

where N;j = oy are the axial forces defined in Eq.(29).

The geometric stiffness associated to bending moments is much more involved and can be
found in [27]. Numerical experiments have shown that the bending part of the geometric stiffness
is not so important and can be disregarded in the iterative process.

Again three and one point quadratures are used for computing the membrane and bending
contributions to the geometric stiffness matrix. We note that for elastic-plastic problems a
uniform one point quadrature has been chosen for integration of both the membrane and bending
stiffness matrices.
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8 EXPLICIT SOLUTION SCHEME

For simulations including large non-linearities, such as frictional contact conditions on complex
geometries or large instabilities in membranes, convergence is difficult to achieve with implicit
schemes. In those cases an explicit solution algorithm is typically most advantageous. This
scheme provides the solution for dynamic problems and also for static problems if an adequate
damping is chosen.

The dynamic equations of motion to solve are of the form

r(u) +Cu+Mu=0 (105)

where M is the mass matrix, C is the damping matrix and the dot means the time derivative.
The solution is performed using the central difference method. To make the method competitive
a diagonal (lumped) M matrix is typically used and C is taken proportional to M. As usual,
mass lumping is performed by assigning, one third of the triangular element mass to each node
in the central element.

The explicit solution scheme can be summarized as follows. At each time step n where
displacements have been computed:

1. Compute the internal forces r™. This simply follows the same steps (2-8) described for the
implicit scheme in the previous section.

2. Compute the accelerations at time ¢,
3 — M(—i-l[rn - Cl-ln—l/Z]
where My is the diagonal (lumped) mass matrix.
3. Compute the velocities at time ¢, 1/9

l'lﬂ—l—l/Q _ 1'1”'"1/21'_'1”(%

4. Compute the displacements at time ;1

atl = gy al .L'ln—l—l,’Zé‘t

5. Update the shell geometry

6. Check frictional contact conditions

Further details of the implementation of the standard BST element within an explicit solution
scheme can be found in [26].

9 EXAMPLES

In this section several examples are presented to show the good performance of the rotation-
free shell elements (BST, EBST and EBST1). The first five static examples are solved using
an implicit code. The rest of the examples are computed using the explicit dynamic scheme.
For the explicit scheme the EBST element is always integrated using one integration point per
element (EBST1 version) although not indicated.
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9.1 Patch tests

The three elements considered (BST, EBST and EBST1) satisfy the membrane patch test defined
in Figure 4. A uniform axial tensile stress is obtained in all cases.

—

1/4

> 1/2

_ 1/4

Figure 4. Patch test for uniform tensile stress
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Figure 5. Patch test for uniform torsion

The element bending formulation does not allow to apply external bending moments (there
are not rotational DOFs). Hence it is not possible to analyse a patch of elements under loads
leading to a uniform bending moment. A uniform torsion can be considered if a point load
is applied at the corner of a rectangular plate with two consecutive free sides and two simple
supported sides. Figure 5 shows three patches leading to correct results both in displacements
and stresses. All three patches are structured meshes. When the central node in the third patch
is shifted from the center, the results obtained with the EBST and EBST1 elements are not
correct. This however does not seems to preclude the excellent performance of these elements,
as proved in the rest of the examples analyzed. On the other hand, the BST element gives correct
results in all torsion patch tests if natural boundary conditions are imposed in the formulation.
If this is not the case, incorrect results are obtained even with structured meshes.

9.2 Cook’s membrane problem

This example is used to assess the membrane performance of the EBST and EBST1 elements
and to compare it with the standard linear triangle (constant strain) and the quadratic triangle
(linear strain). This example involves important shear energy and was proposed to assess the
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distortion capability of elements. Figure 6.a shows the geometry and the applied load. Figure
6.b plots the vertical displacement of the upper vertex as a function of the number of nodes in the
mesh. Results obtained with other isoparametric elements have also been plotted for comparison.
They include the constant strain triangle (CST), the bilinear quadrilateral (QUAD4) and the
linear strain triangle (LST). Note that as this is a pure membrane problem the BST and the
CST elements give identical results.
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Figure 6. Cook membrane problem (a) Geometry (b) Results

From the plot shown it can be seen that the enhanced element with three integration points
(EBST) gives values slightly better that the constant strain triangle for the most coarse mesh
(only two elements). However, when the mesh is refined, a performance similar to the linear
strain triangle is obtained that is dramatically superior that the former. On the other hand, if a
one point quadrature is used (EBST1) the convergence in the reported displacement is notably
better that for the rest of the elements.

9.3 Cylindrical roof

In this example an effective membrane interpolation is of primary importance. The geometry is
a cylindrical roof supported by a rigid diaphragm at both ends and it is loaded by a uniform dead
weight (see Figure 7.a.). Only one quarter of the structure is modelled due to symmetry condi-
tions. Unstructured and structured meshes are considered. In the latter case two orientations
are possible (Figure 7 shows orientation B).

Tables 3, 4 and 5 present the normalized vertical displacements at the crown (point A) and
at the midpoint of the free side (point B) for the two orientations of the structured meshes and
for the non-structured mesh. Values used for normalization are ug = 0.5407 y up = —3.610
that are quoted in reference [32].

Plots in Figure 7.b show the normalized displacement of point-B for structured meshes as a
function of the number of degrees of freedom for each case studied. An excellent convergence for
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Figure 7. Cylindrical roof under dead weight. £ = 3 X 10%, v = 0.0, Thickness =3.0, shell weight
=(0.625 per unit area.

Point-A Point-B
NDOFs | EBST | EBST1 BST | CBST | EBSTI BST
16 | 0.65724 | 0.91855 | 0.74161 | 0.40950 | 0.70100 | 1.35230
56 | 0.53790 | 1.03331 | 0.74006 | 0.54859 | 1.00759 | 0.75590
208 | 0.89588 | 1.04374 | 0.88491 | 0.91612 | 1.02155 | 0.88269
200 | 0.99658 | 1.01391 | 0.96521 | 0.99263 | 1.00607 | 0.96393
3136 | 1.00142 | 1.00385 | 0.99105 | 0.99881 | 1.00102 | 0.98992

Table 3. Cylindrical roof under dead weight. Normalized vertical displacements for mesh orien-
tation A

the EBST element can be seen. The version with only one integration point (EBST1) presents
o behavior a little more flexible and converges from above for structured meshes. Table 5 shows
that both the EBST and the EBST1 elements have an excellent behavior for non structured
meshes.

9.4 Open semi-spherical dome with point loads

The main problem of finite elements with initially curved geometry is the so called “membrane
locking”. The EBST element has a quadratic interpolation of the geometry, then it may suffer
from this problem. To assess this we resort to an example of inextensional bending. This is
an hemispherical shell of radius 7 = 10 and thickness h = 0.04 with an 18° hole in the pole
and free at all boundaries, subjected to two inward and two outward forces 90° apart. Material
properties are E = 6.825 x 107 and v = 0.3. Figure 8.a shows the discretized geometry (only
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Table 4. Cylindrical roof under dead weight. Normalized vertical displacements for mesh orien-

tation B
Point-A Point-B
NDOFs | EBST | EBSTI BST | EBST | EBST1 BST
851 | 0.97546 | 0.8581 | 0.97598 | 0.97662 | 1.0027 | 0.97194
3311 | 0.98729 | 0.9682 | 0.98968 | 0.98476 | 1.0083 | 0.98598
13536 | 0.99582 | 0.9992 | 1.00057 | 0.99316 | 0.9973 | 0.99596
Table 5. Cylindrical roof under dead weight. Normalized vertical displacements for non-

Point-A Point-B
NDOFs | EBST | EBST1 BST | CBST | EBST1 BST
16 | 0.26029 | 0.83917 | 0.40416 | 0.52601 | 0.86133 | 0.89773
56 | 0.81274 | 1.10368 | 0.61642 | 0.67898 | 0.93931 | 0.68238
208 | 0.97651 | 1.04256 | 0.85010 | 0.93704 | 1.00255 | 0.86366
800 | 1.00085 | 1.01195 | 0.95626 | 0.99194 | 1.00211 | 0.95864
3136 | 1.00129 | 1.00337 | 0.98879 | 0.99828 | 1.00017 | 0.98848

structured mesh

one quarter of the geometry is considered due to symmetry).

In Figure 8.b the displacements of the points under the loads have been plotted versus the
number of nodes used in the discretization. Due to the orientation of the meshes chosen, the
displacement of the point under the inward load is not the same as the displacement under the
outward load, so in the figure an average (the absolute values) has been used. Results obtained
with other elements have been included for comparison: two membrane locking free elements,
namely the original linear BST element and a transverse shear-deformable quadrilateral (QUAD)
33]; a transverse shear deformable quadratic triangle (TRIA) [2] that is vulnerable to locking
and an assumed strain quadratic triangle (TRIC) [3] that does not exhibit membrane locking.

From the plotted results it can be seen that the EBST element presents slight membrane
locking in bending dominated problems with initially curved geometries. This locking is much
less severe than in a standard quadratic triangle. Membrane locking disappears when only one
integration point is used (EBST1 element).

9.5 Inflation of a sphere

The example is the inflation of a spherical shell under internal pressure. An incompressible
Mooney-Rivlin constitutive material has been considered. The Ogden parameters are N = 2,

a1 = 2, up = 40, ag = —2, pue = —20. Due to the simple geometry an analytical solution exists
[34] (with v = R/R?):

8hY

hO  dWw
= RD’)’Q (76 — ]-) (}U‘l - MQ"YZ)

P = RY~2 dry

In this numerical simulation the same geometric and material parameters used in Ref. [23]
have been adopted: R’ = 1 and A = 0.02. The three meshes of EBST1 element considered
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Figure 8. Pinched hemispherical shell with a hole, (a)geometry, (b)normalized displacement

to evaluate convergence are shown in Figure 9.a. The value of the actual radius as a function
of the internal pressure is plotted in Figure 9.b for the different meshes and is also compared
with the analytical solution. It can be seen that with a few degrees of freedom it is possible to
obtain an excellent agreement for the range of strains considered. The final value corresponds

to a ratio of h/R = 0.00024.

9.6 Clamped spherical dome under impulse pressure loading

The geometry of the dome and the material properties chosen are shown in Figure 10. A uniform
pressure load of 600 psi is applied to the upper surface of the dome. The different meshes used in
the analysis are shown in Figure 11. One fourth of the dome is considered only due to symmetry.
Two different analyses under elastic and elastic-plastic conditions were carried out. The number
of thickness layers in eq.(97) is four. Numerical experiments show that this suffice to provide an
accurate solution for large elastic-plastic problems [26]. Results are obtained using the explicit
scheme.

Figure 12 shows results for the time history of the central deflection using different meshes
and elastic material properties for both BST and EBST1 elements. Results are almost identical
for mesh-2 and mesh-3, showing the excellent convergence properties. The coarsest mesh shows
some differences between both elements, but for the finer meshes the results are almost identical.
Figure 13 shows similar results but now for an elastic-plastic material. The excellent convergence
of the BST and EBST elements is again noticeable.

Results obtained with the present elements compare very well with published results using
fine meshes. See for example ABAQUS Explicit example problems manual [35] and WHAMS-3D
manual [36], showing plots comparing results using different shell elements.

A summary of results for the central deflection at significant times is given in Tables 6 and
7. Further details on the solution of this problem with the standard BST element can be found
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in [26].

Table 6. Spherical dome. Elastic material. Comparison of the central deflection values at the

Element/mesh | t=02ms |t=04ms | t=0.6ms | ¢t =0.8ms
BST Coarse -0.05155 | -0.09130 0.04414 -0.08945
BST Medium -0.04542 -0.09177 0.03863 -0.08052
BST Fine -0.04460 | -0.09022 0.03514 | -0.08132
EBST1 Coarse -0.05088 -0.08929 0.04348 -0.08708
EBST1 Medium -0.04527 | -0.09134 0.03865 | -0.07979
EBST1 Fine -0.04453 | -0.09004 0.03510 | -0.08099

mid point obtained with the BST and EBST1 elements for different meshes

Element/mesh |t =0.2ms | t =0.4ms | t =0.6ms | t = 0.8ms
BST Coarse -0.05888 | -0.05869 | -0.02938 | -0.06521
BST Medium -0.05376 | -0.06000 [ -0.02564 | -0.06098
BST Fine -0.05312 | -0.05993 | -0.02464 | -0.06105
EBST1 Coarse -0.05827 | -0.05478 } -0.02792 | -0.06187
EBST1 Medium | -0.05374 | -0.05884 | -0.02543 | -0.06030
EBST1 Fine -0.05317 | -0.05935 | -0.02458 | -0.06085

Table 7. Spherical dome. Elastic-plastic material. Comparison of the central deflection values
at the mid point obtained with the BST and EBST1 elements for different meshes

9.7 Cylindrical panel under impulse loading

The geometry of the cylinder and the material properties are shown in Figure 14. A prescribed
initial normal velocity of v, = —5650 in/sec is applied to the points in the region shown modelling
the effect of the detonation of an explosive layer. The panel is assumed clamped along all the
boundary. One half of the cylinder is discretized only due to symmetry conditions. Ihree
different meshes of 6 x 12, 12 x 32 and 18 x 48 BST elements were used for the analysis. The
deformed configurations for time = 1msec are shown for the three meshes in Figure 15.

The analysis was performed assuming an elastic-perfect plastic material behaviour oy = K
k' = 0). A study of the convergence of the solution with the number of thickness layers showed
again that four layers suffice to capture accurately the non linear material response [26].

A comparison of the results obtained with both elements using the coarse mesh and the finer
mesh is shown in Figure 16 where experimental results reported in [37] have also been plotted
for comparison purposes. Good agreement between the numerical and experimental results 1s
obtained. Figures 16 show the time evolution of the vertical displacement of two reference points
along the center line located at y = 6.28in and y = 9.42in, respectively. For the finer mesh results
between both elements are almost identical. For the coarse mesh it can been seen again that
the element BST is more flexible than element EBSTT.

The numerical values of the vertical displacement at the two reference points obtained with
the BST and EBST1 elements after a time of 0.4 ms using the 16 x 32 mesh are compared in
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Table 8 with a numerical solution obtained by Stolarski et al. [38] using a curved triangular
shell element and the 16 x 32 mesh. Experimental results reported in [37] are also given for
comparison. It is interesting to note the reasonable agreement of the results for y = 6.28in. and
the discrepancy of present and other published numerical solutions with the experimental value
for y = 9.42in.

Vertical displacement (in.)
element /mesh y = 6.28in y = 9.42in
BST (6 x 12 el.) -1.310 -0.679
BST (18 x 48 el.) -1.181 -0.587
EBST1 (6 x 12 el.) -1.147 -0.575
EBST1 (18 x 48 el.) 1,171 -0.584
Stolarski et al. [38] -1.183 -0.530
Experimental [37] -1.280 -0.700

Table 8. Cylindrical panel under impulse load. Comparison of vertical displacement values of
two central points for £ = 0.4 ms

The deformed shapes of the transverse section for y = 6.28in. and the longitudinal section
for = = 0 obtained with the both elements for the coarse and the fine meshes after lms. are
compared with the experimental results in Figures 17 and 18. Excellent agreement is observed
for the fine mesh for both elements.

9.8 Airbag Membranes
Inflation /deflation of a circular airbag

This example has been taken from Ref.[23] where it is shown that the final configuration 1is
mesh dependent due to the strong instabilities leading to a non-uniqueness of the solution. In
23] it is also discussed the important regularizing properties of the bending energy, that when
disregarded leads to massive wrinkling in the compressed zones.

The airbag geometry is initially circular with an undeformed radius of 0.35. The constitutive
material is a linear isotropic elastic one with modulus of elasticity £ = 6 X 10"Pa, Poisson’s
ratio v = 0.3 and density p = 2000kg/m3. Arbitrarily only one quarter of the geometry has
been modelled. Only the normal displacement to the original plane 1s constrained along the
boundaries. The thickness considered is h = 0.0004m and the inflation pressure is 5000Pa.
Pressure is linearly increased from 0 to the final value in ¢ = 0.15 sec.

Figure 19 shows the final deformed configurations for a mesh with 10201 nodes and 20000
EBST1 elements. The figure on the left (a) corresponds to an analysis including full bending
effects and the right figure (b) is a pure membrane analysis.

We note that when the bending energy is included a more regular final pattern is obtained.
Also the final pattern is rather independent of the discretization (note that the solution is non
unique due to the strong instabilities), and a massive wrinkling appears in the center of the
modelled region. On the other hand, the pure membrane solution shows a wrinkling pattern
where the width of the wrinkle is the length of the element.

Figure 20 shows the results obtained for the de-inflation process. Note that the spherical
membrane falls down due to the self weight. The final configuration is of course non-unique.
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The next problem is the study of the inflating and de-inflating of a tube with a semi-spherical
end cap. The tube diameter is D = 1, its total length is L = 5m and the thickness h = 5x10~°m.
The material has the following properties £ = 4 X 10°Pa,, v=0.35, p=5X 10%*kg/m?. The tube
is inflated fast until a pressure of 104 and then is de-inflated under self weight. ‘The analysis
is performed with a mesh of 4176 EBST1 elements and 2163 nodes modelling a quarter of the
oeometry. The evolution of the tube walls during the de-inflating process can be seen in Figure
91. Note that the central part collapses as expected, while the semi-spherical cap remains
unaltered.

The same analysis is repeated for a longer and thinner tube (L = 6m and h = 3X 10~3m). The
same material than in the previous case was chosen with a higher density (p = 7.5 X 10%kg /m>).
The evolution of the tube walls is shown in Figure 22. Note that the central part collapses again
but in a less smoother manner due to the smaller thickness.

The last example of this kind is the inflation of a square airbag supporting a spherical object.
This example resembles a problem studied (numerically and experimentally) in Ref.[39], where
Auid-structure interaction is the main subject. Here the fluid is not modelled, and a uniform
pressure is applied over all the internal surfaces. The lower surface part of the airbag is limited
by a rigid plane and on the upper part a spherical dummy object is set to study the interaction
between the airbag and the object.

The airbag geometry is initially square with an undeformed side length of 0.643m. The
constitutive material chosen is a linear isotropic elastic one with B/ = 5.88 X 10%Pa, v = 0.4
and a density of p = 1000 kg/m®. Only one quarter of the geometry has been modelled due
to symmetry. The thickness h = 0.00075m and the inflation pressure is 250000Pa. Pressure is
linearly incremented from 0 to the final value in ¢ = 0.15sec. The spherical object has a radius
r = 0.08m and a mass of 4.8kg (one quarter), and is subjected to gravity load during all the
process.

The mesh includes 8192 EBST1 elements and 4225 nodes on each surface of the airbag.
Figure 23 shows the deformed configurations for three diflerent times. The sequence on the left
of the figure corresponds to an analysis including full bending effects and the sequence on the
right is the result of a pure membrane analysis. A standard penalty formulation is used for
frictionless contact.

9.9 S-rail sheet stamping

The final problem corresponds to one of the sheet stamping benchmark tests proposed in NU-
MISHEET’96 [40]. The analysis comprises two parts, namely, stamping of a S-rail sheet com-
ponent and springback computations once the stamping tools are removed. Figure 24 shows the
deformed sheet after springback.

The detailed geometry and material data can be found in the proceedings of the conference
[40] or in the web [41]. The mesh used for the sheet has 6000 three node triangular elements
and 3111 points (Figure 24). The tools are treated as rigid bodies. The meshes used for the
sheet and the tools are those provided by the benchmark organizers. The material considered
here is a mild steel (IF) with Young Modulus E = 2.06G Pa and Poisson ratio v = 0.3. Mises
vield criterion was used for plasticity behaviour with non-linear isotropic hardening defined by
k(eP) = 545(0.13 + eP)0-267[M Pa). A uniform friction of 0.15 was used for all the tools. A low
(10kN) blank holder force was considered in this simulation.

Figure 25 compares the punch force during the stamping stage obtained with both BST and
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EBST1 elements for the simulation and experimental values. Also for reference the average values
of the simulations presented in the conference are included. Explicit and implicit simulations
are considered as different curves. There is a remarkable coincidence between the experimental
values and the results obtained with BST and EBST1 elements.

Figure 26 plots the Z coordinate along line B”"-G” after springback stage. The top surface
of the sheet does not remain plane due to some instabilities for the low blank holder force used.
Results obtained with the simulations compare very well with the experimental results.

10 CONCLUDING REMARKS

We have presented in the paper two alternative formulations for the rotation-free basic shell
triangle (BST) using an assumed strain approach. The simplest element of the family is based
on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of
four elements and a constant membrane field computed from the standard linear interpolation of
the displacements within each triangle. An enhanced version of the element is obtained by using
a quadratic interpolation of the geometry in terms of the six patch nodes. This allows to compute
an assumed linear membrane strain field which improves the in-plane behaviour of the original
element. A simple and economic version of the element using a single integration point has been
presented. The efficiency of the different rotation-free shell triangles has been demonstrated in
many examples of application including linear and non linear analysis of shells under static and
dynamic loads, the inflation and de-inflation of membranes and a sheet stamping problem.

The enhanced rotation-free basic shell triangle element with a single integration point (the
EBST1 element) has proven to be an excellent candidate for solving practical engineering shell
and membrane problems involving complex geometry, dynamics, material non linearity and
frictional contact conditions.
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APPENDIX

A.1 Curvature matrix for the BST element

dk = By X tzoa”

with
§aP = [dul,dud,dul,ouf, sui ,oug |’
18 x 1
and
+Ly'y L5 + L3 L +Ly'5 L35 + Ly'oL3 +LyoLyq + Ly Ly o + L3y5L3, + Lf@%,z
DMLY + DS, | DMLY, + LLL3, | LISL5, + L Lio + LihLs, + Ly Lo
B o LﬁL%,l i} Lg?l L%,l L%L%,Q“ L%L%,Q L%L%,l T L}El L;,a T L%L%,l T L%ﬂ L%,E
L% Ly L% L1 L% L1y + Ly Ly g
Ly Li, Ly, Li Ly L7, + Ly Lig
Ly L3 LyoLs Ly L3y + L3, Li g
LY oty + L o2, | LY o3y + L5035 | Ll + Liopis
Lflﬁh T LS?QP% Lg?lﬁéz T L%P%Q L%P}Q T LJ{IQP%Q
9 Lgflﬂ%l i L%ﬂ%z Liﬂﬁ%ﬁ T L%P%Q Ljflﬁ%? i Lfffzﬂ%z
0 0 0
0 0 0
0 0 0

A.2 Membrane strain matrix and curvature matrix for the EBST element

A.2.1 Membrane strain matrix

0, = BdaP

Tl I, S ) 5 -3
lelﬂo? + Nl,l‘Pfl * N1,1‘Pf1 Nll,z‘Pfiz + Niopig + INT o0

LT, 3 3 3= 3 .3
N2*1<Pf1 T INg 1Py T IVg 1P NQ,Q‘P*’Q T INg oPig T N9 5lPig

Bl == N3 + Niapin + Niapiy | Naoprg + V3ot + V3000
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N5,1‘Pf1 N5,2‘Pf2
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A.2.2 Curvature matrix

ok = By X tgda”

L1y (N11)g, + Loy (N11)g, + L1 (N11)g, | D12 (N1,2)g, + Lo (N12)g, + Laa (Ni2)g,

1

1

Li1(Nojy)g, + Lo (Non)e, + La1 (N21)g, | L1,2 (Na2)g, + L2 (No2)g, + L32 (Na22)g,

L1y (N31)g, + Lai (N31) ¢, + L31 (V31)e, | L1,2 (N3,2)g, + Lo2 (N32)g, + L2 (N32)¢,

Bl =2 1
2 Ly1 (Naji)g, L12 (Na2)g,
L21(Ns1)e, L2 (Ns2)q,
L3 (Ne1)q, L2 (Ne2)q,
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Lis (N3j1)g, + L1 (Nj3)g, + Lo (N31) e, + L2a (Njis)g, + L32 (V3,1) g, + L31 (Nis)e,

L1 (Naj)g, + L1, (Nag)g,

Lao (Nsi)g, + Lo (Ns3)g,
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In this last expression L;; = L;’;
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Figure 9. Inflation of sphere of Mooney-Rivlin material. (a) Meshes of EBST1 elements used in
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Figure 11. Spherical dome under impulse pressure. Meshes used



005 — S — . —
l 6 BST mesh 3
— EBST1 mesh 3 9 8
I v BST mesh 2
A EBST1 mesh 2
I O BST mesh 1
= 0 o EBST1 mesh 1
=
et
e |
Q
;
AL
0.
L
0 -0.05
8
= 8 A
ol 0.2 0.4 0.6 0.8 1

Time [msec]

Figure 12. Spherical dome under impulse pressure. History of central deflection for elastic
material

[} I = 1 —
B BST mesh 3
I - EBST1 mesh 3
- v BST mesh 2
-0.02 A EBST1 mesh 2 |
' 0 BST mesh 1 8 3

=) o EBST1 mesh 1
= L
c
o =
5-0.04 |
3 3
=3
0
-]

-0.06

o) ©
o)
o ©
0.08 i L — —_ ] 1 |
S0 0.2 04 0.6 0.8 1
Time [msec]

Figure 13. Spherical dome under impulse pressure. History of central deflection for elastic-plastic
material

39



E=10.5x 10° Ib/in®
p= 2.5x10"Ib sec’/in®
v= 038

k= 44 000 Ib/in®

k = 0 Ib/in®

Figure 14. Cylindrical panel under impulse loading. Geometry and material properties

Figure 15. Impulsively loaded cylindrical panel. Deformed meshes for tzme = Imsec
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Figure 16. Cylindrical panel under impulse loading. Time evolution of the displacement of two
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Figure 17. Cylindrical panel under impulse loading. Final deformation (t = 1msec) of the panel
at the cross section y = 6.28in Comparison with experimental values.
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Figure 19. Inflation of a circular airbag. Deformed configurations for final pressure. (a) bending
formulation; (b) membrane formulation.

Figure 20. Inflation and deflation of a circular air-bag.
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Figure 21. Inflation and deflation of a closed tube. L =5, D =1, h =5 x 107°.
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Figure 22. Inflation and deflation of a closed tube. L =6, D =1, h =3 X 10—,
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t=0.08

t=0.12

Figure 23. Inflation of a square airbag against an spherical object. Deformed configurations for
different times. Left figure: results obtained with the full bending formulation. Right figure:
results obtained with a pure membrane solution.
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Figure 24. Stamping of a S-rail. Final deformation of the sheet after springback obtained in the
simulation. The triangular mesh of the deformed sheet is also shown
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Figure 25. Stamping of a S-rail. Punch force versus punch travel. Average of explicit and
implicit results reported at the benchmark are also shown.
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