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Abstract. We present a general formulation for incompressible fluid flow analysis
using the finite element method (FEM). The necessary stabilization for dealing
with convective effects and the incompressibility condition are introduced via the
so called finite calculus (FIC) method. The extension of the standard eulerian
form of the equations to an arbitrary lagrangian-eulerian (ALE) frame adequate for
treating fluid-structure interaction problems is presented. The fully lagrangian form
is also discussed. Details of an effective mesh updating procedure are presented
together with a method for dealing with free surface effects of importance for ship
hydrodynamic analysis and many other fluid flow problems. Examples of application
of the eulerian, the ALE and the fully lagrangian flow descriptions are presented.

Key words: Stabilized formulation, incompressible fluid flow, finite calculus, finite
element method, ship hydrodynamics.

1 INTRODUCTION

The development of efficient and robust numerical methods for analysis of in-
compressible flows has been a subject of intensive research in last decades. Much
effort has been spent in developing the so called stabilized numerical methods over-
coming the two main sources of instability in incompressible flow analysis, namely
those originated by the high values of the convective terms and those induced by
the difficulty in satisfying the incompressibility conditions.

The solution of above problems in the context of the finite element method (FEM)
has been attempted in a number of ways [1]. The underdiffusive character of the
Galerkin FEM for high convection flows (which incidentaly also occurs for the central
finite difference (FD) and finite volume (FV) methods [2]) has been corrected by
adding some kind of artificial viscosity terms to the standard Galerkin equations.

A popular way to overcome the problems with the incompressibility constraint is
by introducing a pseudo-compressibility in the flow and using implicit and explicit
algorithms developed for this kind of problems such as artificial compressibility
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schemes [4-6] and preconditioning techniques [7]. Other FEM schemes with good
stabilization properties for the convective and incompressibility terms are based in
Petrov-Galerkin (PG) techniques. The background of PG methods are the non-
centred (upwind) schemes for computing the first derivatives of the convective op-
erator in FD and F'V methods [2,8]. More recently a general class of Galerkin FEM
has been developed where the standard Galerkin variational form is extended with
adequate residual-based terms in order to achieve a stabilized numerical scheme.
Among the many methods of this kind in the finite element universe we can name the
Streamline Upwind Petrov Galerkin (SUPG) method [1,9-18], the Galerkin Least
Square (GLS) method [19,20], the Taylor-Galerkin method [21], the Characteris-
tic Galerkin method [22-24| and its variant the Characteristic Based Split (CBS)
method [25,26], pressure gradient operator methods [27] and the Subgrid Scale (SS)
method [28-30]. A good review of these methods can be found in [31].

In this paper a stabilized finite element formulation for incompressible flows is
derived in a different manner. The starting point are the modified governing dif-
ferential equations of the fluid flow problem formulated via a finite calculus (FIC)
approach [32]. The FIC method is based in invoking the balance of fluxes in a
fluid domain of finite size. This introduces naturally additional terms in the clas-
sical differential equations of infinitesimal fluid mechanics which are a function of
the balance domain dimensions. The new terms in the modified governing equa-
tions provide the necessary stabilization to the discrete equations obtained via the
standard Galerkin finite element method [33-39).

The layout of the chapter is the following. In the next section, the main concepts
of the FIC approach are introduced via a simple 1D convection-diffusion model prob-
lem. Then the basic FIC equations for incompressible flow problems are presented.
The finite element discretization is introduced and the resulting matrix formulation
is detailed. Both monolithic and fractional step schemes for the transient solution
are presented.

The basic formulation is extended to account for free surface wave effects by us-
ing an arbitrary eulerian-lagrangian (ALE) frame and introducing the free surface
boundary conditions. Here the numerical treatment of the free surface equation us-
ing the FIC method is presented. The analysis of fluid-structure interaction problems
involving the movement of floating or submerged solids in a fluid is also discussed.
These problems require the displacement of the mesh nodes in accordance with the
motion of the structure or the free surface and here a simple and effective algorithm
for updating the mesh nodes is described. In the last part of the chapter the fully
lagrangian formulation for fluid flow analysis is presented as a particular case of
the ALE form. The lagrangian description has many advantages for tracking the
displacement of fluid particles in flows where large motions of the fluid surface occur
such in the case of breaking waves, splashing of water, filling of moulds, etc. A
positive feature of the lagrangian formulation is that the convective terms dissapear
in the governing equations of the fluid flow; in return the updating of the mesh at al-
most every time step is now a necessity and efficient algorithms for mesh generation
must be used.

The examples show the efficiency of the eulerian, ALE and fully lagrangian for-
mulations to solve classical fluid flow problems, as well as fluid-structure interaction

situations involving contact with moving solids, waves around ships and large mo-
tions of the free surface, among others.
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Figure 1: Equilibrium of fluxes in a balance domain of finite size

2 THE FINITE CALCULUS METHOD

We will consider a convection-diffusion problem in a 1D domain §2 of length L.

The equation of balance of fluxes in a subdomain of size d belonging to Q2 (Figure
1) is written as

ga —qp =0 (1)

where g4 and gp are the incoming and outgoing fluxes at points A and B, respec-
tively. The flux ¢ includes both convective and diffusive terms; i.e. ¢ = u¢ kd‘i}
where ¢ is the transported variable, v is the velocity and k is the diffusitivity of the
material.

Let us express now the fluxes ¢4 and ¢ in terms of the flux at an arbitrary point
C' within the balance domain (Figure 1). Expanding g4 and ¢p in Taylor series
around point C' up to second order terms gives

dg,  didq 3 dg,  d3d’q 3
Qa=£i'c—'d1@c | 2d$2|c+0(d1) ; QB=Qc+d2£c | 2d:z:2|0+0(d2) (2)
Substituting eq.(2) into eq.(1) gives after simplification
dqg hdq
dv 2dz? . (3)

where h = d; — dy and all derivatives are computed at point C.

Standard calculus theory assumes that the domain d is of infinitesimal size and
the resulting balance equation is simply % = 0. We will relax this assumption
and allow the balance domain to have a finite size. The new balance equation (3)
incorporates now the underlined term which introduces the characteristic length h.
Obviously, accounting for higher order terms in eq.(2) would lead to new terms in
eq.(3) involving higher powers of h.

Distance h in eq.(3) can be interpreted as a free parameter depending, of course,
on the location of point C (note that —d < h < d). However, the fact that eq.(3) is
the exact balance equation (up to second order terms) for any 1D domain of finite
size and that the position of point C' is arbitrary, can be used to derive numerical
schemes with enhanced properties simply by computing the characteristic length
parameter from an adequate “optimality” rule.

Consider, for instance, the modified equation (3) applied to the convection-
diffusion problem. Neglecting third order derivatives of ¢, eq.(3) can be written

in an explicit form as
dp uh\ d’¢
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We see that the modified equation via the FIC method introduces naturally an ad-
ditional diffusion term into the standard convection-diffusion equation. This is the
basis of the popular “artificial diffusion” procedure [1,2,8,36]. The characteristic
length h is typically expressed as a function of the cell or element dimensions. The
optimal or critical value of h for each cell or element can be computed from numer-
ical stability conditions such as obtaining a physically meaningful solution, or even
obtaining “exact” nodal values [32-39).

Equation (3) can be extended to account for source effects. The full stabilized
equation can be then written in compact form as

h dr
P roe— '2-a =] (5)
with b d iy

where () is the external source. For consistency a “finite” form of the Neumann
boundary condition should be used. This can be readily obtained by invoking bal-
ance of fluxes in a domain of finite size next to the boundary I', where the external

(diffusive) flux is prescribed to a value ¢,. The modified Neumann boundary condi-
tion can be written as [32)]

d h
k= + @ —5r=0 at T, (7)

2

The definition of the problem is completed with the standard Dirichlet condition
prescribing the value of ¢ at the boundary I'.

The underlined terms in Eqgs.(5) and (7) introduce the necessary stabilization in
the discrete solution of the problem using whatever numerical scheme. For details
see [32-41].

The time dimension can be introduced in the FIC method by considering the
balance equation in a space-time slab domain [32,35,36]. Quite generally the FIC
equation can be written for any problem in mechanics as [32]

hj 8?} 58m B ] = Lnb
2811?3: 2_37_0 1 jzl}nd (8)

Ty

where r; is the ith standard differential equation of the infinitesimal theory, h; are
characteristic length parameters, ¢ is a time stabilization parameter and t the time;
n, and ng are respectively the number of balance equations and the number of
dimension of the problem along which balance of fluxes or forces is invoked (i.e.,
ng = 2 for 2D problems, etc.).

For example, in the case of the convection-diffusion problem n, = 1, Eq.(8) is
particularized as

hj Or  00r
2 83::j 2 Ot B

. o % _3@‘) - d do
with r ;= (at—i—uiami) | diﬁk(a)“{“@

/i 0 ) j= l,nd (9)
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The modified Neumann boundary conditions in the FIC formulation can be ex-
pressed in the general case as

Qi —ti — hiniri =0 only 1=1,n4 (10)

where ¢;; are the generalized “fluxes” (such as the heat fluxes in a heat transfer
problem or the stresses in solid or fluid mechanics), ¢; are the prescribed values of the
boundary fluxes and n; are the components of the outward normal to the Neumann
boundary I';. For the transient case the initial boundary condition should also be
specified [32,35,36].

In Egs.(8)-(10) we have underlined once more the terms introduced by the FIC
approach which are essential for deriving stabilized numerical formulations.

The starting point in the next section are the FIC equation for a viscous incom-
pressible fluid. A simplified version of the equation will be chosen neglecting the
time stabilization term as this is not relevant for the purposes of this work.

3 GENERAL FIC EQUATIONS FOR VISCOUS INCOMPRESSIBLE
FLOW

The FIC governing equations for a viscous incompressible fluid can be written as

Momentum

L, O,

s — — N = 11
Mass balance
1 3?",1
— —h; = () 12
g 2 lj 8:IIj ( )

where

B 8‘11.?; | 8(’11.3'&3 ) | 3}’) at‘?.,;j
Pmi = p(é‘t | ox; ) " Oz dz; b (13)
v i 1,] = 1,14 (14)
aiIIi

Above u; is the velocity along the ith global axis, p is the (constant) density of
the fluid, p is the absolute pressure (defined positive in compression), b; are the body

forces and s;; are the viscous deviatoric stresses related to the viscosity p by the
standard expression

. 1 0u _
Sij = 2/t (Eij - ijﬁ@_;;:) (15)

where 9;; is the Kronecker delta and the strain rates €;; are

: 1 aui | 8uj
“ij = § (@:z:j | 3:171,) (16)




A general stabilized formulation for incompressible fluid flow using finite calculus and the FEM

The FIC boundary conditions are

1
n;oi; — ti -+ §hjnjrmi =0 on Ft (17)
u; —u; =0 onT, (18)

and the initial condition is u; = u for ¢t = t,.

In Eqs.(17) and (18) ¢; and are sur face tractions and prescribed displacements
on the boundaries I'; and I, 1espect1vely, n,; are the components of the unit normal
vector to the boundary and o;; are the total stresses given by o;; = s;; — d;;p. The
sign 1n front the stabilization term in Eq.(17) is positive due to the definition of 7,
in Eq.(13).

The hjs in above equations are characteristic lengths of the domain where balance
of momentum and mass is enforced. In Eq.(17) these lengths define the domain
where equilibrium of boundary tractions is established [32].

Eqgs.(11)—(18) are the starting point for deriving stabilized finite element methods
for solving the incompressible Navier-Stokes equations using equal order interpola-
tion for the velocity and pressure variables [37-39]. Application of the FIC formu-
lations to meshless analysis of fluid flow problems using the finite point method can
be found in [40,41].

We note that the “conservative” form of the convective terms in Eq.(13) and the
presence of the volumetric strain rate in the constitutive equation (15) do not take
advantage of the incompressibility condition. These forms are useful for obtaining
the relationship between the derivative of the volumetric strain rate and the mo-
mentum equations as shown in the next section. However, the standard form of the

governing equations for incompressible flows will be used for the final derivation of
the discretized FEM equations.

3.1 Stabilized integral forms
From Eq.(11) it can be obtained (taking into account Eq.(15))

8?‘d 1 -ﬁ h:_,: a'?‘ﬂr i puihk 8?‘.;; .. )
- —— -~y : ; — 1: y k: 1
where
244 | puih;
a; = 3 i 2 (20{1)

e o, 0 0 1,

_ Uq Uy P .

m; = - u; | ij) — bi
r i ;0 ( 815 u.? 811’}3) ami aﬂ?j (QIU‘E J) (Qﬂb)

Substituting Eq.(19) into Eq.(12) and retaining the terms involving the deriva-
tives of r,,,; with respect to z; only, leads to the following expression for the stabilized
mass balance equation

Ty

OT'm
?"d—Zﬂ ;ﬂm; — (21)
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with

8 2pu; -
. = | 22
' (3h3 hi ) (22)

The 7;’s in Eq.(21) are termed in the stabilization literature ntrinsic teme pa-

rameters. It is interesting to note that these parameters take here the values of
342 e

and T, =

8 20U,
(Euler ﬁow),, respectixfely. Similar values for 7; (usually 7; = 7 is taken) are used in
other works from ad-hoc extensions of the 1D advective-diffusive problem [12-31].
It is remarkable that the intrinsic time parameters have been deduced here from the
general FIC formulation and this shows the possibilities of the method.

The weighted residual form of the momentum and mass balance equations (Eqs.(11)
and (21)) is written as

= for the viscous limit (Stokes flow) and the inviscid limit

Momentum
_ B O | h;
/ﬂéui _’rmi 2‘? oz; | T, dui(oym; —t; + —zianmi)dF =) (23)
Mass balance
) TR
B 1,; m; dQ) =0 24
fﬂq_m > g (24)

where du; and g are arbitrary weighting functions representing virtual velocity and
virtual pressure fields. Integration by parts of the r,,, terms leads to

hj 65“1 o
Léuifmi s 2 5u.,.;(crz-jnj — t,,,)df' . ; -/ . 0 amj TmidQ =) (25{1)

C Ny aq 3 BiP) i

rad+ [ |3 Tip et 42— [ |3 qrinira, | T =0 25b

/QQ(E ﬁ_; oz; ™| rd;q . (250)
The third integral in Eq.(25a) is expressed as a sum of the element contributions

to allow for discontinuities in the derivatives of r,,, along the element interfaces.
Also in Eq.(25b) we will neglect hereonwards the third integral by assuming that

Tm. 18 negligible on the boundaries. The deviatoric stresses and the pressure terms

in the first integral of Eq.(25a) are integrated by parts in the usual manner. The
resulting equations are

Momentum

— au{_ au,,; _ i
./E.l hﬁum ( o | H‘?a—%) =+ CSEij(Sij == (Sijp)- d§) — _/;Igutbzdﬂ - N 5uitidr L

hj 85"{4‘11' o
+Zf 5 5 Tmd2 =0 (26)
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Mass balance

Ou,; ) -
f I3 d0 + f Zﬂ 83;1%_ 40 = 0 (27)

k|

We note that in Eq.(26) we use now the standard form of the convective operator
for incompressible flows (i.e. neglecting the contribution from the volumetric strain

Y, -). Also in Eq.(26)
_ 1 8(5‘11.3' | 8(5’11.3
=3 (5 + 5)

0zx;
3.2 Convective and pressure gradient projections

rate

The computation of the residual terms can be simplified if we introduce now the
convective and pressure gradient projections ¢; and ;, respectively defined as

C T pu aui
i — ITmy; — 7
01
_ Op K (28)
Ty = T, ami

We can express 7, in Eqs.(26) and (27) in terms of ¢; and 7;, respectively which
then become additional variables. The system of integral equations is now aug-
mented in the necessary number of additional equations by imposing that the resid-

ual r,,, vanishes (in average sense) for both forms given by Eqs.(28). This gives the
final system of governing equation as:

” u; Ou; . '
/;1 (51{1,1;"0( 4 ' ; ’EL) I 5Eij(81;j—5ijp) dﬂ—f 5uib1~dQ— . 6u£tidF+

8t I uj aﬁj
d(0u;) ou; | B
+Zfﬂ o (pujaxj . cz) a0 =0 (29)

311,1- & aq ﬁp -
a5 d0 / Z g ( 5 m) dQ = 0 (30)
/ o¢; u-aui e | dQY =0 no sum in 4 (31)
0 Gp\p Jaa:j g -
Op o
/ O T ( | ?rt-) il = () no sum in % (32)
Q0 0x;

with 4,7,k = 1,ng. In Eqgs.(31) and (32) dc; and dm; are appropriate weighting
functions and the p and 7; weights are introduced for convenience.
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4 FINITE ELEMENT DISCRETIZATION

We choose C° continuous linear interpolations of the velocities, the pressure, the
convection projections ¢; and the pressure gradient projections m; over three node
triangles (2D) and four node tetrahedra (3D). The linear interpolations are written
as

ui:ZNjﬂj ; p:zNjﬁj
:r';l jil (33)
C; = ZNj(-fg j R Z Njﬁg
j=1 j=1
where n = 3 (4) for triangles (tetrahedra), (T)j denotes nodal variables and N; are
the linear shape functions [1].
Substituting the approximations (33) into Eqgs.(29-32) and choosing the Galer-

king form with du; = ¢ = d¢; = 0m; = N; leads to following system of discretized
equations

Mi+ (A+K+K)ai—Gp+Cc=f (34a)
G'a+Lp+ Qm =0 (34b)

Ci + Mc =0 (34c)
Q'p+Mw =0 (34c)

where the element contributions are given by (for 2D problems)

M= | pNiNjdQ , Ay= | N;pu’ VN,dS)

K = /ﬂ B/DB;d , K= / Ephzu"giz:fdﬂ

Gy= [ (VNN , V= 18‘21,81:?1 , Cy= [ };kgg:deQdQ
L= [ VN{rVNdQ [T]z[% 32]  Cy=[ Nipguk%dﬂ
Q=1Q',Q7 , Q= [ noNa®

g« Nl ]
M:MO

0 M2 . M;‘j = - TkNideQ
g = / NbdQ + | Ntdl , b=[b,b)t , t=[t,t]"
= 1":?

(35)
with 7,7 =1,nand k,l = 1,ny.
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In above B, 1s the standard strain rate matrix and D the deviatoric constitutive

Ou;
matrix (assuming a—u* = 0). For 2D problems
Lg
- aNE -
0
0z 2 0 0
ON;
Bi=| 0O . =gl 208 (36)
e, 0 0 1
aNz 8NE B B
= 3372 655'1 i
Note that the stabilization matrix K adds an additional orthotropic diffusivity

h
of value kaui.

4.1 Quasi-implicit scheme

It can be seen that matrices A, K and C are dependent on the velocity field.
The solution process can be advanced in time in a (quasi-nearly) implicit iterative
manner using the following scheme.

Step 1
ﬁﬂ—f—l,‘i e ﬁﬂ o AtM—l[(Aﬂ+H] 1—1 _I_ K _I_ Kﬂ+91,£—1)ﬁﬂ+91 2—1 o

_GI—)n+ﬂg,z’—1 N CEH-I—H:;,i—l o f-n—i—I] (37)

Step 2
pﬂ-~l~1,i _ _L—I[GTﬁ?1+1,i i Qﬁ.ﬂ-t-ﬂ;hi—l] (38)

Step 3
(—:n+1,1'. = _M—lén+1,iﬁn+l,z’ (39)

Step 4
?—rﬂ-H,i - _M—IQTﬁﬂ+1g‘i (40)

where 0 < 0; < 1.
~ oa Th L

In above (-) = denote nodal values at the nth time step and the ith iteration.
Note that Ant01i-1 = A(@nt01i-1) ete, Also ()90 = ()" for the computations
in step 1 at the onset of the iterations.

Steps 1, 3 and 4 can be solved explicitely by choosing a lumped (diagonal) form of

matrices M and M. In this manner the main computational cost is the solution of
step 2 involving the inverse of a Laplacian matrix. This can be solved very effectively
using an iterative method such as the conjugate gradient method or similar.

For 0; # 0 the iterative proces is unavoidable. The iterations follow until con-
vergence 1s reached in an adequate error norm in terms of the velocity and pressure
variables, or the residuals r,,, and r4. Indeed some ot the 6;’s in Eqs.(37)-(40)
can be made equal to zero. Note that for 6 = 0 the algorithm is unconditionally
unstable. A particularity interesting and simple semi-implicit form is obtained by
making ¢ = 03 = 04 = 0. Now all steps can be solved explicitely with exception of
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Step 2 for the pressure, which still requires the solution of a simultaneous system of
equations.

Convergence of this solution scheme is however difficult for some problems. An
enhanced version of the algorithm can be obtained by simply adding the term

M

L(p™t'* — p"*t*1) where L;; = At [qe VTN, VN;dS) to the equation for the com-
putation of the pressure in the second step. The new term acts as a preconditioner
of the pressure equation given now by

f)n-i-l,z' _ —[L i ]‘:]HI[GTﬁn+l,i + ]':I"jn+l,i—1 + Q?—i.n+94,iu—l] (41)

Note that the added term vanishes for the converged solution (i.e. when p™*'* =
—n+1,1—1
P,

An alternative to above algorithm is to use the fractional step method described
in the nex section.

4.2 Fractional step method

An alternative algorithm can be obtained by splitting the pressure from the mo-
mentum equations as follow

ot =" — ﬁtM_l[(A?1+ﬂl i K il Kﬂ+ﬂl)ﬁn+€1 - &Gpn i Cén—l—ﬁg o fﬂr‘-l—l] (42&)

"t = 4" + AIM 'GP (42b)

In Eq.(42a) « is a variable taking values equal to zero or one. For a = 0, dp = p"*!
and for « = 1, p = Ap. Note that in both cases the sum of Eqs.(42a) and (42b) gives
the time discretization of the momentum equations with the pressures computed at
t"*t1 The value of @™ from Eq.(42b) is substituted now into Eq.(34b) to give

GTa* + AtGT™™M'Gdp + Lp™*! + Qr" = (43a)

The product GTM™'G can be approximated by a laplacian matrix, i.e.

GT™™M'G =1, with L ~ i LV NN, do (43b)
¢ p

A semi-implicit algorithm can thus be derived as follows.

Step 1 Compute u* explicitely from Eq.(41a) with M = M, where subscript d
denotes hereonwards a diagonal matrix.

Step 2 Compute 0p from Eq.(43a) as

§p = —(L + AtL) " [GTa* + Q"% + aLp"] (44)
Step 3 Compute 6" explicitely from Eq.(42b) with M = M,
Step 4 Compute ¢! explicitely from Eq.(39) with

E?L-[—]. = *—‘MEI én—l—ll—ln—l—l (45)

Step 5 Compute 7" explicitely from Eq.(40) as

ﬁ_—n+1 - —MEI QTan (46)
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This algorithm has an additional step than the iterative scheme of Section 4.1.
The advantage is that now Steps 1 and 2 can be fully linearized by choosing 0, =
f; = 6, = 0. Also the equation for the pressure variables in Step 2 has improved
stabilization properties due to the additional laplacian matrix L.

The boundary conditions are applied as follow. No condition is applied in the
computation of the fractional velocities u* in Eq.(44). The prescribed velocities
at the boundary are applied when solving for @"*! in the step 3. The prescribed
pressures at the boundary are imposed by making zero the pressure increments at
the relevant boundary nodes and making p" equal to the prescribed pressure values.

4.3 Stokes flow

The formulation for a Stokes flow can be readily obtained simply by neglecting
the convective terms in the general Navier-Stokes formulation. This also implies
neglecting the convective stabilization terms in the momentum equations and, con-
sequently, the convective projection variables are not larger necessary. Also the
intrinsic time parameters 7; take now the simpler form (see Eq.(22)):

3h2
_ 3h 47
E 8L ( )

The resulting discretized system of equations can be written as (see Eqs.(34))

Miu+Ku—-Gp=f
G'a+Lp+Qr=0 (48)
Q'p+Mm =0

The iterative algorithm of Section 4.1 can now be implemented. Convergence 1s
now faster due to the absence of the non linear convective terms in the momentum
equation.

The steady-state form of Eqgs.(48) can be expressed in matrix form as

" K -G 0 ](u f
-G -L -Q {13}:{0} (49)
0 -Qf -M] \« 0

The system is symmetric and always positive definite and therefore leads to a non
singular solution. We note that this property holds for any interpolation function
chosen for ii,p and 7, therefore overcoming the Babuska-Brezzi (BB) restrictions
[1].

A reduced velocity-pressure formulation can be obtained by eliminating the pres-
sure gradient projection variables @ from the last equation to give

G —@-qugn){p} o) o

The reduction process is simplified by using a diagonal form of matrix M. Obvi-
ously above reduction is also applicable to the transient case.
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5 FLUID-STRUCTURE INTERACTION. MESH UPDATING. ALE
FORMULATION

5.1 General coupled solution scheme

The two algorithms of previous section can be readily extended for fluid-structure
interaction analysis. The solution process in both cases includes the two additional
steps.

Step Al. Solve for the movement of the structure due to the fluid flow forces

This implies solving the dynamic equations of motion for the structure written
as

M.d + Kd = foy (51)

where d and d are respectively the displacement and acceleration vectors of the
nodes discretizing the structure, M, and K, are the mass and stifiness matrices
of the structure and f..; is the vector of external nodal forces accounting for the
fluid flow forces induced by the pressure and the viscous stresses. Clearly the main
driving forces for the motion of the structure is the fluid pressure which acts in the
form of a surface traction on the structure. Indeed Eq.(51) can be augmented with
an appropriate damping term. The form of all the relevant matrices and vectors can
be found in standard books on FEM for structural analysis [1].

Solution of Eq.(51) in time can be performed using implicit or fully explicit time
integration algorithms. In both cases the values of the nodal displacement, velocities
and accelerations at ¢"*! are found.

Step A2. Computethe new position of the mesh nodes

Movement of a structure in a fluid originates a distorsion in the mesh defining
the control volume where the fluid equations are solved. Clearly a new mesh can be
regenerated at each time step and this option is discussed in a later section dealing
with lagrangian flows. A cheaper alternative is to update the position of the mesh
nodes once the iterative process for the fluid and solid variables has converged. A
simple algorithm for updating the mesh nodes is described in the next section.

5.2 A simple algorithm for updating the mesh nodes

Different techniques have been proposed for dealing with mesh updating in fluid-
structure interaction problems. The general aim of all methods is to prevent element
distortion during mesh deformation [42-44].

Chiandussi, Bugeda and Oriate [45] have proposed a simple method for the move-
ment of mesh nodes ensuring minimum element distortion. The method 1s based
on the iterative solution of a fictious linear elastic problem on the mesh domain.
In order to minimize the mesh deformation the “elastic” properties of each mesh
element are appropiately selected so that elements suffering greater movements are
stiffer. The basis of the method is given below.

Let us consider an elastic domain with arbitrary homogeneous isotropic elas-
tic properties characterized by the Young modulus E and the Poisson coefficient
v. Once a discretized finite element problem has been solved using, for instance,
standard C° linear triangles (in 2D) or linear tetraedra (in 3D), the principal stresses
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Lo, at the center of each element can be obtained. For 3D problems
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where €; are the principal strains. As the values of F and v are arbitrary it is useful
to select v = 0. Eq.(32) simplifies in this case to 0; = Fe;.

Let us assume now that a uniform strain field €; = € throughout the mesh is
sought. The principal stresses are then given by

= Er $=1093 (53)

where E is the unknown Young modulus for the element.

A number of criteria can be now used to find the value of £. An effective approach
found in [45] is to make equal the element strain energy densities in both analysis.
Thus (for v = 0) .
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Equaling eqgs.(b4a) and (54b) gives the sought Young modulus E as

E
B = 22 (51 + €2 + &) (55)

Note that the element Young modulus is proportional to the element deformation

as desired. Also recall that both E and & are arbitrary constants for all elements in
the mesh.

The solution process includes the following two steps.

Step 1. Consider the finite element mesh as a linear elastic solid with homoge-
neous material properties characterized by F and arbitrary Young modulus F and

the Poisson ratio v = 0. Solve the corresponding elastic problem with imposed
displacements at the mesh boundary:.

Step 2. Compute the principal strains and the values of the new Young modulus in
each element using Eq.(55) for a given value of &. Repeat the finite element solution

of the linear elastic problem with prescribed boundary displacements using the new
values of F for each element.

The movement of the mesh nodes obtained in the second step ensures a quasi
uniform mesh distortion. Further details on this method including other alternatives
for evaluating the Young modulus E can be found in [45].

The previous algorithm for movement of mesh nodes is able to treat the movement
of the mesh due to changes in position of fully submerged and semi-submerged
bodies. Note however that if the floating body intersects the free surface, the changes
in the analysis domain geometry can be very important. From one time step to other
emersion or inmersion of significant parts of the body can occur.

A solution to this problem is to remesh the analysis domain. However, for most

problems, a mapping of the moving surfaces linked to the mesh updating algorithm
described above can avoid remeshing [38,46-49].
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5.3 ALE formulation

The movement of the mesh defining the fluid domain requires accounting for the
relative motion of the fluid particles with respect to the moving mesh. This can be
dealt with by an arbitrary lagrangian-eulerian (ALE) formulation. This basically
implies redefining the convective transport term in the momentum equation as

’I}j%j with Vj = Uj — ’{L?l (56)
where v; is the relative velocity between the moving mesh and the fluid point and
u?* is the velocity of the mesh nodes. This velocity can be simply computed dividing
by At the displacement vector of the nodes in the mesh obtained from the mesh

updating algorithm previously described.

6 FREE SURFACE WAVE EFFECTS

Many problems of practical importance involve a free surface in the fluid. In
general the position of such a free surface is unknown and has to be determined.
Typical problems of this kind are water flow around ships, flow under and over water
control structures, mould filling processes, etc.

On the free surface I's we must ensure al all times that (1) the pressure (which
approximate the normal traction) equals the atmospheric pressure p, and the tangen-
tial tractions are zero (unless specific otherwise) and (2) that the material particles
of the fluid belong to the free surface.

Condition (1) is simply fulfilled by imposing p = p, on I'g during the solution for
the nodal pressures.

The free surface condition (2) can be written in the FIC formulation (neglecting
time stabilization effects) as [46-49]

1 81*,3
— —hg. —— = o=t 2 o7
T.ﬁ 2 ﬁjafﬂj 0 j ) ('J )
where
r b U-aﬁ v3 1=1,2 (58)
b= 6t | 16:131; . R

where [ is the wave elevation (measured with respect to a reference surface of height
Bret) and v; is the relative velocity defined in Eq.(56). The underlined term in Eq.(57)
introduces the necessary stabilization for the solution of the highly convective (and
non linear) equation defining the evolution of the wave elevation. Note that ne-

glecting the stabilization term, the steady state form of Eq.(57) (% = O) simply

states that the fluid particles move in the tangential direction to the free surface (in

0 U . . . .
2D: a—ﬁ = u_2 = tg § where ¢ is the angle which the velocity vector forms with the
L 1
horizontal axis).
The solution in time of Eq.(57) can be expressed in terms of the nodal velocities

computed from the flow solution, as

08 g P
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(59)
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Eq.(59) can now be discretized in space using the standard Galerkin method
and solved ezplicitely to give the nodal wave heights at t"*' [46-49]. This solution
step should preceed the computation of the structure motion in the case of a fluid-
structure interaction problem. Typically the general algorithm will be as follows:

1. Solve for the nodal velocities ”*! and the pressures p"*! in the fluid do-
main using any of the algorithms of Section 4. When solving for the pressure
variables impose p"*! = p, at the free surface I's.

2. Solve for the free surface elevation ™! via Eq.(59).

3. Compute the movement of the fully or semi-submerged or floating structure
by solving the dynamic equations of motion of the structure (Eq.(51)).

4. Compute the new position of the mesh nodes in the fluid domain at time t"*!.
Alternatively, regenerate a new mesh.

The mesh updating proces can also include the free surface nodes, although this

is not strictly necessary. An hydrostatic adjustement can be implemented once the
new free surface elevation is computed by simple imposing the pressure at the nodes
on the reference surface as

p"t = p. + plg|AB  with AB = 8™ — Beet (60)

where g is the gravity constant. Eq.(60) allows to take into account the changes
in the free surface without the need of updating the reference surface nodes. A
higher accuracy in the solution of the flow problem can be obtained by updating the
reference surface nodes after a number of time steps.

7 LAGRANGIAN FLOW FORMULATION

The Lagrangian formulation is an effective (and relatively simple) procedure for
modelling the flow of fluid particles undergoing severe distorsions such as water
jets, high amplitude waves, water splashing, breaking waves, filling ot cavities, etc.
Indeed the lagrangian formulation seems to be an excellent procedure for treating
fluid-structure interaction problems where the structure has large displacements. An
obvious “a priori” advantage of the lagrangian formulation is that both the structure
and the fluid motions are defined in the same frame of reference.

The lagrangian fluid flow equations can be simply obtained by noting that the
velocity of the mesh nodes and that of the fluid particles are the same. Hence
the relative velocity v; is zero in Eq.(56) and the convective terms vanish in the
momentum equations, while the rest of the fluid flow equations defined in Section 3
remain unchanged.

The FEM algorithms for solving the lagrangian flow equations is very similar
to those for the eulerian or ALE description presented earlier and only the main
differences will be given here. For preciseness we will focus in the semi-implicit
fractional step algorithm of Section 4.2 (for 6; = 6, = 0 and o = 1) accounting also
for fluid-structure interaction effects.

Step 1 Compute explicitely a predicted value of the velocities u* as

af = " — &iM;l[Kﬁﬂ o GI—JTL o fn—H] (61)
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Step 2 Compute 0p from Eq.(44).

Step 3 Compute explicitely 0" from Eq.(42b) with M = M.
Step 4 Compute 7T explicitely from Eq.(40).

Step 5 Solve for the motion of the structure by integrating Eq.(51).

Step 6 Update the mesh nodes in a lagrangian manner as

P =P Al (62)

1 i

X

Step 7 Generate a new mesh. This can be effectively performed using the ex-
tended Delaunay Tesselation described in [50]. Indeed the mesh regeneration can
take place after a prescribed number of time steps or when the nodal displacements
induce significant distorsions in some element shapes.

Details of the treatment of the boundary conditions in the lagrangian flow for-
mulation can be found in [51,52].

8 TURBULENCE MODELLING

The detailed discussion on the treatment of turbulent effects in the flow equation
falls outside the objective of this chapter as any of the existing turbulence model is
applicable.

In the examples presented next we have chosen a turbulence model based on
the Reynolds averaged Navier-Stokes equations where the deviatoric stresses are
computed as sum of the standard viscous contributions and the so called Reynold
stresses. Here we have chosen the Boussinesq assumption leading to a modification
of the viscosity in the standard Navier-Stokes equations as sum of the “physical”
viscosity p and a turbulent viscosity .

One of the simplest and more effective choices for pr is the Smagorinski LES
model giving

Ur = Cghﬂ(gﬁijgij)lm (63)

where h® is the element size and C'is a constant (C ~ 0.01).

Indeed other many options are possible such as the one and two equations tur-
bulence models (i.e. the £ model and the k —e and k —w models) and the algebraic
stress models and the reader is refered to specialized books on this matter [53].

9 COMPUTATION OF THE CHARACTERISTIC LENGTHS

The evaluation of the stabilization parameters is one of the crucial issues in stabi-
lized methods. Most of existing methods use expressions which are direct extensions
of the values obtained for the simplest 1D case. It is also usual to accept the so
called SUPG assumption, i.e. to admit that vector h has the direction of the veloc-
ity field [32,37]. This unnecessary restriction leads to instabilities when sharp layers
transversal to the velocity direction are present. This deficiency is usually corrected
by adding a shock capturing or crosswind stabilization term [54,55]. Indeed, in the
FIC formulation the components of h introduce the necessary stabilization along
both the streamline and transversal directions to the flow.
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Excellent results have been obtained in all problems solved using linear tetrahedra
with the same value of the characteristic length vector defined by

u Vu
h - hs_ hc— 64
"l V| (64)

where u = |u| and h, and h, are the “streamline” and “cross wind” contributions
given by

By = max(l?u)/u (65)
he = max(l; Vu)/|Vu| , j=1,n, (66)

where 1; are the vectors defining the element sides (n, = 6 for tetrahedra).

As for the free surface equation the following value of the characteristic length
vector hg has been taken

-u - Vf@
h :hs_ ¢ ler Al
3 u+hlv,ﬁ'

The streamline parameter hg has been obtained by Eq.(65) using the value of the
velocity vector u over the 3 node triangles discretizing the free surface and n; = 3.
The cross wind parameter h, has been computed by

(67)

B,::max[l?w]'—;—ﬁ—l  p=InN (68)

The cross-wind terms in eqs.(64) and (67) account for the effect of the gradient of
the solution in the stabilization parameters. This is a standard assumption in most
“shock-capturing” stabilization procedures [54,55].

A more consistent evaluation of h based on a diminishing residual technique can
be found in [37].

10 EXAMPLES

The examples chosen show the applicability of the Eulerian, ALE and lagrangian
formulations presented to solve fluid flow problems. Linear tetrahedra and triangles
have been used in the 3D and 2D analysis shown. The fractional step algorithm
of Section 4.2 for 6 = 63 = 04 = 0 and o« = 1 has been used in all cases. The
first example is the standard square cavity problem solved in 3D using an Euler
formulation (i = 0). The second example is the flow past a submerged NACA 0012
profile. Here the free surface equation is solved together with the flow equations.

The next four examples fall within the category of fluid-structure interaction
problems. The first is the analysis of a sphere falling in a tube filled with liquid
where the mesh updating procedure of Section 5.2 has been used. Then three of
ship hydrodynamics problems are solved including the analysis of a Wigley hull, a
scale model of a commercial ship and an American Cup racing sail boat. Numerical
results are compared with experimental data in all cases.

The last series of examples show applications of the Lagrangian formulation to
the simulation of the collapse of a water column, a semi-submerged rotating water
mill and a solid cube falling into a water recipient.
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10.1 Square cavity problem

The purpose of this example is to test the stabilized formulation presented in the
solution of a standard benchmark problem [17]. Figure 2 shows the definition of
the problem solved with an unstructured 3D mesh of 7395 linear tetrahedra for a
Reynolds number value of 1.

\
-y
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Figure 2: Square cavity problem. a) Problem definition. b) Unstructured mesh of 7395 linear
tetrahedra. c¢) velocity field for Re = 1.

Results in Figure 3a,b are tabulated for the horizontal velocity along the vertical
centerline of the mid-section and for vertical velocity and pressure along the hori-
zontal centerline of the same section. Numerical results are fully stable and agree
well with similar solutions reported [17]. The eftect of the 7; stabilization term in the
pressure equation (see eq.(30)) is seen clearly in Figure 3c. The curves in this figure
show the convergence towards steady state of the Loo norm of the nodal pressures
with time. The curve listed as “standard” is obtained neglecting the 7; stabilization
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term, whereas the second curve shows the convergence when this term is taken into
account. The difference between the two curves is noticeable as the error obtained

with the fully stabilized solution is several orders of magnitude smaller than that
obtained neglecting the 7; term.

10.2 Submerged NACA 0012 profile

A 2D submerged NACAQ012 profile at o« = 5° angle of attack is studied. This
configuration was tested experimentally by Duncan [56] for high Reynolds numbers
(Re=400000) and modelled numerically using the Euler equations by several authors

[57-59]. The submerged depth of the airfoil is equal to the chord L. The Froude

number for all the cases tested was set to F' = ol 0.5672 where u 1s the

. —— vah
incoming flow velocity at infinity.

The stationary free surface and the pressure distribution are shown in Figure 4.
The non-dimensional wave heights compare well with the experimental results [56].

10.3 Sphere falling in a tube filled with water

The movement of a sphere falling by gravity in a cylindrical tube filled with water
is studied. The relationship between the diameters of the sphere and the tube 1s
1:4. The Reynolds number for the stationary speed is 100. The mesh has 85765
elements with 13946 nodes (Figure 5).

Figures 5 and 6 show the mesh deformation and contours of the mesh deformation
and of the velocity in the domain for different times, respectively. The evolution of
the falling speed is shown in Figure 6¢. Note the good agreement with the so called
Stokes velocity computed by equaling the weight of the sphere with the resistance
to the movement of the sphere expressed in terms of the velocity. Obviously, this
value is slightly greater than the actual one as frictional effects are neglected.

A similar problem for a greater number of spheres has been solved by Johnson
and Tezduyar [60].

10.4 Wigley hull

The next problem case considered here is the study of the hydrodynamics of the
well known Wigley Hull.

The same configuration was tested experimentally in [61] and modelled numeri-
cally by several authors [58,59,62]. We use here an unstructured 3D finite element
mesh of 65434 linear tetrahedra, with a reference surface of 7800 triangles, partially
represented in Figure 7.

Figure 7 also shows the results of the viscous analysis of the Wigley model in
three different cases for (L = 6m, F' = 0.316, u = 102K g/m.s). In the first case the
volume mesh was considered fixed, not allowing free surface nor ship movements.
Secondly, the volume mesh was updated due to free surface movement, considering
the model fixed. The third case corresponds to the analysis of a real free model
including the mesh updating due to free surface evaluation and ship movement
(sinkage and trim). A Smagorinsky turbulence model was used in the three cases.

Table 1 shows the obtained total resistance coefficient in the three cases studied
compared with the experimental data.

In the study of the free model the numerical values of sinkage and trim were
-0.1% and 0.035, respectively, while experiment gave -0.15% and 0.04.
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Figure 3: Square cavity. a) Distribution of pressure along horizontal centerline of mid-section. b)

Distribution of velocity along horizontal centerline of mid-section. ¢) Convergence histories of the
nodal pressure norm (L) for the stabilised (accounting for 7;) and the standard (7; = 0) schemes.
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Figure 4: Submerged NACA0012 profile. a) Detail of the mesh of 70000 linear tetrahedra chosen.
b) Pressure contours. ¢) Stationary wave profile.

Figure 7a shows the pressure distribution obtained near the Wigley hull for the
free model. A number of streamlines have also been plotted in the figure. The
obtained mesh deformation in this case is also presented in Figure 7b.

Comparisons of the obtained body wave profile with the experimental data for
the free and fixed models are shown in Figure 7b. Significant differences are found
close to stern in the case of the fixed model.

The free surface contours for the free ship motion are shown in Figure 7c.
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Figure 5: Sphere falling in a tube filled with liquid. a) Geometry definition and detail of the mesh
of 85765 linear tetrahedra chosen. b) Mesh deformation during the falling of the sphere.

10.5 KVLCC2 hull model

The example is the analysis of the KVLCC2 benchmark model. Here a partially
wetted tramsom stern is expected due to the low Froude number of the test. Figure
8 shows the NURBS geometry used obtained from the Hydrodynamic Performance
Research team of Korea (KRISO). The obtained results are compared with the
experimental data available in the KRISO database [63].

The smallest element size used was 0.001 m and the largest 0.50 m. The surface
mesh chosen is shown in Figure 9. A total of 550.000 tetrahedra were used in the
analysis. The tramsom stern flow model presented in the previous section was used.

Test 1.- Wave pattern calculation. The main characteristics of the analysis are

listed below:

o Length: 5.52 m, Beam (at water plane): 0.82 m, Draught: 0.18 m, Wetted

Surface: 8.08m?2.

e Velocity: 1.05 m/seg, Froude Number: 0.142.

e Viscosity: 0.00126K g/mseg, Density: 1000K g/m?, Reynolds number: 4.6310°.
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Figure 6: Sphere falling in a tube filled with liquid a) Evolution of contours of the mesh deformation.
b) Evolution of contours of velocity module. ¢) Evolution of falling speed. Straight line indicates
the theoretical Stokes speed (1.195 m/s).

The turbulence model used in this case was the K model. Figures 10 and 11
show the wave profiles on the hull and in a cut at y/L = 0.082 obtained in Test 1,
compared to the experimental data. The obtained results are quantitatively good
close to the hull. A lost of accuracy is observed in the profiles away from the hull.

This is probably due to the fact that the element sizes are not small enough in this
area.
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Figure 7: Wigley hull. a) Pressure distribution and mesh deformation of the wigley hull (free
model). b) Numerical and experimental body wave profiles. c) Free surface contours for the truly

free ship motion.

Test 2.- Wake analysis at different planes. Several turbulence models were used
(Smagorinsky, K and K — € model) in order to verify the quality of the results.
Here, only the results from the K — € model are shown. We note that the velocity
maps obtained even for the simplest Smagorinsky model were qualitatively good,
showing the accuracy of the fluid solver scheme used. The main characteristics of
this analysis are listed below:

e Length: 2.76 m, Beam (at water plane): 0.41 m, Draught: 0.09 m, Wetted

Surface: 2.02m?2.

e Velocity: 25 m/seg.
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Experimental | Numerical
Test 1 52 10~ 4.9 107°
Test 2 B 10 5.3 10~°
Test 3 4.9 10~° 5.1 10~

Table 1: Wigley Hull. Total resistance coefficient
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Figure 8: KVLCC2 model. Geometrical definition based on NURBS surfaces.

Figure 9: KVLCC2 model. Surface mesh used in the analysis.

e Viscosity: 3.05107°K g/mseg, Density: 1.01K g/m?*, Reynolds number: 4.6310°.

Figures 12-13 present results corresponding to the test 2. Figure 12 shows the
contours of the axial (X) component of the velocity on a plane at 2.71 m from
the orthogonal aft. Figure 13 shows the maps of the kinetic energy on this plane.

Experimental results are shown for comparison in all cases. Further results for this
problem can be found in [48|.

10.6 American Cup BRAVO ESPANA Model

The next example is the analysis of the Spanish American Cup racing sail boat
Bravo Espana. The finite element mesh used is shown in Figure 14. The results
presented in Figures 14-17 correspond to the analysis of a non symmetrical case
including appendages. Good comparison between the experimental data and the
numerical results was again obtained.

Other results of the hydrodynamic analysis of American Cup racing boats carried
out with the FEM formulation presented in the paper can be seen in [64].
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Figure 10: KVLCC2 model. Wave profile on the hull compared to experimental data. Thick line
shows numerical results

KVLCC2
Wave Profile y/L=0.0864

- - Experimental ———Numerical

Figure 11: KVLCC2 model. Wave profile on a cut at y/L=0.0964 compared to experimental data
[26]. Thick line shows numerical results

10.7 Lagrangian flow

The first problem solved with the lagrangian formulation is the study of the
collapse of a water column. This problem was solved by Koshizu and Oka [65]
both experimentally and numerically. It has became a classical example to test
the validation of the lagrangian formulation in fluid flows. The water is initially
located on the left supported by a removable board. The collapse starts at time
t = 0, when the removable board is removed. Viscosity and surface tension are
neglected. Figure 18 shows the point positions at different time steps. The dark
points represent the free-surface detected with an alpha-shape algorithm [51,52].
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Figure 12: KVLCC2 model. Map of the X component of the velocity on a plane at 2.71 m from
the orthogonal aft. Experimental results shown in the right figure.
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Figure 13: KVLCC2 model. Map of the eddy kinetic energy (K) on a plane at 2.71 m from the
orthogonal aft. Experimental data shown in the right figure.
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The internal points are gray and the fixed points are black.
The water is running on the bottom wall until, near 0.3 sec, 1t impinges on the
right vertical wall. Breaking waves appear at 0.6 sec. Around 1 sec. the water
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Figure 15: Bravo FEspana. Velocity contours.
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Figure 16: Bravo FEspana. Streamlines.
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Figure 17: Bravo Espana. Resistance test. Comparison of numerical results with experimental
data.

reaches the left wall. Agreement with the experimental results of [65] both in the
shape of the free surface as well as in the time evolution are excellent.
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Figure 18: Water column collapse at different time steps.

The second example is the analysis of a rotating water mill semi submerged in
water. A schematic representation of a water mill is presented in Figure 19. The
blades of the mill have an imposed rotating velocity, while the water is initially in
a stationary and flat position. Fluid structure interactions with free-surfaces and
water fragmentation are well reproduced in this example.

The last example represents a free cube falling down into a recipient full of water.
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Figure 18: cont.

The solid cube was modeled by introducing a high viscosity parameter in the ele-
ments in the following way: all the polyhedral elements formed by nodes contained
in the cube have a high viscosity value. The other elements are inviscid. The results
of Figure 20 represent correctly the contact problem when the cube hits the water
and also the speed during the sinking process.

More examples showing applications of the Lagrangian formulation previously
described can be found in [51,52].
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Figure 19: Rotating water mill.

11 CONCLUSIONS

The finite calculus form of the fluid mechanics equations is a good starting point
for deriving stabilized finite algorithms for solving a variety of fluid flow problems

using Euler, AL

Y and fully lagrangian descriptions. Both monolithic and fractional

step algorithms with intrinsic stabilization properties can be readily derived as shown
here. Free surface wave effects and fluid-structure interaction situations can be

accounted for in

a straight forward manner within the general flow solution schemes.

The ALE formulation is particularly adequate for analysis of problems involving free
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Figure 20: Solid cube falling into a recipient with water.

surface waves of moderate amplitude typical of ship hydrodynamics situations. The
lagrangian formulation allows to solve in an effective manner fluid flow problems
involving large motions of the free surface and complex fluid-structure interactions.
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