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SUMMARY 

A meshless method is presented which has the advantages of the good meshless methods concerning the ease of introduction 
of node connectivity in a bounded time of order n, and the condition that the shape functions depend only on the node 
positions. Furthermore, the method proposed also shares several of the advantages of the Finite Element Method such as: (a) 
the simplicity of the shape functions in a large part of the domain; (b) C0

 continuity between elements, which allows the 
treatment of material discontinuities, and (c) ease introduction of the boundary conditions. 
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1. INTRODUCTION 

The idea of meshless methods for numerical analysis of partial differential equations has become quite 
popular over the last decade. It is widely acknowledged that 3-D mesh generation remains one of the 
most man-hours consuming techniques within computational mechanics. The development of a 
technique that does not require the generation of a mesh for complicated three-dimensional domains is 
still very appealing. The problem of mesh generation is in fact an automatization issue. The generation 
time remains unbounded, even using the most sophisticated mesh-generator. Therefore, for a given 
distribution of points, it is possible to obtain a mesh very quickly, but it may also require several 
iterations, including manual interaction, to achieve an acceptable mesh. 

On the other hand, standard meshless methods need node connectivity to define the interpolations. 
The accuracy of a meshless method depends, to a great extent, on the node connectivity. 
Unfortunately, the correct choice of the node connectivity may also be an unbounded problem; in that 
case, the use of a meshless method may be superfluous.  

The definition of the meshless method itself is rather complex. An acceptable definition of meshless 
methods that takes into account both previous remarks may be:  

A meshless method is an algorithm that satisfies both of the following statements:  
I) the definition of the shape functions depends only on the node positions. 
II) the evaluation of the nodes connectivity is bounded in time and it depends exclusively on 

the total number of nodes in the domain. 
The first statement is the actual definition of meshless method: everything is related to the node 

positions. The second statement, on the other hand, is the rationale or the raison d'etre, for using a 
meshless method: a meshless method is useless without a bounded evaluation of the nodes 
connectivity. 

With the definition given above, the standard Finite Element Method (FEM) is not, of course, a 
meshless method. The same point distribution in FEM may have different shape functions (the 
triangulation is not unique) and the evaluation of nodal connectivity does not necessarily have to be 
bounded in time to yield accurate results (for instance, the Delaunay tessellation is of order n, but it 
does not necessarily yield accuracy shape functions). On the basis of above, several so-called meshless 
methods should be revisited in order to verify if they are truly meshless. 

In this paper, a generalization of the FEM will be proposed in order to transform it into a meshless 
method.  

2. MESHLESS BACKGROUNDS 

Over the last decade a number of meshless methods have been proposed. They can be subdivided in 
accordance with the definition of the shape functions and/or in accordance with the minimization 
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method of the approximation. The minimization may be via a strong form  as in the Point Collocation 
approach) or a weak form (as in the Galerkin methods). 

One of the first meshless methods proposed is the Smooth Particle Hydrodynamics (SPH)[1], which 
was the basis for a more general method known as the Reproducing Kernel Particle Method 
(RPKM)[2]. Starting from a completely different and original idea, the Moving Least Squares shape 
function (MLSQ)[3] has become very popular  in the meshless community. More recently, the 
equivalence between MLSQ and RPKM for polynomial basis has been proven, so that both methods 
may now be considered to be based on the same shape functions [4,5]. The MLSQ shape function has 
been successfully used in a weak form (Galerkin) with a background grid for the integration domain 
by Nayroles et al. [3] and, in a more accurate way, by Belytschko and his co-workers [6,7]. Oñate et 
al. [8,9] used MLSQ in a strong form (Point Collocation) avoiding the background grid. Liu et al. 
[10,11] have used the RPKM in a weak form, while Aluru [12] used it in a strong form. Other authors 
use different integration rules or weighting functions [13,14]with the same shape functions,. 

A newcomer meshless method is the Natural Element Method (NEM). This method is based on the 
natural neighbor concept to define the shape functions [15]. NEM has been used with a weak form by 
Sukumar et al. [16]. The main advantage of this method over the previously used meshless methods is 
the use of Voronoï diagrams to define the shape functions, which yields a very stable partition. The 
added advantage is the capability for nodal data interpolation, which facilitates a mean to impose the 
essential boundary conditions.  

Finally, all the shape functions, including the FEM shape functions, may be defined as Partition of 
Unity approximations [17]. Several other shape functions may also be developed using this concept. 

See Figure 1, for a quick comparison of classical 2-D shape functions. 

a) FEM b) MLSQ, SPH,
RKPM

c) NEM

 

Figure 1: Classical 2-D shape functions for a regular node distribution. 

Some of the critical weaknesses of previous meshless methods are: 
1) In some cases it is difficult to introduce the essential boundary conditions. 
2) For some methods it is laborious to evaluate the shape function derivatives. 
3) Often, too many Gauss points are needed to evaluate the weak form. 
4) The shape functions usually have a continuity order higher than C0. This decreases the 

convergence of the approximation and makes it more difficult to introduce discontinuities such 
as those due to heterogeneous material distributions. 

5) Some of the methods do not work for irregular point distributions, or need complicated node 
connectivity to give accurate results. 

6) Some methods need ná operations to define the node connectivity, with á >>1 or they need an 
unbounded number of iterations to overcome weakness # 5. 

It is probable that some of the drawbacks just mentioned are the reason why several meshless 
methods have not been successful in 3-D problems. 

3. THE EXTENDED DELAUNAY TESSELLATION 

The Finite Element Method (FEM) overcomes all of the critical drawbacks described previously with 
the exception of weakness #6. We can ask ourselves if it is possible to transform the FEM in order 
obtain a method which satisfies both of the meshless statements definition. The answer is yes.  

In order to better understand the procedure, classical definitions will be introduced for 3 entities: 
Voronoï diagrams, Delaunay tessellations and Voronoï spheres. 

Let a set of distinct nodes be: N = {n1, n2, n3,…,nn} in R3. 
a) The Voronoï diagram of the set N is a partition of R3 into regions Vi (closed and convex, or 

unbounded), where each region Vi is associated with a node ni, such that any point in Vi is 
closer to ni (nearest neighbor) than to any other node ni. See Figure 2 for a 2-D 
representation. There is a single Voronoï diagram for each set N. 
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b) A Voronoï sphere within the set N is any sphere, defined by 4 or more nodes, that contains 
no other node inside. Such spheres are also known as empty circumspheres. 

c) A Delaunay tessellation within the set N is a partition of the convex hull Ù of all the nodes 
into regions Ùi such that Ù = U Ùi , where each Ùi is the tetrahedron defined by 4 nodes of the 
same Voronoï sphere. Delaunay tessellations of a set N are not unique, but each tessellation 
is the dual of the single Voronoï diagram of the set. 

Voronoï Circle
Delaunay Triangulation
Voronoï Diagram

 

Figure 2: Voronoï diagram, Voronoï circle and Delaunay triangulation  
for a 4 nodes distribution in 2D.  

The computing time required for evaluation of all these 3 entities is of order ná, with á � 1.333. 
Using a very simple bin organization, the computation time may be reduced to a simple order n. 

As stated above, the Delaunay tessellation of a set of nodes is non-unique, and hence, the shape 
functions based on it do not satisfy the first meshes statement. For the same node distribution, different 
triangulations (actually tetrahedrations, as it refers to 3-D) are possible. Therefore, an interpolation 
based on the Delaunay tessellation is sensitive to geometric perturbations of the position of the nodes. 
On the other hand, its dual, the Voronoï diagram, is unique. Thus, it makes more sense to define 
meshless shape functions based on the unique Voronoï diagram than on Delaunay tessellations. In 
Figure 3 two critical case of Delaunay instabilities are represented. One is the case of 4 nodes on the 
same circle and the other is the case of a node close to a boundary. In both cases, the Voronoï diagram 
remains almost unchangeable.  

Furthermore, in 3-D problems the Delaunay tessellation may generate several tetrahedra of zero or 
almost zero volume, which introduces large inaccuracies into the shape function derivatives. This is 
the reason why a Delaunay tessellation must be improved iteratively in order to obtain a FE mesh. The 
time to obtain a mesh via a Delaunay tessellation is then an unbounded operation, thus not satisfying 
the second statement of the meshless definition.  

a)

b)

 

Figure 3: Instabilities on the Delaunay tessellation. 
a) Four nodes on the same circle; b) Node close to a boundary. 
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In order to overcome both of the drawbacks referred to in the above paragraphs, a generalization of 
the Delaunay tessellation will be defined. The drawbacks appear in the so-called “degenerated case”, 
which is the case where more than 4 nodes (or more than 3 nodes in a 2-D problem) are on the same 
empty sphere. For instance, in 2-D, when 4 nodes are on the same circumference, 2 different 
triangulations satisfy the Delaunay criterion. However, the most dangerous case appears only in 3-D. 
For instance, when 5 nodes are on the same sphere, 5 tetrahedra may be defined satisfying the 
Delaunay criterion, but some of them may have zero or almost zero volumes, called slivers, as seen in 
Figure 4. 

 

Figure 4: Five nodes on the same sphere and possible zero or almost zero volume tetrahedron (sliver) 
on the right. 

Definition: The Extended Delaunay tessellation within the set N is the unique partition of the 
convex hull Ù of all the nodes into regions Ùi such that Ù = U Ùi , where each Ùi is the polyhedron 
defined by all the nodes laying on the same Voronoï sphere. 

The main difference between the traditional Delaunay tessellation and the Extended Delaunay 
tessellation is that, in the latter, all the nodes belonging to the same Voronoï sphere define a unique 
polyhedron. With this definition, the domain Ù will be divided into tetrahedra and other polyhedra, 
which are unique for a set of node distributions, satisfying then, the first statement of the definition of 
a meshless method.  

Figure 5, for instance, is a 2-D polygon partition with a triangle, a quadrangle and a pentagon. 
Figure 6 is a classical 8-nodes polyhedron with all the nodes on the same sphere, which may appear in 
a 3-D problem. 

 

Figure 5: Two-dimensional partition in polygons. 
The triangle, the quadrangle and the pentagon are each inscribed on a circle 

It must be noted that, for non-uniform node distributions, considering infinite precision, only 4 
nodes are necessary to define a sphere. Other nodes close to the sphere may define other spheres very 
close to the previous one. In order to avoid this situation, which may hide polyhedra with more than 4 
nodes, a parameter δ will be introduced. In such a way, the polyhedra are defined by all the nodes of 
the same sphere and nearby spheres with a distance between center points smaller than δ. See 
Appendix I. 
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Figure 6: Eight-node polyhedron. All nodes are on the same sphere. 

The parameter δ avoids the possibility of having zero volume or near zero volume tetrahedra. When 
δ is large, the number of polyhedra with more than 4 nodes will increase, and the number of tetrahedra 
with near zero volume will decrease, and vice versa. 

The Extended Delaunay tessellation allows the existence of a domain partition which: (a) is unique 
for a set of node distributions; (b) is formed by polyhedra with no zero volume, and (c) is obtained in a 
bounded time of order n. Then, it satisfies the conditions for a meshless method as stated previously. 

4.  THE SHAPE FUNCTIONS 

Once the domain partition in polyhedra is defined, shape functions must be introduced to solve a 
discrete problem. Limiting the study to second-order elliptic PDE’s such as the Poisson’s equation, C0

 

continuity shape functions are necessary for a weak form solution. If possible, shape functions must be 
locally supported in order to obtain band matrices. They must also satisfy two criteria in order to have 
a reasonable convergence order, namely partition of unity and linear completeness. The FEM typically 
uses linear or quadratic polynomial shape functions, which ensure C0 continuity between elements. 
When the elements are polyhedra with different shapes, polynomial shape functions may only be used 
for some specific cases.  

In order to define the shape functions inside each polyhedron the non-Sibsonian interpolation will 
be used [18]. 

Let P = {n1, n2, …,  nm} be the set of nodes belonging to a polyhedron. The shape function Ni(x) 
corresponding to the node ni at an internal point x is defined by building first the Voronoï cell 
corresponding to x in the tessellation of the set P U {x} and then by computing: 
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where si(x) is the surface of the Voronoï cell face corresponding to node the node ni and hi(x) is the 
distance between point x and the node ni as seen in Figure 7. 
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Figure 7: Four nodes and arbitrary internal point x Voronoï diagram. Shape function parameters 
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Non-Sibsonian interpolations have several properties, which can be found in reference [16,18]. The 
main properties are: 

1)  0 ≤ Ni(x) ≤ 1 (2) 
2) Σi Ni(x) = 1 (3) 
3) Ni (nj) = δij (4) 
4) x = Σi Ni (x) ni (5) 
Furthermore, the particular definition of the non-Sibsonian shape function for the limited set of 

nodes on the same Voronoï sphere, adds the following properties: 
5) On a polyhedron surface, the shape functions depend only on the nodes of this surface [16]. 
6) On triangular surfaces (or in all the polygon boundaries in 2-D), the shape functions are linear. 
7) If the polyhedron is a tetrahedron (or a triangle in 2-D) the shape functions are the linear finite 

element shape functions. 
8) Due to property 5, the shape functions have C0 continuity between two neighboring polyhedra. 

See Figure 8. 
9) As a matter of fact, because all the element nodes are on the same sphere, the evaluation of the 

shape functions and its derivatives becomes very simple (see Appendix II). 

 

Figure 8: C0 continuity of the shape function on a 2-D node connection. 

The method defined here is termed the Meshless Finite Element Method (MFEM) because it is both 
a meshless method and a Finite Element Method. The algorithm steps for the MFEM are: 

1) For a set of nodes, compute all the empty spheres with 4 nodes. 
2) Generate all the polyhedral elements using the nodes belonging to each sphere and the nodes of 

all the coincident and nearby spheres (the criterion to choose these spheres is given in Appendix 
I). 

3) Calculate the shape functions and their derivatives, using the non-Sibsonian interpolation, at all 
the Gauss points necessary to evaluate the integrals of the weak form. 

The MFEM is a truly meshless method because the shape functions depend only on the node 
positions. Furthermore, steps 1 and 2 of the node connectivity process are bounded with n1.33, avoiding 
all the mesh "cosmetics" often needed in mesh generators. 

Figure 9 shows the shape function and its first derivatives for a node of a 2-D pentagon. The shape 
function takes the value 1 at a node and 0 at all the other nodes. The linear behavior on the boundaries 
may be appreciated.  
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Figure 9: Shape function and its first derivatives for a typical node of a pentagon  

It is important to remark the important difference between the MFEM shape functions proposed 
here and the Natural Element Method (NEM) shape functions. Both methods use shape functions 
based on Voronoï diagrams, but they are completely different. The NEM shape functions have C� 
continuity, and are built using the Voronoï diagram of all the natural neighbor nodes to each point x  In 
this way, very complicated shape functions are obtained which are difficult to differentiate and which 
need several Gauss points for the numerical computation of the integrals. See Figure 10 for a graphic 
representation of the NEM and MFEM shape functions.  

a) MFEM b) NEM

 

Figure 10: Shape functions in a 2-D regular node distribution. a) MFEM; b) NEM 

It must be noted that this method is analogous to the regional interpolation approach used in 
reference [16] for the particular cases in which each polyhedron has a different material. 

The number of Gauss points necessary to compute the element integrals depends, to a great extent, 
on the polyhedral shape of each element. It must be noted that, for an irregular node distribution, there 
remains a significant amount of tetrahedra ( in the examples, more than 85% of the elements remains 
tetrahedral) with linear shape functions, for which only one Gauss point is enough. For the remaining 
polyhedra, the integrals are performed dividing them into tetrahedra and then using a single Gauss 
point in each tetrahedron. This subdivision is only performed for the evaluation of the integrals and 
cannot be considered as a tetrahedral mesh because it is not conforming. The use of one Gauss point 
on each tetrahedron guarantee that the computing time in the evaluation of the matrices requires the 
same effort than the FEM.  

5. THE BOUNDARY CONDITIONS 

Two issues must be taken into account concerning the boundary conditions: the geometric description 
of the boundary surface and the boundary conditions themselves.  

5.1. Boundary surfaces 

One of the main problems in mesh-generation is the correct definition of the domain boundary. 
Sometimes, boundary surface nodes are explicitly defined as special nodes, which are different from 
internal nodes. In other cases, the total set of nodes is the only information available and the algorithm 
must recognize the boundaries. Such is the case for instance, with the Lagrangian formulation of fluid 
mechanics problems in which, at each time step, a new node distribution is obtained and the free-
surface must be recognized from the node positions. 
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The use of Voronoï diagrams or Voronoï spheres may make it easier to recognize boundary surface 
nodes. By considering that the node follows a variable h(x) distribution, where h(x) is the minimum 
distance between two nodes , the following criterion has been used: 

All nodes which are on an empty sphere with a radius r(x) bigger than á h(x), are considered as 
boundary nodes.  

In this criterion, á is a parameter close to, but greater than one. Note that this criterion is coincident 
with the Alpha Shape concept [19,20]. 

Once a decision has been made concerning which of the nodes are on the boundaries, the boundary 
surface must be defined. It is well known that, in 3-D problems, the surface fitting a number of nodes 
is not unique. For instance, four boundary nodes on the same sphere may define two different 
boundary surfaces, one concave and the other convex. 

In this paper, the boundary surface is defined with all the polyhedral surfaces having all their nodes 
on the boundary. 

The correct boundary surface may be important to define the correct normal external to the surface. 
Furthermore; in weak forms it is also important a correct evaluation of the volume domain. 
Nevertheless, it must be noted that in the criterion proposed above, the error in the boundary surface 
definition is of order h. This is the standard error of the boundary surface definition in a meshless 
method for a given node distributions. 

5.2. Boundary Conditions 

The greatest advantage of the MFEM, which is shared with the FEM, is the easy imposition of the 
boundary conditions. The essential boundary conditions are introduced directly by imposing a value to 
the node parameters. The natural zero value condition is imposed automatically without any additional 
manipulation. 

6. NUMERICAL TEST 

A cube of unit side, with an internal exponential source, has been used to validate the MFEM. 
The problem to be solved is the classical Poisson equation: 

 ∇2u = f(x, y, z) (6) 
With the internal source : 

 f(x, y, z) = ( - 2 k y z (1 - y)(1 - z) + (k y z (1 - y) (1 - z) (1 – 2 x)2)2 

   - 2 k z x (1 - z)(1 - x) + (k z x (1 - z) (1 - x) (1 – 2 y)2)2 

   - 2 k x y (1 - x)(1 - y) + (k x y (1 - x) (1 - y) (1 – 2 z)2)2 ) 
  ( - ekxyz (1 - x) (1 -  y) (1 - z) / (1 – ek /64)) (7) 

The boundary condition is the unknown function u equal to zero on all the boundaries. 
This problem has the following analytical solution: 

 u(x, y, z) = (1 - ekxyz (1 - x) (1 -  y) (1 - z)) / (1 – ek /64) (8) 
Several node distributions have been tested with 125 (53), 729 (93), 4,913 (173), and 35,937 (333) 

nodes, with structured and non-structured node distributions. 
For the structured node distributions, the following procedure was used to generate the nodes: 

Initially all the nodes are in a regular position with a constant distance h between neighbor nodes. 
Then, each internal node has been randomly displaced a distance â h in order to have an arbitrary, but 
structured, node distribution. Surface and edge nodes are perturbed but remaining in the surface or the 
edge, corner nodes were not perturbed. 

The 3D non-structured node distribution was generated using the GID pre/post-processing code [21] 
with a constant h distribution. GID generates the nodes using an advancing front technique which 
guarantees that the minimal distance between two nearby nodes lies between 0.707 h and 1.414 h. 
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Figure 11: Presence of slivers in a FEM Delaunay partition of a perturbed cube.  
Left: Tetrahedra produced by the Delaunay partition. Right: Slivers isolated. 

It must be noted that in 2D problems, both node distributions: structured and non-structured, will 
give a Delaunay partition with near-constant area triangles, which will be optimal for a FEM solution. 
Nevertheless, this is not the case in 3D problems in which, even for a constant h node distribution, 
many zero or near-zero volume tetrahedra (slivers) will be obtained on a standard Delaunay partition. 
Figure 11 shows, for instance, the presence of slivers on a structured eight-node distribution. Slivers 
may introduce large numerical errors in the solution of the unknowns functions and their derivatives 
which may completely destroy the solution. 

In order to show this behavior and to show that the MFEM eliminates this problem, the following 
tests were performed: for a fixed-node partition (e.g. 173 nodes) the δ  parameter  was  swept from 0 to 
10-1. With δ  = 0 (i.e. Voronoï spheres are never joined) the standard Delaunay tessellation is obtained. 
Larger values of δ gives the extended Delaunay tessellation (Chapter 3) which is the partition used in 
MFEM. 

 

Figure 12: Cube with exponential source 
Error of the derivative in L2-norm, using MFEM for different δ. 

Left: Structured node distribution. Right: Non-structured node distribution. 

Figure 12 shows the error in L2 norm for the derivative of the solution of the 3D problem stated 
previously. This has been done both for structured and non-structured distributions against the δ 
parameter. It can be shown that in both cases the errors are very large (~101) for δ < 10-6 and very 
small (~10-2) for δ  > 10-5. Larger δ do not change the results. 

This example is very important because is showing that, for a given node distribution, a 
tetrahedrization using the standard Delaunay concept do not work. Mesh generators currently use 
edge-face swapping or another cosmetic algorithms to overcome the presence of wrong elements. All 
those operations are unbounded. The idea of joining similar spheres, even for a very small δ 
parameter, solve this problem on a very simple way. The wrong tetrahedra are automatically joined to 
form polyhedra with optimal shapes in order to be solved by the MFEM. 
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The results of Figure 12 shows also that δ must be large compared with the computer precision (e.g. 
~10-5 for a computer precision of order 10-16) but also means that δ is not a parameter to be adjusted in 
each example because results does not change by setting δ larger than 10-5. In fact, all our examples 
were carried out with a fixed δ = 10-1. 

From the point of view of the definition of the shape functions, the best polyhedra are those having 
the following two conditions: 

a) All its nodes are on the same empty sphere (this is the concept of optimal distance between 
nodes). 

b) The polyhedra must fill the sphere as much as possible (this is the concept of optimal angle 
between faces).  

The filling ratio may be defined as: 

 
Volume Sphere

Volume Polihedron
=γ  ( 9 ) 

Slivers, for instance, have all their nodes on the same empty sphere, but the γ value is near zero. 
Classical polyhedra as the equilateral tetrahedron has γ ≈ 0.12 and for the cube γ ≈ 0.37.  

 

Figure 13: Percentage of polyhedra by volume ratio for different δ. 
Left: Structured node distribution. Right: Non-structured node distribution. 

In the Figure 13, for a fixed δ, the heights of the columns are representing the percentage of 
elements having a given filling ratio. 

The importance of Figure 13 is to show that, by joining similar spheres, the best polyhedra are 
automatically built. For instance, small δ values lead to some slivers: 18% and 0.90% for δ = 0 
(Delaunay) and 6.7% and 0.65% for δ = 10-6. Increasing δ, the slivers disappears and, in particular for 
the structured case, all the elements become hexahedra (cubes with γ ≈ 0.37), which is the optimal 
tessellation for this node distribution. For the non-structured case, with δ larger than 10-2, 65% of the 
elements have a γ value greater than 0.10. 
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Figure 14: Cube with exponential source.  
Convergence of the MFEM solution and its gradient for different partitions. 

Upper left: Structured node distribution. Upper right: Non-structured node distribution. 
Below: Center-line solutions obtained with structured node distribution (the same results were 

obtained using non-structured node distribution). 

Finally, Figure 14 shows the convergence of the MFEM for the example  described in equations 6 
and 7, when the number of nodes is increased from 53 to 333. The upper plots show the error in L2-
norm, both for the function and its derivatives. All the graphics shows an excellent convergence rate. 
It must be noted that for all the non-structured node distributions tested (and also the structured ones 
for β = 10-6), the FEM with elements generated using a Delaunay tessellation gave totally wrong 
results, and several times ill-conditioned matrices were found during the stiffness matrix evaluation. 

This example shows the advantages of the MFEM compared with other existing methods in the 
literature: 

a) Compared with the FEM, the advantages are on the mesh generation. In all the examples 
shown, the node connectivity using the Extended Delaunay Tessellation was generated on a 
bounded time of order 1.09n, which is the same computer time of the standard Delaunay 
tetrahedrization. This is a big advantage because the MFEM polyhedra gave excellent results, 
on the contrary, the standard Delaunay tetrahedra did not worked. 

b) Compared with some of the most known meshless methods, the advantage shown by the 
example is an easy introduction of the essential boundary conditions. The condition u=0 on all 
the external boundary, was introduced exactly by simply imposing u=0 on all the degrees of 
freedom of the boundary. 

c) One of the main drawbacks of several meshless methods is the evaluation of the integrals of 
the shape functions and their derivatives. This is not an issue here. For instance, in the non-
structured case ~30% of the polyhedra are tetrahedra, which are exactly integrated with only 
one Gauss point. The remaining polyhedra were divided into tetrahedra made by their faces 
and its geometric center, and then using one Gauss point at each tetrahedron. 

d) Compared with other meshless methods that use point collocation, in which no integration is 
necessary, the MFEM have all the classical advantages of the Galerkin weighted-residual 
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methods, like symmetric matrices, easy introduction of natural boundary conditions, and more 
stable and smooth solutions for irregular node distributions. 

7. CONCLUSIONS 

The Meshless Finite Element Method has been presented. In contrast with other methods found in 
the literature, the method has the advantages of a good meshless method concerning the ease of 
introduction of nodes connectivity in a bounded time of order ≈ n, and the condition that the shape 
functions depends only on the node positions. 

Furthermore, the method proposed also shares several of the advantages of the Finite Element 
Method such as: (a) the simplicity of the shape functions in a large part of the domain; (b) C0

 

continuity between elements, which allows the treatment of material discontinuities, (c) an easy 
introduction of the boundary conditions, and (d) symmetric matrices. 

The MFEM can be seen either as a finite element method using elements with different geometric 
shapes, or as a meshless method with clouds of nodes formed by all the nodes that are in the same 
empty sphere. In either case, whether as a meshless method or as a standard FEM, the method satisfies 
the raison d’etre of the meshless procedures: it permits the development of a node connectivity in a 
bounded time of order n. 

APENDIX 

I. CRITERION TO JOIN POLYHEDRA 

Consider two Voronoï spheres having nearby centers. See Figure 15 for a two dimensional reference. 

 

Figure 15: Four nodes in near-degenerate position showing the empty circumcircles, Voronoï diagram 
and the corresponding discontinuous Delaunay triangulation. 

As both Voronoï spheres are empty, they must satisfy the following relationship: 
 |r2 - r1| ≤ ||c1  - c2 || (10) 

where r are the radii and c the centers of the spheres. 
Thus two spheres are similar when their centers satisfy: 

 ||c1 - c2|| < δ rrms,  (11) 
where δ is a small non-dimensional value and rrms is the root-mean-square radius. Actually 

comparison are made between two families of similar spheres. 
Two polyhedra will be joined if they belong to similar spheres.  
The algorithm finds all the 4-node empty spheres, and then polyhedra are successively joined using 

the above criterion. It must be noted that when all the nodes of a polyhedron belongs to another 
polyhedron, only the last one is considered. 

II. NON-SIBSONIAN SHAPE FUNCTIONS 

The support of the non-Sibsonian shape functions of a node, as they were originally defined by 
Belikov and Semenov [18], is the natural neighborhood of the node.  

The MFEM shape functions of a node, defined in section 4, only depends on the node-set of the 
polyhedron, face or edge the variable point x belongs to. Thus the continuity between elements is 
guaranteed. 

For any point within a polyhedron P, there is a Voronoï cell V(x) associated to the variable point x 
in the Voronoï tessellation of the set P U {x}. 
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Figure 16: Elements defining 2D and 3D shape functions. 

Figure 16 shows that every node np ∈ P has a corresponding face Fp of V, which is normal to the 
segment {x, np} by its midpoint. This is because V is the set of points closer than x than any other 
point. 

Defining the functions: 

 φp(x) = sp / ||np - x|| = sp / hp, (12) 
as the quotient of sp, the Lebesgue measure of Fp (sp); and hp, the distance between the point x and the 
node np. The shape functions are: 

 Np = φp / Σq φq,  (13) 
automatically satisfying the par tition of unity property: 
 Σp Np = 1. (14) 

II.1. Linear completeness 

Using the fact that F is perpendicular to the vector (np - x) the Gauss theorem applied to V gives us:  

 0 = Σp φp (np - x) = Σp φp np - Σp φp x, (15) 

 x = Σp [φp / Σq φq] np = Σp Np np.  (16) 
Thus non-Sibsonian shape functions are capable of exactly interpolate the variable point x so they 

have the local coordinate property. By this and the partition of unity property, they can exactly 
interpolate any linear function: 
 f(x) = T ·  x + t = T ·  (Σp Np np) + t (Σp Np) = Σp Np (T ·  np + t) = Σp Np f(np), (17) 
where T is any constant tensor and f any constant vector. This property is known as linear 
completeness. 

II.2. Calculation and derivatives 

From now on, the origin will be located at x, so hp = ||np||. 
The face Fp of V is made up by the centers {cq} of the m spheres defined by x, np, and two other 

points from a subset O ⊂ P. 
Calling: 

 pp = np / 2,  (18) 
to the midpoint of {x, np} and using the symbol ⊕ to represent sum modulus m in the circular ordered 
set {cq}, the area of F is the sum of the areas of the triangles {cq, cq⊕1, pp}: 
 sp = Σq spq. (19) 
By the same subdivision process: 

 φp = Σq φpq = Σq (spq / hp),  (20) 
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Each triangle is a face of a tetrahedron {x, pp, cq, cq⊕1} with volume vpq. By virtue of the 
perpendicularity between the segment {x, pp} and the triangle {pp, cq, cq⊕1}: 
 spq = 3 vpq / (hp / 2) = (cq, cq⊕1, pp) / hp = (cq, cq⊕1, np) / (2 hp) (21) 
with (· , · , · ) indicating triple product of the vectors enclosed. 

Omitting the irrelevant factor 2, the formula: 
 φpq = (cq, cq⊕1, np) / np

2 (22) 
is the actual formula used for the computation. 

Calling ei to the Cartesian basis-vectors, åjkl to the permutation symbol and äij to the Kroneker 
symbol, the derivatives of the shape functions are: 
 �i(cq, cq⊕1, np) = åjkl (�icj

q ckq⊕1 nlp + cjq �ick
q⊕1 nlp - cjq ck

q⊕1 äil)  
 = (�icq x cq⊕1 + cq x �icq⊕1) ·  np - (cq, cq⊕1, ei) (23) 
The derivatives of the centers of a sphere with respect to one of its defining points (�ic) can be seen in 
the Apendix III below. 
 �inp

2 = -2 np
j äi

j = -2 np
i (24) 

 �iφpq = [(�icq x cq⊕1 + cq x �icq⊕1) ·  np - (cq, cq⊕1, ei)] / np
2 + 2 (cq, cq⊕1, np) np

i / np
4  (25) 

 �iφp = Σq�iφpq (26) 

 �iNp = (Σq�iφpq ΣrΣs φrs - Σqφpq ΣrΣs�iφ'rs) / (ΣrΣs φrs)
2  (27) 

III. DERIVATIVES OF THE SPHERE CENTER WITH RESPECT TO ONE OF ITS DEFINING 
POINTS. 

III.1. Circunference 

The circumcenter of {x, n*
0, n*

1} is: 
 c = (n0

⊥ n1
2 - n1

⊥ n0
2) / 2(n0 x n1), (28) 

where vectors n are n*- x, and ⊥ means the vector must be counterclockwise rotated 90º: 

 np
⊥j = åij np

i (29) 
Deriving: 

 �inpj = -äij (30) 

 �inp
2 = -2 np

j äi
j = -2 np

i (31) 

 �inp
⊥j = - åkj äik = - åij (32) 

 �i(n0
⊥j n1

2 - n1
⊥j n0

2) = 2 (n1
⊥j n0

i - n0
⊥j n1

i) + åij (n0
2 - n1

2)  (33) 

 �i(n0 x n1) = åjk (-äi
j n1

k - n0
j äik) = åij (n0 - n1)j = (n1 - n0)

⊥i  (34) 

 �icj = {[2 (n1
⊥j n0

i - n0
⊥j n1i) + åij (n0

2 - n1
2)] 2 (n0 x n1) - 

 (n0
⊥j n1

2 - n1
⊥j n0

2) 2 (n1 - n0)
⊥k} / 4 (n0 x n1)

2 =  
 = [n1

⊥j n0
i - n0

⊥j n1i + åij (n0
2 - n1

2) / 2 + cj (n0 - n1)
⊥i ] / (n0 x n1) (35) 

III.2. Sphere 

The circumcenter of {x, n*
0, n*

1, n*
2} is: 

 c = (Σp np
2 np⊕1 x np⊕2) / 2(n0, n1, n2).  (36) 

where vectors n are n*- x, and ⊕ means sum modulus three. 
Deriving: 

 �inpj = -äij (37) 

 �inp
2 = -2 np

j äij = -2 np
i (38) 
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 vp = np⊕1 x np⊕2  (39) 

 �i vpj = Äpi
j = åjkl (-äik np⊕2

l - np⊕1
k äil) = [(np⊕2 - np⊕1) x ei]j (40) 

 �i Σp np
2 vpj = [Σp (np

2 Äpi
j - 2 npi vp

j)] (41) 

 �i(n0, n1, n2) = - åjkl (äij nk
1 nl2 + nj0 äik nl2 + nj

0 nk
1 äil) = - Σp (np⊕1 x np⊕2)i = -Σp vp

i (42) 

 �icj = {[Σp (np
2 Äpi

j - 2 np
i vp

j)] (n0, n1, n2) + (Σp np
2 vp

j) (Σq vq
i)} / 2(n0, n1, n2)

2 (43) 

 �ic= [Σp (np
2 Äpi / 2 - npi vp) + c (Σq vq

i)] / (n0, n1, n2) (44) 
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