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SUMMARY

A meshless method is presented which has the advantages of the good meshless methods concerning the ease of introduction
of node connectivity in a bounded time of order n, and the condition that the shape functions depend only on the node
positions. Furthermore, the method proposed al so shares several of the advantages of the Finite Element Method such as: (a)
the simplicity of the shape functionsin alarge part of the domain; (b) C°continuity between elements, which allows the
treatment of material discontinuities, and (c) ease introduction of the boundary conditions.
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1. INTRODUCTION

The idea of meshless methods for numerica anadyss of partid differentid equations has become quite
popular over the last decade. It is widely acknowledged that 3D mesh generation remains one of the
most man-hours consuming techniques within  computationa mechanics. The development of a
technique that does not require the generation of a mesh for complicated three-dimensona domains is
ill very gppeding. The problem of mesh generation is in fact an automatization issue. The generation
time remains unbounded, even using the most sophisticated mesh-generator. Therefore, for a given
distribution of points, it is possible to obtain a mesh very quickly, but it may aso equire severd
iterations, including manua interaction, to achieve an acceptable mesh.

On the other hand, standard meshless methods need node connectivity to define the interpolations.
The accuracy of a meshless method depends, to a great extent, on the node connectivity.
Unfortunately, the correct choice of the node connectivity may aso be an unbounded problem; in that
case, the use of a meshless method may be superfluous.

The definition of the meshless method itsdlf is rather complex. An acceptable definition of meshless
methods that takes into account both previous remarks may be:

A meshless method is an algorithm that satisfies both of the following statements:
1) the definition of the shape functions depends only on the node positions.
I1)the evaluation of the nodes connectivity is bounded in time and it depends exclusvely on
the total number of nodes in the domain.

The firgt statement is the actua definition of meshless method: everything is related to the node
positions. The second statement, on the other hand, is the rationde or the raison d'etre, for using a
meshless method: a meshless method is usdess without a bounded evauation of the nodes
connectivity.

With the definition given above, the standard Finite Element Method (FEM) is not, of course, a
meshless method. The same point digtribution in FEM may have different shape functions (the
triangulation is not unique) and the evauation of noda connectivity does not necessarily have to be
bounded in time to yied accurate results (for ingtance, the Dedaunay tessdlation is of order n, but it
does not necessarily yield accuracy shape functions). On the basis of above, severd so-cdled meshless
methods should be revisited in order to verify if they are truly meshless.

In this paper, a generdization é the FEM will be proposed in order to transform it into a meshless
method.

2. MESHLESSBACKGROUNDS

Over the last decade a number of meshless methods have been proposed. They can be subdivided in
accordance with the definition of the shape functions and/or in accordance with the minimization
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method of the approximation. The minimization may be viaa strong form as in the Point Collocation
approach) or a weak form (asin the Gaerkin methods).

One of the first meshless methods proposed is the Smooth Particle Hy drodynamics (SPH)[1], which
was the basis for a more generd method known as the Reproducing Kerned Particle Method
(RPKM)[2]. Starting from a completely different and origina idea, the Moving Least Squares shape
function (MLSQ)[3] has become very popular in the meshless community. More recently, the
equivaence between MLSQ and RPKM for polynomid basis has been proven, so that both methods
may now be considered to be based on the same shape functions [4,5]. The MLSQ shape function has
been successfully wsed in a wesk form (Galerkin) with a background grid for the integration domain
by Nayroles et a. [3] and, in a more accurate way, by Belytschko and his co-workers [6,7]. Ofiate et
d. [89] used MLSQ in a strong form (Point Collocation) avoiding the background grid. Liu et d.
[10,11] have used the RPKM in a weak form, while Aluru [12] used it in a strong form. Other authors
use different integration rules or weighting functions [13, 14]with the same shape functions,.

A newcomer meshless method is the Naturd Element Method (NEM). This method is based on the
natural neighbor concept to define the shape functions [15]. NEM has been used with a weak form by
Sukumar et al. [16]. The main advantage of this method over the previoudy usal meshless methods is
the use of Voronoi diagrams to define the shape functions, which yields a very stable partition. The
added advantage is the capability for nodd data interpolation, which facilitates a mean to impose the
essentid boundary conditions.

Findly, al the shape functions, including the FEM shape functions, may be defined as Partition of
Unity approximations[17]. Severa other shape functions may aso be developed using this concept.

SeeFigure 1, for aquick comparison of classica 2-D shape functions.

a FEM b) MLSQ, SPH, ! ©) NEM
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F|gure 1: Classicd 2-D shape functions for aregular node distribution.

Some of the critical weaknesses of previous meshless methods are:

1) Insome casesit isdifficult to introduce the essentiad boundary conditions.

2) For some methodsit is laborious to evauate the shape function derivatives.

3) Often, too many Gauss points are needed to evduate the weak form.

4) The shape functions usudly have a continuity order higher than C°. This decreases the
convergence of the approximation and makes it more difficult to introduce discontinuities such
as those due to heterogeneous materia distributions.

5) Some of the methods do not work for irregular point distributions, or need complicated node
connectivity to give accurate results.

6) Some methods need n" operaions to define the node connectivity, with & >>1 or they need an
unbounded number of iterations to overcome weakness # 5.

It is probable that some of the drawbacks just nentioned are the reason why severd meshless
methods have not been successful in 3-D problems.

3. THE EXTENDED DELAUNAY TESSELLATION

The Finite Element Method (FEM) overcomes al of the critical drawbacks described previoudy with
the exception of weskness #6. We can ask oursdves if it is possble to transform the FEM in order
obtain a method which satisfies both of the meshless statements definition. The answer is yes.
In order to better understand the procedure, classical definitions will be introduced for 3 entities
Voronoi diagrams, Delaunay tessdllations and Voronoi spheres.
Let aset of distinct nodesbe: N={n, n,, n,,...,n} inR.
a) The Voronoi diagram of the st N is a partition of R into regions \{ (closed and convex, or
unbounded), where each region V is associated with a node n;, such that any point in \ is
closer to ni (nearest neighbor) than to any other node n. See Figure 2 for a 2-D
representation. Thereisasingle Voronoi diagram for each set N.
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b) A Voronoi sphere within the set N is any sphere, defined by 4 or more nodes, that contains
no other node insde. Such spheres are also known as empty circumspheres.

c) A Delaunay tessellation within the set N is a partition of the convex hull U of al the nodes
into regions U such that U = U U;, whereeach U is the tetrahedron defined by 4 nodes of the
same Voronoi  sphere. Delaunay tessdllations of a set N are not unique, but each tessdlation
isthe dud of the single Voronai diagram of the .

Voronoi Circle
— Delaunay Triangulation
Voronoi Diagram

Figure 2 Voronoi diagram, Voronoi circle and Delaunay triangulation
for a4 nodes digribution in 2D.

The computing time required for evaluation of al these 3 entities is of order n* with 4 0 1.333.
Using avery smple bin organization, the computation time may be reduced to a smple order n.

As daed above, the Ddaunay tessdlation of a set of nodes is norrunique, and hence, the shape
functions based on it do not satisfy the first meshes statement. For the same node distribution, different
triangulations (actudly tetrahedrations, as it refers to 3-D) are possble. Therefore, an interpolation
based on the Ddaunay tessdlation is sendtive to geometric perturbations of the podtion of the nodes.
On the other hand, its dua, the Voronoi diagram, is unique. Thus, it makes more sense to define
meshless shape functions based on the unique Voronoi diagram than on Delaunay tessdlations. In
Figure 3 two critical case of Delaunay instabilities are represented. One is the case of 4 nodes on the
same circle and the other is the case of a node close to a boundary. In both cases, the Voronai  diagram
remains almost unchangesble.

Furthermore, in 3-D problems the Ddlaunay tessdlation may generate severd tetrahedra of zero or
amost zero volume, which introduces large inaccuracies into the shape function derivatives. This is
the reason why a Ddlaunay tessdllation must be improved iteratively in order to obtain a FE mesh. The
time to obtain a mesh via a Ddaunay tessdlation is then an unbounded operation, thus not satisfying
the second statement of the meshless definition.

. -
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Figure 3: Ingtabilities on the Delaunay tessellation.
a) Four nodes on the same circle; b) Node close to a boundary.
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In order to overcome both of the drawbacks referred to in the above paragraphs, a generaization of
the Delaunay tessellation will be defined. The drawbacks gppear in the so-cdled “degenerated case’,
which is the case where more than 4 nodes (or more than 3 nodes in a 2D problem) are on the same
empty sphere. For ingtance, in 2-D, when 4 nodes are on the same circumference, 2 different
triangulations satisfy the Ddaunay criterion. However, the most dangerous case gppears only in 3D.
For ingtance, when 5 nodes are on the same sphere, 5 tetrahedra may be defined satisfying the
Deaunay criterion, but some of them may have zero or dmost zero volumes, called divers, as seenin
Figure 4.

Figure 4: Five nodes on the same sphere and possible zero or dmost zero volume tetrahedron (diver)
on the right.

Definition:_The Extended Delaunay tessdllation within the set N is the unique partition of he
convex hull U of al the nodes into regions U such that U = U U; whereeach U is the polyhedron
defined by dl the nodes laying on the same Voronoi sphere.

The main difference between the traditiond Dedaunay tessdlation and the Extended Deaunay
tesdlation is that, in the latter, dl the nodes belonging to the same Voronoi sphere define a unique
polyhedron. With this definition, the domain U will be divided into tetrahedra and other polyhedra,
which are unique for a set of node distributions, satisfying then, the first stlatement of the definition of
ameshless method.

Figure 5, for ingtance, is a 2-D polygon partition with a triangle, a quadrangle and a pentagon.
Figure 6 is a classicad 8nodes mlyhedron with dl the nodes on the same sphere, which may appear in
a3-D problem.

Figure 5. Two-dimensiond partition in polygons.
The triangle, the quadrangle and the pentagon are each inscribed on acircle

It must be noted that, for non-uniform node digtributions, considering infinite precison, only 4
nodes are necessary to define a sphere. Other nodes close to the sphere may define other spheres very
close to the previous one. In order to avoid this stuation, which may hide polyhedra with more than 4
nodes, a parameter d will be introduced. In such a way, the polyhedra are defined by dl the nodes of
the same sphere and nearby spheres with a distance between center points smdler than d. See
Appendix I.

Printed: 24/10/02 11:53 A.M. 4/15



>4

Figure 6: Eight-node polyhedron. All nodes are on the same sphere.

The parameter d avoids the possibility of having zero volume or near zero volume tetrahedra. When
d is large, the number of polyhedra with more than 4 nodes will increase, and the number of tetrahedra
with near zero volume will decrease, and vice versa

The Extended Ddaunay tessdlation dlows the existence of a domain partition which: (a) is unique
for a set of node digtributions, (b) is formed by polyhedra with no zero volume, and (c) is obtained in a
bounded time of order n. Then, it satisfies the conditions for a meshless method as stated previoudly.

4. THE SHAPE FUNCTIONS

Once the domain partition in polyhedra is defined, shgpe functions must be introduced to solve a
discrete problem. Limiting the study to second-order dliptic PDE's such as the Poisson’s equation, C
continuity shape functions are necessary for a weak form solution. If possible, shape functions must be
locally supported in order to obtain band matrices. They must dso satisfy two criteria in order to have
a reasonable convergence order, namely partition of unity and linear completeness. The FEM typicaly
uses linear or quadratic polynomia shape functions, which ensure C° continuity between elements.
When the dements are polyhedra with different shapes, polynomia shape functions may only be used
for some specific cases.

In order to define the shape functions insde each polyhedron the non-Sibsonian interpolation will
be used [18].

Leg P = {ny n, ..., ng} bethe sat of nodes belonging to a polyhedron. The shape function Ni(x)
corresponding to the node ni a an internd point X is defined by building first the Voronol  cdl
corresponding to x in the tessdletion of the set PU{x} and then by computing:

s
h (X)
& s;(x)
% h, (x)
where s(x) is the surface of the Voronoi cell face corresponding to node the node n; and hi(X) isthe
distance between point x and the node n; as seenin Figure 7.

N, (x) = @

Figure 7: Four nodes and arbitrary interna point x Voronoi  diagram. Shape function parameters
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Non-Sibsonian interpolations have severa properties, which can be found in reference [L6,18]. The
main properties are;

1) 0OENXEL (2
2) SNX¥=1 (3
3) N () =d; (9
4) X=SNnm (5

Furthermore, the particular definition of the nonSibsonian shape function for the limited set of
nodes on the same VVoronai  sphere, adds the following properties.

5) On a polyhedron surface, the shape functions depend only on the nodes of this surface [16].

6) On triangular surfaces (or in dl the polygon boundaries in 2-D), the shape functions are linear.

7) If the polyhedron is a tetrahedron (or a triangle in 2D) the shape functions are the linear finite
element shape functions.

8) Due to property 5, the shape functions have C continuity between two neighboring polyhedra.
See Figure 8.

9) As a matter of fact, because dl the dement nodes are on the same sphere, the evauation of the
shape functions and its derivatives becomes very smple (see Appendix I1).

Figure 8 C continuity of the shape function on a2 D node connection.

The method defined here is termed the Meshless Finite Element Method (MFEM) because it is both
ameshless method and a Finite Element Method. The agorithm steps for the MFEM are:

1) For aset of nodes, compute al the empty spheres with 4 nodes.

2) Generate dl the polyhedrd eements using the nodes belonging to each sphere and the nodes of

dl the coincident and nearby spheres (the criterion to choose these spheres is given in Appendix
).

3) Cdculate the shape functions and their derivatives, using the non-Sibsonian interpolation, at all

the Gauss points necessary to evauate the integrals of the weak form.

The MFEM is a truly meshless method because the shgpe functions depend only on the node
positions. Furthermore, steps 1 and 2 of the node connectivity process are bounded with i, avoiding
al the mesh "cosmetics' often needed in mesh generators.

Figure 9 shows the shape function and its first derivatives for a node of a 2D pentagon. The shape
function takes the value 1 a a node and O a &l the other nodes. The linear behavior on the boundaries
may be appreciated.
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Figure 9: Shape function and its first derivatives for atypical node of a pentagon

It is important to remark the important difference between the MFEM shape functions proposed
here and the Naturd Element Method (NEM) shape functions. Both methods use shape functions
based on Voronoi diagrams, but they are completely different. The NEM shape functions have C
continuity, and are built using the Voronoi diagram of al the natural neighbor nodes to each point x In
this way, very complicated shape functions are obtained which are difficult to differentiate and which
need several Gauss points for the numerica computation of the integras. See Figure 10 for a graphic
representation of the NEM and MFEM shape functions.

4
a) MFEM b) NEM
& i *.':"'H.- B
.‘ 1
[ - - ) .
@

Figure 10: Shape functionsin a 2D regular node distribution. 8) MFEM; b) NEM

It must be noted that this method is anadlogous to the regiond interpolation approach used in
reference[ 16] for the particular cases in which each polyhedron has a different material.

The number of Gauss points necessary to compute the element integrals depends, to a great extent,
on the polyhedrd shape of each dement. It must be noted that, for an irregular node distribution, there
remains a significant amount of tetrahedra ( in the examples, more than 85% d the elements remains
tetrahedrd) with linear shape functions, for which only one Gauss point is enough. For the remaining
polyhedra, the integrds are performed dividing them into tetrahedra and then using a single Gauss
point in each tetrahedron. This subdivision is only peformed for the evauation of the integras and
cannot be consdered as a tetrahedra mesh because it is not conforming. The use of one Gauss point
on each tetrahedron guarantee that the computing time in the evauation of the matrices requires the
same effort than the FEM.

5. THE BOUNDARY CONDITIONS

Two issues mugt be taken into account concerning the boundary conditions. the geometric description
of the boundary surface and the boundary conditions themselves.

5.1. Boundary surfaces

One of the main problems in mesh-generation is the correct definition of the domain boundary.
Sometimes, boundary surface nodes are explicitly defined as specid nodes, which are different from
internal nodes. In other cases, the total set of nodes is the only information available and the agorithm
must recognize the boundaries. Such is the case for instance, with the Lagrangian formulation of fluid
mechanics problems in which, a each time step, a new node distribution is obtained and the free-
surface must be recognized from the node positions.
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The use of Voronoi diagrams or Voronoi  spheres may make it easier to recognize boundary surface
nodes. By consdering that the node follows a variable h(x) distribution, where h(x) is the minimum
distance between two nodes, the following criterion has been used:

All nodes which are on an empty sphere with a radius r(x) bigger than & hx), are considered as
boundary nodes.

In this criterion, & is a parameter close to, but greater than one. Note that this criterion is coincident
with the Alpha Shape concept [19,20] .

Once a decison has been made concerning which of the nodes are on the boundaries, the boundary
surface must be defined. It is well known that, in 3-D problems, the surface fitting a number of nodes
is not unique. For instance, four boundary nodes on the same sphere may define two different
boundary surfaces, one concave and the other convex.

In this paper, the boundary surface is defined with dl the polyhedra surfaces having dl their nodes
on the boundary.

The correct boundary surface may be important to define the correct normal externa to the surface.
Furthermore in wesk forms it is adso important a correct evdudion of the volume domain.
Neverthdess, it must be noted that in the criterion proposed above, the eror in the boundary surface
definition is of order h. This is the standard error of the boundary surface definition in a meshless
method for a given node digtributions.

5.2. Boundary Conditions

The greatest advantage of the MFEM, which is shared with the FEM, is the easy impostion of the
boundary conditions. The essentid boundary conditions are introduced directly by imposing a vaue to
the node parameters. The naturd zero vaue condition is imposed automatically without any additiond
manipulation.

6. NUMERICAL TEST

A cube of unit sde, with an internal exponentia source, has been used to vdidate the MFEM.
The problem to be solved is the classical Poisson equation:

Nu="f(x,y, 2 6)

With the interna source :

oy, 2= (-2kyz (1-Y)(1- + (kyz (L-y) (1- ) (1-2%)°
-2kzx (1-2(1-X +(kzx (1-2) (1- X (1 -2y)?7
-2kxy (1-9(1-y) + (kxy (1-X) (1-y) (1-22?)*)
(_e}«yz(l-x)(l-y)(l-z)/(1_e}</64)) (7)

The boundary condition is the unknown function u equd to zero on al the boundaries.

This problem has the following andytical solution:

U(X,y1z):(1_ekXyZ(l-x)(Ly)(l»z))/(l_ek/GA) (8)

Severd node digtributions have been tested with 125 (57, 729 (9%), 4,913 (17, and 35,937 (33)
nodes, with structured and nortstructured node distributions.

For the structured node distributions, the following procedure was used to generate the nodes:
Initidly al the nodes are in a regular pogtion with a congtant distance h between neighbor nodes.
Then, each interna node has been randomly displaced a distance & h in order to have an arbitrary, but
structured, node distribution. Surface and edge nodes are perturbed but remaining in the surface or the
edge, corner nodes were not perturbed.

The 3D non-structured node distribution was generated using the GID pre/past-processing code [21]
with a congant h distribution. GID generates the nodes using an advancing front technique which
guarantees that the minimal distance between two nearby nodes lies between 0.707 hand 1.414 h.
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Figure11: Presence of diversin a FEM Deaunay partition of a perturbed cube.
Left: Tetrahedra produced by the Delaunay partition. Right: Sivers isolated.

It must be noted that in 2D problems, both node digtributions: structured and non-structured, will
give a Ddaunay partition with near-congtant area triangles, which will be optima for a FEM solution.
Nevertheless, this is not the case in 3D problems in which, even for a constant h node didribution,
many zero or near-zero volume tetrahedra (divers) will be obtained on a standard Delaunay partition.
Figure 11 shows, for instance, the presence of divers on a structured eight-node digtribution. Sivers
may introduce large numerical errors in the solution of the unknowns functions and their derivatives
which may completely destroy the solution.

In order to show this behavior and to show that the MFEM diminates this problem, the following
tests were performed: for a fixed-node partition (eg. 17° nodes) the d parameter was swept from 0 to
10™. With d = 0 (i.e. Voronoi spheres are never joined) the standard Delaunay tessellation is obtained.
Larger vaues of d gives the extended Delaunay tessdllation (Chapter 3) which is the partition used in
MFEM.
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Figure 12: Cube with exponentid source

Error of the derivative in L*-norm, using MFEM for different d.
Left: Structured node digtribution. Right: Non-structured node distribution.

Figure 12 shows the error in L, norm for the derivative of the solution of the 3D problem stated
previoudy. This has been done both for structured and non-structured distributions againgt the d
parameter. It can be shown that in both cases the errors are very large (~10") for d < 10° and very
small (~107) for d > 10°. Larger d do not change the results,

This example is very important because is showing that, for a given node didribution, a
tetrahedrization using the standard Delaunay concept do not work. Mesh generators currently use
edge-face swapping or another cosmetic algorithms to overcome the presence of wrong elements. All
those operations are unbounded. The idea of joining sSmilar spheres, even for a very smdl d
parameter, solve this problem on a very smple way. The wrong tetrahedra are automaticaly joined to
form polyhedra with optimal shapesin order to be solved by the MFEM.
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The results of Figure 12 shows also that d must be large compared with the computer precison (e.g.
~10° for a computer precision of order 10 but also meansthat d is not a parameter to be adjusted in
each example because results does not change by setting d larger than 10°. In fact, al our examples

were caried out with afixed d = 10"
From the point of view of the definition of the shape functions, the best polyhedra are those having

the following two conditions:
a All its nodes are on the same empty sphere (this is the concept of optimal distance between

nodes).

b) The polyhedra mugt fill the sphere as much as possible (this is the concept of optimd angle
between faces).
Thefilling ratio may be defined as.
_ Polihedron Volume (9)
Sphere Volume

Sivers, for instance, have al their nodes on the same empty sphere, but the g vaue is near zero.
Classicd polyhedra as the equilaterd tetrahedron has g» 0.12 and for the cube g » 0.37.
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Figure 13: Percentage of polyhedra by volume ratio for different d.
Left: Structured node distribution. Right: Non-structured node distribution.

In the Fgure 13, for a fixed d, the heights of the columns are representing the percentage of
eements having a given filling ratio.

The importance of Figure 13 is to show that, by joining similar spheres, the best polyhedra are
automaticaly built. For ingtance, smdl d values lead to some divers 18% and 0.90% for d = 0
(Delaunay) and 6.7% and 0.65% for d = 10°. Increasing d, the divers disappears and, in particular for
the dructured case, dl the eements become hexahedra (cubes with g » 0.37), which is the optima
tessdlation for this node digtribution. For the non-structured case, with d larger than 10 65% of the

dementshave a gvaue greater than 0.10.
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Figure 14: Cube with exponentid source.
Convergence of the MFEM solution and its gradient for different partitions.
Upper left: Structured node ditribution. Upper right: Non-structured node distribution.
Bdow: Center-line solutions obtained with structured node distribution (the same results were
obtained using non-structured node distribution).

Findly, Figure 14 shows the convergence of the MFEM for the example described in equations 6
and 7, when the number of nodes is increased from 5 to 33°. The upper plots show the error in L*-
norm, both for the function and its derivatives. All the graphics shows an excellent convergence rate.
It must be noted that for al the non-structured node distributions tested (and dso the structured ones
for b = 109, the FEM with dements generated using a Delaunay tessdlation gave totally wrong
results, and severa times ill-conditioned matrices were found during the stiffness matrix evauation.

This example shows the advantages of the MFEM compared with other existing methods in the
literature:

a)

b)

0)

d)

Compared with the FEM, the advantages are on the mesh generation. In dl the examples
shown, the node connectivity using the Extended Deaunay Tessdlaion was generated on a
bounded time of order 1.09n, which is the same computer time of the standard Deaunay
tetrahedrization. This is a big advantage because the MFEM polyhedra gave excdlent results,
on the contrary, the standard Delaunay tetrahedra did not worked.

Compared with some of the most known meshless methods, the advantage shown by the
example is an easy introduction of the essentid boundary conditions. The condition u=0on dl
the external boundary, was introduced exactly by smply imposng u=0 on dl the degrees of
freedom of the boundary.

One of the main drawbacks of severa meshless methods is the evauation of the integras of
the shape functions and their derivatives. This is not an issue here. For instance, in the non-
structured case ~30% of the polyhedra are tetrahedra, which are exactly integrated with only
one Gauss point. The remaining polyhedra were divided into tetrahedra made by their faces
and its geometric center, and then using one Gauss point a each tetrahedron.

Compared with other meshless methods that use point collocation, in which no integration is
necessary, the MFEM have dl the classcd advantages of the Gaerkin weighted-residud
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methods, like symmetric matrices, easy introduction of natura boundary conditions, and more
stable and smooth solutions for irregular node distributions.

7. CONCLUSIONS

The Meshless Finite Element Method has been presented. In contrast with other methods found in
the literature, the method has the advantages of a good meshless method concerning the ease of
introduction of nodes connectivity in a bounded time of order » n, and the condition that the shape
functions depends only on the node positions.

Furthermore, the method proposed aso shares severd of the advantages of the Finite Element
Method such as (8) the smplicity of the shape functions in a large pat of the domain; (b) C°
continuity between elements, which adlows the treatment of material discontinuities, () an easy
introduction of the boundary conditions, and (d) symmetric matrices.

The MFEM can be seen dther as a finite ement method using eements with different geometric
shapes, or as a meshless method with clouds of nodes formed by dl the nodes that are in the same
empty sphere. In either case, whether as a meshiess method or as a standard FEM, the method satisfies
the raison d'etre of the meshless procedures: it permits the development of a node connectivity in a
bounded time of order n.

APENDIX

|. CRITERION TO JOIN POLYHEDRA

Consider two Voronoi spheres having nearby centers. See Figure 15 for atwo dimensiond reference.

Figure 15: Four nodes in near -degenerate position showing the empty circumcircles, Voronoi  diagram
and the corresponding discontinuous Delaunay triangulation.

Asboth Voronoi  spheres are empty, they must satisfy the following relationship:

Ir2- 1ol £ Jlci- ¢ (10
wherer arethe radii and cthe centers of the spheres.
Thus two spheres are smilar when their centers satisfy:
”Cl' Cz“ <df e (11)
where d is a sndl nondimensond vdue and r.. is the root-meansquare radius. Actualy
comparison are made between two families of similar spheres.
Two polyhedrawill be joined if they belong to smilar spheres.
The adgorithm finds al the 4node empty spheres, and then polyhedra are successively joined using
the above criterion. It must be noted that when al the nodes of a polyhedron belongs to another
polyhedron, only the last one is considered.

[1. NON-SIBSONIAN SHAPE FUNCTIONS

The support of the non-Sibsonian shape functions of a node, as they were origindly defined by
Bdikov and Semenov [19], isthe natura neighborhood of the node.
The MFEM shape functions of a node, defined in section 4, only depends on the node-set of the

polyhedron, face or edge the variable point x belongs to. Thus the continuity between eements is
guaranteed.

For any point within a polyhedron P, there is a Voronoi cell V() associated to the variable point x
inthe Voronoi tessdlation of theset PU {x}.
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Figure 16: Elements defining 2D and 3D shape functions.

Figure 16 shows that every node n, T P has a corresponding face F, of V, which is normd to the
segment {x, n,} by its midpoint. This is because V is the set of points closer than x than any other
poirt.

Defining the functions:

fo0) =8/ 1Iny - x| =5,/ hy, (12
as the quotient of s, the Lebesgue measure of F, (s); and h,, the distance between the point x and the
node n,. The shape functions are:

N, =f, /S fq, (13
automaticaly satisfying the par tition of unity property:
S, N =1 (14

I1.1. Linear completeness
Using the fact that F is perpendicular to the vector (n,, - X) the Gauss theorem applied to V gives us:
0=5fp (N -X) =S, fpnp-Spfip X, (19

X=85[fp/Sqfa Ny =5 Ny . (16)
Thus non-Sihsonian shape functions are capable of exactly interpolate the variable point x so they
have the loca coordinate property. By this and the partition of unity property, they can exactly
interpolate any linear function:
fX)=T- x+t=T- (SN,n,)+t (S,N)=S, N, (T- n,+t)=§ N, f(n), 17
where T is any congtant tensor and f any constant vector. This property is known as linear
completeness.

[1.2. Calculation and derivatives

From now on, the origin will be located a x, so h, = [n,||.
Theface F, of V is made up by the centers {c;} of the m spheres defined by X, n,, and two other
points from asubset O1 P.
Cdling:
P =Ny /2, (18
to the midpoint of {x, n,} and using the symbol A to represent sum modulus min the circular ordered
set {c}, theareaof F isthe sum of the aress of the triangles {c;, Cya1, Pp}

$=S Se (19

By the same subdivision process.
fo=8 foq=Sq(Sq/hp), (20
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Each triangle is a face of a tetrahedron {X, p,, C; Cya} Wwith volume v,,. By virtue of the
perpendicul arity between the segment { x, p,} and the triangle {p,, G, Ga1}:

0= 3Vpg/ (Ne/ 2) = (Cys Caass Po) /My = oy Cynns ) / (2 ) (1)
with (- , - , - ) indicating triple product of the vectors enclosed.
Omitting the irrdlevant factor 2, the formula
foq =€y Coan N/ N7 (22

is the actual formula used for the computation.
Cdling e; to the Catesian basis-vectors, 4 to the permutation symbol and &' to the Kroneker
symbol, the derivatives of the shape functions are:
Oi(Cp Gaw M) =8y (0,0, +3,0,CKant, - Cai8")
= (0 Gy X Cyar+ Gy X Gag) Ny - (Cy Can, €) (23
The derivatives of the centers of a sphere with respect to one of its defining points ([} ¢) can be seeniin
the Apendix |11 below.

On2=-2nj & =-2n] (29

Oif pg = [(O Gy X Cqar + G XTiCaar) My - (G Gz €)] / N2+ 2(Cyy Caan, NY) Ny /N,Y (29
Oifp =S fpq (20

|]in = (Squ qu SrSs f rs - Squq Sr Sgiflrs) / (S’ Ss frs)z (27)

[11. DERIVATIVES OF THE SPHERE CENTER WITH RESPECT TO ONE OF ITS DEFINING
POINTS.

[11.1. Circunference

The circumcenter of { X, N"g, N",} is:

c= (noA n12 - nlA noz) / Z(no X nl)! (28)
where vectors n aren’- x, and " means the vector must be counterclockwise rotated 90°;
ni=§ n (29
Deriving:
Di npj = _aj (30)
OnS=-2nJ & =-2n/ (3D
Dinij :'éj ak:-a; (32
l:li (I’bAJ n12 = nl,\j noz) = 2 (nll\j noi = I’bAJ nli) + é‘l (noz' nlz) (33)
Oi(Noxn:) = &k (&) N -nd 8% =& (No-ny) =(m-ny)" (39
U i Cj = {/[2 (nzll\j n(ii_ - rszj nli) + éj,\ (n02 - nlz)] 2 (r;o an) -
(e - ) 2(ng- o) 1}/ 4 (Mo xn)” =
=[n g -+ & (-’ 12+ ¢ (no- )]/ (o XNy (39
[11.2. Sohere
The circumcenter of { X, Ny, N"1, N",} is:
c=(S M’ Ny XNya2) / 2(ng, Ny, N). (30)
where vectors n aren’- x, and A means sum nodulusthree.
Deriving:
4 npj =-3/ (37
On’=-2n,) & =-2n, (39
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Vp = Myar XNpaz
O v =A, =8 ((8%npaz - mak8") =[(Npaz - Npar) X&; ]!
O Sn’y =[S, A, -2n v,)]
Oi(No, M, M) =- 31 (&) Ny, +np 8 i, +nons 8')=-S (Npa1XNpa2) =-S, v,
0.0 ={[S, (" Ay’ - 210 V)] (No, Ny, ) + (S, N2 V) (Sy Vg )} 1 2(No, Ny, Np)°
Oc=[S, (2 A, 121 V) +¢ (S, V)] (g, Ny, 1)
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