
A Lagrangian Meshless Finite Element Method 
applied to Fluid-Structure  Interaction Problems 

 
S.R. Idelsohn(1,2), E. Oñate(2), F. Del Pin(1)  

 
. International Center for Computational Methods in Engineering (CIMEC) 

Universidad Nacional del Litoral and CONICET, Santa Fe, Argentina 
e–mail: sergio@ceride.gov.ar 

 
 International Center for Numerical Methods in Engineering (CIMNE) 

Universidad Politécnica de Cataluña, Barcelona, Spain 
e–mail: onate@cimne.upc.es 

 
Key words: Fluid-Structure interaction, Particle methods, Lagrange formulations, 
Incompressible Fluid Flows, Meshless Methods, Finite Element Method. 
 
Abstract 
A method is presented for the solution of the incompressible fluid flow equations using a 
lagrangian formulation. The interpolation functions are those used in the Meshless Finite 
Element Method (MFEM) and the time integration is introduced in a semi-implicit way by 
a fractional step method. Classical stabilization terms used in the momentum equations are 
unnecessary due to the lack of convective terms in the lagrangian formulation. 
Furthermore, the lagrangian formulation simplifies the connections with fixed or moving 
solid structures, thus providing a very easy way to solve fluid-structure interaction 
problems.  
 
                   
1 Introduction 
 
Over the last twenty years, computer simulation of incompressible fluid flow has been 
based on the Eulerian formulation of the fluid mechanics equations. However, it is still 
difficult to analyze problems in which the shape of the interface changes continuously or in 
fluid-structure interactions with free-surfaces where complicated contact problems are 
involved. 
More recently, Particle Methods in which each fluid particle is followed in a lagrangian 
manner have been used [1-4]. The first ideas on this approach were proposed by Monaghan 
[1] for the treatment of astrophysical hydrodynamic problems with the so called Smooth 
Particle Hydrodynamics Method (SPH). This method was later generalized to fluid 
mechanic problems [2-4]. Kernel approximations are used in the SPH method to interpolate 
the unknowns. 
On the other hand, a family of methods called Meshless Methods have been developed both 
for structural [5,6] and fluid mechanics problems [8-10]. All these methods use the idea of 
a polynomial interpolant that fits a number of points minimizing the distance between the 
interpolated function and the value of the unknown point. These ideas were proposed first 
by Nayroles et al. [7], they were later used in structural mechanics by Belytschko et al. [5] 
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and in fluid mechanics problems by Oñate et al. [8-10]. In a previous paper [11] the authors 
presented the numerical solution for the fluid mechanics equations using a lagrangian 
formulation and a meshless method called the Finite Point Method. Lately, the meshless 
ideas were generalized to take into account the finite element type approximations in order 
to obtain the same computing time in mesh generation as in the evaluation of the meshless 
connectivities [12,13]. This method was called the Meshless Finite Element Method 
(MFEM) and uses the Extended Delaunay Tessellation [14] to build the mesh in a 
computing time which is linear with the number of nodal points. 
In this paper new ideas and results for the solution of a particle method in the field of Fluid-
Structure Interaction (FSI) using the Meshless Finite Element Method are presented. A 
more general formulation is used in which all the classical advantages of the FEM for the 
evaluation of the unknown functions and derivatives are preserved.  
Different strategies have been proposed to solve FSI problems. The selection of the most 
effective approach depends largely on the nature of the problem to be analyzed [15]. 
Depending on the degree of coupling between the equations for the fluid and the structure, 
two cases can be distinguished. The first one occurs when there is a strong coupling 
between the fluid flow and the elastic deformation of the structure [15-17]. The second case 
occurs when there is a weak interaction between the fluid and the rigid deformation of the 
structure. In the latter, the solid must undergo large rigid displacements interacting with the 
fluid. This is the case for instance of sea-keeping in ship hydrodynamics, rotating turbines, 
mills, and other engines with a moving solid inside a fluid. Both cases of FSI are more 
easily studied with a lagrangian formulation of the fluid equations, which can be seen as a 
solid with a small shear coefficient or vice versa.  
The lagrangian fluid flow equations for the Navier-Stoke problem will be revised in the 
next section, the Meshless Finite Element Method (MFEM) will be summarized in the 
Appendix and both techniques will be used to solve some FSI problems for rigid solids. 
  
2 Governing equations 
The mass and momentum conservation equations can be written in a lagrangian 
formulations as: 
 
Mass conservation: 
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Momentum conservation: 
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where ρ  is the density iu  are the Cartesian components of the velocity field, p the 

pressure, ijτ the deviator stress tensor, if  the source term (normally the gravity) and 
Dt
Dφ  

represents the total or material time derivative of a function φ . 



For Newtonian fluids the stress tensor ijτ  may be expressed as a function of the velocity 
field through the viscosity µ  by 
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and it may be neglected in eq.(3). Then:  
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In the same way, the term ij
jx
τ

∂
∂  in the momentum equations may be simplified for slow 

incompressible flows as: 
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Then, the momentum equations can be finally written as: 
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Boundary conditions 
 
On the boundaries, the standard boundary conditions for the Navier-Stokes equations are: 
 

niijij p σνντ =−  on σΓ                                                                                                         (8) 

nii uu =ν  on nΓ                                                                                                                      (9) 

tii uu =ζ  on tΓ                                                                                                                     (10) 
where iν  and iζ  are the components of the normal and tangent vector to the boundary. 

 
 



3 The time splitting 
 
The time integration of equations (7) and (8) presents some difficulties when the fluid is 
incompressible or nearly incompressible. In this case, explicit time steps cannot be used. 
Even when using an implicit time integration scheme, incompressibility introduces some 
wiggles in the pressure solution which must be stabilized. To overcome these difficulties, a 
fractional step method has been proposed [18] which consists in splitting each time step in 
2 steps as follows: 
 
Split of the momentum equations 
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where γ  is parameter equal to cero or one defining a first or second order split, 
respepctively [18]. 
 
Split of the mass conservation equations 
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where *ρ  is a fictitious variable defined by the split 
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Coupled equations 
 
From eqs.(13) and (16) the coupled mass-momentum equation becomes: 
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Taking into account eq.(15) above expression can be written as: 
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4 Incompressibility conditions 
 
The simplest way to introduce the incompressibility condition is to write: 
 

ρρρρ ===+ 01 nn  (19) 
  
Then, the first term of eq. (18) disappears. Nevertheless, in a lagrangian formulation it is 
better to evaluate this term in order to avoid possible numerical errors at each time step. 
The incompressibility condition is introduced by imposing that at time step 1+nt  the density 
must be equal to the initial one, i.e. 
                                 

ρρρ ==+ 01n    (20) 
 
Due to numerical errors the density nρ is not necessarily equal to 0ρ  and it must be 
updated at each time step. A different way to evaluate nρ  will be explained in Section 7. 
Equation (18) is finally written as: 
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Then, the total time step may be described as follows: starting with the known value nu and 

np  from the previous time increment, the computation of the new velocities and the 
pressure involves the following five steps: 
I) Evaluate the *u velocity from (12). 

II)          Evaluate the new density nρ (see Section 7) 
III)         Evaluate the pressure 1+np solving the laplacian equation (21). 
IV)         Evaluate the velocity 1+nu using (13) 
V) Move the particles to the 1+nx  position. 
 



5 Spatial discretization 
 
The lagrangian split scheme described in the previous section has two important 
advantages: 
1) Step I is linear and explicit. The use of a lagrangian formulation eliminates the 
standard convection terms present in eulerian formulations. The convection terms are 
responsible for non-linearity, non symmetry and non self-adjoint operators which require 
the introduction of high order stabilization terms to avoid numerical oscillations. All these 
problems are not present in this formulation. 
2) In all the five steps described in previous section, the only implicit step is the solution 
of the laplacian of  pressure (step III). This is a scalar, symmetric and positive definite 
equation. Then, it is very easy to solve it using an iterative scheme (such as the conjugate 
gradient method). 
The big disadvantage of the lagrangian formulation is the permanent updating of the node 
positions. That is the reason why standard Finite Element Methods are not useful, as the 
process of updating conforming non-structured finite element meshes is expensive 
The key of the lagrangian formulation is the efficiency in the mesh updating process. In a 
previous paper [11] the authors evaluated the use of a meshless method for this purpose. In 
[11] a meshless method based in point collocation was used. This introduces some 
difficulty in prescribing the boundary conditions. 
Other meshless methods as the Element Free Galerkin Method (EFGM) [5] or the Natural 
Element Method (NEM) [19] have difficulties to solve arbitrary point distributions in a 3D 
domain due to the complicated shape functions used. 
In this paper, the Meshless Finite Element Method (MFEM) proposed in reference [12] will 
be used . The method is summarized in the Appendix. 
The big advantage of the MFEM compared with the FEM is the possibility of generating 
meshes in a computing time of order n , being n  the total number of nodes[14]. Compared 
with EFGM or NEM, the advantages are the simplicity of the shape functions, which are 
coincident with the FEM shape functions in most parts of the domain. 
Using the MFEM , the unknown functions are approximated using an equal order 
interpolation for all variables as (in matrix form) 
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where TN are the MFEM shape functions and PU , , ρ  the nodal values of the three 
components of the unknown velocity, the pressure and the density respectively. 



Using the Galerkin weighted residual method to solve equations (12), (21) and (13) with 
boundary conditions (8-10) the following integral equations can be written: 
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where the boundary conditions have been also split. 
Integrating by parts some of the terms , the above equations become: 
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It must be noted than the essential and natural boundary conditions of equations (29) are: 
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Discrete equations 
 
Using the approximations (22), (23) and (24) the discrete equations become: 
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 In compact form: 
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In the same way: 
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In compact form: 
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In compact form (noting that σΓ= onp 0 ):  
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Where the matrices are: 
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 6. Stabilization of the incompressibility condition 
 
In the Eulerian form of the momentum equations, the discrete form must be stabilized in 
order to avoid numerical wiggles in the velocity and pressure results. This is not the case in 
the lagrangian formulation where no stabilization parameter must be added in equations  
(34) and (38). Nevertheless, the incompressibility condition must be stabilized in equal-
order approximations to avoid possible pressure oscillations.  
Then, equation (36) must be stabilized if smooth pressure results are important. It must be 
noted than pressure oscillations do not influence significantly in the velocity results. 
Nevertheless, in most physical problems, pressure is the main result to be obtained. That is 
why stabilization of equation (36) must be performed.  
The so-called finite calculus (FIC) formulation [20-22] will be choused here as the 
stabilization procedure. This formulation is based in the modification of the governing 
differential equations of the problem by accepting that the domain where the balance laws 
are established (balance of momentum and balance of mass) has a finite size. The modified 
equations in the FIC formulation for incompressible fluids are. 
 
Momentum  
 

0
2

=
∂
∂

−
k

ik
i x

rh
r  

(46) 

 
Mass conservation 
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where from eq.(1) and (2) the residuals are defined by: 
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with dnki ,1, =  where  dn are the space dimensions of the problem. 
Eqs. (46,47) are completed with the boundary and initial conditions. Note that for 
consistency, the Neumann boundary condition on σΓ must also be adequately modified by 
adding a residual term. The details can be found in [21]. 
The underlined terms in Eqs. (46,47) introduce the necessary stabilization in the numerical 
solution using whatever discretization method. Examples of the application of the FIC 
approach the convection-diffusion problems and incompressible problems in solids and 
fluid mechanics are presented in [21-22]. 
 
Distances ih in Eqs.(46,47) are “characteristic length” parameters and their values control 
the relevance of the stabilization terms. The computation of the characteristic lengths is a 
critical issue in the stabilization process [20]. 
The new terms in the momentum and mass conservation equations stabilize the numerical 
solution in presence of high values of the convective terms and incompressibility zones, 
respectively. Obviously, in lagrangian flows, as in incompressible solid mechanics 
problems, the relevant stabilization term is that of Eq.(47), as the convective terms are zero 
in the momentum equations.  
For the practical application of the FIC formulation the stabilization term in the mass 
balance equation is expressed as a function of the residual of the momentum equations 
using Eq.(46) as: 
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where iτ are intrinsic time parameters given by: 
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The modified incompressibility equation is therefore written for the numerical 
computations as: 
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The stabilization terms in the momentum equation (46) are dropped hereonwards for the 
numerical solution. 
It is convenient to rewrite the residual ir in Eq.(48) as 
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where iπ are pressure gradient projection terms. These terms are considered as additional 
nodal variables. The necessary additional equations to match the increase in the number of 
unknowns are obtained by expressing that the residual ir as defined by Eq.(48), vanishes, in 
the average sense, over each element. This can be expressed in weighted integral form as 
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where iw are appropriate weighting functions. 
Discretization of the iπ terms using the same MFEM interpolation functions gives: 
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where Π  represents the local value of the three components of the pressure gradient. 
Eq.(54) leads to an equation system of the form (for ii Nw = ) 
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Eq.(21) is now modified with the new stabilization term as: 
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and Eq.(26) becomes noww 
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Integrating by parts, the equivalent to eq.(29) is: 
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Introducing the discretization of the different fields, and using a compact notation gives: 
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where the new stabilization matrices τB and τS are defined by: 
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Note that the effect of the stabilization terms is the addition of a new Laplacian matrix 

τS and a new term in the r.h.s. of Eq.(60) depending on the pressure gradient projection 
variables iπ . 
The pressure gradient projection may be evaluated explicitly using eq.(56) by: 
 
D)       111 +−+ −=Π nTn PBM  (63) 
 
The three steps A),B),C) described before are now completed with a fourth step D) where 
the lumped diagonal form of matrix M may be used. 
 
7. Mass conservation 
 
In a lagrangian formulation a new mesh is generated at each time step, and all the 
information is transmitted with the nodes or particles. In that way, a local variation in the 
volume associated with the particles is used as the correct volume in the next time step. A 
permanent update of the initial volume is necessary to avoid large error accumulation.  
Thus, the correct evaluation of the first term of equation (36) becomes important in a 
lagrangian formulation and will be discussed below. 
The term    
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may be evaluated in two different ways: 
 



I) Evaluation via a density update 
 
From the mass conservation equation, the density at time nt  may be computed as: 
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Making use of the spatial discretization (22) and (24) and the Galerkin residual method 
gives: 
 

n

i

T
i

V
p

nT
p

V
p

nT
p

V
p UdV

x
NNtdVNNdVNN
∂
∂

∆−= ∫∫∫ − ρρρ 1  (66) 

 
Integrating by parts the last term: 
 

∫∫∫∫
Γ

− Γ∆−
∂

∂
∆+=

u

duNtUdVN
x

N
tdVNNdVNN n

np
nT

i
i

T
p

V

nT
p

V
p

nT
p

V
p ρρρρ 1  (67) 

 
or in compact notation: 
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In order to take into account that the shape functions N  are different at each mesh update 
the following notation will be used: the shape functions or the matrices evaluated at the 
time nt  will be noted by n

pN  and n
pM . Then equation (68) becomes: 
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where tn∆  represents the time increment al time nt  
Then: 
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where the density variation has been defined by: 
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representing the ρ  variation at time nt . 
Successive application of eq.(70) for all time steps gives: 
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The term )( 0 n
pM ρρ − of the r.h.s. of Eq.(36) can be written as: 
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This means that at each time step lt  the vector: 
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must be evaluated, added to the previous one and stored for the next time step. 
 
II)     Evaluation via the initial associated volume 
 
Mass conservation implies: 
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Using the shape functions at the corresponding time step: 
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Defining the volume associated to each particle by:  
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eq.(76) becomes: 
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which has the meaning of the total mass conservation. Vector nΩ may be considered as the 
vector containing the volumes associated to each particle. It may be calculated using (77) or 
using the Voronoi diagram of the node distribution. 
The concept of local mass conservation may be used next. This means that each particle 
(node) conserves his own local mass, i.e.: 
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The term )( 0 n

pM ρρ −  may be written as: 
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where 0Ω  and nΩ  represent a diagonal matrix with the volume associated to each particle 

at time 0tt =  and ntt = respectively. 
These matrices may be evaluated using the lumped matrices 0

ρM  and nM ρ or directly using 
the associated volume to each particle obtained from a Voronoi diagram. 
 
8. Boundary Surfaces 
 
One of the main problems in mesh generation is the correct definition of the boundary 
domain. Sometimes, boundary nodes are explicitly defined as special nodes, which are 
different from internal nodes. In other cases, the total set of nodes is the only information 
available and the algorithm must recognize the boundary nodes. Such is the case in the 
lagrangian formulation in which, at each time step, a new node distribution is obtained and 
the boundary-surface must be recognized from the node positions. 
The use of the MFEM with the Extended Delaunay partition makes it easier to recognize 
boundary nodes. 
Considering that the node follows a variable )(xh  distribution, where )(xh is the minimum 
distance between two nodes, the following criterion has been used: 
All nodes on an empty sphere with a radius )(xr bigger than )(xhα , are considered as 
boundary nodes.  
Thus, α  is a parameter close to, but greater than one. Note that this criterion is coincident 
with the Alpha Shape concept [12]. 
Once a decision has been made concerning which of the nodes are on the boundaries, the 
boundary surface must be defined. It is well known that in 3-D problems the surface fitting 
a number of nodes is not unique. For instance, four boundary nodes on the same sphere 
may define two different boundary surfaces, a concave one and convex one. 
In this work, the boundary surface is defined with all the polyhedral surfaces having all 
their nodes on the boundary and belonging to just one polyhedron. See Reference [12]. 
The correct boundary surface may be important to define the correct normal external to the 
surface. Furthermore; in weak forms (Galerkin) a correct evaluation of the volume domain 
is also important. Nevertheless, it must be noted that in the criterion proposed above, the 
error in the boundary surface definition is of order h . This is the standard error of the 
boundary surface definition in a meshless method for a given node distribution. 
 
9. Application to Fluid-Structure Interactions 
 
The fluid described above will interact with structures that are in contact with it. Three 
different cases of structures will be analyzed. In all three cases, the elastic strains will be 
neglected and only rigid solid motions will be considered. 
 
 
 



Fixed structures 
 
The first type of examples presented is structures in which there is a fixed wall, for 
instance, the recipient in which the fluid is contained. See Figs. 1 and 2. 
This kind of structures will be analyzed by adding fixed particles at the boundaring with 
velocity 0=iu  . These particles will be included in the computation of equations A) and B) 
as standard nodes, but during the equation C) the velocity will be fixed to zero. 
The inclusion of fixed boundary particles is very important to avoid contact problems. 
These fixed particles automatically force the fluid to remain inside a recipient. The moving 
particles cannot go across the wall due to the incompressibility condition and not to any 
other restriction of velocity or displacement. This condition solves the contact problems 
with complicated curved structures. See for instance example 2. 
 
Moving structures with a known velocity 
 
The second type of fluid-structure interaction is between the fluid and a moving wall of 
known velocity as a function of the time. This is the case of moving recipients, moving 
mills, or moving ships with prescribed velocity. 
In this case, moving particles with known velocity are introduced in the domain boundaries. 
Note that the term: 
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with  
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must be added in equation C) where 1+n

nu  are the known velocity on the boundaries. See 
for instance Figs. 4 and 5. 
 
Moving structures 
 
Finally, the case of moving rigid structures is considered. For instance, the case of a 
floating ship originating to water waves (see keeping). In this case, the solid will be 
considered as a domain with a high viscosity parameter, much higher than the fluid domain. 
For practical problems a value of µ410  is enough to represent a solid without introducing 
numerical problems (see Figures 5 and 6). 
 
10 Numerical Test 
 
10.1 Water column collapse 
 



This problem was solved by Koshizu and Oka [4] both experimentally and numerically. It 
became a classical example to test the validation of the lagrangian formulation in fluid 
flows. The water is initially located on the left supported by a removable board. The 
collapse starts at time t = 0, when the removable board is slid-up. Viscosity and surface 
tension are neglected. 
Figure 1 shows the point positions at different time steps. The dark points represent the 
free-surface detected with the alpha-shape algorithm with an alpha parameter 1.1=α . The 
internal points are gray and the fixed points are black. 
The water is running on the bottom wall until, near 0.3 sec, it impinges on the right vertical 
wall. Breaking waves appear at 0.6 sec. Around 1 sec. the water reaches the left wall. 
Agreement with the experimental results of ref. [4] both in the shape of the free surface as 
well as in the time development are excellent. 
 
10.2 Fixed ship under external waves 
 
This example is a very schematic representation of a ship when it is hit by an external wave 
(Fig. 2). The ship cannot move and initially the free surface is horizontal with a rectangle 
on the right wall to produce a big wave. Fixed nodes represent the ship as well as the wall 
recipient. 
The example was created in order to test the suitability of the method to solve contact 
problems with curved walls correctly. It is interesting to see the crash of the waves under 
the ship prow and the rebound of the wave on 3.15 seconds. It is also interesting to see the 
different contact walls with the internal and external ship surfaces and the moving free 
surface at the bottom of the ship.  
 
10.3 Moving ship with known velocity 
 
In this case (Fig. 3), the same ship of the previous example is now moving at a fixed 
velocity. All the nodes representing the ship have an imposed velocity.  The free surface, 
which was initially horizontal, takes a correct position at the bottom of the ship, and again, 
the correct contact problem is realistically solved in the curved prow. 
 
10.4 Rotating water mill 
 
A schematic representation of a water mill is presented in Fig. 4.The blades of the mill have 
an imposed rotating velocity, while the water is initially in a stationary and flat position. 
Fluid structure interactions with free-surfaces and fragmentation are well reproduced in this 
example.  
 
10.5 Solid falling into a recipient with water. 
 
In this example the fluid is interacting with a solid that is totally free, without any imposed 
velocity. Figure 5 represents a free cube falling down into a recipient full of water. The 
solid cube was modeled by introducing a high viscosity parameter in the element in the 
following way: all the polyhedral elements formed by nodes contained in the solid have a 
high viscosity value. The other elements are inviscid. 



The example represents correctly the contact problem when the cube hits the water and also 
the different speed during the falling process. 
 
10.6 Solid floating on a free surface 
 
The last example of Figure 6 represents a very interesting problem of fluid structure 
interaction when there is a weak interaction between the fluid and a large rigid deformation 
of the structure. In this case, there is also a free-surface problem, representing a schematic 
case of see-keeping in ship hydrodynamics. 
The example shows an initially stationary recipient with a floating piece of wood in which 
a wave is produced on the left side. The wave intercepts the wood piece producing a 
breaking wave and moving the floating wood. 
All the previous examples are only schematic representations of real problems. Only the 
first example has an experimental reference. The rest are presented here in order toe 
evaluate the suitability of the method to solve problems other methods have difficulties to 
solve. 
 
11 Conclusions 
 
Lagrangian formulation and the Meshless Finite Element Method are an excellent 
combination to solve fluid mechanic problems, especially fluid-structure interactions with 
moving free-surface and contact problems. 
Breaking waves, collapse problems, and contact problems can be solved easily without any 
additional constraint.  
Furthermore, the Meshless Finite Element Method presented, as opposed to other methods, 
has the advantages of a good meshless method concerning the easy introduction of the 
nodes connectivity in a bounded time of order n . The method proposed also shares some 
advantages with the FEM such as: a) the simplicity of the shape functions, b) 0C continuity 
between elements, c) an easy introduction of the boundary conditions, and d) symmetric 
matrices. 
The Finite Calculus (FIC) formulation can be successfully used in a lagrangian formulation 
in order to eliminate spurious pressure oscillations. 
Both the lagrangian formulation and the MFEM are the key ingredients to solve fluid-
structure interaction problems including with free-surface, breaking waves and collapse 
situations. 
 
 
 
 
 
 



 

 
 

 

 

 
Figure 1 Water column collapse at different time steps. 

 
 
 
 



 
 

 

 

 

 
Figure 1.(Continuation):Water column collapse at different time steps. 

 



 

 

 

 

 

 

 
Figure 2. Fixed ship under external waves 

 
 
 
 
 
 
 



 

 

 

 

 

 

 
Figure 3. Moving ship with known velocity. 

 
 
 
 
 
 



 
 
 
 

 
 
 
 

 
 
 
 

 
 

Figure 4. Rotating water mill. 
 
 
 
 
 
 
 



 

 

 

 
 

Figure 5. Solid cube falling into a recipient with water. 
 
 
 
 



 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 6. Solid floating on a free surface. 
 
 
 
 



Appendix 
 

All the shape functions iN described in this paper are based on the Meshless Finite 
Element Method (MFEM). A full description of the MFEM may be found in Ref. [12]. 
Nevertheless and for the sake of completeness a summary is presented in this Appendix. 

The MFEM combines a particular finite element subdivision in polyhedral shape called 
the Extended Delanay Tessellation and ad-hoc shape functions for this kind of polyhedra. 
 
The Extended Delaunay Tessellation (EDT) 
 
Let a set of distinct nodes be: N = {n1, n2, n3,…,nn} in R3. 
 

a) The Voronoï diagram of the set N is a partition of R3 into regions Vi (closed and 
convex, or unbounded), where each region Vi is associated with a node ni, such 
that any point in Vi is closer to ni (nearest neighbor) than to any other node ni. See  
Fig.7 for a 2-D representation. There is a single Voronoï diagram for each set N. 

b) A Voronoï sphere within the set N is any sphere, defined by 4 or more nodes, that 
contains no other node inside. Such spheres are also known as empty 
circumspheres. 

c) A Delaunay tessellation within the set N is a partition of the convex hull Ω of all 
the nodes into regions Ωi such that Ω = U Ωi , where each Ωi is the tetrahedron 
defined by 4 nodes of the same Voronoï sphere. Delaunay tessellations of a set N 
are not unique, but each tessellation is the dual of the single Voronoï diagram of 
the set. 

 

Voronoï Circle
Delaunay Triangulation
Voronoï Diagram

 
Figure 7: Voronoï diagram, Voronoï circle and Delaunay triangulation  

for a 4 nodes distribution in 2D. 

The computing time required for evaluation of all these 3 entities is of order nα, with α ≤ 
1.333. Using a very simple bin organization, the computation time may be reduced to a 
simple order n. 
As stated above, the Delaunay tessellation of a set of nodes is non-unique. For the same 
node distribution, different triangulations (actually tetrahedrations, as it refers to 3-D) are 
possible. Therefore, an interpolation based on the Delaunay tessellation is sensitive to 
geometric perturbations of the position of the nodes. On the other hand, its dual, the 
Voronoï diagram, is unique. Thus, it makes more sense to define meshless shape functions 



based on the unique Voronoï diagram than on Delaunay tessellations. Furthermore, in 3-D 
problems the Delaunay tessellation may generate several tetrahedra of zero or almost zero 
volume, which introduces large inaccuracies into the shape function derivatives. The time 
to obtain a good mesh via a Delaunay tessellation becomes then an unbounded iterative 
operation. 
These drawbacks appear in the so-called “degenerated case”, which is the case where more 
than 4 nodes (or more than 3 nodes in a 2-D problem) are on the same empty sphere. For 
instance, when 5 nodes are on the same sphere, 5 tetrahedra may be defined satisfying the 
Delaunay criterion, but some of them may have zero or almost zero volumes, called slivers, 
as seen in Fig. 8: 

  
Figure 8: Five nodes on the same sphere and possible zero or almost zero volume 

tetrahedron (sliver) on the right. 

In order to overcome above drawbacks, a generalization of the Delaunay tessellation will be 
defined. 
Definition: The Extended Delaunay tessellation within the set N is the unique partition of 
the convex hull Ω of all the nodes into regions Ωi such that Ω = U Ωi , where each Ωi is the 
polyhedron defined by all the nodes laying on the same Voronoï sphere. 
The main difference between the traditional Delaunay tessellation and the Extended 
Delaunay tessellation is that, in the latter, all the nodes belonging to the same Voronoï 
sphere define a unique polyhedron. With this definition, the domain Ω is divided into 
tetrahedra and other polyhedra, which are unique for a set of node distributions. Fig. 9 for 
instance, is a 2-D polygon partition with a triangle, a quadrangle and a pentagon. Fig. 10 is 
a classical 8-nodes polyhedron with all the nodes on the same sphere. 

  
Figure 9: Two-dimensional partition in polygons. 

The triangle, the quadrangle and the pentagon are each inscribed on a circle 



For non-uniform node distributions, considering infinite precision, only 4 nodes are 
necessary to define a sphere. Other nodes close to the sphere may define other spheres very 
close to the previous one. In order to avoid this situation, which may hide polyhedra with 
more than 4 nodes, a parameter δ will be introduced. In such a way, the polyhedra are 
defined by all the nodes of the same sphere and nearby spheres with a distance between 
center points smaller than δ.  

  
Figure 10: Eight-node polyhedron. All nodes are on the same sphere. 

The parameter δ avoids generating zero volume or near zero volume tetrahedra. When δ is 
large, the number of polyhedra with more than 4 nodes increases, and the number of 
tetrahedra with near zero volume decreases, and vice versa. 
The Extended Delaunay tessellation leads to a domain partition which: (a) is unique for a set of 
node distributions; (b) is formed by polyhedra with no zero volume, and (c) is obtained in a 
bounded time of order n. Then, it satisfies the conditions for a meshless method. 
 
The Meshless Finite Element shape functions 
 
Once the domain partition in polyhedra is defined, shape functions must be introduced to 
solve a discrete problem. In fluid and solid mechanics problems typically, C0

 continuitions 
shape functions are chosen. If possible, shape functions must be locally supported in order 
to obtain band matrices. They must also satisfy two criteria in order to have a reasonable 
convergence order, namely partition of unity and linear completeness.  
In order to define the shape functions inside each polyhedron the non-Sibsonian 
interpolation is used [23]. 
Let P = {n1, n2, …, nm} be the set of nodes belonging to a polyhedron. The shape function 
Ni(x) corresponding to the node ni at an internal point x is defined by building first the 
Voronoï cell corresponding to x in the tessellation of the set P U {x} and then by 
computing: 
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where si(x) is the surface of the Voronoï cell face corresponding to node the node ni and 
hi(x) is the distance between point x and the node ni (Figure 11). 
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Figure 11: Four nodes and arbitrary internal point x Voronoï diagram. Shape function 

parameters 

Non-Sibsonian interpolations have the following properties [19].  
 
1)  0 ≤ Ni(x) ≤ 1 (1) 
2) Σi Ni(x) = 1 (2) 
3) Ni (nj) = δij (3) 
4) x = Σi Ni (x) ni (4) 

Furthermore, the particular definition of the non-Sibsonian shape function for the 
limited set of nodes on the same Voronoï sphere, adds the following properties: 

5) On a polyhedron surface, the shape functions depend only on the nodes of this surface  
6) On triangular surfaces (or in all the polygon boundaries in 2-D), the shape functions are 

linear. 
7) If the polyhedron is a tetrahedron (or a triangle in 2-D) the shape functions are the 

linear finite element shape functions. 
8) Due to property 5, the shape functions have C0 continuity between two neighboring 

polyhedra. See Figure 12. 
9) As a matter of fact, because all the element nodes are on the same sphere, the evaluation 

of the shape functions and its derivatives becomes very simple. 
 

  
Figure 12 .C0 continuity of the shape function on a 2-D node connection. 



The method Meshless Finite Element Method (MFEM) defined here is both a meshless 
method and a Finite Element Method. The algorithm steps for the MFEM are: 
 

1) For a set of nodes, compute all the empty spheres with 4 nodes. 
2) Generate all the polyhedral elements using the nodes belonging to each sphere and 

the nodes of all the coincident and nearby spheres. 
3) Calculate the shape functions and their derivatives, using the non-Sibsonian 

interpolation, at all the Gauss points necessary to evaluate the integrals of the weak 
form. 

 
The MFEM is a truly meshless method because the shape functions depend only on the 
node positions. Furthermore, steps 1 and 2 of the node connectivity process are bounded 
with n1.33, avoiding the mesh "cosmetics" often needed in mesh generators. 
The number of Gauss points necessary to compute the element integrals depends, to a great 
extent, on the polyhedral shape of each element. Note that for an irregular node 
distribution, there remains a significant amount of tetrahedra ( in the examples, more than 
85% of the elements remains tetrahedral) with linear shape functions, for which only one 
Gauss point is enough. For the remaining polyhedra, the integrals are performed dividing 
them into tetrahedra and then using a single Gauss point in each tetrahedron. This 
subdivision is only performed for the evaluation of the integrals and cannot be considered 
as a tetrahedral mesh because it is not conforming. The use of one Gauss point on each 
tetrahedron guarantee that the computing time in the evaluation of the matrices requires the 
same effort than the FEM. 
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