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Abstract We present some developments in the Par-
ticle Finite Element Method (PFEM) for analysis of
complex coupled problems in mechanics involving fluid-

soil-structure interaction (FSSI). The PFEM uses an
updated Lagrangian description to model the motion
of nodes (particles) in both the fluid and the solid do-

mains (the later including soil/rock and structures). A
mesh connects the particles (nodes) defining the dis-
cretized domain where the governing equations for each

of the constituent materials are solved as in the stan-
dard FEM. The stabilization for dealing with an incom-
pressibility continuum is introduced via the finite cal-

culus (FIC) method. An incremental iterative scheme
for the solution of the non linear transient coupled FSSI
problem is described. The procedure to model frictional

contact conditions and material erosion at fluid-solid
and solid-solid interfaces is described. We present sev-
eral examples of application of the PFEM to solve FSSI

problems such as the motion of rocks by water streams,
the erosion of a river bed adjacent to a bridge founda-
tion, the stability of breakwaters and constructions sea

waves and the study of landslides.
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1 Introduction

The analysis of problems involving the interaction of
fluids, soil/rocks and structures is of relevance in many

areas of engineering. Examples are common in the study
of landslides and their effect on reservoirs and adja-
cent structures, off-shore and harbour structures under

large waves, constructions hit by floods and tsunamis,
soil erosion and stability of rock-fill dams in overspill
situations, etc.

These studies can be considered as an extension of
the so-called fluid-structure interaction (FSI) problems

[46]. Typical difficulties of FSI analysis in free surface
flows using the FEM both the Eulerian or ALE for-
mulation include the treatment of the convective terms

and the incompressibility constraint in the fluid equa-
tions, the modelling and tracking of the free surface in
the fluid, the transfer of information between the fluid

and the moving solid domains via the contact interfaces,
the modeling of wave splashing, the possibility to deal
with large motions of multi-bodies within the fluid do-

main, the efficient updating of the finite element meshes
for both the structure and the fluid, etc. Examples of
3D analysis of FSI problems using ALE and space-time

FEM are reported in [4,6,26,27,31,34,40].

Most of the above problems disappear if a Lagrangian
description is used to formulate the governing equations
of both the solid and the fluid domains. In the La-

grangian formulation the motion of the individual par-
ticles are followed and, consequently, nodes in a finite
element mesh can be viewed as moving material points

(hereforth called “particles”). Hence, the motion of the
mesh discretizing the total domain (including both the
fluid and solid parts) is followed during the transient

solution.
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A successfull Lagrangian method for FSI analysis is

the so-called Soboran Grid CIP technique, which has
been successfully applied to different class of 3D prob-
lems [44].

The authors have successfully developed in previous
works a particular class of Lagrangian formulation for

solving problems involving complex interaction between
(free surface fluids) and solids. The method, called the
particle finite element method (PFEM, www.cimne.com/

pfem), treats the mesh nodes in the fluid and solid
domains as particles which can freely move and even
separate from the main fluid domain representing, for

instance, the effect of water drops. A mesh connects
the nodes discretizing the domain where the governing
equations are solved using a stabilized FEM.

An advantage of the Lagrangian formulation is that
the convective terms disappear from the fluid equa-

tions [11,48]. The difficulty is however transferred to
the problem of adequately (and efficiently) moving the
mesh nodes. We use a mesh regeneration procedure

blending elements of different shapes using an extended
Delaunay tesselation with special shape functions [17,
19]. The theory and applications of the PFEM are re-

ported in [2,7,10,18,20,21,23,26,32,34–39].

The FEM solution of (incompressible) fluid flow prob-
lem implies solving the momentum and incompressibil-
ity equations. This is not a simple problem as the in-

compressibility condition limits the choice of the FE ap-
proximations for the velocity and pressure to overcome
the well known div-stability condition [11,48]. In our

work we use a stabilized mixed FEM based on the Finite
Calculus (FIC) approach which allows for a linear ap-
proximation for the velocity and pressure variables [15,
29–31,33,34]. Among the other stabilized FEM with

similar features we mention the PSPG method [41],
multiscale methods [3,6,8] and the CBS method [8,48].

The aim of this paper is to describe recent advances
of the PFEM for fluid-soil-structure interaction (FSSI)

problems. These problems are of relevance in many ar-
eas of civil, hydraulic, marine and environmental en-
gineering, among others. It is shown that the PFEM

provides a general analysis methodology for treat such
complex problems in a simple and efficient manner.

The layout of the paper is the following. In the next
section the key ideas of the PFEM are outlined. Next
the basic equations for a compressible/incompressible

continuum using a Lagrangian description and the FIC
formulation are schematically presented. Then an al-
gorithm for the transient solution is briefly described.

The treatment of the coupled FSSI problem and the
methods for mesh generation and for identification of
the free surface nodes are outlined. The procedure for

treating the frictional contact interaction between fluid,

soil and structure interfaces is explained. We present

several examples of application of the PFEM to solve
FSSI problems such as the motion of rocks by water
streams, the erosion of a river bed adjacent to a bridge

foundation, the stability of breakwaters and construc-
tions sea waves and the study of landslides.

2 The basis of the particle finite element
method

Let us consider a domain containing both fluid and solid
subdomains (the solid subdomain may include soil/rock
materials and/or structural elements). The moving fluid

particles interact with the solid boundaries thereby in-
ducing the deformation of the solid which in turn affects
the flow motion and, therefore, the problem is fully cou-

pled.
In the PFEM both the fluid and the solid domains

are modelled using an updated Lagrangian formulation

[47]. That is, all variables are assumed to be known
in the current configuration at time t. The new set of
variables in both domains are sought for in the next or

updated configuration at time t+∆t. The finite element
method (FEM) is used to solve the equations of con-
tinuum mechanics for each of the subdomain. Hence a

mesh discretizing these domains must be generated in
order to solve the governing equations for each subdo-
main in the standard FEM fashion.

The quality of the numerical solution depends on
the discretization chosen as in the standard FEM. Adap-
tive mesh refinement techniques can be used to improve

the solution in zones where large motions of the fluid
or the structure occur.

2.1 Basic steps of the PFEM

For clarity purposes we will define the collection or

cloud of nodes (C) pertaining to the fluid and solid do-
mains, the volume (V) defining the analysis domain for
the fluid and the solid and the mesh (M) discretizing

both domains.
A typical solution with the PFEM involves the fol-

lowing steps.

1. The starting point at each time step is the cloud of
points in the fluid and solid domains. For instance
nC denotes the cloud at time t = tn (Figure 1).

2. Identify the boundaries for both the fluid and solid
domains defining the analysis domain nV in the

fluid and the solid. This is an essential step as some
boundaries (such as the free surface in fluids) may
be severely distorted during the solution, includ-

ing separation and re-entering of nodes. The Alpha
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 n+1x , 
n+1u , n+1v, n+1a ,n+1εεεε , n+1εεεε , n+1σσσσ

nM → n+1 C n+1V → n+1M n+1 C → n+1 V n+1M → n+2 C 
nV → n M n C → n V Solid node

Fixed boundary node
Fluid nodeInitial “cloud” of nodes n C

Domain n VFlying Sub-domains

Fixed 
boundary

n

Γ

Mesh nM
nx , 
nu , nv, na ,nεεεε , nεεεε , nσσσσ

.
.

Cloud n+2 CDomain n+1VFixed 
boundary

nΓ

Mesh n+1MCloud n+1 C
.

etc…

Fig. 1 Sequence of steps to update a “cloud” of nodes representing a domain containing a fluid and a solid part from time n
(t = tn) to time n+ 2 (t = tn + 2∆t)

Shape method [12] is used for the boundary defini-
tion.

3. Discretize the fluid and solid domains with a finite

element mesh nM . In our work we use an innova-
tive mesh generation scheme based on the extended
Delaunay tesselation [17,19,20].

4. Solve the coupled Lagrangian equations of motion
for the fluid and the solid domains. Compute the
state variables in both domains at the next (up-

dated) configuration for t+∆t: velocities, pressure
and viscous stresses in the fluid and displacements,
stresses and strains in the solid.

5. Move the mesh nodes to a new position n+1C where
n+1 denotes the time tn+∆t, in terms of the time
increment size. This step is typically a consequence
of the solution process of step 4.

6. Go back to step 1 and repeat the solution process
for the next time step to obtain n+2C (Figure 2).

3 FIC/FEM formulation for a Lagrangian

continuum

3.1 Governing equations

The equations to be solved are the standard ones in
continuum mechanics, written in the Lagrangian frame

of reference:

Momentum

ρ
∂vi
∂t

=
∂σij

∂xj
+ bi in V (1)

Pressure-velocity relationship

1

K

∂p

∂t
− ∂vi

∂xi
= 0 in V (2)

In above equations vi is the velocity along the ith
global (cartesian) axis, p is the pressure (assumed to be
positive in compression) ρ and K are the density and

bulk modulus of the material, respectively, bi and σij

are the body forces and the (Cauchy) stresses. Eqs.(1)
and (2) are completed with the constitutive relation-

ships:

Incompressible continuum

t+1σij = 2µε̇ij − t+1pδij (3)

Compressible/quasi-incompressible continuum

t+1sij =
tσ̂ij + 2µε̇ij + λε̇iiδij (4a)

where σ̂ij are the component of the stress tensor [σ̂]

[σ̂] =
1

J
FTSF (4b)
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      Fig. 2 Modelling of contact conditions at a solid-solid interface with the PFEM

where S is the second Piola-Kirchhoff stress tensor, F
is the deformation gradient tensor and J = detF [22,

47]. Parameters µ and λ take the following values for a
fluid or solid material:

Fluid: µ: viscosity; λ = ∆tK − 2µ
3

Solid: µ =
∆tG

J
; λ =

2Gν∆t

J(1− 2ν)
, where ν is the Pois-

son ration, G is the shear modulus and ∆t the time
increment.

In Eqs.(3) and (4), sij are the deviatoric stresses,
ε̇ij is the rate of deformation, µ is the viscosity and δij
is the Kronecker delta. t(·) denotes values at time t.

Indexes in Eqs.(1)–(4) range from i, j = 1, nd, where
nd is the number of space dimensions of the problem

(i.e. nd = 2 for 2D problems). These equations are
completed with the standard boundary conditions of
prescribed velocities and surface tractions in the me-

chanical problem [11,36,47,48].

3.2 Discretization of the equations

A key problem in the numerical solution of Eqs.(1)–

(4) is the satisfaction of the mass balance condition
for the incompressible case (i.e. K = ∞ in Eq.(2)).
A number of procedures to solve his problem exist in

the finite element literature [11,48]. In our approach
we use a stabilized formulation based in the so-called
finite calculus procedure [15,29–31,33,34]. The essence

of this method is the solution of amodified mass balance

equation which is written as

1

K

∂p

∂t
− ∂vi

∂xi
−

3∑
i=1

τ
∂q

∂xi

[
∂p

∂xi
+ πi

]
= 0 (5)

where q are weighting functions, τ is a stabilization pa-
rameter given by [34]

τ =

(
2ρ|v|
h

+
8µ

3h2

)−1

(6)

In the above, h is a characteristic length of each
finite element and |v| is the modulus of the velocity

vector. In Eq.(5) πi are auxiliary pressure projection
variables chosen so as to ensure that the second term in
Eq.(5) can be interpreted as weighted sum of the resid-

uals of the momentum equations and therefore it van-
ishes for the exact solution. The set of governing equa-
tions is completed by adding the following constraint

equation [32,36]∫
V

τwi

(
∂p

∂xi
+ πi

)
dV = 0 i = 1, nd (no sum in )i

(7)

where wi are arbitrary weighting functions.

The rest of the integral equations are obtained by
applying the standard weighted residual technique to

the governing equations (1), (2), (3) and (5) and the
corresponding boundary conditions [11,22,48].

We interpolate next in the standard finite element
fashion the set of problem variables. For 3D problems
these are the three velocities vi, the pressure p, the tem-

perature T and the three pressure gradient projections
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Box I. Basic PFEM algorithm for a Lagrangian continuum

1. LOOP OVER TIME STEPS, t = 1, NTIME
Known values
tx̄, tv̄, tp̄, tπ̄πππππππππππππ, tT̄ , tµ, tf , tq, tC, tV, tM

2. LOOP OVER NUMBER OF ITERATIONS, i = 1,
NITER

• Compute nodal velocities by solving Eq.(8)[
1

∆t
M+K

]
t+1v̄i+1 = t+1f +Gt+1p̄i +

1

∆t
Mtv̄

• Compute nodal pressures from Eq.(9)[
1

∆t
− LM̄

]
t+1p̄i+1 = GT t+1v̄i+1 +Qt+1π̄πππππππππππππi +

1

∆t
M̄tp̄

• Compute nodal pressure gradient projections from
Eq.(10)

n+1π̄πππππππππππππi+1 = −M̂−1
D

[
QT

]
t+1p̄i+1 , M̂D = diag

[
M̂D

]
• Update position of analysis domain nodes:

t+∆tx̄i+1 = txi + t+∆tvi+1∆t

Define new “cloud” of nodes t+1Ci+1

• Update strain rate and strain values

• Update stress values

Check convergence → NO → Next iteration i → i+ 1

↓ YES

Next time step t → t+ 1

• Identify new analysis domain boundary: t+1V

• Generate mesh:t+1M

Go to 1

πi. In our work we use equal order linear interpola-

tion for all variables over meshes of 3-noded triangles
(in 2D) and 4-noded tetrahedra (in 3D). The resulting
set of discretized equations using the standard Galerkin

technique has the following form

Momentum

M ˙̄v +Kv̄ −Gp̄ = f (8)

Pressure-velocity relationship

M̄ ˙̄p−Gv̄ − Lp̄−Qπ̄πππππππππππππ = 0 (9)

Pressure gradient projection

M̂π̄πππππππππππππ +QT p̄ = 0 (10)

In Eqs.(8)–(10) (̄·) denotes nodal variables, ˙̄(·) =
∂
∂t (̄·). The different matrices and vectors are given in
[22,34,36].

The solution in time of Eqs.(8)–(10) can be per-

formed using any time integration scheme typical of the
updated Lagrangian FEM [36,47]. A basic algorithm
following the conceptual process described in Section 2

is presented in Box I.

4 Generation of a new mesh

One of the key points for the success of the PFEM is the
fast regeneration of a mesh at every time step on the

basis of the position of the nodes in the space domain.
Indeed, any fast meshing algorithm can be used for this
purpose. In our work the mesh is generated at each time

step using the so called extended Delaunay tesselation
(EDT) presented in [17,19].

The CPU time required for meshing grows linearly
with the number of nodes. The CPU time for solving the

equations exceeds that required for meshing as the num-
ber of nodes increases. This situation has been found in
all the problems solved with the PFEM. As a general

rule for large 3D problems meshing consumes around
15% of the total CPU time for each time step, while the
solution of the equations (with typically 3 iterations to

reach convergence within a time step) and the assem-
bling of the system consume approximately 70% and
15% of the CPU time for each time step, respectively.

These figures refer to solutions obtained in a standard
single processor Pentium IV PC for all the computa-
tions and prove that the generation of the mesh has an

acceptable cost in the PFEM. The cost of remeshing
is similar to that reported in [24]. Indeed considerable
speed can be gained using parallel computation tech-

niques.

5 Identification of boundary surfaces

One of the main tasks in the PFEM is the correct def-
inition of the boundary domain. Boundary nodes are
sometimes explicitly identified. In other cases, the total

set of nodes is the only information available and the
algorithm must recognize the boundary nodes.

In our work we use an extended Delaunay parti-

tion for recognizing boundary nodes [19]. Considering
that the nodes follow a variable h(x) distribution, where
h(x) is typically the minimum distance between two

nodes. All nodes on an empty sphere with a radius greater
than αh, are considered as boundary nodes. In practice
α is a parameter close to, but greater than one. Values

of α ranging between 1.3 and 1.5 have been found to
be optimal in all examples analyzed. This criterion is
coincident with the Alpha Shape concept [12].

Once a decision has been made concerning which
nodes are on the boundaries, the boundary surface is
defined by all the polyhedral surfaces (or polygons in

2D) having all their nodes on the boundary and belong-
ing to just one polyhedron.

The method described also allows one to identify

isolated fluid particles outside the main fluid domain.



6 Eugenio Oñate et al.

These particles are treated as part of the external bound-

ary where the pressure is fixed to the atmospheric value.
We recall that each particle is a material point char-
acterized by the density of the solid or fluid domain

to which it belongs. The mass which is lost when a
boundary element is eliminated due to departure of a
node from the main analysis domain is again regained

when the “flying” node falls down and a new boundary
element is created by the Alpha Shape algorithm.

The boundary recognition method is also useful for
detecting contact conditions between the fluid domain

and a fixed boundary, as well as between different solids
interacting with each other as detailed in the next sec-
tion.

We emphasize that the main difference between the

PFEM and the classical FEM is just the remeshing
technique and the identification of the domain bound-
ary at each time step.

6 Treatment of contact conditions in the PFEM

6.1 Contact between the fluid and a fixed boundary

The condition of prescribed velocities at the fixed bound-
aries in the PFEM are applied in strong form to the

boundary nodes. These nodes might belong to fixed ex-
ternal boundaries or to moving boundaries linked to the
interacting solids. Contact between the fluid particles

and the fixed boundaries is accounted for by the in-
compressibility condition which naturally prevents the
fluid nodes to penetrate into the solid boundaries [32,

36].

6.2 Contact between solid-solid interfaces

The contact between two solid interfaces is simply treated

by introducing a layer of contact elements between the
two interacting solid interfaces. This layer is automat-
ically created during the mesh generation step by pre-

scribing a minimum distance (hc) between two solid
boundaries. If the distance exceeds the minimum value
(hc) then the generated elements are treated as fluid el-

ements. Otherwise the elements are treated as contact
elements where a relationship between the tangential
and normal forces and the corresponding displacement

is introduced (Figure 2).

This algorithm has proven to be very effective and
it allows to identifying and modeling complex frictional
contact conditions between two or more interacting bod-

ies moving in water in an extremely simple manner.

This algorithm can also be used effectively to model

frictional contact conditions between rigid or elastic
solids in structural mechanics applications [7,36].

7 Modeling of bed erosion

Prediction of bed erosion and sediment transport in
open channel flows are important tasks in many ar-

eas of river and environmental engineering. Bed erosion
can lead to instabilities of the river basin slopes. It can
also undermine the foundation of bridge piles thereby

favouring structural failure. Modeling of bed erosion is
also relevant for predicting the evolution of surface ma-
terial dragged in earth dams in overspill situations. Bed

erosion is one of the main causes of environmental dam-
age in floods.

Bed erosion models are traditionally based on a re-

lationship between the rate of erosion and the shear
stress level [25]. In a recent work we have proposed an
extension of the PFEM to model bed erosion [35,36].

The erosion model is based on the frictional work at the
bed surface originated by the shear stresses in the fluid.
The resulting erosion model resembles Archard law typ-

ically used for modeling abrasive wear in surfaces under
frictional contact conditions [1].

The algorithm for modeling the erosion of soil/rock

particles at the fluid bed is the following:

1. Compute at every point of the bed surface the resul-

tant tangential stress τ induced by the fluid motion.
In 3D problems τ = (τ2s + τt)

2 where τs and τt are
the tangential stresses in the plane defined by the

normal direction n at the bed node. The value of τ
for 2D problems can be estimated as follows:

τt = µγt with γt =
1

2

∂vt
∂n

=
vkt
2hk

(11)

where vkt is the modulus of the tangential velocity

at the node k and hk is a prescribed distance along
the normal of the bed node k. Typically hk is of
the order of magnitude of the smallest fluid element

adjacent to node k (Figure 3).
2. Compute the frictional work originated by the tan-

gential stresses at the bed surface as

Wf =

∫ t

◦
τtγt dt =

∫ t

◦

µ

4

(
vkt
hk

)2

dt (12)

Eq.(12) is integrated in time as

nWf = n−1Wf + τtγt ∆t (13)

3. The onset of erosion at a bed point occurs when
nWf exceeds a critical threshold value Wc.
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Fig. 3 Modeling of bed erosion with the PFEM by dragging of bed material

4. If nWf > Wc at a bed node, then the node is de-

tached from the bed region and it is allowed to move
with the fluid flow. As a consequence, the mass of
the patch of bed elements surrounding the bed node

vanishes in the bed domain and it is transferred to
the new fluid node. This mass is subsequently trans-
ported with the fluid.

5. Sediment deposition can be modeled by an inverse
process to that described in the previous step. Hence,
a suspended node adjacent to the bed surface with

a velocity below a threshold value is attached to the
bed surface.

Figure 3 shows an schematic view of the bed erosion
algorithm described.

8 Examples

8.1 Dragging of rocks by a water stream

Predicting the critical speed at which a rock will be

dragged by a water stream is of great importance in
many problems in hydraulic, harbour, civil and envi-
ronmental engineering.

The PFEM has been successfully applied to the
study of the motion of a 1Tn quasi-spherical rock due to
a water stream. The rock lays on a collection of rocks

that are kept rigid. Frictional conditions between the
analyzed rock and the rest of the rocks have been as-
sumed. Figure 4a shows that a water stream of 1m/s is

not able to displace the individual rock. An increase of

the water speed to 2m/s induces the motion of the rock

as shown in Figure 4b.

8.2 Impact of sea waves on piers and breakwaters

Figures 5 and 6 show the analysis of the effect of break-

ing waves on two different sites of a breakwater contain-
ing reinforced concrete blocks (each one of 4 × 4 mts).
The figures correspond to the study of Langosteira har-

bour in A Coruña, Spain using PFEM.

8.3 Soil erosion problems

Figure 7 shows the capacity of the PFEM to modelling
soil erosion, sediment transport and material deposition

in a river bed. The soil particles are first detached from
the bed surface under the action of the jet stream. Then
they are transported by the flow and eventually fall

down due to gravity forces into the bed surface at a
downstream point.

Figure 8 shows the progressive erosion of the un-

protected part of a breakwater slope in the Langosteira
harbour in A Coruña, Spain. The non protected up-
per shoulder zone is progressively eroded under the sea

waves.
Figure 9 displays the progressive erosion and drag-

ging of soil particles in a river bed adjacent to the foot

of bridge pile due to the water stream (water is not
shown in the figure). Note the disclosure of the bridge
foundation as the adjacent soil particles are removed

due to erosion.
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(a) Water speed of 1m/s. The individual rock can not

be dragged by the stream

(b) Water speed of 2m/s. The individual rock is

dragged by the stream

Fig. 4 Study of the drag of an individual rock of 1Tn under a water stream at speeds of a) 1m/s and b) 2m/s

     
Fig. 5 Breaking waves on breakwater slope containing reinforced concrete blocks. Mesh of 4-noded tetrahedra near the slope

     
Fig. 6 Study of breaking waves on the edge of a breakwater structure formed by reinforced concrete blocks

    
Fig. 7 Erosion, transport and deposition of soil particles at a river bed due to an impacting jet stream
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due to sea waves

    
   

Fig. 9 Erosion and dragging of soil particles in a river bed
adjacent to the foot of a bridge pile due to a water stream.
Water is not shown

Other applications of the PFEM to bed erosion prob-
lems can be found in [35,36].

8.4 Falling of a lorry into the sea by sea wave erosion

of the road slope

Figure 10 shows a representative example of the pro-

gressive erosion of a soil mass adjacent to the shore due
to sea waves and the subsequent falling into the sea of a
2D object representing the section of a lorry. The object

has been modeled as a rigid solid.

This example, although still quite simple and schematic,
shows the possibility of the PFEM for modeling com-
plex FSSI problems involving soil erosion, free surface

waves and rigid/deformable structures.

8.5 Simulation of landslides

The PFEM is particularly suited for modelling and sim-

ulation of landslides and their effect in the surrounding
structures. Figure 11 shows an schematic 2D simula-
tion of a landslide falling on two adjacent constructions.

The landslide material has been modelled as a viscous
incompressible fluid.

8.6 The landslide in Lituya Bay

A case of much interest is when the landslide occurs in

the vicinity of a reservoir [43]. The fall of debris mate-
rial into the reservoir typically induces large waves that
can overtop the dam originating an unexpected flood-

ing that can cause severe damage to the constructions
and population in the downstream area.

In the example, we present some results of the 3D
analysis of the landslide produced in Lituya Bay (Alaska)
on July 9th 1958 (Figure 12). The landslide was origi-

nated by an earthquake and movilized 90 millions tons
of rocks that fell on the bay originating a large wave
that reached a hight on the opposed slope of 524 mts.

Figures 13 show images of the simulation of the
landslide with PFEM. The sliding mass has been mod-

elled as a continuum with a prescribed shear modulus.
No frictional effect between the sliding mass and the
underneath soil has been considered. Also the analysis

has not taken into account the erosion and dragging
of soil material induced by the landslide mass during
motion.

PFEM results have been compared with observed
values of the maximum water level in the north hill

adjacent to the reservoir. The maximum water level in
this hill obtained with PFEM was 551 mts. This is 5%
higher than the value of 524 mts. observed experimental

by [13,14]. The maximum height location differs in 300
mts from the observed value [13,14]. In the south slope
the maximum water height observed was 208 mts, while

the PFEM result (not shown here) was 195 mts (6%
error).

More information on the PFEM solutions of this
example can be found in [38,39].

9 Conclusions

The particle finite element method (PFEM) is a promis-

ing numerical technique for solving fluid-soil-structure
interaction (FSSI) problems involving large motion of
fluid and solid particles, surface waves, water splash-

ing, frictional contact situations between fluid-solid and
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Fig. 10 Erosion of a soil mass due to sea waves and the subsequent falling into the sea of an adjacent lorry        Fig. 11 Landslide falling on two constructions 2D simulation using PFEM

Fig. 12 Lituya Bay landslide. Left: Geometry for the simulation. Right: Landslide direction and maximum wave level [13,14]
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Fig. 13 Lituya Bay landslide. Evolution of the landslide into the reservoir obtained with the PFEM. Maximum level of
generated wave (551 mts) in the north slope

solid-solid interfaces and bed erosion, among other com-

plex phenomena. The success of the PFEM lies in the
accurate and efficient solution of the equations of an in-
compressible continuum using an updated Lagrangian

formulation and a stabilized finite element method al-
lowing the use of low order elements with equal order
interpolation for all the variables. Other essential so-

lution ingredients are the efficient regeneration of the
finite element mesh, the identification of the boundary
nodes using the Alpha-Shape technique and the sim-

ple algorithm to treat frictional contact conditions and
erosion/wear at fluid-solid and solid-solid interfaces via
mesh generation. The examples presented have shown

the potential of the PFEM for solving a wide class of
practical FSSI problems in engineering.
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17. Idelsohn SR, Oñate E, Calvo N, Del Pin F (2003a) The
meshless finite element method. Int. J. Num. Meth. En-
gng. 58(6):893–912
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fied Lagrangian formulation for elastic solids and incom-
pressible fluids: Application to fluid-structure interaction
problems via the PFEM. Comput Methods Appl Mech
Engrg. 197:1762–1776

23. Idelsohn SR, Mier-Torrecilla M, Oñate E (2009) Multi-
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28. Löhner R, Yang Ch, Oñate E (2007) Simulation of flows

with violent free surface motion and moving objects using
unstructured grids. Int. J. Num. Meth. Fluids 153:1315–
1338
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34. Oñate E, Garćıa J, SR Idelsohn, F. Del Pin (2006b) FIC
formulations for finite element analysis of incompressible
flows. Eulerian, ALE and Lagrangian approaches. Com-
put. Meth. Appl. Mech. Engng. 195(23-24):3001–3037
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