Comput Mech (2010) 46:115-124
DOI 10.1007/s00466-009-0448-6

ORIGINAL PAPER

On the analysis of heterogeneous fluids with jumps in the viscosity

using a discontinuous pressure field

Sergio R. Idelsohn - Monica Mier-Torrecilla -
Norberto Nigro - Eugenio Onate

Received: 17 June 2009 / Accepted: 11 November 2009 / Published online: 10 December 2009

© Springer-Verlag 2009

Abstract Heterogeneous incompressible fluid flows with
jumps in the viscous properties are solved with the particle
finite element method using continuous and discontinuous
pressure fields. We show the importance of using discontin-
uous pressure fields to avoid errors in the incompressibility
condition near the interface.
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1 Introduction

The simultaneous presence of multiple fluids with varying
properties in external or internal flows is found in daily
life, in marine environmental problems, and numerous indus-
trial processes, among many other practical situations. These
types of flow are labeled “multi-fluid” or simply “hetero-
geneous fluids” and they typically exist in different forms
depending on their phase distribution. Examples are gas-
liquid transport, magma chambers, fluid—fuel interactions,
crude oil recovery, spray cans, sediment transport in rivers
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and floods, pollutant transport in the atmosphere, cloud for-
mation, fuel injection in engines, bubble column reactors
and spray dryers for food processing, to name only a few.
This demonstrates the large incidence and also importance
of multi-fluid flows, which probably occur even more fre-
quently than single phase flows [1].

As a result of the interaction between the different fluid
components, multi-fluid flows are rather complex and very
difficult to describe theoretically. Despite the practical impor-
tance of the problem and the intensive work carried out in
the last decade for the development of suitable mathemat-
ical and computational models, it is widely accepted that
the numerical study of heterogeneous flows is still a major
challenge [1].

Computing the interface between two immiscible fluids
or the free-surfaces is difficult because neither the shape
nor the positions of the domains between the fluids are a
priori known. In this kind of flows there are basically two
approaches for computing interfaces, which are, using the
terminology in [2], interface-tracking and interface captur-
ing. The former computes the motion of the flow via a mixed
Lagrangian—Eulerian approach [3] or a space-time approach
[4,5], where the numerical domain adapts itself to the shape
and position of the interfaces. Standard interface-capturing
methods consider both fluids as a single effective fluid with
variable properties [6—8]. The interfaces are considered as a
region of sudden change in the fluid properties. This approach
requires an accurate modeling of the jump in the proper-
ties of the two fluids taking into account that the interfaces
can move, bend and reconnect in arbitrary ways. Further-
more, prescribing exact boundary conditions in the interface
is usually approximated. Non-standard interface-capturing
methods have been developed to increase the accuracy in
representing the interface, such as the Enhanced-Discretiza-
tion Interface-Capturing Technique (EDICT) [9, 10]. There
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are number of powerful techniques in the interface-track-
ing category, such as the DSD/SST formulation [4,5], which
has been applied to a large number of two-fluid or free-sur-
face flows, and the particle finite element method (PFEM)
[11-13], which we focus on here.

In a previous publication [ 14] the authors solve the numer-
ical problems of a density jump at the interfaces. In this paper
the focus is on the numerical solution of a viscosity jump at
the interface of two different fluids using the particle finite
element method. The need for using a discontinuous pressure
across an interface when there is surface tension was also rec-
ognized in applying the DSD/SST formulation to free-sur-
face and two-fluid flows [5] and in several interface-capturing
applications [15-20].

The layout of the paper is the following. In Sect. 2
the governing equations of heterogeneous fluids are pre-
sented together with the boundary and interfacial conditions.
Section 3 deals with the main difficulties of the numerical
solution of heterogeneous fluids and the techniques proposed
to overcome them, which are tested in two numerical exam-
ples in Sect. 4.

2 The governing equations

The equations to be solved are the standard Navier—Stokes
equations for an incompressible flow in each of the fluid
domains with the corresponding boundary conditions and
some internal equations at the interfaces between the differ-
ent fluids.

The momentum conservation equation in each of the fluid
domains reads:

Uy pf; (1)
=

and the mass conservation:
Dp ou;

=0 2
pr P 2

where p is the density, u; are the Cartesian components of
the velocity field, o;; the Cauchy stress tensor, f; the source
term (normally the gravity) and ][))—d; represents the total or

material time derivative of a function ¢.

For heterogeneous materials p is a function of the position
p = p(x). For incompressible flows, % = 0. Nevertheless
the spatial time derivative g—’? is not necessarily equal to zero
(g—’; # 0). This is the reason why heterogeneous materials
are more easily solved with Lagrangian formulations.

The constitutive equations for Newtonian fluids are:

du;  duj
oij = Tij — P8ij =M(—l+—j) — P8ij 3

3)6./ 8xl~
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where w is the viscosity and p the pressure assumed to be
positive in compression.

Boundary and interface conditions

The standard boundary conditions for the Navier—Stokes
equations are:

Tijnj — pnj = 0p; on Dg; (4a)
uin; =i, on I'y: (4b)
uit; =u; on I'y; (4c)

where n; and ¢#; are the components of the normal and tan-
gential vectors to the boundary.
On the internal interfaces I" the conditions are:

n,-[[a,-j]]nj =YK (Sa)
ti[[cr,-j]]nj =0 (5b)
[ul =0 (5¢)

where [[-]] represents the variable jump at each side of the
interface, y is the surface tension coefficient, and « the cur-
vature of the interface. These boundary conditions express
that the velocities and the tangential stresses are continuous
across the interface, while the normal stresses are only con-
tinuous when the surface tension is neglected.

3 The main difficulties of the numerical solution
of heterogeneous fluids

It is well known that one of the main advantages of many
of the numerical method (i.e. Finite Element Method, Finite
Volume Method, Finite Difference Method, etc) is the easy
way to introduce a variation in the physical properties of the
materials involved. For instance, each element in the Finite
Element Method may have a different viscosity and this does
not change the mathematical formulation of the method.

However, for immiscible incompressible flows, there are
some particular facts than can introduce large errors in the
simulation that make the results useless. These main diffi-
culties are:

1. acorrect definition of the interface position

2. stabilization errors at the interface where density jumps
occur

3. pressure jumps at the interface where viscosity jumps are
present

4. surface tension at immiscible interfaces

Some of these aspects and the corresponding numerical
solution have been previously discussed by the authors in
[14] and in many other references, e.g. [4,16,21,22]. In par-
ticular many of the problems included in points 1 and 2 have
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been solved in [14]. For this reason, only a brief description
of points 1 and 2 will be exposed here. The objective of this
paper is to discuss more deeply points 3 and 4.

3.1 Correct definition of the interface position

The main difference between an homogeneous fluid and
an heterogeneous one is the presence of internal interfaces
separating the different fluids. To know exactly where the
interfaces are located is a key aspect for the accuracy of the
algorithm to be employed. Two kinds of approaches may be
used: (a) interface-tracking methods, in which the mesh fol-
lows the interfaces, and (b) interface-capturing methods (like
level-set) in which the mesh is fixed in time and the inter-
faces move through the element domain. The first one has the
advantage of providing an easy representation of interface
jumps like pressure or pressure gradients. The main disad-
vantage is the need of frequent mesh updates. On the other
hand, interface-capturing methods have difficulties in repre-
senting internal gradient jumps properly. In all the examples
presented in this paper, interface-tracking techniques based
on the particle finite element method will be used. For a more
detailed description of the technique used to follow the inter-
faces, readers are referred to [14].

3.2 Stabilization at interfaces with density jumps

For incompressible flows using equal order velocity-pressure
formulation stabilization procedures are needed. Many sta-
bilization procedures have been proposed in the literature.
We have chosen a pressure gradient projection (PGP) based
method [23,24], where the pressure gradients are projected
on a continuous field and the difference between the pressure
gradients and their own projection is used as stabilization
contribution:

o T (a_p - m) (0)
ax; 0x;

The term in brackets is interpreted as an approximation of the
residual of the momentum equations and 7; is a continuous
function obtained from the projection of the pressure gradient
on the velocity field and 7 is a stabilization parameter.

In order to take into account the jumps at the interfaces
for the density, in [14] the m; functions are defined as pro-
jections of the pressure gradients divided by p(x). Thus, the
stabilization term becomes:

0 0
—T (_p — ,o(x)m) @)

8)6,' 8)6,'

Expression (7) has been proved to be a better PGP stabil-
ization term for heterogeneous fluid with large jumps in the
density properties.

3.3 Pressure discontinuity at interfaces with viscosity jumps

Incompressible fluids need the introduction of the pressure
variable because the solution cannot be obtained only as
a function of the velocity field. In order to improve the
efficiency of the method, standard approximations work
with C° pressure functions which improve the stabilization
terms with a minimum number of degrees of freedom [11].
However, pressure is a physical discontinuous function in
heterogeneous fluids in which there are jumps in the vis-
cosity parameter. The use of a continuous pressure field is
an approximation that introduces errors in the incompress-
ibility condition that in certain cases produces unacceptable
results. One of the main goals of this paper is to show the
importance of using a discontinuous pressure field instead of
a continuous one at least at the interface level.

The value of the pressure jump at the interface between
two different fluids has been derived in [25]:

duy
[pll = 2[[“]]_3 — YK (8)
n

Expression (8) shows that the jump in the pressure field is
not only a consequence of the surface tension, but also occurs
when y = 0. The jump in the pressure field in these cases is
a function of the viscosity jump and the normal derivative of
the normal velocity to the interface, i.e.:

duy
on

pr—p =2t —pn) ©)

The main contribution of our work is to show with numerical
examples the importance of taking into account the pressure
discontinuity at interfaces with viscosity jumps, specially in
terms of local mass conservation.

3.4 Surface tension at immiscible interfaces

The existence of two different fluids with different intermo-
lecular attraction forces put in contact introduces the physical
phenomena of surface tension. Surface tension is propor-
tional to the curvature of the interface k and a parameter y
that depends on the materials involved and has to be measured
experimentally.

Surface tension effects are normally added in the numeri-
cal simulation as concentrated forces f; normal to the inter-
face in the momentum equation:

fini = —yk (10)

and, as mentioned before, they induce the following jump in
the pressure field:

pT—p =—yk (11)
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The importance of a correct simulation of the pressure jumps
will be illustrated in the numerical examples presented in the
next section.

4 Numerical examples

One of the questions that arises about the above theoretical
results is why this discontinuous behavior of the pressure at
the interface, in absence of surface tension, has not been usu-
ally taken into account. Pressure jumps have been previously
treated connected with surface tension effects, see [15-20],
and references therein. For example, a very common and well
analyzed problem with a definite interface between fluids is
the sloshing of a free surface separating water and air. Typi-
cally in this problem it is assumed that the pressure at the free
surface is in equilibrium with the atmospheric pressure (the
pressure in the air) and this assumption violates the results
found above. The answer to this question is that being the
viscosities of air and water so small, the pressure jump is
also small, regardless the convective acceleration magnitude
of the free surface, and therefore this jump is usually unno-
ticed. Fluid flow with different and high viscosities may be
found in several applications, for example in metal extrusion
problems, magma flow simulation or fluid-structure inter-
action problems where the structure is modeled as a very
viscous fluid. However, it is important to verify the theoret-
ical result of (8) in practical examples. Although there are
several problems where two fluids with very different vis-
cosities are separated by an interface, it is not obvious to find
an example where aa”n" is relevant. In this section we propose
two benchmark examples for which an analytical solution
exist and that may serve as good tests to assess the ability
of a given numerical method to represent the pressure dis-
continuity at the interface between two different fluids. Both
examples consist in the extrusion against a wall of a rectan-
gular domain composed by two fluids. In the first example the
mesh is fixed and the solution stationary, while in the second
example the mesh deforms in time with the domain. We will
investigate the pressure solution and the volume conserva-
tion around the interface when continuous and discontinuous
pressure discretizations are used. Table 1 shows an overview
of the physical parameters taken in the simulations.

4.1 Fixed-mesh example

Figure 1 shows the definition of the first example. It deals
with arectangular 2D domain with a flow entering with veloc-
ity iy = 1 m/s from the left boundary and flowing to the
right where it finds an impermeable slip wall that deviates the
flow upwards and downwards. The symmetry axis (y = 0)
serves as amaterial curve separating fluid 1 from fluid 2. Even
though we have solved the problem with different cases of
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Table 1 Overview of the examples

Example  Solution Mesh nir M2 P P2 Yy Uy
1. Steady Fixed 5 1 1 1 0
4.1 Unsteady Moving 1 10 1 1 0 0.1
4.2 1 10 1 1 0
1 1 1 1 3
4.3 1 10 1 10 5
Outlet
—>
—>
Inlet U, Wall
—>
—>

Outlet

Fig. 1 Example definition

viscosities with similar conclusions, for brevity reasons here
we include only one of the most relevant cases where the
viscosities are @1 = 5 and uy = 1 Pa s for the two different
fluids and they have the same density value p; = p» = 1.
The analytical solution for each region may be found as:

L, —x
Uy = y uy:
Ly

y
L. 12)

with L, = 1 m the domain length in the x direction and
Ly = 0.5 m in the y direction.
u; __ 1 1 _
Then,a—x;_—E+L—x_O )
In order to compute the pressure field using the momen-
tum balance Eq. (1) we note that the acceleration is % =
ou;

ou; Coup
ETa + I/t] 3)Cj with

uy  Juy

ou; o By | _L% 0
dx; duy  duy 0 4+

ax ay *
and

x—Ly
au; L2 13)
ui—
jax]' Lz

LX
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Therefore, the pressure gradient is such that compensates this
force term,

du; ou; 1 dp ou;
__”+ur—— ———ﬁ:O’ _— =
at ’ ij p 0X; at
dp  x—Ly dp y
ox "7 L2 7 3y pL%

P 1
= p=px="1; (xLx -~ E("z - y2>) +C (14)
X

The above velocity vector field (12) with the pressure field
(14) is a solution for the Navier—Stokes problem for each
region: p% = %r,'j - %p + pfi. Due to the fact that
a linear velocity ﬁejld is proposed as the steady solution of
this problem, 7;; is constant with no contribution on the right
hand side.

Finally, we have to match both solutions at the interface
and verify the stress equilibrium there. We found that the
pressure at the interface is discontinuous, with a jump given
by (8). For this problem the pressure jump is

P =T =200 — ) 2y — o) (15)
on L,

In the following figures we show the pressure along a
vertical cut line placed at x = 0.5 for both a continuous
variation of the pressure field and also introducing a discon-
tinuous approximation for this variable. It may be clearly
noted that while the discontinuous pressure formulation is
in good agreement with the analytical solution with a jump
matching the theoretical expression, the continuous pressure
approximation demands several layers of cells at each side
of the interface to produce the correct jump with an exces-
sive diffusion (Fig. 2). In other vertical cuts along x-direction
not included here, the pressure also presents an oscillatory
behavior with a well defined undershoot and overshoot at the
interface.

discontinuous pressure —*—
02 continuous pressure -4
' analytic

spanink

0.1

o

| | | | | | | |
2 3 4 5 6 7 8 9 10
Pressure

Fig. 2 pu; =5, u2 = 1, py = pp = 1. Pressure cut at x = 0.5 for
continuous versus discontinuous pressure approximations, compared
with the analytic solution

T T
discontinuous pressure —%—
02 continuous pressure -4+ 7|
0.1 7
- ‘A;
hoeemm = - A-
~oF T T TTTTTmmme e T T T m------__.A
- A - — T T
AA
3
-0.1 7
-02 7
I I I I
-20 -10 0 10 20

% Volume variation

Fig. 3 1 =5, u2 =1, p1 = po = 1. Volume variation at x = 0.5
for continuous versus discontinuous pressure approximations

In Fig. 3 we plot the volume variations computed as the
divergence of the velocity vector field to highlight the dif-
ferences between using a continuous and a discontinuous
pressure field. It is remarkable that there are at least two
orders of magnitude between the volume variations in the
vicinity of the interface in favor of the discontinuous treat-
ment of the pressure field which practically give no volume
losses. This difference can obviously have a high impact in
the numerical solution. This mass loss at the interface pro-
duces a spurious vertical velocity at the interface that dis-
torts the numerical solution of the velocity vector field. This
solution was reached after a steady state computation but
assuming that the interface remains always at the same loca-
tion. This constraint was imposed to simplify the problem
in order to see clearly the different response of a continu-
ous versus a discontinuous pressure formulation. For brevity
reasons we have not included here neither results with differ-
ent viscosity values, nor the influence of different stabiliza-
tion approaches. Nevertheless the conclusions are the same
as before: 1. a sharp definition of the discontinuous pres-
sure field, against a diffusive behavior of the pressure field
requiring several cell layers to capture the pressure jump; and
2. a better fulfillment of the incompressibility constraint for
the discontinuous pressure approach than for a continuous
pressure formulation.

4.2 Moving-mesh example

Next we consider an example with moving-mesh, gravity and
where the bottom free-surface is fixed (uy, = O at y = 0), see
Fig. 4. All walls are considered to be slip. Identical conclu-
sions as in the previous example will be obtained concerning
the pressure jump.

In this example, due to the choice of the physical
parameters, viscous effects dominate over inertial ones, i.e.
the quadratic pressure coming from the unsteady terms of
the Navier-Stokes equations and described in the previous
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Fig. 4 Example settings and
analytical pressure solution

example is two orders of magnitude smaller than the “vis-
cous” pressure and therefore can be neglected. Thus the ana-
lytical solution for this example is:

ou
p1=2u— (16a)
on
h
P2 = p1 +;01g§ (16b)
ouy
p3 = P2+2(M2—M1)%+y (16¢)
h
P4 = p3+p28= (16d)

2

where £ is the height of the free surface, g the gravity and
y the surface tension coefficient (more details about surface
tension in Example 4.2.2).

From volume conservation arguments (Fig. 5) we can
derive analytical expressions for %Ln” and h:

uy, . Uy h— LyLy
- T T Ly — iyt

" 17
on Ly — ittt {17

The piston speed has been set to u,, = 0.1 m/s, the initial
domain sizes to L, = 0.8 and L, = 0.4, and the gravity to
g = 10 m/s>.

L

Fig. 5 Notation for the pressure solution

X
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The following numerical tests will be solved to compare
the solution using continuous and discontinuous pressure
approximations:

1. Jump in the viscosity, with equal density and no surface
tension

2. Equal density and viscosity, with surface tension

3. Jumps in the viscosity and density, including surface ten-
sion

In all these cases we will compare the pressure fields obtained
and the volume variation of the incompressible fluid along a
vertical cut. Figure 6 depicts the kind of mesh deformation
we have encountered in all the three tests. Figure 6a shows
the mesh at time + = 0 and Fig. 6b and c the final mesh at
t = 2 s due to the extrusion effect. Figure 6b corresponds
to the solution with discontinuous pressure, while Fig. 6¢
shows the approximation with the continuous pressure field.
One can easily distinguish the “not divergence-free” solution
(Fig. 6¢) close to the interface for the continuous pressure
approximation.

It is important to remark that linear shape functions for
velocity and pressure (IP; /P elements) have been used for
the calculations. In the discontinuous pressure results, as the
interface is tracked with the moving mesh and lies at element
edges, we have duplicated the pressure degrees of freedom
at the interface nodes to allow for the pressure jump.

The volume variation we use to quantify du;/dx; in the
following moving-mesh examples has been computed as
&y = %}5”10, where Vol" is the area associated to a node
at time n (Fig. 7).

Example 4.2.1 Jump in the viscosity, equal density, no surface
tension

In this case the physical parameters used are: u; = 1, up =
10, p1 = p2 = 1,y = 0. Figure 8 shows the good agree-
ment of the discontinuous pressure solution against the exact
value, while the continuous pressure approximation leads to
an excessive diffusive behavior. Figure 9 plots the error in
the volume conservation showing a similar conclusion as in
the previous example.
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Fig. 6 Mesh deformation: a
initial mesh, r =0 s; b mesh at
t = 2 s and discontinuous
pressure; ¢ mesh at # = 2 s and
continuous pressure showing a
not divergence-free solution
around the interface

Fig. 7 Area associated to a node

05 L discontinuous pressure —*—
continuous pressure " B
exact
04
A
N
A
03+ - _
>~ =
T - -Al
0.2 - =
\Y
0.1 -
0 I I I I I I I I
1 2 3 4 5 6 7 8

Pressure

Fig. 8 w1 =1, wup =10, py = po = 1, y = 0. Pressure cut
att = 2 s and x = 0.3 for continuous versus discontinuous pressure
approximations, compared with the exact solution

te=0

discontinuous pressure —*—
continuous pressure %~

% Volume variation

Fig. 9 n1 =1, up =10, py = p» =1, y = 0. Volume variation
cutatt = 2sand x = 0.3 for continuous versus discontinuous pressure
approximations

Example 4.2.2 No jumps in the density and viscosity but with
surface tension

The weak form of the Navier—Stokes equations already
includes the interfacial condition (5a) as a natural bound-
ary condition in the case of no surface tension. In interfaces
where the surface tension is present the following surface
force must be computed: fin; = —y«k. In order to avoid the
problems of evaluating the curvature and to have an analyt-
ical solution to compare the results with, we will consider a
fictitious tension for planar surfaces [20]: fin; = —y. In this
example the normal to the interface is taken asn = (0, —1).

In interface-capturing methods, the non-alignment of the
interface with the mesh causes severe difficulties in the
discretization of this localized surface tension force and spu-
rious velocities appear if pressure is not allowed to be discon-
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Fig. 10 Vertical velocity field at + = 1s for continuous pressure approximation. a Case with viscosity jump. b Case with surface tension.
apr=1 =10, pp=p =1 y=0bpur=wp=1 p=p=1y=3
tinuous inside the elements cut by the interface [19,20,26]. 05 L continuous pressure, mu=1-10, tho=1, gamma=0 —%—
. .. . . . : continuous pressure, mu=1, rho=1, gamma=3 --#4<--
The same spurious velocities appear in interface-tracking discontinuous pressure. mu=1. tho=1. gamma=3
methods when pressure is approximated continuously, as 04
shown in Fig. 10b. K
In order to investigate the influence in the velocity field 2 03T
of the pressure jump due to different viscosities and to the = _
surface tension, we have set the viscosity, the density and the 021 o
surface tension force to have an equal jump. We know that
0.1 -
ouy
Ap:z(:u“z_ﬂl)%_'_y’ 0 I I I I I I I I

then for the following parameters
case (@ uyr =1, up =10, py=p2 =1, y =0
one obtains Ap =3 att = 2s.

On the other hand, for
case ) ur =puo=1, py=pp =1, y =3
one also has Ap = 3, Vr.

Figure 10a and b shows the velocity results for the con-
tinuous pressure approximation. In both cases the pressure
profiles are quite similar (Fig. 11), butin the case with surface
tension, the non-physical velocities lead to much larger vol-
ume variations (Fig. 12). All these difficulties are avoided
using a discontinuous pressure approximation (case (a) in
Example 4.2.1 and Figs. 8 and 9, and case (b) in Figs. 11 and
12).

Example 4.2.3 Jumps in the viscosity and density, including
surface tension

A density jump at the interface does not introduce a jump
in the pressure field but in the pressure gradient. In this case
accurate results can only be achieved with a discontinuous
pressure gradient in the stabilization term at the interface [14]
as explained in Sect. 3.2.

In the following example, we consider the case where a
jump in both the pressure field and also in the pressure gradi-
ent is needed to obtain accurate results. We introduce now a
jump in the viscosity, in the density and also surface tension:
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1 2 3 4 5 6 7 8
Pressure

Fig. 11 Pressure cut comparisonat# = 2 sand x = 0.3 for continuous
pressure approximation and same pressure jump due to surface tension
or viscosity difference and discontinuous pressure approximation with
surface tension

T T T T
05 cont, mu=1-10, rho=1, gamma=0 —%— |
i cont, mu=1, tho=1, gamma=3 -- %<
discont, mu=1, rho=1, gamma=3 ——
04 1
A
——————————— -Aa
03 _- 1
>~ _-"
U AT
02F T TT--- - B
0.1 1
0 I I L I I I
-30 -20 -10 0 10 20 30 40 50

% Volume variation

Fig. 12 Volume variation comparison at = 2 s and x = 0.3 for con-
tinuous pressure approximation and same pressure jump due to surface
tension or viscosity difference and discontinuous pressure approxima-
tion with surface tension

w1 =1, up =10, p1 = 1, po = 10, y = 5. Figures 13
and 14 respectively show the pressure profile and the vol-
ume variation along x = 0.3 at time ¢ = 2s. The continuous
pressure solution shows a volume variation over 15% while
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0.5 1\ discontinuous pressure —*—
continuous pressure -
exact

04 |-

0.2 +

Pressure

Fig. 13 u; =1, up =10, p1 =1, pop = 10, y = 5. Pressure cut
att = 2 s and x = 0.3 for continuous versus discontinuous pressure
approximations, compared with the exact solution

05 T discontinuous pressure —*—
s continuous pressure “=4A-:
Ay
-
0.4 /A/
Ko %
———————— =4
0.3 - -
o N
A= T
02 T == - _
g =N
~
~
A
0.1t 7
‘ ~
/3
1
0 I I I I I I
-15 -10 -5 0 5 10 15

% Volume variation

Fig. 14 p; =1, up =10, py = 1, pp = 10, y = 5. Volume
variation at ¢t = 2 s and x = 0.3 for continuous versus discontinuous
pressure approximations, compared with the exact solution

in the discontinuous solution the variation is almost zero, as
the divergence-free condition requires.

5 Conclusions

Incompressible fluid flows cannot be solved only as a func-
tion of the velocity field. They need the introduction of the
pressure field as main unknown. This pressure field must sat-
isfy the Babuska-Brezzi condition in order to avoid pressure
oscillations. The most efficient way is to introduce stabilized
continuous pressure fields of the same order of approxima-
tion as the velocity field. Nevertheless, continuous pressure
fields are sometimes non-physical. This is the case for het-
erogeneous fluids with jumps in the viscous properties or
surface tension. In these cases the introduction of pressure
fields with discontinuity at the interface is essential to avoid
large volume variations at the interface level with a noticeable
imbalance of the incompressibility constraint. The magni-
tude of the pressure jump is proportional to the viscous jump
multiplied by the variation of the normal velocity to the inter-

face. Often this jump is small, and perhaps absorbed in the
approximation error. However, in some physical problems
like extrusion of materials where both the viscosity jump and
the convective acceleration may be important this pressure
jump must be modeled in order to avoid unacceptable volume
variations. Other situations, like fluid-structure interactions
where the solid is modeled as a fluid with a large viscosity and
density, justify the use of a discontinuous pressure approxi-
mation. Unbalanced volume variations larger than 20% have
been observed in the examples presented when the standard
continuous pressure field is used.
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