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Abstract

We present some advances in the formulation of the particle finite element method (PFEM) for solving complex fluid–structure inter-
action problems with free surface waves. In particular, we present extensions of the PFEM for the analysis of the interaction between a
collection of bodies in water allowing for frictional contact conditions at the fluid–solid and solid–solid interfaces via mesh generation.
An algorithm to treat bed erosion in free surface flows is also presented. Examples of application of the PFEM to solve a number of
fluid–multibody interaction problems involving splashing of waves, large motions of floating and submerged bodies and bed erosion sit-
uations are given.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The analysis of problems involving the interaction of
fluids and structures accounting for large motions of the
fluid free surface and the existence of fully or partially sub-
merged bodies which interact among themselves is of big
relevance in many areas of engineering. Examples are com-
mon in ship hydrodynamics, off-shore and harbour struc-
tures, spill-ways in dams, free surface channel flows,
environmental flows, liquid containers, stirring reactors,
mould filling processes, etc.

Typical difficulties of fluid–multibody interaction analy-
sis in free surface flows using the FEM with both the Eule-
rian and ALE formulation include the treatment of the
convective terms and the incompressibility constraint in
the fluid equations, the modelling and tracking of the free
surface in the fluid, the transfer of information between
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the fluid and the moving solid domains via the contact
interfaces, the modeling of wave splashing, the possibility
to deal with large motions of the bodies within the fluid
domain, the efficient updating of the finite element meshes
for both the structure and the fluid, etc. For a comprehen-
sive list of references in FEM for fluid flow problems see
[5,34] and the references there included. A survey of recent
works in fluid–structure interaction analysis can be found
in [16,25,32].

Most of the above problems disappear if a Lagrangian

description is used to formulate the governing equations
of both the solid and the fluid domains. In the Lagrangian
formulation the motion of the individual particles are fol-
lowed and, consequently, nodes in a finite element mesh
can be viewed as moving material points (hereforth called
‘‘particles’’). Hence, the motion of the mesh discretizing
the total domain (including both the fluid and solid parts)
is followed during the transient solution.

The authors have successfully developed in previous
works a particular class of Lagrangian formulation for
solving problems involving complex interaction between
fluids and solids. The method, called the particle finite ele-

ment method (PFEM), treats the mesh nodes in the fluid
ticle finite element method for the analysis of ..., Comput. Meth-
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Fig. 1. Updated Lagrangian description for a continuum containing a fluid and a solid domain.

Fig. 2. Sequence of steps to update a ‘‘cloud’’ of nodes from time n (t = tn) to time n + 2 (t = tn + 2Dt).
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Fig. 3. Split of the analysis domain V into fluid and solid subdomains.
Equality of surface tractions and kinematic variables at the common
interface.
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and solid domains as particles which can freely move and
even separate from the main fluid domain representing,
for instance, the effect of water drops. A finite element
Fig. 4. Breakage of a water column. (a) Discretization of the fluid domain and t
the fluid domain at two different times.
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mesh connects the nodes defining the discretized domain
where the governing equations are solved using a stabilized
FEM based in the Finite Calculus (FIC) approach. An
advantage of the Lagrangian formulation is that the con-
vective terms disappear from the fluid equations. The diffi-
culty is however transferred to the problem of adequately
(and efficiently) moving the mesh nodes. We use a mesh
regeneration procedure blending elements of different
shapes using an extended Delaunay tesselation with special
shape functions [9,11]. The theory and applications of the
PFEM are reported in [2,4,9,10,12,13,24–26,28,29].

The aim of this paper is to describe two recent advances
of the PFEM: (a) the analysis of the interaction between a
collection of bodies which are floating and/or submerged in
the fluid, and (b) the modeling of bed erosion in open chan-
nel flows. Both problems are of great relevance in many
areas of civil, marine and naval engineering, among others.
It is shown in the paper that the PFEM provides a general
analysis methodology for treat such a complex problems in
a simple and efficient manner.

The layout of the paper is the following. In the next sec-
tion the key ideas of the PFEM are outlined. Next the basic
equations for an incompressible flow using a Lagrangian
description and the FIC formulation are presented. Then
a fractional step scheme for the transient solution is briefly
described. Details of the treatment of the coupled FSI
problem are given. The methods for mesh generation and
for identification of the free surface nodes are outlined.
The procedure for treating at mesh generation level the
contact conditions at fluid–wall interfaces and the fric-
tional contact interaction between moving solids is
explained. A methodology for modeling bed erosion due
to fluid forces is described. Finally, the efficiency of the
PFEM is shown in its application to a number of problems
he solid walls. Boundary nodes are marked with circles. (b) and (c) Mesh in
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involving large flow motions, surface waves, moving bodies
in water and bed erosion.
2. The basis of the particle finite element method

Let us consider a domain containing both fluid and solid
subdomains. The moving fluid particles interact with the
solid boundaries thereby inducing the deformation of the
solid which in turn affects the flow motion and, therefore,
the problem is fully coupled.

In the PFEM both the fluid and the solid domains are
modelled using an updated Lagrangian formulation. That
is, all variables in the fluid and solid domains are assumed
to be known in the current configuration at time t. The new
set of variables in both domains are sought for in the next

or updated configuration at time t + Dt (Fig. 1). The finite
element method (FEM) is used to solve the continuum
equations in both domains. Hence a mesh discretizing these
domains must be generated in order to solve the governing
Fig. 5. Generation of non standard meshes combining different polygons
(in 2D) and polyhedra (in 3D) using the extended Delaunay technique.

Fig. 6. 3D flow problem solved with the PFEM. CPU time for meshing, assem
number of nodes.
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equations for both the fluid and solid problems in the stan-
dard FEM fashion. Recall that the nodes discretizing the
fluid and solid domains are treated as material particles

which motion is tracked during the transient solution. This
is useful to model the separation of fluid particles from the
main fluid domain in a splashing wave, or soil particles in a
bed erosion problem, and to follow their subsequent
motion as individual particles with a known density, an ini-
tial acceleration and velocity and subject to gravity forces.
The mass of a given domain is obtained by integrating the
density at the different material points over the domain.

The quality of the numerical solution depends on the
discretization chosen as in the standard FEM. Adaptive
mesh refinement techniques can be used to improve the
solution in zones where large motions of the fluid or the
structure occur.

2.1. Basic steps of the PFEM

For clarity purposes we will define the collection or cloud

of nodes (C) pertaining to the fluid and solid domains, the
volume (V) defining the analysis domain for the fluid and
the solid and the mesh (M) discretizing both domains.

A typical solution with the PFEM involves the following
steps:

1. The starting point at each time step is the cloud of points
in the fluid and solid domains. For instance nC denotes
the cloud at time t = tn (Fig. 2).

2. Identify the boundaries for both the fluid and solid
domains defining the analysis domain nV in the fluid
and the solid. This is an essential step as some bound-
aries (such as the free surface in fluids) may be severely
bling and solving the system of equations at each time step in terms of the

rticle finite element method for the analysis of ..., Comput. Meth-



Fig. 7. Identification of individual particles (or a group of particles) starting from a given collection of nodes.
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distorted during the solution, including separation and
re-entering of nodes. The Alpha Shape method [6] is
used for the boundary definition (Section 5).

3. Discretize the fluid and solid domains with a finite ele-
ment mesh nM. In our work we use an innovative mesh
generation scheme based on the extended Delaunay tess-
elation (Section 4) [9,10,12].

4. Solve the coupled Lagrangian equations of motion for
the fluid and the solid domains. Compute the relevant
state variables in both domains at the next (updated)
configuration for t + Dt: velocities, pressure and viscous
stresses in the fluid and displacements, stresses and
strains in the solid.

5. Move the mesh nodes to a new position n+1C where
n + 1 denotes the time tn + Dt, in terms of the time incre-
ment size. This step is typically a consequence of the
solution process of step 4.

6. Go back to step 1 and repeat the solution process for the
next time step to obtain n+2C. The process is shown in
Fig. 2.
Fig. 8. Fluid domain following into a recipient. Initial position. Fine mesh
of 3105 nodes (element size of 0.01 m).
2.2. Overview of the coupled FSI algorithm

Fig. 3 shows a typical domain V with external bound-
aries CV and Ct where the velocity and the surface tractions
are prescribed, respectively. The domain V is formed by
fluid (VF) and solid (VS) subdomains (i.e. V = VF [ VS).
Both subdomains interact at a common boundary CFS

where the surface tractions and the kinematic variables
(displacements, velocities and accelerations) are the same
for both subdomains. Note that both set of variables (the
surface tractions and the kinematic variables) are equiva-
lent in the equilibrium configuration.

Let us define tS and tF the set of variables defining the
kinematics and the stress–strain fields at the solid and fluid
domains at time t, respectively, i.e.

tS :¼ ½txs;
tus;

tvs;
tas;

tes;
trs; . . . �T; ð1Þ

tF :¼ ½txF;
tuF;

tvF;
taF;

t _eF;
trF; . . . �T; ð2Þ

where x is the nodal coordinate vector, u, v and a are the
vector of displacements, velocities and accelerations,
respectively, e; _e and r are the strain vector, the strain rate
(or rate of deformation) vectors and the Cauchy stress
Please cite this article in press as: E. Oñate et al., Advances in the par
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vector, respectively and F and S denote the variables in
the fluid and solid domains, respectively. In the discretized
problem, a bar over these variables will denote nodal values.

The coupled fluid–structure interaction (FSI) problem
of Fig. 3 is solved, in this work, using the following strongly

coupled staggered scheme:

1. We assume that the variables in the solid and fluid
domains at time t (tS and tF) are known.

2. Solve for the variables at the solid domain at time t + Dt

(t+DtS) under prescribed surface tractions at the fluid–
solid boundary CFS. The boundary conditions at the
part of the external boundary intersecting the domain
are the standard ones in solid mechanics.

3. Solve for the variables at the fluid domain at time t + Dt

(t+DtF) under prescribed surface tractions at the external
boundary Ct and prescribed velocities at the external
and internal boundaries CV and CFS, respectively.Iterate
between 1 and 2 until convergence.

The variables at the solid domain t+DtS are found via the
integration of the equations of dynamic motion in the solid
written as
ticle finite element method for the analysis of ..., Comput. Meth-



Fig. 9. Positions of the fluid domain at different time steps.

Fig. 10. Total volume change as a function of time for different meshes.
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Msas þ gs � fs ¼ 0; ð3Þ
where Ms; gs and fs denote the mass matrix, the internal
node force vector and the external nodal force vector at
the solid domain. The time integration of Eq. (3) is
performed using a standard Newmark method. An incre-
mental iterative scheme is implemented within each time
step to account for non linear geometrical and material
effects [35]..

The FEM solution of the variables in the (incompress-
ible) fluid domain implies solving the momentum and
incompressibility equations. As mentioned above this is
not such as simple problem as the incompressibility condi-
tion limits the choice of the FE approximations for the
velocity and pressure to overcome the well-known div-sta-
bility condition [5,34]. In our work we use a stabilized
mixed FEM based on the Finite Calculus (FIC) approach
which allows for a linear approximation for the velocity
and pressure variables. Details of the FEM/FIC formula-
tion are given in the next section.

Fig. 4 shows a typical example of a PFEM solution in
2D. The pictures correspond to the analysis of the problem
of breakage of a water column [12,26]. Fig. 4a shows the
initial grid of four node rectangles discretizing the fluid
domain and the solid walls. Fig. 4b and c show the mesh
for the solution at two later times.

3. FIC/FEM formulation for a Lagrangian incompressible

fluid

The standard infinitesimal equations for a viscous
incompressible fluid can be written in a Lagrangian frame
as [17,34].
Please cite this article in press as: E. Oñate et al., Advances in the pa
ods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2007.06.005
Momentum

rmi ¼ 0 in V F: ð4Þ

Mass balance

rd ¼ 0 in V F; ð5Þ

where

rmi ¼ q
ovi

ot
þ orij

oxj
� bi; rji ¼ rij; ð6Þ

rd ¼
ovi

oxi
i; j ¼ 1; nd: ð7Þ

Above nd is the number of space dimensions, vi is the
velocity along the ith global axis (vi ¼ oui

ot , where ui is the
ith displacement), q is the (constant) density of the fluid,
bi are the body forces, rij are the total stresses given by
rticle finite element method for the analysis of ..., Comput. Meth-
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rij ¼ sij � dijp, p is the absolute pressure (defined positive
in compression) and sij are the viscous deviatoric stresses
related to the viscosity l by the standard expression

sij ¼ 2l _eij � dij
1

3

ovk

oxk

� �
; ð8Þ

where dij is the Kronecker delta and the strain rates _eij are

_eij ¼
1

2

ovi

oxj
þ ovj

oxi

� �
: ð9Þ

In the above all variables are defined at the current time
t (current configuration).
Fig. 11. Automatic treatment of contact
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In our work we will solve a modified set of governing

equations derived using a finite calculus (FIC) formulation.
The FIC governing equations are [17–19,21].

Momentum

rmi �
1

2
hj

ormi

oxj
¼ 0 in V F: ð10Þ

Mass balance

rd �
1

2
hj

ord

oxj
¼ 0 in V F: ð11Þ
conditions at the fluid–wall interface.

ticle finite element method for the analysis of ..., Comput. Meth-
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The problem definition is completed with the following
boundary conditions:

njrij � ti þ
1

2
hjnjrmi ¼ 0 on Ct; ð12Þ

vj � vp
j ¼ 0 on Cv ð13Þ

and the initial condition is vj ¼ v0
j for t = t0. The standard

summation convention for repeated indexes is assumed un-
less otherwise specified.

In Eqs. (12) and (13) ti and vp
j are surface tractions

and prescribed velocities on the boundaries Ct and Cv,
respectively, nj are the components of the unit normal
vector to the boundary. Recall that Cv includes both
the external boundary and the internal boundary CF S

(Fig. 3).
The h0is in above equations are characteristic lengths of

the domain where balance of momentum and mass is
enforced. In Eq. (12) these lengths define the domain where
equilibrium of boundary tractions is established. We note
that at the discretized level, the h0is become of the order
of a typical element or grid dimension [17–19].

Eqs. (10)–(13) are the starting point for deriving stabi-
lized finite element methods to solve the incompressible
Navier–Stokes equations in a Lagrangian frame of refer-
ence using equal order interpolation for the velocity
and pressure variables [2,8–10,12,24]. Application of the
FIC formulation to finite element and meshless analy-
sis of fluid flow problems can be found in [7,18–
21,23,25,27].
Fig. 12. Contact conditions a

Please cite this article in press as: E. Oñate et al., Advances in the pa
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3.1. Transformation of the mass balance equation. Integral

governing equations

The underlined term in Eq. (11) can be expressed in
terms of the momentum equations. The new expression
for the mass balance equation is [18,26]

rd �
Xnd

i¼1

si
ormi

oxi
¼ 0; ð14Þ
with

si ¼
3h2

i

8l
: ð15Þ
In our work we have taken the characteristic distances hi

to be constant within each element and equal to a typical
element dimension computed as he = [Ve]m where Ve is
the element domain and m = 1/2 for 2D problems and
m = 1/3 for 3D problems.

At this stage it is no longer necessary to retain the stabil-
ization terms in the momentum equations and the traction
boundary conditions (Eqs. (10) and (12)). These terms are
critical in Eulerian formulations to stabilize the numerical
solution for high values of the convective terms
[3,18,21,27,28].

The weighted residual expression of the final form of the
momentum and mass balance equations is written as
t a solid–solid interface.

rticle finite element method for the analysis of ..., Comput. Meth-
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Z
V F

dvirmi dV þ
Z

Ct

dviðnjrij � tiÞdC ¼ 0; ð16Þ
Z

V F

q rd �
Xnd

i¼1

si
ormi

oxi

" #
dV ¼ 0; ð17Þ

where dvi and q are arbitrary weighting functions equiva-
lent to virtual velocity and virtual pressure fields.

The rmi term in Eq. (17) and the deviatoric stresses and
the pressure terms within rmi in Eq. (16) are integrated by
parts to giveZ

V F

dviq
ovi

ot
þ d_eijðsij � dijpÞ

� �
dV �

Z
V F

dvibi dX

�
Z

Ct

dviti dC ¼ 0; ð18Þ
Z

V F

q
ovi

oxi
dV þ

Z
V F

Xnd

i¼1

si
oq
oxi

rmi

" #
dV ¼ 0: ð19Þ

In Eq. (18) d_eij are virtual strain rates. Note that the
boundary term resulting from the integration by parts of
rmi in Eq. (19) has been neglected in this work. Retaining
this term has been recently found to be advantageous for
Fig. 13. Bumping of a ball within a container. The layer
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enhancing the satisfaction of the incompressibility condi-
tion in FEM predictor–corrector schemes for incompress-
ible fluid flow analysis [30].

3.2. Pressure gradient projection

The computation of the residual terms in Eq. (19) is sim-
plified if we introduce the pressure gradient projections pi,
defined as

pi ¼ rmi �
op
oxi

: ð20Þ

We express rmi in Eq. (19) in terms of the pi which then
become additional variables. The system of integral equa-
tions is now augmented in the necessary number of equa-
tions by imposing that the residual rmi vanishes within
the analysis domain (in an average sense). This gives the
final system of governing equation as:Z

V F

dviq
ovi

ot
þ d_eijðsij � dijpÞ

� �
dV �

Z
V F

dvibi dV

�
Z

Ct

dviti dC ¼ 0; ð21Þ
of contact elements is shown at each contact instant.

ticle finite element method for the analysis of ..., Comput. Meth-
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Z
V F

q
ovi

oxi
dV þ

Z
V F

Xnd

i¼1

si
oq
oxi

op
oxi
þ pi

� �
dV ¼ 0; ð22Þ

Z
V F

dpisi
op
oxi
þ pi

� �
dV ¼ 0 no sum in i; ð23Þ

with i; j; k ¼ 1; nd. In Eq. (23) dpi are appropriate weighting
functions and the si weights are introduced for symmetry
reasons.
3.3. Finite element discretization

We choose equal order C0 continuous interpolations of
the velocities, the pressure and the pressure gradient projec-
tions pi over each element with n nodes. The interpolations
are written as

vi ¼
Xn

j¼1

Nj�v
j
i ; p ¼

Xn

j¼1

Nj�pj; pi ¼
Xn

j¼1

N j�p
j
i ; ð24Þ

where �ð�Þj denotes nodal variables and Nj are the shape
functions [34]. More details of the mesh discretization pro-
Fig. 14. Failure of a domino set. The distance between

Please cite this article in press as: E. Oñate et al., Advances in the pa
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cess and the choice of shape functions are given in Section
4.

Substituting the approximations (24) into Eqs. (21)–(23)
and choosing a Galerkin form with dvi = q = dpi = Ni leads
to the following system of discretized equations:

M _�vþ K�v�G�p� f ¼ 0; ð25aÞ
GT�vþ L�pþQ�p ¼ 0; ð25bÞ
QT�pþ M̂�p ¼ 0: ð25cÞ

The form of the element matrices and vectors in Eqs.
(25) can be found in [28].
3.4. Fractional step algorithm for the fluid variables

The starting point of the iterative algorithm are the vari-
ables at time n in the fluid domain (nF). The sought vari-
ables are the variables at time n + 1 (n+1F). For the sake
of clarity we will skip the upper left index n + 1 for all vari-
ables, i.e.

nþ1�x � �x; nþ1�p � �p; nþ1�p � �p; nþ1�x � �x; etc: ð26Þ
the domino chips shows the contact element layer.

rticle finite element method for the analysis of ..., Comput. Meth-



E. Oñate et al. / Comput. Methods Appl. Mech. Engrg. xxx (2007) xxx–xxx 11

ARTICLE IN PRESS
A simple iterative algorithm is obtained by splitting the
pressure from the momentum equations as follows

�v� ¼ n�v� DtM�1½K�vj �Gnp� f�; ð27Þ
�vjþ1 ¼ �v� þ DtM�1Gd�p; ð28Þ

where d�p denotes the pressure increment. In above equa-
tions and in the following the left upper index n refers to
values in the current configuration nV, whereas the right
upper index j denotes the iteration number within each
time step.

The value of �vjþ1 from Eq. (29) is substituted now into
Eq. (25b) to give

GT�v� þ DtSd�pþ L�pjþ1 þQ�pj ¼ 0; ð29aÞ
Fig. 15. Failure of an arch formed by s

Please cite this article in press as: E. Oñate et al., Advances in the par
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where

S ¼ GTM�1G: ð29bÞ

Typically matrix S is computed using a diagonal matrix
M = Md, where the subscript ‘d’ denotes hereonward a
diagonal matrix. We note that the form of S in Eq. (29b)
avoids the need for prescribing the pressure at the bound-
ary nodes.

An alternative is to approximate S by a Laplacian
matrix. This reduces considerably the bandwidth of S.
The disadvantage is that the pressure increment must be
then prescribed on the free surface and this reduces the
accuracy in the satisfaction of the incompressibility condi-
tion in these regions. These problems are overcome how-
tone blocks under seismic loading.

ticle finite element method for the analysis of ..., Comput. Meth-



LOOP OVER TIME STEPS = time1,...n n

,n nS F

LOOP OVER STAGGERED SOLUTION = stag1,...j n

Solve for solid variables (prescribed tractions at + Γ1n
FS )

LOOP OVER ITERATIONS = iter1,...i n

Solve for +1n i
jS

 Integrate Eq.(3) using a Newmark scheme 
 Check convergence. Yes: solve for fluid variables 
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ever by retaining the residual term rmi in the boundary inte-
gral resulting from the integration by parts of Eq. (17) [30].
In this work however the form of matrix S given by Eq.
(29a) has been used.

A semi-implicit algorithm can be derived as follows. For
each iteration:

Step 1. Compute v* from Eq. (27) with M = Md. For the
first iteration ð�v1; �p1; �p1; �x1Þ � ðn�v; n�p; n�p; n�xÞ.

Step 2. Compute d�p and pj+1 from Eq. (29a) as

 NO: Next iteration ← + 1i i
  

Solve for fluid variables (prescribed velocities at + Γ1n
FS ) 

LOOP OVER ITERATIONS = iter1,...i n

 Solve for +1n i
jF  using the scheme of Section 3.4 

 Check convergence. Yes: go to C 

Please c
ods Ap
d�p ¼ �ðLþ DtSÞ�1½GT�v� þQ�pj þ L�pj�: ð30aÞ

The pressure �pnþ1;j is computed as

�pjþ1 ¼ �pj þ d�pj: ð30bÞ

 Next iteration ← + 1i i

C Check convergence of surface tractions at + Γ1n
FS
Step 3. Compute �vjþ1 from Eq. (28) with M = Md.
Step 4. Compute �pjþ1 from Eq. (25c) as
  Yes: Next time step 
    Next staggered solution ← +1j j , ← + 1i i
�pjþ1 ¼ �M̂�1
d QT�pjþ1: ð31Þ
 Next time step + +←1 1 ,n n i
jS S + +←1 1n n i

jF F
Step 5. Update the coordinates of the mesh nodes as
Box 1. Staggered scheme for the FSI problem (see also Fig. 3).
x
jþ1
i ¼ nxi þ �vjþ1

i Dt: ð32Þ

Step 6. Check the convergence of the velocity and pres-

sure fields. If convergence is achieved move to
the next time step, otherwise return to step 1 for
the next iteration with j j + 1.

Note that solution of steps 1, 3 and 4 does not require
the solution of a system of equations as a diagonal form
is chosen for M and M̂.

In the examples presented in the paper the time incre-
ment size has been chosen as

Dt ¼ minðDtiÞ with Dti ¼
hmin

i

jvj ; ð33Þ

where hmin
i is the distance between node i and the closest

node in the mesh.
Although not explicitly mentioned all matrices and vec-

tors in Eq. (25) are computed at the updated configura-
tion n+1VF. This means that the integration domain
changes for each iteration and, hence, all the terms
involving space derivatives must be updated at each
iteration.

The boundary conditions are applied as follows. No con-
dition is applied for the computation of the fractional veloc-
ities v* in Eq. (27). The prescribed velocities at the boundary
are applied when solving for �vjþ1 in step 3. As mentioned
earlier there is no need for prescribing the pressure at the
boundary if the form of Eq. (29b) is chosen for S.

Box 1 shows a summary of the staggered scheme used
for the solution for the variables in the solid and fluid
domain at the updated configuration (n+1F, n+1S).
ite this article in press as: E. Oñate et al., Advances in the pa
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4. Generation of a new mesh

One of the key points for the success of the PFEM is the
fast regeneration of a mesh at every time step on the basis
of the position of the nodes in the space domain. Indeed,
any fast meshing algorithm can be used for this purpose.
In our work the mesh is generated at each time step using
the so-called extended Delaunay tesselation (EDT) pre-
sented in [9,11,12]. The EDT allows one to generate non
standard meshes combining elements of arbitrary polyhe-
drical shapes (triangles, quadrilaterals and other polygons
in 2D and tetrahedra, hexahedra and arbitrary polyhedra
in 3D) in a computing time of order n, where n is the total
number of nodes in the mesh (Fig. 5). The C0 continuous
shape functions of the elements can be simply obtained
using the so called meshless finite element interpolation
(MFEM). In our work the simpler linear C0 interpolation
has been chosen. Details of the mesh generation procedure
and the derivation of the linear MFEM shape functions
can be found in [9,11,12].

Fig. 6 shows the evolution of the CPU time required for
generating the mesh, for solving the system of equations
and for assembling such a system in terms of the number
of nodes. the numbers correspond to the solution of a 3D
flow in an open channel with the PFEM. The figure shows
the CPU time in seconds for each time step of the algo-
rithm of Section 3.4. It is clearly seen that the CPU time
required for meshing grows linearly with the number of
nodes, as expected. Note also that the CPU time for solv-
ing the equations exceeds that required for meshing as the
rticle finite element method for the analysis of ..., Comput. Meth-



Fig. 16. Motion of five tetrapods on an inclined plane.
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number of nodes increases. This situation has been found
in all the problems solved with the PFEM. As a general
rule for large 3D problems meshing consumes around
30% of the total CPU time for each time step, while the
solution of the equations and the assembling of the system
consume approximately 40% and 20% of the CPU time for
each time step, respectively. These figures prove that the
generation of the mesh has an acceptable cost in the
PFEM solution. An improvement of the mesh generation
process will in any case help to reducing the computa-
tional cost.
Please cite this article in press as: E. Oñate et al., Advances in the par
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5. Identification of boundary surfaces

One of the main tasks in the PFEM is the correct defini-
tion of the boundary domain. Boundary nodes are some-
times explicitly identified. In other cases, the total set of
nodes is the only information available and the algorithm
must recognize the boundary nodes.

In our work we use an extended Delaunay partition for
recognizing boundary nodes. Considering that the nodes fol-
low a variable h(x) distribution, where h(x) is typically the
minimum distance between two nodes, the following crite-
ticle finite element method for the analysis of ..., Comput. Meth-



Fig. 17. Detail of five tetrapods on an inclined plane. The layer of
elements modeling the frictional contact conditions is shown.
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rion has been used. All nodes on an empty sphere with a radius

greater than ah, are considered as boundary nodes. In practice
a is a parameter close to, but greater than one. Values of a
ranging between 1.3 and 1.5 have been found to be optimal
in all examples analyzed. This criterion is coincident with
the Alpha Shape concept [6]. Fig. 7 shows an example of
the boundary recognition using the Alpha Shape technique.

Once a decision has been made concerning which nodes
are on the boundaries, the boundary surface is defined by
all the polyhedral surfaces (or polygons in 2D) having all
their nodes on the boundary and belonging to just one
polyhedron.
Fig. 18. Modeling of bed erosion

Please cite this article in press as: E. Oñate et al., Advances in the pa
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The method described also allows one to identify iso-
lated fluid particles outside the main fluid domain. These
particles are treated as part of the external boundary where
the pressure is fixed to the atmospheric value. We recall
that each particle is a material point characterized by the
density of the solid or fluid domain to which it belongs.
The mass which is lost when a boundary element is elimi-
nated due to departure of a node (a particle) from the main
analysis domain is again regained when the ‘‘flying’’ node
falls down and a new boundary element is created by the
Alpha Shape algorithm (Figs. 2 and 7).

The boundary recognition method above described is
also useful for detecting contact conditions between the
fluid domain and a fixed boundary, as well as between dif-
ferent solids interacting with each other. The contact detec-
tion procedure is detailed in Section 6.

In order to show the quality of the boundary recognition
approach, the following simple example has been per-
formed. A square fluid domain of 0.25 m2 is at a stationary
position within a recipient (Fig. 8). Then, as time evolves,
the fluid falls down into the lower part of the recipient
due to gravity effects. At the end of the process the total
volume of the fluid within the recipient must be the same
as that of the initial square domain. It must be noted that
during the different time steps, the fluid has completely dif-
ferent free surfaces including waves, breaking waves and
fluid fragmentation zones.

The meshes used have average element sizes of 0.05 m,
0.025 m and 0.01 m each which correspond to a total initial
number of particles of 161, 552 and 3105 each. A value of
a = 1.4 for the Alpha-Shape method was used for the three
by dragging of bed material.

rticle finite element method for the analysis of ..., Comput. Meth-
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analyses. Fig. 8 shows the initial position of the fluid
domain and one of the three meshes used for the analysis.
Fig. 9 shows the fluid domain at different time steps.

This simple example is interesting to show the quality of
the boundary identification procedure. Another aim is to
evaluate the volume variation from the incompressibility
point of view, as well as the preservation of the total vol-
ume of the fluid due to possible errors in the boundary rec-
ognition using the Alpha-Shape method. Fig. 10 shows the
total fluid volume during the different time steps for the
three different meshes. The change of volume is insignifi-
cant for the fine mesh and becomes larger but acceptable
for the coarse meshes.
Fig. 20. Detail of element sizes during the motion

Fig. 19. 2D simulation of the penetration and evolution of a cube and a cylinde
at several times. (For interpretation of the references in colour in this figure le

Please cite this article in press as: E. Oñate et al., Advances in the par
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It must be noted that the main difference between the
PFEM and the classical FEM is just the remeshing tech-
nique and the evaluation of the boundary position at each
time step. The rest of the steps in the computation are
coincident with those of the classical FEM. This simple
example shows that in spite of the permanent remeshing
and the evaluation of the boundary position via the
Alpha-Shape method, the total fluid mass is preserved.
We note however, that a good selection of the a parame-
ter is essential for the good behaviour of the boundary
recognition process. Examples showing the accuracy of
the PFEM for fixed boundary problems can be found in
[2].
of a rigid cylinder within a water container.

r in a water container. The colours denote the different sizes of the elements
gend, the reader is referred to the web version of this article.)
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16 E. Oñate et al. / Comput. Methods Appl. Mech. Engrg. xxx (2007) xxx–xxx

ARTICLE IN PRESS
6. Treatment of contact conditions in the PFEM

6.1. Contact between the fluid and a fixed boundary

The motion of the solid is governed by the action of the
fluid flow forces induced by the pressure and the viscous
stresses acting at the common boundary CFS, as mentioned
above.

The condition of prescribed velocities at the fixed
boundaries in the PFEM are applied in strong form to
the boundary nodes. These nodes might belong to fixed
external boundaries or to moving boundaries linked to
the interacting solids. Contact between the fluid particles
and the fixed boundaries is accounted for by the incom-
pressibility condition which naturally prevents the fluid

nodes to penetrate into the solid boundaries (Fig. 11). This
simple way to treat the fluid–wall contact at mesh genera-
tion level is a distinct and attractive feature of the PFEM
formulation.

6.2. Contact between solid–solid interfaces

The contact between two solid interfaces is simply trea-
ted by introducing a layer of contact elements between the
Fig. 21. Evolution of a water column within a pri

Please cite this article in press as: E. Oñate et al., Advances in the pa
ods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2007.06.005
two interacting solid interfaces. This layer is automatically

created during the mesh generation step by prescribing a
minimum distance (hc) between two solid boundaries. If
the distance exceeds the minimum value (hc) then the gen-
erated elements are treated as fluid elements. Otherwise the
elements are treated as contact elements where a relation-
ship between the tangential and normal forces and the cor-
responding displacement is introduced so as to model
elastic and frictional contact effects in the normal and tan-
gential directions, respectively (Fig. 12).

This algorithm has proven to be very effective and it
allows to identifying and modeling complex frictional con-
tact conditions between two or more interacting bodies
moving in water in an extremely simple manner. Of course
the accuracy of this contact model depends on the critical
distance above mentioned.

This contact algorithm can also be used effectively to
model frictional contact conditions between rigid or elastic
solids in standard structural mechanics applications. Figs.
13–16 show examples of application of the contact algo-
rithm to the bumping of a ball falling in a container, the
failure of a domino set, the failure of an arch formed by
a collection of stone blocks under a seismic loading and
the motion of five tetrapods as they fall and slip over an
smatic container including a vertical cylinder.

rticle finite element method for the analysis of ..., Comput. Meth-
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inclined plane, respectively. The images in Figs. 13 and 17
show explicitly the layer of contact elements which controls
the accuracy of the contact algorithm.
7. Modeling of bed erosion

Prediction of bed erosion and sediment transport in
open channel flows are important tasks in many areas of
river and environmental engineering. Bed erosion can lead
to instabilities of the river basin slopes. It can also under-
mine the foundation of bridge piles thereby favouring
structural failure. Modeling of bed erosion is also relevant
for predicting the evolution of surface material dragged in
earth dams in overspill situations. Bed erosion is one of the
main causes of environmental damage in floods.

Bed erosion models are traditionally based on a rela-
tionship between the rate of erosion and the shear stress
level [14,33]. The effect of water velocity on soil erosion
was studied in [31]. In a recent work we have proposed
an extension of the PFEM to model bed erosion [29].
The erosion model is based on the frictional work at the
bed surface originated by the shear stresses in the fluid.
The resulting erosion model resembles Archard law typi-
Fig. 22. Impact of a wave on a prismatic co

Please cite this article in press as: E. Oñate et al., Advances in the par
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cally used for modeling abrasive wear in surfaces under
frictional contact conditions [1,22].

The algorithm for modeling the erosion of soil/rock par-
ticles at the fluid bed is the following:

1. Compute at every point of the bed surface the resultant
tangential stress s induced by the fluid motion. In 3D
problems s ¼ ðs2

s þ stÞ2 where ss and st are the tangential
stresses in the plane defined by the normal direction n at
the bed node. The value of s for 2D problems can be
estimated as follows:

st ¼ lct; ð34aÞ

with

ct ¼
1

2

ovt

on
¼ vk

t

2hk
; ð34bÞ

where vk
t is the modulus of the tangential velocity at the

node k and hk is a prescribed distance along the normal
of the bed node k. Typically hk is of the order of magni-
tude of the smallest fluid element adjacent to node k

(Fig. 18).
lumn on a slab sustained by four pillars.
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Fig. 23. Dragging of a cubic object by a water stream.

Fig. 24. Generation and impact of a wave on a collection of rocks in a breakwater.
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2. Compute the frictional work originated by the tangen-
tial stresses at the bed surface as
W f ¼
Z t

0

stct dt ¼
Z t

0

l
4

vk
t

hk

� �2

dt: ð35Þ
Fig. 25. Detail of the impact of a wave on a breakwater. The arro

Fig. 26. 3D simulation of the impact of a wav

Please cite this article in press as: E. Oñate et al., Advances in the par
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Eq. (35) is integrated in time using a simple scheme as

nW f ¼ n�1W f þ stctDt: ð36Þ
3. The onset of erosion at a bed point occurs when nWf

exceeds a critical threshold value Wc defined empirically
according to the specific properties of the bed material.
ws indicate the water force on the rocks at different instants.

e on a collection of rocks in a breakwater.
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4. If nWf > Wc at a bed node, then the node is detached
from the bed region and it is allowed to move with the
fluid flow, i.e. it becomes a fluid node. As a consequence,
Fig. 27. Interaction of a wave with a vertical p

Fig. 28. Motion of two tetrapods

Please cite this article in press as: E. Oñate et al., Advances in the pa
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the mass of the patch of bed elements surrounding the
bed node vanishes in the bed domain and it is trans-
ferred to the new fluid node. This mass is subsequently
ier formed by reinforced concrete cylinders.

falling in a water container.
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transported with the fluid. Conservation of mass of the
bed particles within the fluid is guaranteed by changing
the density of the new fluid node so that the mass of the
suspended sediment traveling with the fluid equals the
mass originally assigned to the bed node. Recall that
the mass assigned to a node is computed by multiplying
the node density by the tributary domain of the node.

5. Sediment deposition can be modeled by an inverse pro-
cess to that described in the previous step. Hence, a sus-
pended node adjacent to the bed surface with a velocity
below a threshold value is assigned to the bed surface.
This automatically leads to the generation of new bed
elements adjacent to the boundary of the bed region.
The original mass of the bed region is recovered by
adjusting the density of the newly generated bed
elements.

Fig. 18 shows an schematic view of the bed erosion algo-
rithm proposed.
8. FSI examples

The examples chosen show the applicability of the
PFEM to solve problems involving large motions of
the free surface, fluid–multibody interactions and bed
erosion.
Fig. 29. Motion of 10 tetrapods on
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8.1. Rigid objects falling into water

The analysis of the motion of submerged or floating
objects in water is of great interest in many areas of har-
bour and coastal engineering and naval architecture among
others.

Fig. 19 shows the penetration and evolution of a cube
and a cylinder of rigid shape in a container with water.
The colours denote the different sizes of the elements at sev-
eral times. In order to increase the accuracy of the FSI
problem smaller size elements have been generated in the
vicinity of the moving bodies during their motion (Fig. 20).
8.2. Impact of water streams on rigid structures

Fig. 21 shows an example of a wave breaking within a
prismatic container including a vertical cylinder. Fig. 22
shows the impact of a wave on a vertical column sustained
by four pillars. The objective of this example was to model
the impact of a water stream on a bridge pier accounting
for the foundation effects.
8.3. Dragging of objects by water streams

Fig. 23 shows the effect of a wave impacting on a rigid
cube representing a vehicle. This situation is typical in
a slope under an incident wave.

ticle finite element method for the analysis of ..., Comput. Meth-



Fig. 30. Detail of the motion of 10 tetrapods on a slope under an incident wave. The figure shows the complex interactions between the water particles and
the tetrapods.
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flooding and Tsunami situations. Note the layer of contact
elements modeling the frictional contact conditions
between the cube and the bottom surface.

8.4. Impact of sea waves on breakwaters and piers

Fig. 24 shows the 2D simulation of the impact of a wave
generated in an experimental flume on a collection of rigid
rocks representing a breakwater. Details of the water–rock
interaction are shown in Fig. 25.

Fig. 26 shows a 3D analysis of a similar problem. Fig. 27
shows the 3D simulation of the interaction of a wave with a
vertical pier formed by a collection of reinforced concrete
cylinders.

The examples shown in Figs. 28 and 29 evidence the
potential of the PFEM to solve 3D problems involving
complex interactions between water and moving solid
objects. Fig. 28 shows the simulation of the falling of two
tetrapods in a water container. Fig. 29 shows the motion
Please cite this article in press as: E. Oñate et al., Advances in the pa
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of a collection of ten tetrapods placed in a slope under
an incident wave.

Fig. 30 shows a detail of the complex three-dimensional
interactions between the water particles and the tetrapods
and between the tetrapods themselves, which can be easily
modeled with the PFEM.

8.5. Erosion of a 3D earth dam due to an overspill stream

We present finally a simple, schematic, but very illustra-
tive example showing the potential of the PFEM to model
bed erosion in free surface flows.

The example represents the erosion of an earth dam
under a water stream running over the dam top. A sche-
matic geometry of the dam has been chosen to simplify
the computations. Sediment deposition is not considered
in the solution. The images of Fig. 31 show the progressive
erosion of the dam until the whole dam is dragged out by
the fluid flow.
rticle finite element method for the analysis of ..., Comput. Meth-



Fig. 31. Erosion of a 3D earth dam due to an overspill stream.
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Other applications of the PFEM to bed erosion prob-
lems can be found in [29].

9. Conclusions

The particle finite element method (PFEM) is ideal to
treat problems involving fluids with free surfaces and sub-
merged or floating structures and bodies within a unified
Lagrangian finite element framework. Problems such as
fluid–structure interaction, large motion of fluid or solid
particles, surface waves, water splashing, separation of
water drops, frictional contact situations between fluid–
solid and solid–solid interfaces, bed erosion, etc. can be
easily solved with the PFEM. The success of the method
lies in the accurate and efficient solution of the equations
of an incompressible fluid and of solid dynamics using an
updated Lagrangian formulation and a stabilized finite ele-
ment method, allowing the use of low order elements with
equal order interpolation for all the variables. Other essen-
tial solution ingredients are the efficient regeneration of the
finite element mesh using an extended Delaunay tessela-
tion, the identification of the boundary nodes using an
Alpha-Shape type technique and the simple algorithm to
treat frictional contact conditions at fluid–solid and
solid–solid interfaces via mesh generation. The examples
presented have shown the great potential of the PFEM
for solving a wide class of practical FSI problems in engi-
neering. Examples of validation of the PFEM results with
data from experimental tests are reported in [15].
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ods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2007.06.005
method, in: Y. Kuznetsov, P. Neittanmaki, O. Pironneau (Eds.),
Numerical Methods for Scientific Computing Variational Problems
and Applications, CIMNE, Barcelona, 2003.
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