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Abstract

In the present work a new approach to solve fluid–structure interaction problems is described. Both, the equations of
motion for fluids and for solids have been approximated using a material (Lagrangian) formulation. To approximate
the partial differential equations representing the fluid motion, the shape functions introduced by the meshless finite
element method (MFEM) have been used. Thus, the continuum is discretized into particles that move under body forces
(gravity) and surface forces (due to the interaction with neighboring particles). All the physical properties such as den-
sity, viscosity, conductivity, etc., as well as the variables that define the temporal state such as velocity and position and
also other variables like temperature are assigned to the particles and are transported with the particle motion. The so
called particle finite element method (PFEM) provides a very advantageous and efficient way for solving contact and
free-surface problems, highly simplifying the treatment of fluid–structure interactions.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many classifications have been proposed to enclose the numerical formulations that approximate the
continuum equations that govern incompressible fluid flows. In particular the one describing the way that
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convection is treated divides the numerical formulations into two classes, namely, material (or Lagrangian)
formulations and spatial (or Eulerian) formulations. The first one describes convection by placing a set of
axes over the material particles that move accordingly to the equations of motion. In the Eulerian case the
axes are set fixed in space and convection terms are included in the equations describing the transport of the
fluid flow. The present work will describe a method that uses a material formulation. The equations of mo-
tion for both, the solid and fluid do not present convection terms, implying that the convection effect is
directly obtained by moving the discrete domain.

Many authors have taken advantage of Lagrangian formulations to describe different types of problems.
The smooth particle hydrodynamics (SPH) method developed by Monaghan [13,14] should be mentioned
as a pioneer method of this kind.

Many other methods have been derived from SPH. One that has shown remarkable results is the moving
particle semi-implicit (MPS) method introduced by Koshizuka and Oka [10]. These methods use a kernel
function to interpolate the unknowns. SPH uses a weak formulation while MPS uses a strong form of the
governing equations.

Ramaswamy [22] proposed a Lagrangian finite element formulation for a 2-D incompressible fluid flow.
In that paper the mesh was convected according to the equations of motion but without change of topol-
ogy, making it rather limiting when the elements got highly distorted. The equations of motion were dis-
cretized in space by using the finite element method with linear shape functions.

Another possible classification for numerical formulations may be the one that separates the methods
that make use of a standard finite element mesh (like those made of tetrahedra or hexahedra), and the meth-
ods that do not need a standard mesh, namely, the meshless methods. The formulation described in this
paper can be considered a particular class of meshless method. Again, SPH might be cited as one the first
meshless methods.

Indeed, after Monaghans work and in particular in the past 20 years, many have been the attempts
to develop a robust meshless method that could approximate PDE�s in 2-D and 3-D with acceptable accu-
racy, convergence and speed. Among others, the methods based on Moving Least Square interpolations
[15,2], Partition of Unity [5], and the ones based on the natural neighbor interpolation functions [26]
may be listed.

In this work the interpolation function used by the meshless finite element method (MFEM) [7] will be
implemented. This function uses the Voronoı̈ diagram of the cloud of points to construct the interpolant.
The extended Delaunay tessellation (EDT) [9] is applied to connect the neighboring particles. The EDT
provides polyhedral elements that are sliver-free in 3-D, avoiding instabilities of the Delaunay tessellation
due to distorted tetrahedra. The MFEM shape functions adapt automatically to the polyhedra and in the
case that the polyhedron is a simplex, the shape function behaves exactly as the linear finite element shape
function.

Fluid–structure interaction (FSI) problems have been of special interest for designers and engineers in
the past 20 years. This explains why more robust and stable formulations have been developed to assist
the approximation of contact problems. Embedded methods have been developed by Löhner et al. [11]
where a single mesh is used to partition the fluid as well as the structure. Also arbitrary Lagrangian–Eule-
rian (ALE) formulations [25] have given acceptable results when the displacements or the geometry defor-
mations are not excessively large.

The approximation for the FSI problem depends basically on the coupling of the fluid and structure
equations. Based on this coupling FSI problems may be divided into problems with weak interaction
and problems with strong interaction. The later are found when elastic deformation of the solid takes place.
The weak interpolation case happens when large rigid displacements are present. This situation is typical in
ship hydrodynamics, when a rigid body moves according to the forces given by the pressure field obtained
from the fluid dynamic problem. These forces applied to the rigid body will accelerate it, changing its velo-
city and therefore, its position.
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FSI problems have been classically solved in a partitioned manner solving iteratively the discretized
equations for the flow and the solid domain separately. The solution of both, fluid flow and solid, with
the same material formulation, open the door to solve the global coupled problem in a monolithic fashion.
Nevertheless, in this paper the rigid solid will still be solved separately from the fluid. A partitioned method
[20,12] or iterative method [23,24,27] is chosen to solve the coupling between the fluid and solid. The advan-
tage to use a material formulation for both, solid and fluid parts will be used here only to better reproduce
breaking waves or separated drops in the fluid, which are phenomena impossible to reproduce using a spa-
tial formulation.

The layout of the paper is the following: in the next section the basic Lagrangian equations of motion for
the fluid and solid domains are given. Next the discretization method chosen to solve the incompressible
fluid flow equations and the solid dynamics in time equations are detailed. The algorithm for the recogni-
tion of the boundary nodes and the treatment of the free-surface in the fluid is explained. Finally the effi-
ciency of the particle finite element method for solving a variety of fluid–structure interaction problems
involving large motion of the free-surface in the fluid is shown.
2. Equations of motion

2.1. Fluid dynamic problem: updating the fluid particle positions

The fluid particle positions will be updated via solving the Lagrangian form of the Navier–Stokes
equations.

Let Xi the initial position of a particle a time t = t0 and let xi the final position. Been ui(xj, t) = ui the
velocity of the particle in the final position the following approximate relation can be written:
xi ¼ X i þ f ðui; t;Dui=DtÞ. ð1Þ
Conservation of momentum and mass for incompressible Newtonian fluids in the Lagrangian frame of ref-
erence are represented by the Navier–Stokes equations and the continuity equation in the final xi position,
as follows:

Mass conservation
Dq
Dt

þ q
oui
oxi

¼ 0. ð2Þ
Momentum conservation
q
Dui
Dt

¼ � o

oxi
p þ o

oxj
sij þ qfi; ð3Þ
where q is the density, p the pressure, sij the deviatoric stress tensor, fi the source term (usually the gravity)
and D

Dt represents the total or material time derivative. For Newtonian fluids the stress tensor sij may be
expressed as a function of the velocity field through the viscosity l by
sij ¼ l
oui
oxj

þ ouj
oxi

� 2

3

oul
oxl

dij

� �
. ð4Þ
For near incompressible flows oui
oxi

� ouk
oxl

the term
2l
3

oui
oxi

� 0 ð5Þ
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and it may be neglected from Eq. (4). Then
sij � l
oui
oxj

þ ouj
oxi

� �
. ð6Þ
In the sameway, the term o
oxj

sij in themomentum equationsmay be simplified for near incompressible flows as� �� � � � � �

o

oxj
sij ¼

o

oxj
l

oui
oxj

þ ouj
oxi

¼ l
o

oxj

oui
oxj

þ l
o

oxj

ouj
oxi

¼ l
o

oxj

oui
oxj

� �
þ l

o

oxi

ouj
oxj

� �
� l

o

oxj

oui
oxj

� �
. ð7Þ
Using Eq. (7), the momentum equations can be finally written as
q
Dui
Dt

¼ � o

oxi
p þ o

oxj
sij þ qfi � � o

oxi
p þ l

o

oxj

oui
oxj

� �
þ qfi ð8Þ
Note: Eq. (3) or the equivalent for incompressible fluid flow Eq. (8) are non-linear. In Eulerian formulations
the non-linearity is explicitly present in the convective terms. In this Lagrangian formulation, the non-lin-
earity is due to the fact that Eqs. (3) and (8) are written in the final positions of the particles, which are
unknown. There are others way to write Lagrangian formulations, for instance staying in the initial posi-
tion [1]. In all cases, the equations are non-linear.

Boundary conditions
On the boundaries, the standard boundary conditions for the Navier–Stokes equations are
sijmj � pmi ¼ �rni on Cr;

uimi ¼ �un on Cn;

uifi ¼ �ut on Ct;
where mi and fi are the components of the normal and tangent vectors to the boundary.

2.2. Solid dynamics problem: updating the rigid body position

In this paper, the structure will be considered as a rigid solid. Then, the equations of motion for a rigid
body are
m
DUi

Dt
¼ F i; ð9Þ
where Fi are the resultant of the external forces (surface forces, gravity force, etc.), whose line of action
passes through the mass center of the body, Ui is the velocity of the mass center and m the total mass of
the solid.

The actual motion of the rigid body consists in the superposition of the translation produced by the
resultant force Fi and the rotation produced by the couple Ti satisfying
DMi

Dt
¼ T i; ð10Þ
where Mi is the angular momentum about the mass center. It must be noted that in (10) the time derivative
is expressed as the rate of change with respect to any non-rotating system of axis. It may be also expressed
as the derivative with respect to the body fixed axes by
DMi

Dt
� DMi

Dt
þ eijkeiXjMk ¼ T i; ð11Þ
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where X denotes the angular velocity of the body, e are orthogonal unit basis vectors, e the permutation
symbol and D=Dt is the derivative with respect to the body fixed axes.

Let now the body fixed axes be the principal axes of inertia of the body, with its origin at the center of
mass, then
Mi ¼ I iXi ðwithout summation in the index iÞ; ð12Þ
where Ii are the principal moments of inertia and then
DMi

Dt
¼ I i

DXi

Dt
. ð13Þ
Finally, the equations of motion of the body might be summarized as
m
DUi

Dt
¼ F i; ð14Þ

I i
DXi

Dt
þ eijkeiXj IkXkð Þ ¼ T i. ð15Þ
Calling ai and ai the linear and the angular acceleration of the mass center of the body
mai ¼ F i; ð16Þ
I iai þ eijkeiXj IkXkð Þ ¼ T i. ð17Þ
This is a non-linear system of partial differential equations that has to be linearized for its numerical
approximation.

The final rigid body velocity of an arbitrary point is a combination of both, the linear velocity of the
center of mass Ui and the angular velocity Xi according to
ui ¼ Ui þ eijkeiXjrk; ð18Þ
where ri is the distance from the origin of the body axes to an arbitrary point attached to the body. The
velocity ui will be used later as a boundary condition for the fluid dynamics problem.

A very large number of problems involve plane motion. In this case, Eq. (15) reduces to
I
DX
Dt

� Ia ¼ T ; ð19Þ
where X, I, a and T are the planar angular velocity, the moment of inertia, the planar angular acceleration
and the external couple, respectively.
3. The discrete fluid dynamics problem

The Navier–Stokes equations present three main difficulties:

• The equations are time dependent and thus a temporal integration needs to be carried out.
• A spatial dependency is also present and thus the space will be discretized.
• Finally, Eq. (3) presents a non-linearity, which must be solved iteratively.

Each of the above items will be explained and a solution algorithm will be introduced to obtain a final accu-
rate and robust numerical scheme.
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3.1. Implicit–explicit time integration

Let tn and tn+1 be the initial and final time step. Let Dt = tn+1 � tn be the time increment.
Eq. (8) is integrated implicitly in time as
q
Dui
Dt

� q
uiðxi; tnþ1Þ � uiðX i; tnÞ

Dt
¼ q

unþ1
i � uni
Dt

¼ � o

oxi
p þ l

o

oxj

oui
oxj

� �
þ qfi

� �nþh

; ð20Þ
where [/(x, t)]n+h means h/ðx; tnþ1Þ þ ð1� hÞ/ðx; tnÞ ¼ h/nþ1 þ ð1� hÞ/̂n
and /̂

n ¼ /ðx; tnÞ represents the
value of the function at time tn but at the final position x. For simplicity /n will be used instead of /̂

n
.

Only the case of h = 1 (fully implicit scheme) will be considered next. Other values, as for instance h =
1/2, may be considered without major changes. The time integrated equations become
q
unþ1
i � uni
Dt

¼ � o

oxi
p

� �nþ1

þ l
o

oxj

oui
oxj

� �
þ qfi

� �nþ1

. ð21Þ
The mass conservation is also integrated implicitly by
Dq
Dt

� qnþ1 � qn

Dt
¼ �qnþ1 ou

nþ1
i

oxi
. ð22Þ
The time integration of Eq. (20) presents some difficulties: it is a fully coupled equation involving four
degrees of freedom by node. When the fluid is incompressible or nearly incompressible advantages can be
taken from the fact that in Eq. (20) the three components of the velocity are only coupled via the pressure.
The fractional-step method proposed in [3] will be used for the time solution. This basically consists in split-
ting each time step in two pseudo-time steps. In the first step the implicit part of the pressure is avoided in
order to have a decoupled equation in each of the velocity components. The implicit part of the pressure is
added at a second step. The fractional-step algorithm for Eqs. (21) and (22) is the following:

3.1.1. Split of the momentum equations

nþ1 n nþ1 � � n nþh
Dui
Dt

� ui � ui
Dt

¼ ui � ui þ ui � ui
Dt

¼ � 1

q
o

oxi
pnþ1 þ 1

q

osij
oxj

þ fi; ð23Þ
where u�i are fictitious variables termed fractional velocities defined by the split
u�i ¼ uni þ fiDt �
Dt
q

o

oxi
cpn þ Dt

q
o

oxj
snþh
ij ; ð24Þ

unþ1
i ¼ u�i �

Dt
q

o

oxi
ðpnþ1 � cpnÞ; ð25Þ
where pn = p(x, tn) is the value of the pressure at time tn evaluated at the final position and fi is considered
constant in time.

In Eqs. (24) and (25) c is a parameter giving the amount of pressure splitting, varying between 0 and 1. A
larger value of c means a small pressure split. In this paper c will be fixed to 0 in order to have the larger
pressure split and hence, a better pressure stabilization. Other values as, for instance c = 1, may be used to
derive high order schemes in time [3].

Taking into account Eq. (7), the last term in Eq. (24) may be written as
o

oxj
snþh
ij ¼ l

o

oxj

ounþh
i

oxj

� �
¼ lð1� hÞ o

oxj

oûni
oxj

� �
þ lh

o

oxj

ounþ1
i

oxj

� �
. ð26Þ
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The following approximations have been introduced [3]:
l
o

oxj

ounþh
i

oxj

� �
� lð1� hÞ o

oxj

oûni
oxj

� �
þ lh

o

oxj

ou�i
oxj

� �
. ð27Þ
This allows to write Eq. (24) as
u�i ¼ uni þ fiDt �
Dt
q

o

oxi
cp̂n þ Dt

q
lð1� hÞ o

oxj

oûni
oxj

� �
þ Dt

q
lh

o

oxj

ou�i
oxj

� �
. ð28Þ
For c = 1 and h = 1 the equations for the fractional velocities becomes
u�i �
Dt
q
l

o

oxj

ou�i
oxj

� �
¼ uni þ fiDt. ð29Þ
3.1.2. Split of the mass conservation equations

nþ1 n nþ1 � � n nþ1 � �
Dq
Dt

� q � q
Dt

¼ q � q þ q � q
Dt

¼ �q
oðui � ui þ ui Þ

oxi
; ð30Þ
where q* is a fictitious variable defined by the split
q� � qn

Dt
¼ �q

ou�i
oxi

; ð31Þ

qnþ1 � q�

Dt
¼ �q

oðunþ1
i � u�i Þ
oxi

. ð32Þ
3.1.3. Coupled equations

From Eqs. (25), (31), (32) the coupled mass–momentum equation becomes
qnþ1 � q�

Dt2
¼ o2

ox2i
ðpnþ1Þ. ð33Þ
Taking into account Eq. (31) the above expression can be written as
qnþ1 � qn

Dt2
þ q
Dt

ou�i
oxi

¼ o
2

ox2i
ðpnþ1Þ. ð34Þ
It is important to note that in Eq. (34) the incompressibility condition has not be introduced yet. The sim-
plest way to introduce the incompressibility condition in a Lagrangian formulation is to write
qnþ1 ¼ qn ¼ q0 ¼ q. ð35Þ

Then, the first term of Eq. (34) disappears, giving
q
Dt

ou�i
oxi

¼ o2

ox2i
ðpnþ1Þ. ð36Þ
The three steps of the fractional method used here can be summarized by
u�i �
Dt
q
l

o

oxj

ou�i
oxj

� �
¼ uni þ fiDt ) u�i ; ð37Þ

q
Dt

ou�i
oxi

¼ o
2

ox2i
ðpnþ1Þ ) pnþ1; ð38Þ

unþ1
i ¼ u�i �

Dt
q

o

oxi
ðpnþ1Þ ) unþ1

i . ð39Þ



S.R. Idelsohn et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2100–2123 2107
3.2. The spatial discretization provided by the MFEM

One of the key to solve a fluid mechanics problem using a Lagrangian formulation is to generate effi-
ciently the shape functions to approximate the spatial unknown. In the finite element context, this means
to generate permanently, at each time step, a new mesh. In this work the interpolation function used by the
meshless finite element method (MFEM) [7] will be implemented. This function uses the Vorono diagram of
the cloud of points to construct the interpolant. The extended Delaunay tessellation (EDT) [9] is applied to
connect the neighboring particles. The EDT provides polyhedral elements that are sliver-free in 3-D, avoid-
ing instabilities of the Delaunay tessellation due to distorted tetrahedral. EDT provide a way to generate
meshes at each time step very efficiently in a computing time which is largely smaller than the computing
time needed to solve the linearized system of equation. EDT together with the MFEM are the main key to
make the PFEM presented in this paper a useful tool.

The unknown functions are approximated using an equal order interpolation for all variables in the final
configuration:
ui ¼
X
l

NlðX ; tÞUil; ð40Þ

p ¼
X
l

NlðX ; tÞP l. ð41Þ
In matrix form
ui ¼ NTðX ; tÞUi ð42Þ
p ¼ NTðX ; tÞP; ð43Þ
or in compact form
ui ¼ NT
i U ¼

NT

NT

NT

2
64

3
75U; ð44Þ
where NT are the MFEM shape functions and U, P the nodal values of the three components of the un-
known velocity and the pressure, respectively.

It must be noted that the shape functions N(X, t) are functions of the particle coordinates only. Then, the
shape functions may change in time following the particle positions.

During the time step, a mesh update may introduce a change in the shape function definition, which
must be taken into account. During the time integration there are two times involved: tn and tn+1. The fol-
lowing notation will be used to distinguish between N(X, tn) and N(X, tn+1):
NðX ; tnÞ ¼ Nn and NðX ; tnþ1Þ ¼ Nnþ1. ð45Þ

In this work, the following hypothesis will be introduced: there is not mesh update during each time step.

This means that if a mesh update is introduced at the beginning of a time step, the same mesh (but de-
formed) will be kept until the end of the time step.

Mathematically this means
NðX ; tnÞ ¼ NðX ; tnþ1Þ. ð46Þ

Unfortunately, this hypothesis is not always true and this introduces small errors in the computation, which
are neglected in this paper.
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Using the Galerkin weighted residual method to solve the splitted equations, the following integrals are
obtained:
Z
V
Niu�i dV

q
Dt

�
Z
V
Niuni dV

q
Dt

�
Z
V
NifiqdV þ

Z
V
Ni

o

oxi
cpndV

�
Z
V
Nil

o

oxj

ounþh
i

oxj

� �
dV �

Z
Cr

Ni �rni � ðsnþh
ij mj � cpnmiÞ

h i
dC ¼ 0; ð47Þ

Z
V
N

q
Dt

ou�i
oxi

� �
� o

2

ox2i
ðpnþ1 � cpnÞ

� �
dV þ q

Dt

Z
Cu
Nð�unþ1

i mi � unþ1
i miÞdC ¼ 0; ð48Þ

Z
V
Ni ðunþ1

i � u�i Þ
q
Dt

þ o

oxi
ðpnþ1 � cpnÞ

� �
dV �

Z
Cr

Niðpnþ1 � cp̂nÞmi dC ¼ 0; ð49Þ
where the boundary conditions have been also spliced and V is the volume at time tn+1.
Integrating by parts some of the terms, the above equations become
Z
V
Niðu�i � fiDtÞ

q
Dt

dV �
Z
V
Niuni

q
Dt

dV þ
Z
V
Ni

o

oxi
cpndV

þ l
Z
V

oNi

oxj

ounþh
i

oxj
dV �

Z
Cr

Nið�rni þ cpnmiÞdC ¼ 0; ð50Þ

� q
Dt

Z
V

oN

oxi
u�i dV �

Z
V

oN

oxi

oðpnþ1 � cpnÞ
oxi

dV þ q
Dt

Z
Cu

N�unþ1
n dC ¼ 0; ð51Þ

Z
V
Ni ðunþ1

i � u�i Þ
q
Dt

þ o

oxi
ðpnþ1 � cpnÞ

� �
dV �

Z
Cr

Niðpnþ1 � cpnÞdC ¼ 0. ð52Þ
The essential and natural boundary conditions of Eq. (51) are
p ¼ 0 on Cr;

�unþ1
i � m ¼ unþ1

i

��
s
� m on Cu;
where unþ1
i js is the rigid body velocity obtained from Eq. (19).

3.2.1. Discrete equations

Using the approximations given by Eqs. (44)–(46) the discrete equations become

Z
V
NiN

T
i dVU

�
i ¼

Z
V
NiN

T
i dVU

n
i þ Dt

Z
V
NifidV � cDt

q

Z
V
Ni

oNT

oxi
dV Pn

� Dtl
q

Z
V

oNi

oxj

oNT
i

oxj
dVUnþh

i þ Dt
q

Z
Cr

Niðrni þ cpnÞdC. ð53Þ
In compact form
MU� ¼ MUn þ DtF� cDt
q

BTPn � Dtl
q

KUnþh. ð54Þ
Making use of the approximation described before for Un+#
Mþ Dtlh
q

K

� �
U� ¼ MUn þ DtF� cDt

q
BTPn � Dtlð1� hÞ

q
KUn. ð55Þ
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For h = 1 and c = 0
Mþ Dtl
q

K

� �
U� ¼ MUn þ DtF . ð56Þ
In the same way
� q
Dt

Z
V

oN

oxi
NT

i

� �
dVU� þ q

Dt

Z
Cu

N�unþ1
n dC ¼ �

Z
V

oN

oxi

oNT

oxi

� �
dV ðPnþ1 � cPnÞ. ð57Þ
In compact form
SPnþ1 ¼ q
Dt

ðB U� �U
_

Þ þ ScPn. ð58Þ
For h = 1 and c = 0
SPnþ1 ¼ q
Dt

ðB U� � U
_

Þ . ð59Þ
Finally
Z
V
NiN

T
i dVU

nþ1 ¼
Z
V
NiN

T
i dVU

� � Dt
q

Z
V
Ni

oNT

oxi
dV ðPnþ1 � cPnÞ þ

Z
Cr

NiN
TdCðPnþ1 � cPnÞ. ð60Þ
In compact form
MUnþ1 ¼ MU� � Dt
q
BTðPnþ1 � cPnÞ. ð61Þ
For h = 1 and c = 0
MUnþ1 ¼ MU� � Dt
q
BTPnþ1 ; ð62Þ
where the matrices are
M ¼
Mp 0 0

0 Mp 0

0 0 Mp

2
4

3
5; ð63Þ

Mp ¼
Z
V
NNTdV ; ð64Þ

B ¼
Z
V

oN

ox
NTdV ;

Z
V

oN

oy
NTdV ;

Z
V

oN

oz
NTdV

� �
; ð65Þ

S ¼
Z
V

oN

ox
oNT

ox
þ oN

oy
oNT

oy
þ oN

oz
oNT

oz
dV ; ð66Þ

U
_

¼
Z
Cu

N�unþ1
n dC; ð67Þ

K ¼
S 0 0

0 S 0

0 0 S

2
4

3
5; ð68Þ

FT ¼
Z

NTfxdV ;
Z

NTfydV ;
Z

NTfzdV
� �

þ 1

q

Z
NTrnxdC;

Z
NTrnydC;

Z
NTrnzdC

� �
. ð69Þ
V V V Cr Cr Cr
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3.2.2. Stabilization of the incompressibility condition

In the Eulerian form of the momentum equations, the discrete form must be stabilized in order to avoid
numerical wiggles in the velocity and pressure results. This is not the case in the Lagrangian formulation
where no stabilization terms must be added to Eq. (62). Nevertheless, the incompressibility condition must
be stabilized in equal-order approximations to avoid pressure oscillations in some particular cases.

For instance for small pressure split (c 5 0) or for small time step increments (Courant number much
less than one) it is well known that the fractional step does not stabilize the pressure waves [3]. In those
particular cases, a stabilization term must be introduced in Eq. (62) in order to eliminate pressure
oscillations.

A simple and effective procedure to derive a stabilized formulation for incompressible flows is based in
the so-called finite calculus (FIC) formulations [16–18]. In all the examples presented in this paper the FIC
formulation was used to stabilize the pressure oscillations.
3.3. Non-linearity of the Lagrangian formulation

Many algorithms are available to linearize the equations of motion. The Newton–Raphson scheme is
probably the most popular because of its robustness and fast convergence. It has been applied with success
in this type of formulation in [21]. Nevertheless we consider that it might not be the most appropriate op-
tion for the type of equations we are intending to solve as it requires large memory storage. Instead, the
successive iteration algorithm has been chosen for the present analysis. In this case, only the variables that
induces the non-linearity need to be stored in successive iterations. Let us now describe the process that may
take place until convergence
(I) Approximate un+1 (For the first iteration un+1 = 0. For the subsequent iterations the value of un+1

corresponding to the last iteration is taken).
(II) Move the particles to the xn+1 position and perform an EDT polyhedrization.
(III) Evaluate the fractional velocity u* from (56). It must be noted that the matrices M and K are

separated in 3 blocks. Then, these equations may be solved separately for U �
x ;U

�
y and U �

z . For
h50 (implicit scheme) involves the solution of three symmetric linear systems of equations.
For h = 0 (explicit scheme) the M matrix may be lumped and inverted directly.

(IV) Evaluate the pressure pn+1 by solving the Laplacian equation (58).
(V) Evaluate un+1 using (61).
4. Time integration of the solid dynamics problem

Eqs. (14) and (15) that govern the movement of rigid bodies are integrated in time by the explicit
Newmark algorithm. It consists in evaluating the velocity by linearizing the acceleration between two time
steps:
Unþ1
i ¼ Un

i þ Dt 1� cð Þani þ canþ1
i

� 	
;

Xnþ1
i ¼ Xn

i þ Dt 1� cð Þani þ canþ1
i

� 	
.

ð70Þ
The point position for the explicit version of the Newmark algorithm is evaluated by
xnþ1 ¼ xn þ DtUn þ Dt2an=2. ð71Þ
i i i i
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To integrate the angular acceleration in a 3-D system by Newmark algorithm two steps are needed, namely

Predictor step
X�
i ¼ Xn

i þ Dtðð1� cÞani Þ ð72Þ
then, the accelerations are predicted by using Eq. (17)
anþ1
i ¼ T nþ1

i =I i � eijkeiX
�
j ðIkX�

kÞ=I i; ð73Þ
Corrector step
Xnþ1
i ¼ X�

i þ Dtcanþ1
i . ð74Þ
The linear velocities are integrated directly using Eqs. (16) and (70)
anþ1
i ¼ F nþ1

i =m;

Unþ1
i ¼ Un

i þ Dtðð1� cÞani ;þcanþ1
i Þ.

ð75Þ
For the present analysis c = 1/2 will be considered.
Both velocities, Unþ1

i and Xnþ1
i are used in (18) to evaluate the new velocity of all the points of the body.

In the explicit version of the Newmark algorithm, the new position of the rigid body is evaluated by
xnþ1
i ¼ xni þ DtUn

i þ Dt2ani =2;

/nþ1
i ¼ DtXn

i þ Dt2ani =2;
ð76Þ
where xi is the new position of the center of mass and /i are the angular rotations of the body.
It must be noted that for planar motion, the predictor step is unnecessary and anþ1

i may be evaluated
directly using (19).

4.1. The coupled problem

On the coupling boundary the fluid velocity and the solid velocity should converge to the same value.
This could be expressed as
uf jC1 ¼ usjC2. ð77Þ

Thus, two subsystems need to be solved, namely, the fluid system
N unþ1
f ; pnþ1; xnþ1

f ; unþ1
s ; xnþ1

s

� 	
¼ 0
and the solid system
S unþ1
s ; xnþ1

s ; unþ1
f ; pnþ1; xnþ1

f

� 	
¼ 0.
In the equations above only the variables to be solved at time step n + 1 are shown.
An iterative procedure has to be implemented to couple both systems. A fixed point algorithm may be

implemented and thus the system could be written as
unþ1
f;kþ1; p

nþ1
kþ1; x

nþ1
f ;kþ1


 �
¼ F unþ1

f ;k ; pnþ1
k ; xnþ1

f ;k ; unþ1
s ; xnþ1

s


 �
;

unþ1
s;kþ1; x

nþ1
s;kþ1


 �
¼ G unþ1

s;k ; xnþ1
s;k ; unþ1

f ; pnþ1; xnþ1
f


 �
.

ð78Þ
The first equation in Eq. (78) denotes the fluid subsystem and the second equation the solid subsystem. The
subscript k is the iteration counter.
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In the present analysis a Gauss–Seidel process has been chosen [4]. In this way, the iterative procedure
means to solve first one of the subsystems, for instance the fluid system. Next the solid system is solved
using the information from the fluid computation. Eq. (78) should be modified and the final expression used
for the computation is as follows:
unþ1
f ;kþ1; p

nþ1
kþ1; x

nþ1
f ;kþ1


 �
¼ F unþ1

f ;k ; pnþ1
k ; xnþ1

f;k ; unþ1
s;k ; xnþ1

s;k


 �
;

unþ1
s;kþ1; x

nþ1
s;kþ1


 �
¼ G unþ1

s;k ; xnþ1
s;k ; unþ1

f ;kþ1; p
nþ1
kþ1; x

nþ1
s;kþ1


 �
.

ð79Þ
Convergence occurs when the difference between velocities of successive iteration steps is less than the
acceptable error.
5. Free-surface and boundary recognition

The solution of partial differential equations (PDE) requires to prescribe boundary conditions as a nec-
essary step to a well-posed problem. When the PDEs are approximated in space and the domain is parti-
tioned into discrete elements (finite elements, particles, balls, nodes, etc.) the boundary elements should be
provided at the initial time step, such that, at run time the algorithm knows where to impose or fix the vari-
ables of the analysis (pressure, velocity and their derivatives for instance). This would be the case of a static
domain, where the geometry does not change in time and the boundaries remain constant.

In this work the interest is focused on problems where the solution domain is highly distorted, and
boundary elements can change between time steps. In this case an efficient boundary recognition algorithm
is mandatory in order to impose boundary conditions over the right elements, thus avoiding possible error
accumulation over the time.

When applying the MFEM [7] to the discrete space problem, the EDT [9] is computed to connect the
particles that discretize the domain, thus, all the empty Vorono spheres are found and stored. These spheres
will be used to compute the boundary using the alpha-shape technique [6].

The particles will follow a given h(x) distribution according to the maximum error allowed for the dis-
crete space problem, where h(x) is the expected distance among neighboring particles. Then, having all the
empty Vorono spheres and h(x) the boundary particles are regarded as: all the particles which are on an

empty sphere with a radius r bigger than ah.
In this criterion, a is a parameter close to one, typically a = 1.2 and h is the mean value taken from the

defining particles of the sphere under inspection.
Once a decision has been made concerning which of the nodes are on the boundaries, the boundary sur-

face must be defined. It is well known that, in 3-D problems, the surface fitting a number of nodes is not
unique. For instance, four boundary nodes on the same sphere may define two different boundary surfaces,
one concave and the other convex.

In this work, the boundary surface is defined by all the polyhedron faces having all their nodes on the
boundary and belonging to just one polyhedron. See [9].

The correct boundary surface may be important to define the correct normal external to the surface. Fur-
thermore; in weak forms (Galerkin) it is also important a correct evaluation of the volume domain. It must
however be noted that in the criterion proposed above, the error in the boundary surface definition is of
order h. This is the standard error of the boundary surface definition in a meshless method for a given node
distribution.

Another important feature of the alpha-shape technique related to the contact problem is shown in
Fig. 5.1. The image shows two different time steps of a solid cube falling into water after the alpha-shape
algorithm for the boundary recognition has been applied. The particles, as well as the connections provided
by the EDT are depicted. At the first time step all the radii of the empty circles constructed with the nodes



Fig. 5.1. The alpha-shape technique used for contact recognition.

S.R. Idelsohn et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2100–2123 2113
of the cube and the nodes regarded as belonging to the free-surface are larger than ah(x) and thus the ele-
ments that they define are eliminated from the tessellation. The second picture shows a more evolved state,
with the cube reaching the water surface. Thus, at this state the circle radii are less than ah(x) and so the
connections between the cube and the fluid take part of the computation. In this way free surface and con-
tacts are solved at once.
6. Joining and breaking particles

The idea of h variable mesh is rather different in particle methods than in classical Eulerian formulations.
In particle methods, each particle is followed in time and the same particle can cross domains in which the
solution need small h in order to represent high gradients or can cross a region with large h where the solu-
tion is smooth. The concept of variable h is introduce in particle methods by joining two particles when they
are too close to each other or breaking a particle in two when all the neighboring particles are too far and
the solution needs a higher gradient.

In the example presented in this paper the following criterion has been used:

(1) During the EDT algorithm to build the polyhedral mesh a particle is not added if there is a previous
point at a distance d < kh(x), being k = 0.5 a constant parameter.

(2) On the contrary, when there is an empty sphere whose radius r > Kh(x) a point is added to its center
and assigned with values interpolated from the sphere defining particles. The parameter is currently
taken as K = 1.1*sqrt(dim)/2 in order to accept, with a 10% of tolerance, near-square (dim = 2,
K � 0.78) or near-cube (dim = 3, K � 0.95) local arrays as connected inner points. This parameter
must be less than the alpha-shape parameter ah(x) in order to avoid interference with the boundary
recognition algorithm.
7. Validation examples

PFEM was developed as a general-purpose method for solving different kind of problems on which large
free surface or interface boundaries changes are involved. The method is well suited to solve a large variety
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of mechanical problems including mixing fluid and solid materials, wave motion problems, mould filling,
coupled thermal–mechanical problems and fluid–solid interaction as well.

In this section some problems are included in order to show the validation of the present approach to-
wards experimental and numerical tests. In the following section, some more specific examples on fluid
structure interaction will be shown.

7.1. Sloshing

The simple problem of the free oscillation of an incompressible liquid in a container is considered first.
Numerical solutions for this problem can be found in several references [21]. This problem is interesting
because there is an analytical solution for small amplitudes. For larger amplitudes the wave breaks and also
some particles can be separated from the fluid domain due to their large velocity. PFEM can solve very
large amplitudes, even in a 3-D domain [8]. However, in this section only the small amplitude, two-dimen-
sional example is shown to validate the method.

Fig. 7.1 shows the variation in time of the amplitude compared with the analytical results for the near
inviscid case. Little numerical viscosity is observed on the phase wave and amplitude in spite of the relative
poor point distribution.

7.2. Wave on a channel: comparison with experimental results

This example was performed in order to compare and validate the method with experimental results. A
wave is running from the left to the right arriving to a shallow domain were the wave breaks. The example is
represented in Fig. 7.2 were the calculated particle positions are shown at different time steps. The wave was
produce by a particular movement of the left wall. This example was reproduced experimentally in the
CIEM (Maritime Experimental and Research Channel) of the Escuela Técnica de Ingenieros de Canales
Caminos y Puertos in the University of Catalunya. The channel is 100 m length, 3 m wide and 5 m high.

A pressure sensor was placed on the right wall at 0.2 m from the bottom.
Experimental and numerical pressure results are compared at different time step in Fig. 7.3. Both results,

experimental and numerical, were smoothed in order to ignore the artificial oscillations from high order
Fig. 7.1. Sloshing: comparison of the numerical and analytical solution.



Fig. 7.2. Wave on a channel: particle distribution for different time steps.
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waves present in the problem. The comparison of the results in the pressure values shows a reasonably
agreement.

7.3. Dam collapse

The dam collapse problem represented in Fig. 7.4 was solved by Koshizu and Oka [10] both experimen-
tally and numerically in a 2D domain. It became a classical example to test the validation of the Lagrangian
formulation in fluid flows.

The water is initially located on the left supported by a removable board. The collapse starts at time
tw = 0, when the removable board is slid-up. Viscosity and surface tension are neglected. The water is run-
ning on the bottom wall until, near 0.3 s, it impinges on the right vertical wall. Breaking waves appear at
0.6 s. Around t = 1 s the main water wave reaches the left wall again.

In [8] the results obtained using the method proposed in 2-D and 3-D domains are presented and com-
pared with experimental results. Agreement with the experimental results of [10] both in the shape of the
free surface and in the time development are excellent.

In this example the power of the method to represent breaking waves and flow separation for a very
complicated and random problem is verified and compared to experimental results.

This example is further exploited here to compare results obtained with three different node densities at
some time steps in order to check the convergence of the method.
Fig. 7.4. Dam collapse. Initial position: (left) experimental [10] and (right) 3-D simulation.



Fig. 7.5. Dam collapse. Comparison between the experiment and numerical results obtained in different time steps, with different
refinement levels.

S.R. Idelsohn et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2100–2123 2117
Fig. 7.5 shows the domain profile at different time steps and with different refinement levels. At the top
there are some photos taken on the experimental setup corresponding to 0.2, 0.6 and 1 s from the starting
point. From top to bottom grids with 2.2, 4.4 and 8.8 mm in typical distance between neighboring particles
are shown.

The excellent agreement already obtained with low refinement is even better with higher level of
refinement.
8. Further examples on fluid–structure interaction

8.1. Ship profile hit by a wave

In the example of Fig. 8.1 the motion of a fictitious rigid ship hit by an incoming wave is analyzed. This
is the first example in which the rigid body is moved by the fluid forces in a coupling problem as was ex-
plained in the previous chapters.



Fig. 8.1. Ship profile hit by a wave: particle positions for different time steps.
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The dynamic motion of the ship is induced by the resultant of the pressure and the viscous forces acting
on the ship boundaries. The horizontal displacement of the mass centre of the ship was fixed to zero. In this
way, the ship moves only vertically although it can freely rotate. The position of the ship boundary at each
time step is evaluated using Eq. (76) and the velocity of the body by using Eq. (18). This defines a moving
boundary condition for the free surface particles in the fluid as introduced in Eq. (59).

Fig. 8.1 shows instants of the motion of the ship and the surrounding fluid. It is interesting to see the
breaking of a wave on the ship prow at t = 0.91 s. as well as on the stern at t = 2.05 s when the wave goes
back. Note that some water drops slip over the ship deck at t = 1.3 s and 2.95 s.
Fig. 8.3. Oil ship tank under a lateral wave: pressure profile at two different time steps.

Fig. 8.2. Oil ship tank under a lateral wave: particle distribution and velocity field.
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8.2. Oil ship tank under a lateral wave

The present example depicts the flexibility of the algorithm introduced in this paper to solve some com-
plicated configurations as the one shown in Fig. 8.2. The traversal cut of an oil ship tank is hit by a wave.
Fig. 8.4. Sinking tanker. Particle distribution at three different time steps.



S.R. Idelsohn et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2100–2123 2121
The structure of the ship does not only interact with the external water but it also moves due to the fluid
forces induced by the fluid in the tank.

Fig. 8.2 shows the temporal development of the problem. The blue lines over each particle represent the
magnitude of the velocity field.

Initially (t = 0.0) the ship is released from a fixed position and the equilibrium configuration found is
consistent with Archimedes principle. During the following time steps the external wave hits the ship
and both the internal and the external fluids interact with the ship boundaries. At times t = 5.10 s and
Fig. 8.5. Sinking tanker. Velocity field.
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6.00 s breaking waves and some water drops slipping along the ship deck can be observed. Fig. 8.3 shows
the pressure pattern at two time steps.

8.3. Tanker sinking

This example represents the sinking of a tanker, which is being flooded by the ship prow. The ship has
many connected compartments that are serially flooded.

In this example proper fluid–structure interaction is displayed as the buoyancy, pressure and drag forces
from the fluid are acting over the ship and, on the other hand, the ship displacement moves internal and
external free surfaces on the fluid.

In Fig. 8.4 there are three time steps shown with the particle positions and the tanker in three different
sinking stages.

Fig. 8.5 displays velocity profile on a zoom of the first and last time steps form previous figure. In this
figure, the vorticity is also easily shown.

This is an interesting example using a variable distance between particles to enhance the solution near
the ship and free surfaces. This variable distribution was obtained following the method outlined in Section
6 above.

The large cyan dots are representing the free surface recognized by the method as explained in Section 5.
9. Conclusions

The particle finite element method (PFEM) seems ideal to treat problems involving fluids with free-sur-
face and submerged or floating structures within a unified Lagrangian finite element framework. Problems
such as the analysis of fluid–structure interactions, large motion of fluid or solid particles, surface waves,
water splashing, separation of water drops, etc. can be easily solved with the PFEM.

The success of the method lays in the accurate and efficient solution at each time step of the equations of
an incompressible fluid and the interacting solid. Essential ingredients of the numerical solution are the effi-
cient regeneration of the polyhedral mesh using an extended Delaunay tessellation, the polyhedral finite ele-
ment interpolation via the MFEM and the identification of the boundary nodes using an alpha-shape type
technique.

The examples presented have shown the potential of the PFEM for solving a wide class of practical FSI
problems. Other examples of application of the PFEM can be found in [19].
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[8] S.R. Idelsohn, E. Oñate, F. Del Pin, The particle finite element method: a powerful tool to solve incompressible flows with free-

surfaces and breaking waves, Int. J. Numer. Methods Engrg. 61 (7) (2004) 964–989.
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