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Abstract

A method is presented for the solution of the incompressible fluid flow equations using a Lagrangian formulation.

The interpolation functions are those used in the meshless finite element method and the time integration is introduced

in a semi-implicit way by a fractional step method. Classical stabilization terms used in the momentum equations are

unnecessary due to the lack of convective terms in the Lagrangian formulation. Furthermore, the Lagrangian for-

mulation simplifies the connections with fixed or moving solid structures, thus providing a very easy way to solve fluid–

structure interaction problems.
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1. Introduction

Over the last 20 years, computer simulation of in-

compressible fluid flow has been based on the Eulerian

formulation of the fluid mechanics equations. However,

it is still difficult to analyze problems in which the shape

of the interface changes continuously or in fluid–struc-

ture interactions (FSI) with free-surfaces where compli-

cated contact problems are involved.

More recently, particle methods in which each fluid

particle is followed in a Lagrangian manner have been

used [1–4]. The first ideas on this approach were pro-

posed by Gingold and Monaghan [1] for the treatment

of astrophysical hydrodynamic problems with the so

called smooth particle hydrodynamics method (SPH).

This method was later generalized to fluid mechanic

problems [2–4]. Kernel approximations are used in the

SPH method to interpolate the unknowns.

On the other hand, a family of methods called

meshless methods have been developed both for struc-

tural [5,6] and fluid mechanics problems [8–10]. All these

methods use the idea of a polynomial interpolant that

fits a number of points minimizing the distance between

the interpolated function and the value of the unknown

point. These ideas were proposed first by Nayroles et al.

[7], they were later used in structural mechanics by Be-

lytschko et al. [5] and in fluid mechanics problems by

O~nnate and co-workers [8–10]. In a previous paper, [11]
the authors presented the numerical solution for the

fluid mechanics equations using a Lagrangian formula-

tion and a meshless method called the finite point

method. Lately, the meshless ideas were generalized to

take into account the finite element type approximations

in order to obtain the same computing time in mesh

generation as in the evaluation of the meshless connec-

tivities [12,13]. This method was called the meshless
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finite element method (MFEM) and uses the extended

Delaunay tessellation (EDT) [14] to build the mesh in a

computing time which is linear with the number of nodal

points.

In this paper, new ideas and results for the solution of

a particle method in the field of FSI using the MFEM

are presented. A more general formulation is used in

which all the classical advantages of the FEM for the

evaluation of the unknown functions and derivatives are

preserved.

Different strategies have been proposed to solve FSI

problems. The selection of the most effective approach

depends largely on the nature of the problem to be an-

alyzed [15]. Depending on the degree of coupling be-

tween the equations for the fluid and the structure, two

cases can be distinguished. The first one occurs when

there is a strong coupling between the fluid flow and the

elastic deformation of the structure [15–17]. The second

case occurs when there is a weak interaction between the

fluid and the rigid deformation of the structure. In the

latter, the solid must undergo large rigid displacements

interacting with the fluid. This is the case for instance of

sea-keeping in ship hydrodynamics, rotating turbines,

mills, and other engines with a moving solid inside a

fluid. Both cases of FSI are more easily studied with a

Lagrangian formulation of the fluid equations, which

can be seen as a solid with a small shear coefficient or

vice versa.

The Lagrangian fluid flow equations for the Navier–

Stoke problem will be revised in the next section, the

MFEM will be summarized in Appendix A and both

techniques will be used to solve some FSI problems for

rigid solids.

2. Governing equations

The mass and momentum conservation equations

can be written in a Lagrangian formulations as

mass conservation:

Dq
Dt

þ q
oui
oxi

¼ 0 ð1Þ

momentum conservation:

q
Dui
Dt

¼ � o

oxi
p þ o

oxj
sij þ qfi ð2Þ

where q is the density ui are the Cartesian components of
the velocity field, p the pressure, sij the deviator stress
tensor, fi the source term (normally the gravity) and

D/=Dt represents the total or material time derivative of
a function /.
For Newtonian fluids the stress tensor sij may be

expressed as a function of the velocity field through the

viscosity l by

sij ¼ l
oui
oxj

�
þ ouj

oxi
� 2
3

oul
oxl

dij

�
ð3Þ

For near incompressible flows oui
oxi

� ouk
oxl

� �
the term

2l
3

oui
oxi

� 0 ð4Þ

and it may be neglected in Eq. (3). Then

sij � l
oui
oxj

�
þ ouj

oxi

�
ð5Þ

In the same way, the term o
oxj

sij in the momentum
equations may be simplified for slow incompressible

flows as

o

oxj
sij ¼

o

oxj
l

oui
oxj

��
þ ouj

oxi

��

¼ l
o

oxj

oui
oxj

� �
þ l

o

oxj

ouj
oxi

� �

¼ l
o

oxj

oui
oxj

� �
þ l

o

oxi

ouj
oxj

� �
� l

o

oxj

oui
oxj

� �
ð6Þ

Then, the momentum equations can be finally written as

q
Dui
Dt

¼ � o

oxi
p þ o

oxj
sij þ qfi

� � o

oxi
p þ l

o

oxj

oui
oxj

� �
þ qfi ð7Þ

Boundary conditions

On the boundaries, the standard boundary condi-

tions for the Navier–Stokes equations are

sijmj � pmi ¼ �rrni on Cr ð8Þ

uimi ¼ �uun on Cn ð9Þ

uifi ¼ �uut on Ct ð10Þ

where mi and fi are the components of the normal and
tangent vector to the boundary.

3. The time splitting

The time integration of Eqs. (7) and (8) presents

some difficulties when the fluid is incompressible or

nearly incompressible. In this case, explicit time steps

cannot be used. Even when using an implicit time inte-

gration scheme, incompressibility introduces some wig-

gles in the pressure solution which must be stabilized. To

overcome these difficulties, a fractional step method has

been proposed [18] which consists in splitting each time

step in 2 steps as follows.
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Split of the momentum equations

Dui
Dt

� unþ1i � uni
Dt

¼ unþ1i � u�i þ u�i � uni
Dt

¼
�
� 1

q
o

oxi
p þ 1

q
osij
oxj

þ fi

�nþh

ð11Þ

where Dt ¼ tnþ1 � tn is the time step; uni ¼ uiðxn; tnÞ;
unþ1i ¼ uiðxnþ1; tnþ1Þ and u�i are fictitious variables defined
by the split

ðAÞ u�i ¼ uni þ fiDt �
Dt
q

o

oxi
cpn þ Dt

q
o

oxj
snij ð12Þ

ðCÞ unþ1i ¼ u�i �
Dt
q

o

oxi
ðpnþ1 � cpnÞ ð13Þ

where c is parameter equal to zero or one defining a first
or second order split, respectively [18].

Split of the mass conservation equations

Dq
Dt

� qnþ1 � qn

Dt
¼ qnþ1 � q� þ q� � qn

Dt

¼ �q
oðunþ1i � u�i þ u�i Þ

oxi
ð14Þ

where q� is a fictitious variable defined by the split

q� � qn

Dt
¼ �q

ou�i
oxi

ð15Þ

qnþ1 � q�

Dt
¼ �q

oðunþ1i � u�i Þ
oxi

ð16Þ

Coupled equations

From Eqs. (13) and (16) the coupled mass–momen-

tum equation becomes

ðBÞ qnþ1 � q�
Dt2

¼ o2

ox2i
ðpnþ1 � cpnÞ ð17Þ

Taking into account Eq. (15) above expression can be

written as

ðBÞ qnþ1 � qn

Dt2
þ q

Dt
ou�i
oxi

¼ o2

ox2i
ðpnþ1 � cpnÞ ð18Þ

4. Incompressibility conditions

The simplest way to introduce the incompressibility

condition is to write

qnþ1 ¼ qn ¼ q0 ¼ q ð19Þ

Then, the first term of Eq. (18) disappears. Nevertheless,

in a Lagrangian formulation it is better to evaluate this

term in order to avoid possible numerical errors at each

time step. The incompressibility condition is introduced

by imposing that at time step tnþ1 the density must be
equal to the initial one, i.e.

qnþ1 ¼ q0 ¼ q ð20Þ

Due to numerical errors the density qn is not necessarily

equal to q0 and it must be updated at each time step. A
different way to evaluate qn will be explained in Section

7. Eq. (18) is finally written as

ðBÞ q0 � qn

Dt2
þ q

Dt
ou�i
oxi

¼ o2

ox2i
ðpnþ1 � cpnÞ ð21Þ

Then, the total time step may be described as follows:

starting with the known value un and pn from the pre-
vious time increment, the computation of the new ve-

locities and the pressure involves the following five steps.

II(I) Evaluate the u� velocity from (12).
I(II) Evaluate the new density qn (see Section 7).

(III) Evaluate the pressure pnþ1 solving the Laplacian
Eq. (21).

(IV) Evaluate the velocity unþ1 using (13).
I(V) Move the particles to the xnþ1 position.

5. Spatial discretization

The Lagrangian split scheme described in the previ-

ous section has two important advantages.

(1) Step I is linear and explicit. The use of a La-

grangian formulation eliminates the standard convec-

tion terms present in Eulerian formulations. The

convection terms are responsible for non-linearity, non

symmetry and non self-adjoint operators which require

the introduction of high order stabilization terms to

avoid numerical oscillations. All these problems are not

present in this formulation.

(2) In all the five steps described in previous section,

the only implicit step is the solution of the Laplacian of

pressure (step III). This is a scalar, symmetric and pos-

itive definite equation. Then, it is very easy to solve it

using an iterative scheme (such as the conjugate gradient

method).

The big disadvantage of the Lagrangian formulation

is the permanent updating of the node positions. That is

the reason why standard finite element methods are not

useful, as the process of updating conforming non-

structured finite element meshes is expensive.

The key of the Lagrangian formulation is the effi-

ciency in the mesh updating process. In a previous paper

[11], the authors evaluated the use of a meshless method

for this purpose. In [11] a meshless method based in

point collocation was used. This introduces some diffi-

culty in prescribing the boundary conditions.

Other meshless methods as the element free Galerkin

method (EFGM) [5] or the natural element method

(NEM) [19] have difficulties to solve arbitrary point

distributions in a 3-D domain due to the complicated

shape functions used.
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In this paper, the MFEM proposed in Ref. [12] will

be used. The method is summarized in Appendix A.

The big advantage of the MFEM compared with the

FEM is the possibility of generating meshes in a com-

puting time of order n, being n the total number of nodes
[14]. Compared with EFGM or NEM, the advantages

are the simplicity of the shape functions, which are co-

incident with the FEM shape functions in most parts of

the domain.

Using the MFEM, the unknown functions are ap-

proximated using an equal order interpolation for all

variables as (in matrix form)

ui ¼ NTi U ¼
NT

NT

NT

2
4

3
5U ð22Þ

p ¼ NTp P ¼ NTP ð23Þ

q ¼ NTq q ¼ NTq ð24Þ

where NT are the MFEM shape functions and U , P , q
the nodal values of the three components of the un-

known velocity, the pressure and the density respec-

tively.

Using the Galerkin weighted residual method to

solve Eqs. (12), (13) and (21) with boundary condi-

tions (8)–(10) the following integral equations can be

written

ðAÞ
Z
V
Ni ðu�i



� uni Þ
q
Dt

� fiq þ o

oxi
cpn � l

osnij
oxj

�
dV

�
Z

Cr

Nið�rrn
ni � ðsnijmj � cpnmiÞdC ¼ 0 ð25Þ

ðBÞ
Z
V
Np

q0 � qn

Dt2



þ q

Dt
o

oxi
u�i �

o2

ox2i
ðpnþ1 � cpnÞ

�
dV

þ q
Dt

Z
Cu
Npð�uunþ1i mi � unþ1i miÞdC ¼ 0 ð26Þ

ðCÞ
Z
V
Ni ðunþ1i



� u�i Þ

q
Dt

þ o

oxi
ðpnþ1 � cpn

�
dV

�
Z

Cr

Niðpnþ1 � cpnÞmi dC ¼ 0 ð27Þ

where the boundary conditions have been also split.

Integrating by parts some of the terms, the above

equations become

ðAÞ
Z
V
Niðu�i � uni � fiDtÞ

q
Dt
dV þ

Z
V
Ni

o

oxi
cpn

þ l
Z
V

oNi

oxi

ouni
oxi
dV �

Z
Cr

Ni�rr
n
ni dC ¼ 0 ð28Þ

ðBÞ 1

Dt2

Z
V
Npðq0 � qnÞdV

�
Z
V

oNp

oxi

q
Dt

u�i

�
� oðpnþ1 � cpnÞ

oxi

�
dV

þ q
Dt

Z
Cu

Np�uunþ1n dC ¼ 0 ð29Þ

ðCÞ
Z
V
Ni ðunþ1i



� u�i Þ

q
Dt

þ o

oxi
ðpnþ1 � cpnÞ

�
dV

�
Z

Cr

Niðpnþ1 � cpnÞdC ¼ 0 ð30Þ

It must be noted than the essential and natural bound-

ary conditions of equations (29) are

p ¼ 0 on Cr ð31Þ

�uunþ1 	 m ¼ 0 on Cu ð32Þ

Discrete equations

Using the approximations (22)–(24) the discrete

equations become:

ðAÞ
Z
V
NiNTi dVU

�
i ¼

Z
V
NiNTi dVU

n
i þ Dt

Z
V
Nifi dV

� cDt
q

Z
V
Ni

oNTp
oxi

dVPn

� Dtl
q

Z
V

oNi

oxi

oNTi
oxi

dVUn
i

þ Dt
q

Z
Cr

Nirn
n dC ð33Þ

In compact form

ðAÞ MuU
� ¼ MuU

n þ Dt F � cDt
q

BTPn � Dtl
q

KUn

ð34Þ

In the same way

ðBÞ 1

Dt2

Z
V
NpNTp dV q0

�
�
Z
V
NpNTq dV qn

�

� q
Dt

Z
V

oNp

oxi
NTi

� �
dVU � þ q

Dt

Z
Cu

Np�uunþ1n dC

¼ �
Z
V

oNp

oxi

oNTp
oxi

 !
dV ðPnþ1 � cPnÞ ð35Þ

In compact form

ðBÞ �
Mpðq0 � qnÞ

Dt2
þ q

Dt
BU � � q

Dt
U
_

þ ScPn ¼ SPnþ1

ð36Þ
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and

ðCÞ
Z
V
NiNTi dVU

nþ1

¼
Z
V
NiNTi dVU

� � Dt
q

Z
V
Ni

oNTp
oxi

dV ðPnþ1 � cPnÞ

þ
Z

Cr

NiNTp dCðPnþ1 � cPnÞ ð37Þ

In compact form (noting that p ¼ 0 on Cr)

ðCÞ MuUnþ1 ¼ MuU � � Dt
q
BTðPnþ1 � cPnÞ ð38Þ

where the matrices are

M ¼
Mp 0 0
0 Mp 0

0 0 Mp

2
4

3
5 ð39Þ

Mp ¼
Z
V
NNT dV ð40Þ

B ¼
Z
V

oN
ox

NT
� �

dV ;
Z
V

oN
oy

NT
� �

dV ;
Z
V

oN
oz

NT
� �

dV
� �

ð41Þ

S ¼
Z
V

oN
ox

oNT

ox

�
þ oN

oy
oNT

oy
þ oN

oz
oNT

oz

�
dV ð42Þ

U
_

¼
Z

Cu

N�uunþ1n dC ð43Þ

K ¼
S 0 0

0 S 0

0 0 S

2
4

3
5 ð44Þ

F T ¼
R
V N

TfxdV ;
R
V N

Tfy dV ;
R
V N

Tfz dV
� �
þ 1

q

R
V N

Trnx dV ;
R
V N

Trny dV ;
R
V N

TrnzdV
� �

ð45Þ

6. Stabilization of the incompressibility condition

In the Eulerian form of the momentum equations,

the discrete form must be stabilized in order to avoid

numerical wiggles in the velocity and pressure results.

This is not the case in the Lagrangian formulation where

no stabilization parameter must be added in equations

(34) and (38). Nevertheless, the incompressibility con-

dition must be stabilized in equal-order approximations

to avoid possible pressure oscillations.

Then, Eq. (36) must be stabilized if smooth pressure

results are important. It must be noted than pressure

oscillations do not influence significantly in the velocity

results. Nevertheless, in most physical problems, pres-

sure is the main result to be obtained. That is why sta-

bilization of Eq. (36) must be performed.

The so-called finite calculus (FIC) formulation [20–

22] will be chosen here as the stabilization procedure.

This formulation is based in the modification of the

governing differential equations of the problem by ac-

cepting that the domain where the balance laws are es-

tablished (balance of momentum and balance of mass)

has a finite size. The modified equations in the FIC

formulation for incompressible fluids are

momentum

ri �
hk
2

ori
oxk

¼ 0 ð46Þ

mass conservation

r � hk
2

or
oxk

¼ 0 ð47Þ

where from Eqs. (1) and (2) the residuals are defined by

ri ¼ q
Dui
Dt

þ op
oxi

� osij
oxj

� qfi ð48Þ

r ¼ Dq
Dt

þ q
oui
oxi

ð49Þ

with i; k ¼ 1; nd where nd are the space dimensions of the
problem.

Eqs. (46) and (47) are completed with the boundary

and initial conditions. Note that for consistency, the

Neumann boundary condition on Cr must also be ade-

quately modified by adding a residual term. The details

can be found in [21].

The underlined terms in Eqs. (46) and (47) introduce

the necessary stabilization in the numerical solution

using whatever discretization method. Examples of the

application of the FIC approach the convection–diffu-

sion problems and incompressible problems in solids

and fluid mechanics are presented in [21,22].

Distances hi in Eqs. (46) and (47) are ‘‘characteristic
length’’ parameters and their values control the rele-

vance of the stabilization terms. The computation of the

characteristic lengths is a critical issue in the stabiliza-

tion process [20].

The new terms in the momentum and mass conser-

vation equations stabilize the numerical solution in

presence of high values of the convective terms and in-

compressibility zones, respectively. Obviously, in La-

grangian flows, as in incompressible solid mechanics

problems, the relevant stabilization term is that of Eq.

(47), as the convective terms are zero in the momentum

equations.

For the practical application of the FIC formulation

the stabilization term in the mass balance equation is

expressed as a function of the residual of the momentum

equations using Eq. (46) as
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hk
2

or
oxk

ffi
Xnd
i¼1

si
ori
oxi

ð50Þ

where si are intrinsic time parameters given by

si ¼
3h2i
8l

ð51Þ

The modified incompressibility equation is therefore

written for the numerical computations as

r �
Xnd
i¼1

si
ori
oxi

¼ 0 ð52Þ

The stabilization terms in the momentum Eq. (46) are

dropped here onwards for the numerical solution.

It is convenient to rewrite the residual ri in Eq. (48) as

ri ¼
op
oxi

þ pi ð53Þ

where pi are pressure gradient projection terms. These

terms are considered as additional nodal variables. The

necessary additional equations to match the increase in

the number of unknowns are obtained by expressing

that the residual ri as defined by Eq. (48), vanishes, in
the average sense, over each element. This can be ex-

pressed in weighted integral form asZ
V
wi

op
oxi

�
þ pi

�
dV ¼ 0 ð54Þ

where wi are appropriate weighting functions.

Discretization of the pi terms using the same MFEM

interpolation functions gives

pi ¼ NTi P ð55Þ

where P represents the local value of the three compo-

nents of the pressure gradient. Eq. (54) leads to an

equation system of the form (for wi ¼ Ni)

MP þ BTP ¼ 0 ð56Þ

Eq. (21) is now modified with the new stabilization term

as

q0 � qn

Dt2
þ q

Dt
ou�i
oxi

¼ o2

ox2i
ðpnþ1 � cpnÞ þ

Xnd
i¼1

si
Dt

ori
oxi

ð57Þ

and Eq. (26) becomes now

Z
V
Np

q0 � qn

Dt2

(
þ q

Dt
o

oxi
u�i �

o2

ox2i
ðpnþ1 � cpnÞ

�
Xnd
i¼1

si
Dt

ori
oxi

)
dV þ boundary terms ð58Þ

Integrating by parts, the equivalent to Eq. (29) is

1

Dt2

Z
V
Npðq0 � qnÞdV �

Z
V

oNp

oxi

q
Dt

u�i

(
� oðpnþ1 � cpnÞ

oxi

�
Xnd
i¼1

si
Dt

opnþ1

oxi

�
þ pnþ1

i

�)
dV þ b:t: ¼ 0 ð59Þ

Introducing the discretization of the different fields, and

using a compact notation gives

�
Mpðq0 � qnÞ

Dt2
þ q

Dt
BU � � q

Dt
U
_

þ ScPn � BsP
n

¼ ðS þ SsÞPnþ1 ð60Þ

where the new stabilization matrices Bs and Ss are de-

fined by

Bs ¼
Z
V

oN
ox

NT
� �

dV
sx
Dt

;

Z
V

oN
oy

NT
� �

dV
sy
Dt

;

�
Z
V

oN
oz

NT
� �

dV
sz
Dt

�
ð61Þ

Ss ¼
Z
V

oN
ox

oNT

ox
sx
Dt

�
þ oN

oy
oNT

oy
sy
Dt

þ oN
oz

oNT

oz
sz
Dt

�
dV

ð62Þ

Note that the effect of the stabilization terms is the ad-

dition of a new Laplacian matrix Ss and a new term in

the r.h.s. of Eq. (60) depending on the pressure gradient

projection variables pi.

The pressure gradient projection may be evaluated

explicitly using Eq. (56) by

ðDÞ Pnþ1 ¼ �M�1BTPnþ1 ð63Þ

The three steps (A)–(C) described before are now com-

pleted with a fourth step (D) where the lumped diagonal

form of matrix M may be used.

7. Mass conservation

In a Lagrangian formulation a new mesh is generated

at each time step, and all the information is transmitted

with the nodes or particles. In that way, a local variation

in the volume associated with the particles is used as the

correct volume in the next time step. A permanent up-

date of the initial volume is necessary to avoid large

error accumulation.

Thus, the correct evaluation of the first term of Eq.

(36) becomes important in a Lagrangian formulation

and will be discussed below.

The term

Mpðq0 � qnÞ ð64Þ

may be evaluated in two different ways.
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(I) Evaluation via a density update

From the mass conservation equation, the density at

time tn may be computed as

qn ¼ qn�1 � qDt
ouni
oxi

ð65Þ

Making use of the spatial discretization (22) and (24)

and the Galerkin residual method givesZ
V
NpNTp dV qn ¼

Z
V
NpNTp dV qn�1 � qDt

Z
V
Np

oNTi
oxi

dVUn

ð66Þ

Integrating by parts the last termZ
V
NpNTp dV qn ¼

Z
V
NpNTp dV qn�1 þ qDt

Z
V

oNTp
oxi

NTi dVU
n

� qDt
Z

Cu

Npunn dC ð67Þ

or in compact notation

Mpq
n ¼ Mpq

n�1 þ qDt BUn � qDtÛU ð68Þ

In order to take into account that the shape functions N
are different at each mesh update the following notation

will be used: the shape functions or the matrices evalu-

ated at the time tn will be noted by Nn
p and M

n
p . Then Eq.

(68) becomes

Mn
pq

n ¼ Mn
pq

n�1 þ qDntBnUn � qDtÛUn ð69Þ

where Dnt represents the time incremental time tn.
Then

qn ¼ qn�1 þ qDntðMn
p Þ

�1BnUn � qDtÛUn

¼ qn�1 þ Dnq ð70Þ

where the density variation has been defined by

Dnq ¼ qDntðMn
p Þ

�1BnUn � qDtÛUn ð71Þ

representing the q variation at time tn.
Successive application of Eq. (70) for all time steps

gives:

qn ¼ q0 þ
Xn
l¼1

Dlq

¼ q0 þ q
Xn
l¼1

DltðMl
pÞ

�1BlUl
n

� DltÛUl
o

ð72Þ

The term Mpðq0 � qnÞ of the r.h.s. of Eq. (36) can be
written as

Mpðq0 � qnÞ ¼ �Mp

Xn
l¼1

Dlq ð73Þ

This means that at each time step tl, the vector

Dlq ¼ q DltðMl
pÞ

�1BlUl
n

� DltÛUl
o

ð74Þ

must be evaluated, added to the previous one and stored

for the next time step.

(II) Evaluation via the initial associated volume

mass conservation impliesZ
Vðt¼0Þ

q0 dV ¼
Z
Vðt¼nÞ

qn dV ð75Þ

Using the shape functions at the corresponding time stepZ
Vðt¼0Þ

ðN 0q Þ
T
dV q0 ¼

Z
Vðt¼nÞ

ðNn
q Þ
T
dV qn ð76Þ

Defining the volume associated to each particle by

ðXnÞT ¼
Z
Vðt¼nÞ

ðNn
q Þ
T
dV ð77Þ

Eq. (76) becomes

ðX0ÞTq0 ¼ ðXnÞTqn ð78Þ

which has the meaning of the total mass conservation.

Vector Xn may be considered as the vector containing

the volumes associated to each particle. It may be cal-

culated using (77) or using the Vorono€ıı diagram of the
node distribution.

The concept of local mass conservation may be used

next. This means that each particle (node) conserves his

own local mass, i.e.

X0i q
0
i ¼ Xn

i q
n
i ð79Þ

The term Mpðq0 � qnÞ may be written as

Xnðq0 � qnÞ ¼ Xnq0 � X0q0 ¼ q0ðXn � X0Þ ð80Þ

where X0 and Xn represent a diagonal matrix with the

volume associated to each particle at time t ¼ t0 and
t ¼ tn, respectively.
These matrices may be evaluated using the lumped

matrices M0
q and Mn

q or directly using the associated

volume to each particle obtained from a Vorono€ıı dia-
gram.

8. Boundary surfaces

One of the main problems in mesh generation is the

correct definition of the boundary domain. Sometimes,

boundary nodes are explicitly defined as special nodes,

which are different from internal nodes. In other cases,

the total set of nodes is the only information available

and the algorithm must recognize the boundary nodes.

Such is the case in the Lagrangian formulation in which,

at each time step, a new node distribution is obtained

S.R. Idelsohn et al. / Computers and Structures 81 (2003) 655–671 661



and the boundary-surface must be recognized from the

node positions.

The use of the MFEM with the extended Delaunay

partition makes it easier to recognize boundary nodes.

Considering that the node follows a variable hðxÞ
distribution, where hðxÞ is the minimum distance be-

tween two nodes, the following criterion has been used.

All nodes on an empty sphere with a radius rðxÞ
bigger than ahðxÞ, are considered as boundary nodes.
Thus, a is a parameter close to, but greater than one.

Note that this criterion is coincident with the alpha-

shape concept [13].

Once a decision has been made concerning which of

the nodes are on the boundaries, the boundary surface

must be defined. It is well known that in 3-D problems

the surface fitting a number of nodes is not unique. For

instance, four boundary nodes on the same sphere may

define two different boundary surfaces, a concave one

and convex one.

In this work, the boundary surface is defined with all

the polyhedral surfaces having all their nodes on the

boundary and belonging to just one polyhedron. See

Ref. [12].

The correct boundary surface may be important to

define the correct normal external to the surface. Fur-

thermore; in weak forms (Galerkin) a correct evaluation

of the volume domain is also important. Nevertheless, it

must be noted that in the criterion proposed above, the

error in the boundary surface definition is of order h.
This is the standard error of the boundary surface def-

inition in a meshless method for a given node distribu-

tion.

9. Application to fluid–structure interactions

The fluid described above will interact with structures

that are in contact with it. Three different cases of

Fig. 1. Water column collapse at different time steps.
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structures will be analyzed. In all three cases, the elastic

strains will be neglected and only rigid solid motions will

be considered.

9.1. Fixed structures

The first type of examples presented is structures in

which there is a fixed wall, for instance, the recipient in

which the fluid is contained. See Figs. 1 and 2.

This kind of structures will be analyzed by adding

fixed particles at the boundaring with velocity ui ¼ 0.
These particles will be included in the computation of

equations (A) and (B) as standard nodes, but during

equation (C) the velocity will be fixed to zero.

The inclusion of fixed boundary particles is very

important to avoid contact problems. These fixed par-

ticles automatically force the fluid to remain inside a

recipient. The moving particles cannot go across the wall

due to the incompressibility condition and not to any

other restriction of velocity or displacement. This con-

dition solves the contact problems with complicated

curved structures. See for instance example 2.

9.2. Moving structures with a known velocity

The second type of FSI is between the fluid and a

moving wall of known velocity as a function of the time.

This is the case of moving recipients, moving mills, or

moving ships with prescribed velocity.

In this case, moving particles with known velocity are

introduced in the domain boundaries. Note that the

term

q
Dt

U
_

ð81Þ

with

Fig. 1 (continued)
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U
_

¼
Z

Cu

N�uunþ1n dC ð82Þ

must be added in equation (C) where �uunþ1n are the known

velocity on the boundaries. See for instance Figs. 4 and

5.

9.3. Moving structures

Finally, the case of moving rigid structures is con-

sidered. For instance, the case of a floating ship (see

keeping). In this case, the solid will be considered as a

domain with a high viscosity parameter, much higher

than the fluid domain. For practical problems a value of

104l is enough to represent a solid without introducing
numerical problems (see Figs. 5 and 6).

10. Numerical test

10.1. Water column collapse

This problem was solved by Koshizu and Oka [4]

both experimentally and numerically. It became a clas-

sical example to test the validation of the Lagrangian

formulation in fluid flows. The water is initially lo-

cated on the left supported by a removable board.

The collapse starts at time t ¼ 0, when the removable

Fig. 2. Fixed ship under external waves.
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board is slid-up. Viscosity and surface tension are ne-

glected.

Fig. 1 shows the point positions at different time

steps. The dark points represent the free-surface detected

with the alpha-shape algorithm with an alpha parameter

a ¼ 1:1. The internal points are gray and the fixed points
are black.

The water is running on the bottom wall until, near

0.3 s, it impinges on the right vertical wall. Breaking

waves appear at 0.6 s. Around 1 s, the water reaches the

left wall. Agreement with the experimental results of

Ref. [4] both in the shape of the free surface as well as in

the time development are excellent.

10.2. Fixed ship under external waves

This example is a very schematic representation of a

ship when it is hit by an external wave (Fig. 2). The ship

cannot move and initially the free surface is horizontal

with a rectangle on the right wall to produce a big wave.

Fixed nodes represent the ship as well as the wall re-

cipient.

The example was created in order to test the suit-

ability of the method to solve contact problems with

curved walls correctly. It is interesting to see the crash of

the waves under the ship prow and the rebound of the

wave on 3.15 s. It is also interesting to see the different

Fig. 3. Moving ship with known velocity.
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contact walls with the internal and external ship surfaces

and the moving free surface at the bottom of the ship.

10.3. Moving ship with known velocity

In this case (Fig. 3), the same ship of the previous

example is now moving at a fixed velocity. All the nodes

representing the ship have an imposed velocity. The free

surface, which was initially horizontal, takes a correct

position at the bottom of the ship, and again, the correct

contact problem is realistically solved in the curved

prow.

10.4. Rotating water mill

A schematic representation of a water mill is pre-

sented in Fig. 4. The blades of the mill have an imposed

rotating velocity, while the water is initially in a sta-

tionary and flat position. Fluid structure interactions

with free-surfaces and fragmentation are well repro-

duced in this example.

10.5. Solid falling into a recipient with water

In this example the fluid is interacting with a solid

that is totally free, without any imposed velocity. Fig. 5

represents a free cube falling down into a recipient full of

water. The solid cube was modeled by introducing a

high viscosity parameter in the element in the following

way: all the polyhedral elements formed by nodes con-

tained in the solid have a high viscosity value. The other

elements are inviscid.

The example represents correctly the contact problem

when the cube hits the water and also the different speed

during the falling process.

10.6. Solid floating on a free surface

The last example of Fig. 6 represents a very inter-

esting problem of fluid structure interaction when there

is a weak interaction between the fluid and a large rigid

deformation of the structure. In this case, there is also a

free-surface problem, representing a schematic case of

see-keeping in ship hydrodynamics.

The example shows an initially stationary recipient

with a floating piece of wood in which a wave is pro-

duced on the left side. The wave intercepts the wood

piece producing a breaking wave and moving the float-

ing wood.

All the previous examples are only schematic repre-

sentations of real problems. Only the first example has

an experimental reference. The rest are presented here in

order to evaluate the suitability of the method to solve

problems other methods have difficulties to solve.

Fig. 4. Rotating water mill.
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11. Conclusions

Lagrangian formulation and the MFEM are an ex-

cellent combination to solve fluid mechanic problems,

especially FSI with moving free-surface and contact

problems.

Breaking waves, collapse problems, and contact

problems can be solved easily without any additional

constraint.

Furthermore, the MFEM presented, as opposed to

other methods, has the advantages of a good meshless

method concerning the easy introduction of the

nodes connectivity in a bounded time of order n.
The method proposed also shares some advantages with

the FEM such as: (a) the simplicity of the shape func-

tions, (b) C0 continuity between elements, (c) an easy

introduction of the boundary conditions, and (d) sym-

metric matrices.

The FIC formulation can be successfully used in a

Lagrangian formulation in order to eliminate spurious

pressure oscillations.

Both the Lagrangian formulation and the MFEM

are the key ingredients to solve FSI problems including

with free-surface, breaking waves and collapse situations.

Appendix A

All the shape functions Ni described in this paper are

based on the MFEM. A full description of the MFEM

may be found in Ref. [12]. Nevertheless and for the sake

of completeness a summary is presented in this appendix.

Fig. 5. Solid cube falling into a recipient with water.
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The MFEM combines a particular finite element

subdivision in polyhedral shape called the EDT and ad

hoc shape functions for this kind of polyhedra.

A.1. The extended Delaunay tessellation (EDT)

Let a set of distinct nodes be: N ¼ fn1; n2; n3; . . . ; nng
in R3.

(a) The Vorono€ıı diagram of the set N is a partition of R3

into regions Vi (closed and convex, or unbounded),
where each region Vi is associated with a node ni,

such that any point in Vi is closer to ni (nearest

neighbor) than to any other node ni. See Fig. 7 for

a 2-D representation. There is a single Vorono€ıı dia-
gram for each set N.

(b) A Vorono€ıı sphere within the set N is any sphere, de-
fined by four or more nodes, that contains no other

node inside. Such spheres are also known as empty

circumspheres.

(c) A Delaunay tessellation within the set N is a partition

of the convex hull of all the nodes into regions Xi

such that X ¼ UXi, where each Xi is the tetrahedron

defined by four nodes of the same Vorono€ıı sphere.
Delaunay tessellations of a set N are not unique,

but each tessellation is the dual of the single Vorono€ıı
diagram of the set.

Fig. 6. Solid floating on a free surface.
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The computing time required for evaluation of all

these three entities is of order na with a6 1:333. Using a
very simple bin organization, the computation time may

be reduced to a simple order n.
As stated above, the Delaunay tessellation of a set of

nodes is non-unique. For the same node distribution,

different triangulations (actually tetrahedrations, as it

refers to 3-D) are possible. Therefore, an interpolation

based on the Delaunay tessellation is sensitive to geo-

metric perturbations of the position of the nodes. On the

other hand, its dual, the Vorono€ıı diagram, is unique.
Thus, it makes more sense to define meshless shape

functions based on the unique Vorono€ıı diagram than on
Delaunay tessellations. Furthermore, in 3-D problems

the Delaunay tessellation may generate several tetrahe-

dra of zero or almost zero volume, which introduces

large inaccuracies into the shape function derivatives.

The time to obtain a good mesh via a Delaunay tessel-

lation becomes then an unbounded iterative operation.

These drawbacks appear in the so-called ‘‘degener-

ated case’’, which is the case where more than four nodes

(or more than three nodes in a 2-D problem) are on the

same empty sphere. For instance, when five nodes are on

the same sphere, five tetrahedra may be defined satisfy-

ing the Delaunay criterion, but some of them may have

zero or almost zero volumes, called slivers, as seen in

Fig. 8:

In order to overcome above drawbacks, a generali-

zation of the Delaunay tessellation will be defined.

Definition. The extended Delaunay tessellation within

the set N is the unique partition of the convex hull X of
all the nodes into regions Xi such that X ¼ UXi, where

each Xi is the polyhedron defined by all the nodes laying

on the same Vorono€ıı sphere.
The main difference between the traditional Dela-

unay tessellation and the EDT is that, in the latter, all

the nodes belonging to the same Vorono€ıı sphere define a
unique polyhedron. With this definition, the domain X is
divided into tetrahedra and other polyhedra, which are

unique for a set of node distributions. Fig. 9 for in-

stance, is a 2-D polygon partition with a triangle, a

quadrangle and a pentagon. Fig. 10 is a classical eight-

node polyhedron with all the nodes on the same sphere.

For non-uniform node distributions, considering in-

finite precision, only four nodes are necessary to define a

sphere. Other nodes close to the sphere may define other

spheres very close to the previous one. In order to avoid

this situation, which may hide polyhedra with more than

four nodes, a parameter d will be introduced. In such a
way, the polyhedra are defined by all the nodes of the

same sphere and nearby spheres with a distance between

center points smaller than d.
The parameter d avoids generating zero volume or

near zero volume tetrahedra. When d is large, the

number of polyhedra with more than four nodes

Fig. 7. Vorono€ıı diagram, Vorono€ıı circle and Delaunay trian-
gulation for a four nodes distribution in 2-D.

Fig. 8. Five nodes on the same sphere and possible zero or

almost zero volume tetrahedron (sliver) on the right.

Fig. 9. Two-dimensional partition in polygons. The triangle,

the quadrangle and the pentagon are each inscribed on a circle.

Fig. 10. Eight-node polyhedron. All nodes are on the same

sphere.
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increases, and the number of tetrahedra with near zero

volume decreases, and vice versa.

The EDT leads to a domain partition which (a) is

unique for a set of node distributions; (b) is formed by

polyhedra with no zero volume, and (c) is obtained in a

bounded time of order n. Then, it satisfies the conditions

for a meshless method.

A.2. The meshless finite element shape functions

Once the domain partition in polyhedra is defined,

shape functions must be introduced to solve a discrete

problem. In fluid and solid mechanics problems typi-

cally, C0 continuous shape functions are chosen. If
possible, shape functions must be locally supported in

order to obtain band matrices. They must also satisfy

two criteria in order to have a reasonable convergence

order, namely partition of unity and linear complete-

ness.

In order to define the shape functions inside each

polyhedron the non-Sibsonian interpolation is used [23].

Let P ¼ fn1; n2; . . . ; nmg be the set of nodes belonging
to a polyhedron. The shape function NiðxÞ correspond-
ing to the node ni at an internal point x is defined by

building first the Vorono€ıı cell corresponding to x in the

tessellation of the set P U fxg and then by computing

NiðxÞ ¼

siðxÞ
hiðxÞXm

j¼1

sjðxÞ
hjðxÞ

ðA:1Þ

where siðxÞ is the surface of the Vorono€ıı cell face cor-
responding to node the node ni and hiðxÞ is the distance
between point x and the node ni (Fig. 11).

Non-Sibsonian interpolations have the following

properties [19].

(1)

06NiðxÞ6 1 ðA:2Þ

(2)

RiNiðxÞ ¼ 1 ðA:3Þ

(3)

NiðnjÞ ¼ dij ðA:4Þ

(4)

x ¼ RiNiðxÞni ðA:5Þ

Furthermore, the particular definition of the non-

Sibsonian shape function for the limited set of nodes

on the same Vorono€ıı sphere, adds the following
properties.

(5) On a polyhedron surface, the shape functions de-

pend only on the nodes of this surface.

(6) On triangular surfaces (or in all the polygon bound-

aries in 2-D), the shape functions are linear.

(7) If the polyhedron is a tetrahedron (or a triangle in 2-

D) the shape functions are the linear finite element

shape functions.

(8) Due to property 5, the shape functions have C0 con-
tinuity between two neighboring polyhedra. See Fig.

12.

(9) As a matter of fact, because all the element nodes are

on the same sphere, the evaluation of the shape func-

tions and its derivatives becomes very simple.

The method MFEM defined here is both a meshless

method and a FEM. The algorithm steps for the MFEM

are

(1) for a set of nodes, compute all the empty spheres

with four nodes;

(2) generate all the polyhedral elements using the nodes

belonging to each sphere and the nodes of all the co-

incident and nearby spheres;

(3) calculate the shape functions and their derivatives,

using the non-Sibsonian interpolation, at all the

Gauss points necessary to evaluate the integrals of

the weak form;

The MFEM is a truly meshless method because the

shape functions depend only on the node positions.

Furthermore, steps 1 and 2 of the node connectivity

process are bounded with n1:33, avoiding the mesh
‘‘cosmetics’’ often needed in mesh generators.

The number of Gauss points necessary to compute

the element integrals depends, to a great extent, on the

polyhedral shape of each element. Note that for an ir-

regular node distribution, there remains a significant

amount of tetrahedra (in the examples, more than 85%

of the elements remains tetrahedral) with linear shape

functions, for which only one Gauss point is enough.

For the remaining polyhedra, the integrals are per-

formed dividing them into tetrahedra and then using a

single Gauss point in each tetrahedron. This subdivision
Fig. 11. Four nodes and arbitrary internal point x Vorono€ıı
diagram. Shape function parameters.
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is only performed for the evaluation of the integrals and

cannot be considered as a tetrahedral mesh because it is

not conforming. The use of one Gauss point on each

tetrahedron guarantee that the computing time in the

evaluation of the matrices requires the same effort than

the FEM.
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