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1. Introduction

1.1. The problem

The Finite Element Method is a numerical procedure which is widely recognized in
a variety of engineering fields, such as aeronautical, biomechanical, and automotive
industries. Several modern FEM packages are available and include specific compo-
nents such as thermal, electromagnetic, fluid, and structural working environments.

On the other hand, the boundary element method (BEM) is a numerical method
that approximates solutions to boundary integral equations. Such equations provide
a well defined formulation of boundary-value problems also in different branches of
engineering, e.g. elasticity, plasticity, fracture mechanics, ground water flow, wave
propagation and electromagnetic field problems. However, commercial softwares that
are available with this method are rare and are not used as much as the FEM packages.
The problem with BEM lies on the numerical solution of this method. The main issues
are the non-symmetric, fully populated system of equations we get in collocation and
the difficulties to treat inhomogeneous and non-linear problems due to the treatment
of volume integrals that arise.

When it comes to acoustics, specifically to external problems in which the radiation
is emitted into an infinite acoustic medium, the user has to pay closely attention to
this two methods available, BEM and FEM. The most noticeable difference between
these methods concerns the discretisation. In FEM the complete domain Ω has to
be discretised, whereas in BEM discretisation is restricted to the boundary Γ = ∂Ω
(see Figure 1.1). This can lead to time savings in this kind of problems.

(a) (b)

Figure 1.1.: Discretisation of a domain with finite elements (a) and boundary elements (b)

The time domain module of “Virtual.Lab” is a new release that is only available
in the last version of this package and is lacking the theoretical background on its
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1. Introduction 2

manual. The objective of this investigation is to evaluate the utilization and liability
of the boundary element software package “Virtual.Lab” in the time domain acoustic
field by comparing the results with the finite element software package “ABAQUS ”,
which has a proven background in acoustics and a well documented manual.

The body of the investigation is divided into chapters.

• The theoretical chapter gives a general overview of the theory needed to com-
prehend the investigation.

• In the next chapter, the approach taken to perform the evaluation is explained
in detail.

• Then, the results and its analyses are contained in chapter III.

• and finally, concluding remarks and recommendations are summarized in the
last chapter.



2. Theory and Principles

2.1. Basics in Acoustics

Acoustics is the science that deals with all mechanical waves in compressible continua
including vibration, sound, ultrasound and infrasound. The audible frequency, in
which we are interested, ranges from 16 Hz to 20000 Hz. In contrast to the different
types of waves encountered in a solid body, only longitudinal waves appear in an
inviscid fluid such as a perfect gas or a compressible liquid. An introduction to
acoustic wave motion in fluids will be given in this section.

2.1.1. The Acoustic Wave Equation

The acoustic wave equation for the pressure field in a homogeneous, isotropic, and
perfectly elastic fluid, neglecting dissipative effects, is derived from the continuity
equation (2.1) and the conservation of momentum (2.2) according to Gaul, Kögl and
Wagner [5].

ρ̇+ ρ
∂vi
∂xi

= 0, (2.1)

σji,j + σbi = ρv̇i, (2.2)

Assuming small density fluctuations ρ̄ about the equilibrium density state ρ0

ρ = ρ0 + ρ̄ with ρ̄ ! ρ0, (2.3)

we can linearize (2.1), so that we obtain

˙̄ρ+ ρ0vi,i = 0, (2.4)

Since the fluid is inviscid, it does not transmit shear stresses and the stress tensor is
given by

σij = −pδij . (2.5)

From (2.1) and neglecting body forces bi, the local linearized balance of momentum
is

ρ0v̇i = −p,i. (2.6)

3



2. Theory and Principles 4

Inserting the gradient of (2.6) into the material derivative of (2.4), we obtain

p,ii − ¨̄ρ = 0. (2.7)

Then selecting ρ̄ as the independent state variable, we obtain the constitutive relation

ṗ =
∂p

∂ρ̄
˙̄ρ, (2.8)

which if inserted into (2.7), we obtain the wave equation for the pressure field

p,ii −
1

c2
p̈ = 0, (2.9)

where the acoustic wave velocity c depends on the material and is defined by

c :=

√
∂p

∂ρ̄
. (2.10)

The wave velocity equation (2.10) yields a constant if we perform a Taylor series
about the equilibrium state up to the linear term and obtain the relation between
the pressure fluctuations (or acoustic pressure) p̄ = p−p0 and the density fluctuations
ρ̄

c :=

√(
∂p

∂ρ

)

ρo

. (2.11)

Another field variable that is commonly employed in acoustics is the velocity potential
φ, which is defined as

vi = −φ,i. (2.12)

The wave equation for the velocity potential is analog to (2.9)

φ,ii −
1

c2
φ̈ = 0. (2.13)

2.1.2. Root mean square value

In general, the effective value ỹ of an arbitrary field quantity y(t+ T ) = y(t) with
the period time T is defined as

ỹ =

√√√√√ 1

T

T∫

0

y2(t)dt. (2.14)

Now if y(t) has a pure harmonic behavior with an amplitude ŷ, (2.14) yields

ỹ =
ŷ√
2
. (2.15)
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2.1.3. Acoustic Impedance

The specific acoustic impedance is defined for harmonic fluctuations as

z(x) =
p(x)

v(x)
. (2.16)

This ratio of complex numbers therefore directly quantifies the relative amplitude
and phase of the pressure and particle velocity.

Planar, single-frequency traveling waves have acoustic impedance equal to the char-
acteristic impedance.

Z0 = ρ · c. (2.17)

2.1.4. Sound Intensity

Sound waves transport energy in the form of kinetic energy of particle motion and
potential energy of elastic strain (fractional change of fluid volume). The measure
of the magnitude and direction of the local rate of energy transport is termed the
sound intensity : its symbol is I and its unit is W/m2. Considering the time averaged
acoustic intensity associated with spherical wave propagation. In three-dimensional
harmonic wave propagation of period T , the intensity is given by

I =
1

T

T/2∫

−T/2

p(t)v(t)dt, (2.18)

which is a vector quantity which depends both on the magnitude and the direction
of the velocity vector v.

2.1.5. Sound Power

The total power output P of a source is given by integrating the intensity traveling
across a surface which totally encloses the source. The sound power output unit is
W and is defined by

P =

∫

S

I · ndS, (2.19)

where n is the unit normal vector pointing outwards from the closed surface S

2.1.6. Structure-Borne Sound

Many acoustics events, such as squealing of brakes or the tone of a violin, are produced
or conducted by waves and vibrations of solids. The field of physics, which deals with
generation, propagation and radiation of oscillating motions and forces in solid bodies
is called structure-borne sound. As compared to acoustics a much greater variety of
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phenomena occurs in structure-borne sound. This is because structure-borne sound
propagates in many structures and because two generic types of waves (longitudinal
and transverse) and their combinations occur in solid bodies different from gases and
liquids where only compression waves can be found.

2.1.7. Radiation Efficiency

One of the most important parameters for the acoustic radiation from machines is the
radiation efficiency σ. The machine radiates into the air with a specific impedance
(ρ.c)air, where c is the sound velocity and ρ its density. Let the machine radiating
surface be S and ṽ2 be the square of the area-weighted surface normal velocity ṽ,
measured perpendicular to the radiating outer surface S, then we have

σ =
P

(ρc)airSṽ2
. (2.20)

If the vibrations of the source are in-phase over domains, whose dimensions are
greater than the wavelength of air, the wavelength of the radiating body is thus
greater than the wavelength of air (non-compact source), then σ ≈ 1. The condition
of σ ≤ 1 generally prevails but in certain exceptions σ ≥ 1 can be experienced when
the wavelength of the radiating body and the wavelength of air are almost equal.

2.1.8. Logarithmic ratios

In practice, the acoustics parameters can take very different orders of magnitude. For
instance, the human ear can barely perceive by a frequency of 1000 Hz an acoustic
pressure of 2 · 10−5Pa (hearing threshold level). By the same frequency with an
acoustic pressure of 20Pa initiates pain (pain threshold). The acoustic range between
the hearing- and pain threshold extends up to 6 digits. In acoustics, logarithmic ratios
are computed in order to have an easier data manipulation. According to DIN EN
21683, we have the following definitions

• Sound Power Level

LP (ν) = 10 · log10
P (ν)

Po
dB, (2.21)

where P (ν) is the acoustic power with a frequency ν and Po = 1 · 10−12W the
reference power

• Sound Pressure Level (SPL)

Lp(ν) = 10 · log10
p̄(ν)2

p2o
≡ 20 · log10

p(ν)

po
dB, (2.22)

where the field variable p(ν) is the sound pressure with a frequency ν and
po = 2 · 10−5Pa its reference value for air. For other mediums other than air
po = 1 · 10−6Pa.



2. Theory and Principles 7

• Sound Intensity Level

LI(ν) = 10 · log10
I(ν)

Io
dB, (2.23)

where I(ν) is the sound intensity with a frequency ν and Io = 1 · 10−12W/m2

its reference value.

• Velocity Level

Lv(ν) = 20 · log10
v(ν)

vo
dB, (2.24)

where the field variable v(ν) is the velocity with a frequency ν and vo = 1 · 10−9m/s
the reference value for the velocity.

2.1.9. Acoustic directivity

The directivity is a measure of the radiation pattern from a source indicating how
much of the total energy from the source is radiating in a particular direction.

2.1.10. Sommerfeld Condition

In acoustics, we need to handle frequently with the case in which our domain Ω is
infinite. In addition to the boundary conditions on the finite boundary Γ, the solution
has to fulfill regularity conditions at infinity (see Figure 2.1). This condition is derived
by enclosing the object with a sphere of radius R that creates a truncated domain Ω∞

with a boundary Γ∞. The variation of Γ∞ is assumed to be only dependent in the
radial direction and therefore we transform our wave equation (2.13) into spherical
coordinates, which yields according to Gaul, Kögl and Wagner

φ,rr +
2

r
φ,r −

1

c2
φ̈ = 0. (2.25)

Taking into account d’Alembert’s solution in 1-D we obtain a solution as

φ(r, t) = lim
R→∞

1

R

[
f(t− R

c
) + g(t+

R

c
)

]
, (2.26)

where f and g are two arbitrary functions with arguments that describe outgoing
and incoming waves respectively. Since we are considering an infinite domain, we
exclude g. Differentiating with respect to time and radius we obtain the radiation
condition (also known as the Sommerfeld’s condition) which consists of two parts,

1. First, we have

lim
R→∞

[
R(D−1

2 )(φ,R +
1

c
φ̇)

]
= 0, (2.27)

where D = 1, 2, 3 denotes the geometric dimension
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2. Secondly, the field itself must fulfil a decay condition

lim
R→∞

φ = 0, (2.28)

Figure 2.1.: Regularity condition at infinity (Gaul Kögl Wagner 2003)

2.1.11. Near Field / Far Field

In acoustics the far field is the minimum distance from where a sound source can be
seen as a source that is producing a plane wave with the sound pressure and sound
velocity in phase. In the near field this is not true and the directivity depends
on the distance as well. Other definitions of far field may use the directivity as a
definition, namely as the minimum distance where the directivity is independent of
the distance. The distance boundary between the far field (Fraunhofer zone) and
near field (Fresnel zone) is frequency-dependent.

2.2. Zero-order spherical radiator

The zeroth-order spherical radiator exhibits in the ideal case a tiny, compact
form with relatively thick walls. The volume from this sound source changes pul-
satively like a combustion engine: In the ideal case, the zeroth-order spherical radi-
ator is the simplest basic radiator. Its surface pulses in phase outwards and inwards
with the structure-borne sound velocity V s as it can be seen in Figure 2.2. The center
point of the volume M keeps its position. The radiator emits into the surrounding
medium, for instance air, spherical waves due to the ideal symmetry without any
directional characteristics with the excess pressure p and the velocity v according to
the following Equations starting from (2.6) and (2.12)

p = ρ
∂φ

∂t
= −jφ̂′wρ

r
· e−jkr · ejwt , (2.29)
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v =
∂φ

∂r
=

φ̂′

r2
(1 + jkr) · e−jkr · ejwt , (2.30)

where φ can be written in a complex form as

φ = − φ̂′

r
· e−jkr · ejwt . (2.31)

By replacing r = do/2 in (2.30), we obtain the amplitude of the potential φ̂′:

φ̂′ = V̂s
d20
4

1

1 + j πd0λ
· e+j kdo

2 , (2.32)

where, k = 2π
λ is the wavenumber of the emitted sound with a wavelength λ and a

velocity amplitude on the sphere surface of V̂s.

Figure 2.2.: Zeroth-order Monopole

Inserting (2.32) and w = 2πc/λ into (2.29) and (2.30) , we obtain

p(r, t) = −jV̂s

d0
2

r

πdo
λ

1 + j πd0λ
(ρc) · e−jk

(
r− d0

2

)

· ejwt , (2.33)

v(r, t) = V̂s

d0
2

r

1

1 + j πd0λ

(
d0
2

r
+ j

πd0
λ

)
· e−jk

(
r− d0

2

)

· ejwt . (2.34)

By replacing r = d0/2 in (2.33) and (2.34), we obtain the acoustic pressure and ve-
locity respectively. Then substituting these equations in (2.17), yields the impedance
in the surface,

ZS =
p
S

vS
= j(ρc)

πd0
λ

1 + j πd0λ
. (2.35)
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The sound power PL yields

PL = AS · IS = AS · 1
T

T∫

0

Re{p}Re{v}dt = AS · 1
2
Re{p · v∗

︸ ︷︷ ︸
IS

}, (2.36)

AS → the sphere surface,
IS → the intensity radiated in the sphere surface,
v∗ → the complex conjugated vector of the velocity v;

According to equation P = 1
2 |F̂ |2 ·Re{ 1

Z } , the sound power can be written as

PL =
1

2
AS · |p̂S |2 ·Re{ 1

Z
}. (2.37)

Replacing |p̂S |2 = v̂2S(ρc)
2

(
πd0
λ

)2

1+
(

πd0
λ

)2 ; Re{ 1
ZS

} = 1
ρc and ṽ2S = 1

2 v̂
2
S into (2.37) we have

PL = πd20ṽ
2
S(ρc)︸ ︷︷ ︸

PK

(
πd0
λ

)2

1 +
(
πd0
λ

)2 , (2.38)

where PK is the structure-borne sound power. Finally, the radiation efficiency level
for the monopole yields

σ′ = 10 log10(σ) = 10 log10





(
πd0
λ

)2

1 +
(
πd0
λ

)2



 = 10 log10

[
(d0f)

2

(
c
π

)2
+ (d0f)2

]
. (2.39)

For more information, the reader should refer to [6].

2.2.1. Physical Boundary Conditions

In order to obtain a well-posed problem, we have to prescribe initial and boundary
values on the surface of the radiator and at infinity . We consider the domain B with
boundary S, which is divided into:

• Dirichlet boundary(Sfp) where the value of acoustic pressure p is prescribed.

p = p̄, δp = 0. (2.40)
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• Neumann boundary, where the gradient ∂p
∂%n is prescribed.

∂p

∂)n
= )∇p · )n = −(ρf )̇v) · )n. (2.41)

• Robin boundary, where a linear relation between the potential and the flux
is prescribed.

∂p

∂)n
+ jwρGp = R(p), (2.42)

where R(p) is a linear boundary operator and G = 1/Z For G → 0, we obtain
the Neumann problem, for G → ∞ the Dirichlet problem is obtained. If Z
is non-zero but finite quantity, the general impedance problem results, which
describes locally reacting absorbing surfaces.

• The Fluid-Structure Interface (Sfs) where the motion of the acoustic medium
is directly coupled to the motion of a solid. On such an acoustic-structural
normal to the boundary the acoustic and structural media have the same dis-
placement normal to the boundary, but the tangential motions are uncoupled.
The directions of normals can be seen in Figure 2.3

Figure 2.3.: Definition of normals in the fluid-structure interface

)n · )uFluid = )n · )uStructure,
)n · )̇uFluid = )n · )̇uStructure,
)n · )̈uFluid = )n · )̈uStructure,

ninterface := n := nStructure := −nFluid,

)n · (ρf )̈u)Fluid = )n · (ρf )̈u)Structure. (2.43)

These formulas assure that two conditions are fulfilled in the interface. The
continuity of particle velocities and the equilibrium of reaction forces.
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• The Radiating acoustic boundary (Sfi) Often acoustic media extend suf-
ficiently far from the region of interest that they can be modeled as infinite
in extent. In such cases it is convenient to truncate the computational region
and apply a boundary condition to simulate waves passing exclusively outward
from the computational region.

)n · (ρf )̇v)Fluid =
ρf
c1

ṗ+
ρf
a1

p, (2.44)

where 1
a1

and 1
c1

are admittance parameters which are defined by

1

c1
=

[
f√
ρfKf

]
;

1

a1
= f

[
β

ρf
+

γ

2ρf
√
ρfKf

]
. (2.45)

The values of the parameters f and β vary with the geometry of the boundary
of the radiating surface of the acoustic medium.

2.3. FEM Formulation

The equilibrium equation for small motions of a compressible, adiabatic fluid with
velocity-dependent momentum losses is taken to be

∂p

∂x
+ γ(x, θi)u̇

f + ρf (x, θi)ü
f = 0. (2.46)

This is the general definition in ABAQUS [1], where

p → the excess pressure in the fluid;
x → the spatial position of the fluid particle;

u̇f → the fluid particle velocity;
üf → the fluid particle acceleration;
ρf → the density of the fluid;
γ → the "volumetric drag" (force per unit volume per velocity); and
θi → i independent field variables such as temperature, humidity of air, or

salinity of water on which ρf and γ may depend.

2.3.1. Variational statement

An equivalent weak form for the equation of motion neglecting effects of volumetric
drag γ, is derived by

1

Kf
p̈− ∂

∂x
·
(

1

ρf

∂p

∂x

)
= 0, Kf = ρf · c2 → bulk modulus (2.47)



2. Theory and Principles 13

which is derived from (2.2) and from the constitutive equation of an inviscid, linear
and compressible fluid, which is given by

p = −Kf (x, θi)
∂

∂x
· uf . (2.48)

Introducing an arbitrary variational field, δp, as a weighting function and integrating
over the fluid in a 3D-model yields

∫

VFluid

δp

[
p̈

c2
−∆p

]
dV = 0 → Weak form (2.49)

Green’s 1st identity allows this to be rewritten as
∫

VFluid

[
1

c2
p̈δp+ )∇δp · )∇p

]
dV −

∫

ΓFluid

δp()nFluid · )∇p)dΓ = 0. (2.50)

Now substituting the Neumann boundary condition, we obtain
∫

VFluid

[
1

c2
p̈δp+ )∇δp · )∇p

]
dV +

∫

ΓFluid−Neumann

δp(ρf )̇v))nFluiddΓ =0 . (2.51)

These definitions of the boundary term, )n · (ρ)̇u)Fluid, are introduced into (2.51) to
give the final variational statement for the acoustic medium (this is equivalent to the
virtual work statement for the structure):

∫

VFluid

[
δp

(
1

c2
p̈

)
+ )∇δp · )∇p

]
dV +

∫

Sfi

δp

(
ρ

c1
ṗ+

ρ

a1
p

)
dS+

+

∫

Sfs

δp · )nFluid · (ρf )̈u)StrdS = 0. (2.52)

The structural behavior is defined by the virtual work equation,
∫

V

¯̄σ : δ ¯̄εdV +

∫

V

ρs)̈uStr · δ)uStrdV −
∫

Γt

)t · δ)uStrdA+

∫

Γfs

p)n · δ)uStrdA︸ ︷︷ ︸
Coupling

= 0, (2.53)

where

σ → the stress at a point in the structure,
p → the pressure acting on the fluid-structural interface,
)n → the outward normal to the structure,
ρs → the density of the structure,

)̈uStr → the acceleration of a point in the structure,
)t → the surface traction applied to the structure,

δuStr → variational displacement field, and
δε → the strain variation that is compatible with δuStr.
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For simplicity in this equation all other loading terms except the fluid pressure and
surface traction )t have been neglected: they are imposed in the usual way.

2.3.2. Discretized Finite Element Method

Generally, an important ingredient of the fully coupled analysis is that fluid domain
can be meshed with another discretization than the one from the structure. Com-
pletely different meshes are thus usually employed for the fluid and the structure, and
they must be able to transmit only normal traction. The tangential traction is set to
zero. Although the meshes may be nodally nonconforming at the tied surfaces, mesh
refinement affects the accuracy of the coupled solution. In acoustic-solid problems
the mesh refinement depends on the wave speeds in the two media. The mesh for the
medium with the lower wave speed should generally be more refined and, therefore,
should be the slave surface

The equations (2.52) and (2.53) define the variational problem for the coupled
fields ustr and p. The problem is discretized by introducing interpolation functions:
in the fluid p = HP pP , P = 1, 2... up to the number of pressure nodes and in
the structure ustr = NNuN , N = 1, 2... up to the number of displacement degrees
of freedom. In these and the following equations we assume summation over the
superscripts that refer to the degrees of freedom of the discretized model. We also
use the superscripts P,Q to refer to pressure degrees of freedom in the fluid and N,M
to refer to displacement degrees of freedom in the structure.

We use Galerkin method for the structural system; the variational field has the
same form as the displacement: δustr = NNδuN . For the fluid we use δp = HP δpP

but with the subsequent Petrov-Galerkin substitution

δpP =
d2

dt2
(δp̂P ).

The new function δp̂P , as explained in Abaqus Theory Manual [1], makes the single
variational equation obtained from summing (2.52) and (2.53) dimensionally consis-
tent:

− δp̂P {(MPQ
f )p̈Q + (CPQ

f + CPQ
fi )ṗQ + (KPQ

f +KPQ
fi )pQ + SPM

fs üM}

+δuN{IN +MNM üM +
[
SQN
fs

]T
pQ − PN} = 0. (2.54)

where, for simplicity, we have introduced the following definitions:
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MPQ
f =

∫

Vf

1
c2H

PHQdV, CPQ
f =

∫

Vf

γ
ρf

1
c2H

PHQdV,

CPQ
fi =

∫

Sfi

ρf
c1
HPHQdS, KPQ

f =
∫

Vf

∂HP

∂x · ∂HQ

∂x dV,

KPQ
fi =

∫

Sfrs

ρf
a1
HPHQdS, SPM

fs =
∫

Sfs

ρfHP)nFluid ·NMdS,

MNM =
∫

V

ρsNN ·NMdV, IN =
∫

V

βN : σdV,

SQN
fs =

∫

Sfs

HQ)nStructure ·NNdS, PN =
∫

St

NN · tdS,

The strain interpolator is βN . This equation defines the discretized model. We
see that the volumetric drag-related terms are “mass-like”; i.e., proportional to the
fluid element mass matrix.

In the case of coupled systems where the forces on the structure due to the fluid[
SQN
fs

]T
pQ are very small compared to the rest of the structural forces, the system

can be solved in a “sequentially coupled” manner. The structural equations can be
solved with the

[
SQN
fs

]T
pQ term omitted; i.e., in an analysis without fluid coupling.

Subsequentially, the fluid equations can be solved, with
[
SPM
fs

]
üM imposed as a

boundary condition. This two-step analysis is less expensive and advantageous for
systems such as stiff metal structures surrounded by air.

2.3.3. Time integration

The equations are integrated through time using the standard implicit and explicit
integration dynamic integration options in ABAQUS. From the implicit integration
operator we obtain relations between the variations of the solution variables (here
represented by f) and their time derivatives:

Da
Def
=

δf̈

δf
=

δpp

δp̂p
, (2.55)

Dv
Def
=

δḟ

δf
, (2.56)

The equation of evolution of the degrees of freedom can be written for the implicit
case as

− δp̂P
1

Da
{(MPQ

f )p̈Q + (CPQ
f + CPQ

fi )ṗQ + (KPQ
f +KPQ

fi )pQ + SPM
fs üM}

+δuN{IN +MNM üM +
[
SQN
fs

]T
pQ − PN} = 0,

The linearization of this equation yields

− δp̂P {(MPQ
f ) +

Dv

Da
(CPQ

f + CPQ
fi ) +

1

Da
(KPQ

f +KPQ
fi )}dpQ + δpPSPM

fs duM

+δuN
[
SQN
fs

]T
dpQ + δuN{KNM +DaM

NM}duM = 0,
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where dp and du are the corrections to the solution obtained from the Newton itera-
tion, KNM is the structural stiffness matrix.

Applications of acoustic-fluid/structure interactions are found whenever the fluid
can be modeled to be inviscid and to undergo only relatively small particle motions.
Some examples are the analysis of pressure waves in a piping system, a fluid sloshing
in a tank, and sound waves traveling through fluid-solid media. Since the matrices
are symmetrical, fine finite-element meshes can be used, allowing detailed effects to
be simulated.

2.3.4. Eigenvalue extraction and Modal analysis

There are many areas of structural analysis in which it is essential to be able to
extract the eigenvalues of the system and, hence, obtain its natural frequencies of
vibration or investigate possible bifurcations that may be associated with kinematic
instabilities. Once the modes are available, their orthogonality property allows the
linear response of the structure to be constructed as the response of a number of
single degree of freedom systems. This opens the way to several response evaluation
methods that are computationally inexpensive and provide useful insight into the
dynamic behavior of the structure.

The mathematical eigenvalue problem is a classical field of study, and much work
has been devoted to providing eigenvalue extraction methods. The eigenvalue prob-
lems arising out of finite element models are a particular case: they involve large but
usually narrowly banded matrices, and only a small number of eigenpairs are usually
required. For many important cases the matrices are symmetric.

In general, for a damped system, excited by a force, we have

M Ü + C U̇ +K U = F , → Equation of motion (2.57)

where

M → the global mass matrix,
C → the global damping matrix,
K → the global stiffness matrix, and,
F → the global force vector,

In the study of machine acoustics, periodic procedures are of interest and hence
according to Fourier’s theorem, we may assume a pure harmonic excitation. With
this assumption, the force vector F can be expressed as

F = F̂ exp(iΩt), (2.58)

where F is a vector of the active force amplitudes in the element-nodes of the structure
and Ω is the angular frequency of excitation.

In general, the vector F̂ is assumed to be complex, since in this way, different,
arbitrary phases of the concentrated loads in the Element nodes are permitted. The
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expression for the required vector of nodal deflections is given by

U = Ûexp(iΩt). (2.59)

Substituting (2.58) and (2.59) in (2.57) yields

−Ω2M Û + iΩC Û +K Û = F̂ . (2.60)

A direct solution of the complex system of equations is computationally very expen-
sive. Hence, for the determination of stationary, forced vibrations, we often adopt
the method of mathematical Modal Analysis. Generally, Modal Analysis is defined
as a method, which by means of a mathematical or experimental way, enables the
determination of an approximation of the Eigenfunctions of a continuous oscillator.
These approximations are known as the Eigenforms or the Modes. Now, by means
of the mathematical Modal Analysis, we shall solve the general Eigenvalue problem
for an undamped system with F = 0,

(K − w2
iM)Φi = 0, 1 ≤ i ≤ nmod, (2.61)

where
nmod, → the number of eigenvalues of the undamped system,

wi → the eigenvalues, and,
Φi → the eigenvectors of the corresponding modes,

Since the

stiffness- and mass matrices are positive-semi-definite and positive-definite respec-
tively, it shows that the eigenvalues, w2

i , are positive. The values of wi are hence
real.

The number of modes determined, nmod and the corresponding eigenvalues are in
general much smaller than the number of global degrees of freedom, Nf (nmod <<
Nf ), since the complete calculation of all Nf modes and the corresponding eigenvalues
is numerically very expensive.

After the determination of the modes Φi and the corresponding Eigenvalues w2
i of

the general eigenvalue problem, we can now proceed to the method of mathematical
Modal analysis. For this, all the nmod determined modes Φi are combined in a
(Nf , nmod) matrix.

Φ =
[
Φ1 Φ2 . . . Φi . . . Φnmode

]
, (2.62)

Thereafter, the modal degrees of freedom or the general modal co-ordinates are
introduced by the following modal transfomation,

Φ X̂ := Û , (2.63)

Since Φ is a (Nf , nmod)-matrix, the above transformation builds a nmod-rows vector
X̂. The number of components in the vector X̂ is equal to the number of modes or
eigenvalues that are determined by the general eigenvalue problem. Furthermore, the
Eigenvalues are arranged in the form of a diagonal matrix,

w2 := diag
[
w2
i

]
, i = 1, 2, 3...nmod, (2.64)
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Correspondingly, Ω2 is also a diagonal matrix, whose diagonal is occupied nmod times
with the square of the angular excitation frequency Ω2. Next, the product of all the
damping coefficients and the corresponding angular eigenfrequencies are arranged in
a nmod-diagonal matrix

ξw := diag [ξiwi] (2.65)

Inserting (2.63) in (2.60) and multiplying with the matrix ΦT , we obtain the equation
in the following form,

(
−Ω2ΦTM Φ+ iΩΦTC Φ+ ΦTK Φ

)
X̂ = R̂, (2.66)

where

ΦTM φ → (nmod, nmod)diagonalized nodal mass matrix,
ΦTC Φ → (nmod, nmod)diagonalized nodal damping matrix,
ΦTK Φ → (nmod, nmod)diagonalized nodal stiffness matrix, and

R̂ → the vector of the nodal force.

Finally, the modified-force vector is introduced,

R̂ = ΦT F̂ , (2.67)

which reduces the Nf components of the force-amplitude-vector f̂ to nmod general
forces, which are summarized in the vector R̂.

Thus, from the known vector R̂ of nodal forces, and the matrix Φ of the modes,
we can calculate the vector X̂ of nodal displacements.

2.3.5. Submodeling

Submodeling is the technique of studying a local part of a model with a refined
mesh, based on interpolation of the solution from an initial, global model onto ap-
propriate parts of the boundary of the submodel. The global model is the model
whose solution is interpolated onto the relevant parts of the boundary of the sub-
model. The Driven variables are defined as those variables in the submodel that
are constrained to match results from the global model. This method is most useful
when it is necessary to obtain an accurate, detailed solution in the local region and
the detailed modeling of that local region has negligible effect on the overall solution
Two forms of the submodeling technique are available in Abaqus.

• Node-based submodeling : transfers node-located solution variables, most com-
monly displacements, from global model nodes to submodel nodes.

• Surface-based submodeling : uses the stress field to interpolate global model
results onto the submodel integration points.
In Abaqus the node-based submodeling technique can be used to analyze an
acoustic model driven by displacements from a structural, global model when
the acoustic fluid has negligible effect on the structural solution.
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2.3.6. TIE - Fluid-Structure Interaction

A surfaced-based tie constraint in ABAQUS [1] ties two surfaces together for the
duration of the simulation. This constraint can be used to make translational and
rotational motions as well as all other active degrees of freedom equal for a pair
of surfaces. One surface in the constraint is designated to be the slave surface; the
other surface is the master surface. By default, nodes are tied only where the surfaces
are close to one another. In the case of structural-acoustic constraints appropriate
relations between the acoustic pressure on the fluid surface and displacements on
the solid surface are formed internally. The displacements and/or pressure degrees
of freedom on the surfaces are the only ones affected; rotations are ignored by the
tie constraint in this case. The way of handling the degrees of freedom is different
depending on which surface is the master and which one is the slave.

• If the fluid medium surface is designated as the slave, we constrain values
at each fluid node to be an average of the values at nearby master surface
nodes. The condition is enforced at the slave nodes, resulting in displacement
degrees of freedom added to the fluid slave surface. These slave displacements
are constrained by the master displacements and thereby eliminated. The slave
pressures are not constrained directly.

• On the other hand, if the solid medium surface is designated as the slave, the
values on this surface are constrained to equal the values interpolated from the
master surface. The fluid-solid coupling condition is again enforced at the slave
nodes, resulting in acoustic pressure degrees of freedom added to the solid slave
surface. These slave pressures are constrained by the master surface acoustic
pressures and eliminated. The slave displacements are not constrained directly.

This behavior is summarized in Table (2.1)

Table 2.1.: Possible Slave-Master surfaces pairings

Slave Surface Master Surface Degrees of freedom tied
Acoustic Stress Translations
Stress Acoustic Acoustic Pressure

2.4. BEM Formulation

The boundary element method in acoustics is a numerical technique for calculating
the sound radiated by a vibrating body or for predicting the sound field inside of a
cavity such as a vehicle interior. The BEM is becoming a popular numerical technique
for acoustical modeling in industry. The major advantage of this method is that only
the boundary surface (e.g., the exterior of the vibrating body) needs to be modeled
with a mesh of elements. Besides, for infinite-domain problems, such as radiation from
a vibrating structure, the so-called Sommerfeld radiation condition is automatically
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fulfilled. In other words, there is no need to create a mesh to approximate this
radiation condition as in FEM. A typical BEM input file consists of a surface, the
fluid density, speed of sound, and frequency. The output of the BEM includes the
sound pressure distribution on the surface of the body and at other points in the
field, the sound intensity, and the sound power.

The BEM is a relatively new tool compared to other acoustic analysis techniques
such as the FEM. Much progress has been made in enhancing and tailoring the
BEM for acoustics. Similar to the FEM, however, it is computationally and memory
intensive, perhaps more so for certain applications.

2.4.1. Direct and Indirect BEM

The Direct BEM is ruled by the Direct Boundary Integral Formulation. The DBEM
relates the pressure at any point of an acoustic field to the pressure and normal
velocity distribution on the closed boundary surface of the acoustic domain. The
term “direct” indicates that the boundary variables already mentioned have a direct
physical meaning. When using this method, a distinction between an interior and
exterior problem has to be made.

On the other hand, the Indirect BEM is ruled by the Indirect Boundary Integral
Formulation. The IBEM works with sources from which the direct variables have to
be concluded

∫
Φ(x, ξ)q(x)dΓ

︸ ︷︷ ︸
Single layer potential

∫
∂Φ

∂n
p(x)dΓ

︸ ︷︷ ︸
Double layer potential

. (2.68)

The term “indirect” indicates that these boundary variables have an indirect physical
meaning. The single layer potential function can be regarded as a distribution of
monopole sources on the boundary surface while the double layer potential function
as one of dipole sources.

The indirect approach is the one used in this study since in the transient acoustics
in Virtual.Lab it is the only option available.

2.4.2. Hybrid Displacement Boundary Element Method

The Hybrid Displacement Boundary Element Method (HDBEM) for the time do-
main leads to symmetric systems of equations with time-invariant mass and stiffness
matrices [5]. The HDBEM formulation for the fluid domain is derived from Hamil-
ton’s Principle, which is derived at the same time from the principle of Lagrange-
d’Alembert, stating that the solution of a boundary value problem is characterized
by stationarity of the time integral over the Lagrangian function given for a com-
pressible fluid in the domain Ω with boundary Γ. The generalized functional used
in the HDBEM consists of terms for the kinetic and potential energy, a work term
leading to the Neumann boundary condition, and the continuity term of the domain
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and boundary variables:

HHD(φ, φ̃,λ) =

t1∫

t0




1

2

∫

Ω

ρ0(φ,iφ,i −
1

c2
φ̇φ̇)dΩ−

∫

Γψ

ρ0ψ̄φ̃dΓ+

∫

Γ

λ(φ̃− φ)dΓ



 dt,

(2.69)

with the subsidiary Dirichlet condition

φ̃ = φ̄ on Γφ, (2.70)

where,

φ → the velocity potential in the domain,
φ̃ → the velocity potential in the boundary,
φ̄ → the dirichlet boundary condition for the velocity potential,
λ → the Lagrange multiplier,
ψ̄ → the Neumann boundary condition for the flux, and
ρ0 → the equilibrium density

Performing the first variation of the kinetic energy term and applying the Gauß’
theorem, yields:

1

2
δ

t1∫

t0

∫

Ω

ρ0φ,iφ,idΩdt =

t1∫

t0

∫

Ω

ρ0φ,iδ(φ,i)dΩdt

=

t1∫

t0




∫

Γ

ρ0φ,iniδφdΓ−
∫

Ω

ρ0φ,iiδφdΩ



 dt, (2.71)

Now, applying the first variation for the potential energy term and taking into account
that the variation at the time boundaries vanishes, δφ(tp) = δφ(t1) = 0, we have:

1

2
δ

t1∫

to

∫

Ω

ρ0
c2

φ̇φ̇dΩdt =

t1∫

to

∫

Ω

ρ0
c2

φ̇δφ̇dΩdt = −
t1∫

to

∫

Ω

ρ0
c2

φ̈δφdΩdt, (2.72)

Provided that the variation on the adjoint boundaries vanish, δφ = 0 on Γφ and
δψ = 0 on Γψ, the first variation of the whole functional reads

δHHD =

t1∫

t0

[
−
∫

Ω

ρ0(φ,ii −
1

c2
φ̈)δφdΩ+

∫

Γ

(ρ0ψ − λ)δφdΓ+

∫

Γψ

(−ρ0ψ̄ + λ)δφ̃dΓ+

∫

Γ

(φ̃− φ)δλdΓ

]
dt = 0. (2.73)
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The Lagrange multiplier can be identified as

λ ≡ ρ0ψ̃. (2.74)

Then, the domain variables are approximated by:

φ(x, t) =
N∑

n=1

φ∗
n(x, ξ)γn(t), (2.75)

ψ(x, t) =
N∑

n=1

ψ∗
n(x, ξ)γn(t), (2.76)

where, φ∗
n(x, ξ) and ψ∗

n(x, ξ) are spatial fundamental solutions that are weighted
by the time dependent parameter γn(t). The node points ξ(n), n = 1, ..., N are
collocated at the nodes of the boundary discretisation, since this provides an easier
way to couple another domain discretised with the FEM. γn(t) are unknowns, and
the static fundamental solutions are singular solutions of Laplace’s equation with a
Dirac distribution as the right hand side:

φ,ii(x, ξ) = −δ(x, ξ), (2.77)

(2.75) and (2.76) can be written in matrix notation as:

φ(x, t) = Φ
T
(x, ξ)γ

n
(t), (2.78)

Ψ(x, t) = Ψ
T
(x, ξ)γ

n
(t), (2.79)

where φ∗ and ψ∗ contain the static fundamental solutions and their normal deriva-
tives. The potential φ̃ and velocity fields ψ̃ on the boundary are approximated by the
same shape functions in the matrix Φ and the corresponding time-dependent nodal
vectors φ̌(t) and ψ̌(t):

φ̃(x, t) = ΦT (x)φ̌(t), (2.80)

ψ̃(x, t) = ΦT (x)ψ̌(t). (2.81)

Replacing (2.78) and (2.81) in (2.73), yields:

δHHD =

t1∫

t0

ρ0

[
−δγT

∫

Ω

φ∗
,iiφ

∗T dΩγ + δγT
∫

Ω

1

c2
φ∗φ∗T dΩγ̈ +

+δγT
∫

Γ

φ∗ψ∗T dΓγ − δγT
∫

Γ

φ∗ΦTdΓψ̌ − δφ̌T
∫

Γψ

Φψ̄dΓ+

+δψ̌T
∫

Γψ

ΦΦTdΓψ̌ + δψ̌T
∫

Γ

ΦΦTdΓφ̌− δφ̌T
∫

Γ

Φφ∗T dΓγ

]
dt = 0. (2.82)
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Here, Φ and Ψ have weak and strong singularities. To avoid these singularities at
the load points ξ(i), they are excluded from the domain by spheres (3D) or circles
(2D) of radius ε, see Figure 2.4. A modified domain Ω′ with boundary Γ′ is obtained.
To retrieve the original domain, a limit process for ε is carried out

lim
ε→0

Ω′ = Ω and lim
ε→0

Γ′ = Γ.

Figure 2.4.: Domain modification in the Hybrid BEM

To eliminate the first two terms (domain integrals) we use first the following domain
approximation by modificating the boundary and excluding the load points ξ(i):

lim
ε→0

∫

Ω′

ρ0 φ∗
n,jj︸︷︷︸

δn(x,ξ)

φ∗
mdΩγm = 0. (2.83)

Then we assume that we are working with a harmonic differential operator (φ∗
,ii = 0)

and define a function v∗

v∗,ii(x, ξ) + φ∗(x, ξ) = 0, (2.84)

and by deriving the weak form of this function with the weighting function φ∗(x, ξ),
we obtain the Green’s formula

∫

Ω

(v∗,ii + φ∗)φ∗dΩ =

∫

Γ

(
∂c∗

∂n
φ∗ − v∗

∂φ∗

∂n

)
+

+

∫

Ω

(v∗φ∗
,ii + φ∗φ∗)dΩ. (2.85)
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Finally we obtain the boundary integral formulation,

δHHD =

t1∫

t0

ρ0

[
δγT

(∫

Γ

1

c2

(
v∗ψ∗T − ∂v∗

∂n
φ∗T

)
dΓγ̈ +

+

∫

Γ

φ∗ψ∗T dΓγ −
∫

Γ

φ∗ΦTdΓψ̌

)
−

−δφ̌T

(∫

Γψ

Φψ̄dΓ− δψ̌T
∫

Γψ

ΦΦTdΓψ̌

)
+

+δψ̌T

(∫

Γ

ΦΦTdΓφ̌−
∫

Γ

Φφ∗T dΓγ

)]
dt = 0, (2.86)

where the vector v∗ contains the function v∗(x, ξ(i)) with i = 1, 2, . . . , N . For 3-D
problems, this yields

v∗ = −r(x, ξ)

8π
,

∂v∗

∂n
= − 1

8π

∂r(x, ξ)

∂n
. (2.87)

Taking the following brief notation

N = lim
ε→0

∫

Γ‘

1

c2

(
v∗ψ∗T − ∂v∗

∂n
φ∗T

)
dΓ, (2.88)

F = lim
ε→0

∫

Γ‘

φ∗ψ∗T dΓ, G = limε→0
∫

Γ‘

φ∗Φ∗T dΓ, (2.89)

L = lim
ε→0

∫

Γ

ΦΦTdΓ, f =
∫

Γψ

Φ ψ̄dΓ, (2.90)

by introducing the equations (2.88), (2.89) and (2.90) in (2.86), the principle is ex-
pressed as

δHHD(φ, φ̃, ψ̃) =

t1∫

t0

ρ0

[
δγT (Nγ̈ + Fγ −Gψ̌) +

+ δψ̌T (LT ψ̌ − f) +

+ δφ̌T (LT φ̌−GTγ)

]
dt = 0. (2.91)

The application of the fundamental lemma yields three matrix equations,

N γ̈ + F γ −G ψ̌ = 0 on Γ, (2.92)

LTψ̌ − f = 0 on Γψ, (2.93)

L φ̌−GTγ = 0 on Γ, (2.94)
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From (2.94), it can be obtained the relation between the generalized loads γ and the
nodal potentials φ. Since the matrices are time-invariant, the second time derivative
is

L ¨̌φ−GTγ̈ = 0, (2.95)

Solving (2.94) and (2.95) for γ and γ̈, respectively, yields relations for the generalized
loads and their second time derivative as

γ = (GT)−1L φ̌ = R φ̌; γ̈ = R ¨̌φ. (2.96)

Inserting the last two equations into (2.92) , solving for ψ̌ and inserting in (2.93)
leads to the equation of motion

M¨̌φ+K φ̌ = f , (2.97)

with the symmetric and positive-definite mass matrix

M = LTG−1N(G−1)TL = RTNR, (2.98)

and the symmetric stiffness matrix

K = LTG−1F(G−1)TL = RTFR. (2.99)

As stated in [5] the main diagonal of the matrix F is hypersingular and can be com-
puted by assuming a constant potential distribution. By taking the first derivative
of (2.97), we can obtain a pressure-flux (p, q = ∂p

∂n) formulation,

M¨̌p+Kp̌ = q with q = ρ0ḟ . (2.100)

This formulation can be extended to analyze problems with acoustic fluid-structure
interaction in the time domain as explained by Gaul, Kögl and Wagner (2003). It is
important to remark that due to the lack of information on the Virtual.Lab manual
this method is explained and recommended because of the advantages that will be
explained in the following section, i.e. it is not implied that Virtual.Lab uses this
method to solve acoustics problems in the time-domain.

Hybrid Displacement acoustic example

A 2-D steady-state acoustic example in a rectangular domain is performed in order
to prove the advantages of the Hybrid Displacement Boundary Element Method over
the Direct BEM. But first an analytical solution will be sought.

For the time-harmonic behavior the pressure p in an acoustic field is governed by
the Helmholtz equation

∆2p(x) + κ2p(x) = 0, where κ = w/c. (2.101)
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Figure 2.5.: Example of acoustics for the HDBEM

The acoustic flux q on the boundary is prescribed as

q(x) :=
∂p(x)

∂n
, x ε Γ. (2.102)

In some applications like in the acoustics of a ship hull, the Helmholtz equation
fades into a Laplace’s equation by considering high sound velocities c and low fre-
quencies of excitation w. In this way the wave number κ → 0.

As shown in Figure 2.5 the domain of the problem has a ratio of 2:1. At the
horizontal boundaries y = const the acoustic pressures p = p̄ are prescribed, while
at the vertical boundaries the acoustic fluxes vanish.

In this example, our Laplace equation only depends on y, so it yields

∆p = 0 → !
!!

∂2p

∂x2
+

∂2p

∂y2
= 0. (2.103)

Solving the previous equation

p(y) = ay + b, (2.104)

and substituting the boundary conditions into (2.104), we have

p(0) = 0 → b = 0.
p(2) = 100 → a = 50.

Replacing the value of the constants a and b into (2.104) yields

p(y) = 50y. (2.105)
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Now the acoustic flux will be

q =
∂p

∂n
= ∇p.)n = 50)ey.)n. (2.106)

Imposing the boundary conditions to obtain the expression for acoustic flux, we have

q(y = 0) = 50)ey.(−)ey) = −50 q(y = 2) = 50)ey.()ey) = 50 (2.107)

Finally the unknown values of the pressure and acoustic pressure at the nodes are
the following

p2 = 50; p4 = 50; q1 = −50; q3 = 50. (2.108)

Continuing with the example, the domain is discretized with 4 elements with constant
shape functions and p̄1 = 0, p̄3 = 100 and q̄2 = q̄4 = 0. The Hybrid Displacement
Boundary Element Method (HDBEM) will be used to obtain the unknown values.

As explained in the previous section, the problem in a matrix notation can be
stated as

.K





p̄1
p2
p̄3
p4



 =





f1
f̄2
f3
f̄4



 . (2.109)

First, the matrix G is computed according to equation(2.89). So we have

G = lim
ε→0

∫

Γ‘

φ∗Φ∗T dΓ =
E∑

e=1




∫

Γ(e)

− 1

2π
ln|x− εl|dΓ



 (2.110)

where the super indices l and e stand for the load point and the element number
respectively. By collocating the load point εl sequentially on all four nodes of the
discretisation, we obtain four equations for the four unknown boundary values.

First, we calculate the matrix components G11 and G12. We collocate the load
point on node 1 and carry out the integration along the element 1 and 2 respectively,
as shown in Figure 2.6.

G11 = − 1

2π

1∫

0

ln|x− 1/2|dx = 0.26947 (2.111)

G12 = − 1

2π

2∫

0

ln
√
(1/4 + y2)dy = −0.01748 (2.112)
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Figure 2.6.: Calculation of matrix elements G11 (left) and G12 (right)

The rest of the terms of the G matrix are obtained following the same procedure as
the first two terms. The complete matrix yields

G =





0.26947 −0.01748 −0.11194 −0.01748
−0.02100 0.31831 −0.02100 −0.04201
−0.11194 −0.01748 0.26947 −0.01748
−0.02100 −0.04201 −0.02100 0.31831



 (2.113)

The next step is to compute the matrix L according to equation(2.90). This matrix
only depends on the geometrical configuration since it only depends on the shape
functions that describe both potential fields. In this case Φp = Φq = Φ = 1. The
integral for the elements 1 and 2 are

L(1) =

∫

Γ(e)

ΦΦTdΓ =

1∫

0

1Jdx = 1, (2.114)

L(2) =

∫

Γ(e)

ΦΦTdΓ =

2∫

0

1Jdx = 2. (2.115)

The global matrix L is formed by adding the results of each element according to the
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global numbers of the load points.

L =





1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2



 . (2.116)

Then we can obtain R with the results G and L.

R = (GT )−1L =





4.59574 0.99864 1.97389 0.99864
0.41562 6.5209 0.41562 0.97030
1.97389 0.99864 4.59574 0.99864
0.41562 0.97030 0.41562 6.52092



 . (2.117)

The hermitian matrix F couples the weakly and strongly singular fundamental so-
lutions at the load points i and j and is calculated according to equation (2.89).

Fij =
4∑

i=1

lim
ε→0

π∫

θ=0

p∗(x, ξ(i))q∗(x, ξ(j))εdθ +
4∑

e=1

lim
ε→0

∫

Γ(e)′

p∗(x, ξ(i))q∗(x, ξ(j))dΓ,

(2.118)

where the first sum of integrals is the contribution of the i = 1, ..., 4 small circles
that exclude the load points from the domain. This integral is already transformed
in polar coordinates. The second term contains the contributions of the modified
domain. The needed expressions for field points, normals, and load points in order
to compute the term F12 are

)x(1) =

[
x
0

]
, )x(2) =

[
1
y

]
,

)n(1) =

[
0

−1

]
, )n(2) =

[
0
1

]
, )n(3) =

[
1
0

]
, )n(4) =

[
0
1

]
,

)ξ(1) =

[
0.5
0

]
, )ξ(2) =

[
1
1

]
, )ξ(3) =

[
0.5
2

]
, )ξ(4) =

[
−1
0

]
,

As explained in Gaul, Kögl and Wagner (2003) for constant elements, we have for
the first term

F ε
12 =

1

2
p∗(ξ(1), ξ(2)) = − 1

4π
ln|ξ(1)i −ξ(2)i | = − 1

4π
ln
√

1 + 0.52 = −0.00888. (2.119)

Now for the second term we calculate the contribution of each element separately in
the following way

F (1)
12 =

1

4π2

∫

Γ′

ln r(1)
r(2)n(1)

r(2)2
dΓ =

1

4π2

1∫

0

ln(x− 0.5)

(x− 1)2 + 1
dx = −0.03394. (2.120)
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F (2)
12 =

1

4π2

∫

Γ′

ln r(1)
r(2)n(2)

r(2)2
dΓ =

1

4π2

2∫

0

ln
√
y2 + 0.52(0)

(y − 1)2
dx = 0. (2.121)

F (3)
12 =

1

4π2

∫

Γ′

ln r(1)
r(2)n(3)

r(2)2
dΓ =

1

4π2

0∫

1

ln
√
(x− 0.5)2 + 22

(x− 1)2 + 1
dx = 0.01399. (2.122)

F (4)
12 =

1

4π2

∫

Γ′

ln r(1)
r(2)n(4)

r(2)2
dΓ =

1

4π2

0∫

2

ln
√
y2 + 0.52

(y − 1)2 + 1
dx = 0.00251. (2.123)

F12 = F ε
12 + F (1)

12 + F (2)
12 + F (3)

12 + F (4)
12 = −0.02632 (2.124)

To compute the main diagonal of F which contains hyper-singular entries, we use the
following formula

Fii −
1

ri

N∑

n=1;n &=i

Finrn. where r = R
[
1 1 1 1

]T
. (2.125)

Following the same procedure for the rest of the terms, we have our complete F
matrix

F =





0.10064 −0.02632 −0.04950 −0.02632
−0.02632 0.09450 −0.02632 −0.04031
−0.04950 −0.02632 0.10064 −0.02632
−0.02632 −0.04031 −0.02632 0.09450



 . (2.126)

Finally, after computing all the matrices, we obtain the symmetric stiffness matrix
of our system according to (2.99).

K =





1.35089 −0.83479 0.31882 −0.83479
−0.83479 2.91164 −0.83479 −1.24178
0.31882 −0.83479 1.35089 −0.83479

−0.83479 −1.24178 −0.83479 2.91164



 . (2.127)

To be able to solve (2.109), the vector of equivalent nodal forces on each element is
computed.

f (e) =

∫

Γ(e)

Φ1q̄dΓ =

1∫

0

q̄Jdx. (2.128)
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The complete vector f yields

f =
[
f1 0 f3 0

]T
. (2.129)

The solution applying HDBEM is




f1
p2
f3
p4



 =





−51.58300
49.99162
51.62400
49.99162



 . (2.130)

Comparing these results with the ones obtained with Direct BEM (See Gaul, Kögl
and Wagner (2003))





q1
p2
q3
p4



 =





−75.77
50.00
75.77
50.00



 , (2.131)

and the analytical results (2.108), we can see that the HDBEM gives much better
results for this problem even with this coarse discretisation than the Direct BEM.

2.4.3. Numerical consistency factors

Virtual Lab requests the following values for any Time-domain simulation. According
to [2], we define,

• The Relaxation Factor is a parameter that allows to fix the simulation time
in a very intuitive way rather than in absolute time or number of time steps.
It follows the following formula

Tsimul = Tsignal + Relaxation Factor · diam(object) /c︸ ︷︷ ︸
T relax

, (2.132)

where Tsimul is the simulation time duration; Tsignal the time duration of the
excitation signal and Trelax the relaxation time given.

• The Courant Friedrichs Levy (CFL) is defined as CFL = c ·∆t/h, where
c is the speed of sound, ∆t is the time step and h is the mesh size. The mesh
size h corresponds to the maximum of the element diameters.
The Virtual.Lab BEM time solver is said to be unconditionally stable i.e. it
is always stable, independently of the value of the CFL. Nevertheless, even
if always stable, the accuracy will still depend on the value of the CFL. The
smaller it is, the higher the precision will be but also the more expansive the
computation will be (both in terms of CPU and memory). In most cases – for
a good trade-off between accuracy and cost – a CFL should be between 0.2 and
2.
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• FASTLVL represent the optimization level of the convolution. The higher the
value of FASTLVL will be, the higher the optimization will be. The highest
gain will be observed for high values of the relaxation factor.

2.5. Signal Processing

Any pressure-time history (even isolated transients) maybe mathematically decom-
posed into, or constructed from, an infinite number of sinusoids of infinite duration
(Fourier Theorem) [4]. The amplitudes and phases of the sinusoids are determined by
the specific time history. The distributions of the amplitudes and phases as functions
of frequency are termed the amplitude and phase spectra.

Periodic sounds, such as compressor whines or regularly repeated impacts, have
spectra which only have non-zero components at discrete frequencies which are multi-
ples of the fundamental frequency, which is the inverse of the event period. These are
called “ line spectra”. On the other hand, aperiodic sounds, such as isolated impacts,
have continuous frequency spectra.

Frequency analysis of sound is very important in acoustics and vibration for the
following reasons:

1. the sensitivity of human auditory system and the vibrational response of me-
chanical systems to sound is frequency dependent.

2. the performance of a noise control system varies with frequency.

3. the mathematical analysis of sinusoidal sound is relatively straightforward, and
any sound field and its effects may be synthesized by the addition of harmonic
components.

The spectral analysis is then performed either by the use of contiguous filters or
by the Fourier analysis via the Discrete Fourier Transform (DFT), which is conven-
tionally implemented by various algorithms which are collectively described as Fast
Fourier Transforms (FFT).

2.5.1. Fast Fourier Transform (FFT)

In Acoustics, next to the periodic signals, non-periodic signals are also found rela-
tively often in everyday practice. Transient phenomena and mechanical shocks are
represented by these signals. They may be defined in terms of force, acceleration,
velocity or displacement and for a complete description it is necessary to obtain an
exact time history record of the quantity in question. In many cases the ultimate
goal is not the waveform itself, but rather a means to estimate the effect that the cor-
responding shock or transient vibration would have on a certain mechanical system.
A more useful method of description might be found in the form of Fourier analysis.
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If the time function for a shock is f(t) then its Fourier transform is given by

F (f) =

∞∫

−∞

f(t)e−jwtdt, (2.133)

The Fourier transformed F (f) is clearly interpreted as an infinite overlay from mul-
tiple vibrations with continuously lined up frequency w and its corresponding ’Am-
plitudes’ F (f). Thus F (f) is the complex spectral amplitude density from the given
function f(t). If t is interpreted as time, then w takes the form of the angular fre-
quency or frequency. If t is treated as a space coordinate, then w is taken as the
wavelength number.

In order for the Fourier Transformation to take place, the function f(t) must meet
the following conditions:

1. f(t) must be a smooth function by parts. Only finite discontinuity points are
allowed.

2. The integral over f(t)e−jwt must exist.

The FFT operation transforms discrete (i.e. sampled) signals from the time domain
into the frequency domain. The frequency domain values express how the time signal
is composed of a sum of different waves, each with their own amplitude and phase.
Each sine wave in the time domain is represented by one spectral line in the frequency
domain. The series lines describing a waveform is known as its frequency spectrum.
For a deeper understanding on this topic, the reader should consult [3].

2.5.2. Windowing / Leakage

A window function (also known as apodization function or tapering function) is a
mathematical function that is zero-valued outside of some chosen interval. One of the
basic assumptions of the Fourier Transform is that the time domain signal repeats
itself. In practice, this is often not the case, because the selected time segment is
finite, and it is not possible to select a part of the signal that is exactly repetitive.
The signal is typically windowed before performing the FFT in order to avoid that
abrupt difference between the last part of the signal and the first part (which are
assumed to connect seamlessly).

The use of windows gives rise to errors itself of which the user should be aware and
should be avoided if possible.The leakage is one of this errors and is defined as the
non-zero values that develop at frequencies other than the frequency of our signal
if we consider a simple sinusoidal one. The various types of windowing functions
distribute the energy in different ways. The choice of window can play an important
role in determining the quality of overall results.

The windows vary in the amount of energy squeezed into the central lobe as com-
pared to that in the side lobes. The selection of window depends on both the aim of
the analysis and the type of signal. In general the broader the noise bandwidth, the
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worse the frequency resolution, since it becomes more difficult to pick out adjacent
frequencies with similar amplitudes (see Figure 2.7 . On the other hand, selectivity
(i.e. the ability to pick out a small component next to a large one) is improved with
side lobe fall off. It is typical that a window that scores well on bandwidth is weak on
side lobe fall off and the choice is therefore a trade off between the two. A summary
of these characteristics of the windows is provided in Table (2.2) extracted from [2]

Table 2.2.: Properties of time windows

Windows Highest side Sidelobe falloff Noise Bandwidth Correction Factors
type lobe (dB) (dB/decade) (bins) Amplitude Energy

Uniform -13 -20 1.00 1 1
Hanning -32 -60 1.50 2 1.63
Hamming -43 -20 1.38 1.85 1.59
Kaiser-Bessel -69 -20 1.80 2.49 1.86
Blackman -92 -20 2.00 2.80 1.97
Flattop -93 0 3.43 4.18 2.26

Figure 2.7.: Characteristics of windows in frequency domain

The most common types of windows will be briefly described.

• Uniform Window.
Also known as Rectangular window is used when leakage is not a problem
since it does not affect the energy distribution. It is applied in the case of
periodic sine waves, impulses, and transients, where the function is naturally
at the start and end of the sampling period.

• Hanning Window.
This window is most commonly applied for general purpose analysis of random
signals with discrete frequency components. It has the effect of applying a
round topped filter. The ability to distinguish between adjacent frequencies of
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similar amplitude is low so it is not suitable for accurate measurements of small
signals

• Hamming Window.
This window has a higher side lobe that the Hanning but a lower fall off rate
and is best used when the dynamic range is about 50dB.

• Blackman Window.
This window is useful for detecting a weak component in the presence of a
strong one.

• Kaiser-Bessel Window.
The filter characteristics of this window provide good selectivity, and thus make
it suitable for distinguishing multiple tone signals with widely different levels.
It can cause more leakage than a Hanning window when used with random
excitation.

• Flattop Window.
This window’s name derives from its low ripple characteristics in the filter pass
band. This window should be used for accurate amplitude measurements of
single tone frequencies and is best suited for calibration purposes.



3. Numerical Examples

In order to check the liability of the acoustic study performed in transient BEM
in Virtual.Lab (VL), two examples were selected and simulated in both VL and
ABAQUS. The methodology used to compute the acoustic results will be explained
in this section.

3.1. Zero-order monopole

For the case of the monopole, transient acoustic simulations were performed within
the hearing range (2-20 kHz) with intervals of 2 kHz. The monopole radius is set
to be 10mm and the displacement amplitude 1mm.

The acoustic properties of this problem are shown in Table (3.1).

Table 3.1.: Acoustic properties for the air.

Density Sound velocity Bulk modulus
ρ (kg/m3) cair (m/s) K (Pa)

1.225 340 141610

3.1.1. FEM Computations

In ABAQUS, since we are dealing with a finite element software, there is the need to
model the monopole surface and the surrounding acoustic medium. A fully coupled
system is taken into account where the surface displacements of the monopole are
controlled as our input excitation and as the output variable we are interested in the
acoustic pressure.

In Table (3.2), there is a summary of the values of wavelength λ, minimum distance
between the non-reflecting boundary condition and the surface of the radiator db, the
time period T , the time step ∆t and the total time ttotal. The total time and time step
were computed after ttotal = T ·30, and ∆t = T/12 respectively. These formulas were
arranged in this way in order to have enough sinusoidal waves with good resolution
allowing to perform an optimum analysis.

To facilitate the task of simulating this wide range of frequencies, three different
acoustic meshes were modeled in ABAQUS to avoid the computation of unnecessary
values in the far field, thus saving computational time. The parameters that rule the

36
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geometry of the meshes are highlighted in Table (3.2) and the discretization of these
three groups are shown in Figure 3.1.

Table 3.2.: Monopole frequencies

Frequency Wavelength Distance Period Time step Time
f(Hz) λ(m) db(m) T (s) ∆t(s) ttotal(s)

2000 0.17 0.255 0.0005 4.1667e-5 0.015
4000 0.085 0.1275 0.00025 2.0833e-5 0.0075
6000 0.05667 0.085 0.000167 1.3889e-5 0.005

8000 0.0425 0.06375 0.000125 1.0417e-5 0.0375
10000 0.034 0.051 0.0001 8.3333e-6 0.003
12000 0.02833 0.0425 8.33e-5 6.9444e-5 0.0025

14000 0.0243 0.036429 7.1429e-5 5.9524e-5 0.002143
16000 0.02125 0.031875 6.25e-5 5.2083e-5 0.001875
18000 0.0189 0.0283 5.556e-5 4.6296e-5 0.001667
20000 0.017 0.0225 5e-5 4.1667e-6 0.0015

(a) (b) (c)

Figure 3.1.: Discretization of monopole source for FEM. a)2-6 kHz , b)8-12 kHz, c)14-20 kHz

In practice, non-reflecting radiation boundary conditions provide accurate results,
when the surface is at a distance db ≥ 1.5λ,where λ is the wavelength at the lowest
frequency of interest. Therefore, the distance was selected as db = 1.5λ following the
equation (2.44). Besides, we have the rule of thumb that states that “the discretization
requirements of the finite element method in wave problems require at least six nodes
per wavelength” [1]. In this case the quantity of ten elements per the smallest
wavelength of the group was chosen.

The three acoustic meshes with their geometry are specified in Table (3.3).
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Table 3.3.: Geometry of acoustic meshes.

Group rext h∗ Element Number Number
(kHz) (mm) (mm) type of elements of nodes
2− 6 265 5.67 AC3D8 339300 346932
8− 12 73.75 2.83 AC3D8 69000 72048
14− 20 46.43 1.70 AC3D8 85764 89892
∗the approximate global size

where the element AC3D8 is a linear acoustic tetrahedral element.
The monopole on the other hand has its geometric parameters listed in Table (3.4)

Table 3.4.: Geometry of structural mesh.

r h∗ Element Number Number
(mm) (mm) type of elements of nodes

10 2 S4R 384 386
∗the approximate global size

The monopole is modeled as a shell structure with S4R elements, which are 4-node
general-purpose shell elements and use reduced integration with hourglass control.

A TIE constraint (structure-fluid interaction) between the sphere and the acoustic
medium is set, where the sphere is taken as the master surface and the acoustic
medium as the slave surface.

For the displacements, a periodical signal is created by setting the amplitude to
periodic type and introducing the respective values for each frequency, such as the
angular frequency w, the initial amplitude A0, the starting time t0 and the parameters
Ai and Bi, where n = 1, 2, 3, . . . N,. The signal is obtained then after the formula:

a =

{
A0 +

∑N
n=1[An cosnw(t− t0) +Bn sinnw(t− t0)] for t ≥ t0,

A0 for t < t0,

With a displacement-type boundary condition and spherical coordinate system,
the signal is assigned to the surface with an uniform distribution only in the radial
direction (U1). The other 5 degrees of freedom are fixed with zero values. In this way,
we obtain the proper conditions to model the behavior of the zeroth-order monopole.

Implicit dynamic analyses were performed for every frequency requesting as output
history variables the acoustic pressure (POR) in points evenly distributed on the free
field (external surface of the acoustic medium) as well as the displacements on the
surface of the monopole. The time step introduced in the implicit analyses are the
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ones from Table (3.2), which were selected small enough that they could sufficiently
describe the wave.

3.1.2. BEM Computations

The simulations are run in the transient BEM module of Virtual.Lab. The next step
is the creation of our BE acoustic mesh. FE meshes are generally not appropriate for
acoustic radiation predictions because they contain too many elements and exhibit
detailed features like holes, ribs and fillets which might not be relevant for the case.

VL offers a module called Mesh coarsening. This module allows us to create the
acoustic BE mesh starting from an imported structural finite element mesh. The
procedure basically consists of:

• applying a Skinning tool that transforms the volume elements into surface ele-
ments;

• then a fixing and cleaning tool is to be applied, where interior nodes, 1D nodes
and non-acoustic elements are eliminated. Superimposed nodes and elements
are merged and the normal consistency on the elements is checked.

• Finally, the wrapping tool which creates a mesh that adapts to the previously
skinned, fixed and cleaned structural FE mesh according to requested param-
eters like Maximum frequency to be used or the element size.

For the case of the monopole this tool does not change the shape but the density
of the mesh because we are dealing with a smooth sphere which is perfectly suited
for the acoustic simulation.

As well as in ABAQUS, three acoustic meshes with different densities were created
in VL,. Giving the maximum frequency of each group and changing the default
parameter of number of elements per wave to 10, we obtain the following geometrical
parameters listed in Table (3.5) and the discretization can be seen in Figure 3.2. The
26 points, where the acoustic pressure is to be measured, were evenly distributed at
a distance equal to the distance used in ABAQUS for its corresponding frequency as
can be seen in Figure 3.3, where the vertices of the field point mesh sphere represent
the microphones position and the surface is not relevant for the case.

Table 3.5.: Geometry of BE acoustic meshes.

Group hmax
∗ Element Number Number

(kHz) (mm) (mm) of elements of nodes
2− 6 6.149 TRIA3 288 146
8− 12 3.138 TRIA3 384 194
14− 20 1.138 TRIA3 1212 608
∗the maximum of the element diameters
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(a) (b) (c)

Figure 3.2.: Discretization of monopole source for BEM. a)2-6 kHz , b)8-12 kHz, c)14-20 kHz

Figure 3.3.: Microphones layout in Virtual Lab

3.1.3. Sentitivity analysis

In Virtual.Lab, a sensitivity analysis of the acoustic mesh density was performed for
the monopole in the frequency of 20 kHz.

The relevant data concerning the acoustic meshes used for this analysis is listed in
Table (3.6). These meshes were created by entering different maximum frequencies
in the Mesh coarsening module.

A transient IBEM analysis was performed with each acoustic mesh setting up the
surface displacements as an input in our acoustic mesh by performing a mapping
procedure that transfer nodal data from the structural FE mesh. In theory, the
acoustic pressure of a zeroth-order monopole only depends on the radial distance when
considering a spherical-coordinate system. Despite this fact, the acoustic pressures
were requested in 26 evenly distributed points located at a radius equal to the exterior
radius of the acoustic FE mesh, i.e, in the far field. In Figure 3.4 one can observe
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Table 3.6.: Geometrical properties of the acoustic meshes used in the sensitivity analysis

Acoustic Frequency Number Number Element size
Mesh ID (kHz) of nodes of elements (mm)

1 8 56 108 7.083
2 10 98 192 5.667
3 12 146 288 4.722

4 14 144 284 4.048
5 16 194 384 3.542
6 18 258 512 3.148

7 20 296 588 2.833
8 25 416 828 2.267
9 30 608 1212 1.889

10 35 770 1536 1.619
11 40 986 1968 1.417
12 50 1514 3024 1.133

13 60 2072 4140 0.944
14 70 2833 5662 0.810
15 80 3582 7160 0.708

from a zoom of the acoustic pressure plot that there is a small difference between the
acoustic pressures measured at different points, therefore a mean value was computed
out of these values. These differences can be attributed to the course discretization
of the mesh.

From the Figure 3.5, we can see that the expected behavior was obtained. The
higher the number of elements the smaller the relative error of the acoustic pressure.
The recommended value by VL for our frequency is considered to be good and finer
meshes do not entail improvements in the results.

3.1.4. Post-proccesing

Once the acoustic pressures are obtained in both methods, we begin the post-processing
phase in Matlab. The steps taken in this procedure are the following:

• values are read and stored as matrices;

• if the time step is not constant, the values are interpolated to fit constant time
steps;

• a hanning window is applied to the signal;

• a Discrete Fourier Transform is performed to obtain frequency-dependent acous-
tic pressures;
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Figure 3.4.: BEM Acoustic pressure of monopole measured in different microphones for 2 kHz. Zoom
of one peak

• the values are multiplied by the correction factors of the window and the Fourier
Transform and the effective values of the pressure are computed;

• finally, it is possible to compute the sound pressure level. Subsequently with
the structure-borne sound power, the radiation level is obtained.

The formulas used to obtain the radiation level starting from values in the frequency
domain are the following [7]. First, we compute the Structure-borne sound power
level LK as

LK(f) = 10 · log10(PK(f)) = 10 · log10
[
(ρc)air

∫

S

[vn(f)]
2dS

]

LK(f) = 10 · log10
[
(ρc)air

nElem∑

i=1

[vn,i(f)]
2 · Si

S0

]
, (3.1)

where,

vn → the normal velocity on the surface,
PK → the structure-borne sound power,
Si → the area of the element i,
S0 → the reference area, S0 = 1m2, and
f → the frequency.

Then, for the Sound power level, we use
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Figure 3.5.: Sensitivity plot. Number of elements vs Relative error

LL(f) = 10 · log10(PL(f)) = 10 · log10
[∮

S

1

ρc
p2effdS

]

LL(f) = 10 · log10
[
Si

S0

nMic∑

i=1

10{L
i
p(f)/10}

]
,

(3.2)

Li
p = 10 · log10

(
p2eff
p20

)
,

where

PL → the sound power,
peff → the effective pressure,
Si → the area of the element i,
S0 → the reference area (S0 = 1 m2), and
f → the frequency.

Finally, the radiation level is obtained through

σ(f) =
PL(f)

PK(f)
, Lσ = 10 · log10[σ(f)]. (3.3)
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3.2. SOUND-RADIATING TUBE

This example is the simplification of the dynamics of an injection valve. It comprises
an one-open ended tube which is impacted in the central axis by a rigid sphere causing
the vibrations in the tube and thus sound is radiated to the surroundings..

Let the inner and outer diameter of the tube be 7 mm and 11 mm respectively,
its length 65.45 mm, the ending cap thickness 2 mm and the diameter of the rigid
sphere 2 mm with an initial velocity of 500 m/s in the negative direction of the Y
axis .The tube is restricted with two bushings as seen in Figure 3.6.

Figure 3.6.: Geometry (left) and bushing restrictions of the tube (right)

3.2.1. FEM Computations

The tube and acoustic medium are modeled in ABAQUS in the same way as for the
monopole. The material properties of the tube and of the air are shown respectively
in Tables (3.7) and (3.8).

Table 3.7.: Material properties for the tube.

Density Young’s Modulus Poisson’s ratio
ρ (t/mm3) E(MPa) ν

8.542e-9 25e3 0.3
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Figure 3.7.: Meshing of the tube and acoustic surrounding in FEM

Table 3.8.: Material properties for air.

Density Sound velocity Bulk modulus
ρ (t/mm3) cair (mm/s) K (MPa)
1.225e-12 3.40e5 0.141610

Regarding the meshing of the problem, the tube meshing properties can be found
in Table (3.9).

Table 3.9.: Geometry of structural mesh of the tube.

h∗ Element Number Number
(mm) type of elements of nodes
0.5 C3D8 40255 49056

∗the approximate global size

The geometrical properties of the acoustic mesh on the other hand are summarized
in Table (3.10).

Two different approaches, a Fully coupled and a Sequentially coupled simulation,
were taken for this example. In both approaches, two cases were considered. One
case, where the bottom surface radiation is taken into account and the other one
where this phenomenon is neglected.
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Table 3.10.: FE acoustic mesh properties.

h∗ Element Number Number
(mm) type of elements of nodes
2.36 AC3D8R 279916 287496

∗the approximate global size

In the Fully coupled approach, the whole domain is processed in a single simula-
tion and the displacements are also affected by the surrounding air. The following
conditions (see Figure 3.8) were introduced to reproduce this case:

• A non-reflecting radiation condition with a spherical impedance interaction is
imposed in the exterior surface of the acoustic mesh to allow any wave to pass
through and not reflect back to the acoustic domain.

• FSI-Tie constraints were imposed according to the case. The surface of the
tube is selected to be the master surface and the air surface the slave.

• A coupling distributing constraint is applied to simulate the effect of the O-rings
acting on the tube.

• A surface-to-surface interaction is set between the rigid sphere surface(master)
and the bottom surface of the tube (slave). This interaction is a penalty-type
contact with finite sliding assumption.

• In two points, located at both extremes of the tube, an encastre-type BC is
imposed.

• All degrees of freedom but the vertical translation (U2) are restricted for the
rigid sphere.

For the sequentially-coupled system case, the computational domain is divided into
two parts. The Global model, which comprises the dynamic implicit analysis of the
rigid sphere impact against the tube, and the submodel. In the former, the acoustic
mesh is not modeled and therefore the surface displacements of the tube are requested
as output field request. These displacements are then entered as driven variables for
the submodel case which also has the same boundary conditions as the fully coupled
system applied to the acoustic mesh.

In order to compute the structure-borne sound, a series of 20 points, where veloci-
ties are requested as history output, were located on the external cylindrical surface
of the tube at different values of Y for the global model (see Figure 3.9). These
points were distributed exactly on the XY- and ZY plane. Therefore, the ones on the
XY plane would have the normal velocity in the x-direction and the ones on the ZY
plane in the z-direction. Besides, the y-direction of the four points on the bottom
were taken for the velocities of the bottom surface. An assumption is taken into
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Figure 3.8.: Zeroth-order Monopole

account in which the normal velocities at each point represent the velocity of equally
divided portions of the surface.

Figure 3.9.: Layout of 20 points where normal velocities are requested

3.2.2. BEM Computations

The sequentially-coupled system was computed in the transient IBEM module. The
acoustic medium properties are the same as the ones used for the FEM approach. The
FE structural mesh is imported into VL and the same procedure as in the monopole
is applied, i.e., we get our BE acoustic mesh from the FE structural mesh in the
coarsening mesh module (see Figure 3.10). As the maximum frequency criterion a
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frequency of 40 kHz was entered and the resulting BE acoustic mesh geometrical
properties are summarized in Table (3.11).

Figure 3.10.: Structural mesh imported from ABAQUS (left) and acoustic mesh (right) obtained in
Virtual.Lab after processing the imported FEM mesh

Table 3.11.: BE acoustic mesh properties.

hmax
∗ Element Number Number

(mm) type of elements of nodes
1.562 TRIA3 4992 2498
∗the maximum of the element diameters

The next step is the mapping of the data. The displacements obtained in the global
model from ABAQUS are mapped into the acoustic mesh. In this step we include
or neglect the bottom surface radiation of the tube. In order to do so, the following
steps are performed:

• The acoustic mesh is divided into zones.

• As the source mesh, only the surfaces of interest are selected.

• Finally, the whole acoustic mesh is entered as the target mesh.

This way, the neglected surfaces (surfaces not included in the source mesh group)
will have zero displacements in time assuring that no sound will be transmitted
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through this surfaces. This procedure is analogous to the ABAQUS procedure of
suppressing the FSI-Tie constraint on a surface.

The microphones layout used here is the same as the one in ABAQUS. The locations
were entered as field point meshes.

3.2.3. Modal Analysis

A modal analysis of the tube with a Lanczos eigensolver was performed in ABAQUS
requesting the eigenmodes in the range from 1-20 kHz. In such a problem involving
a metal structure in contact with air, it is essential to compute the eigenmodes since
these modes will usually dominate the behavior of the system.

3.2.4. Post-proccesing

As in the previous example, the whole post-processing was performed in Matlab.
Therefore, all the results are exported to calculus sheets and read from Matlab.

The structure-borne sound power level is the first term to be computed. The normal
velocities needed are taken from the global model, specifically from the series of 20
points that were collocated on the surface. After interpolating the values to constant
time steps or verifying that this condition was met, a Fast-Fourier Transformation was
applied in order to obtain frequency-dependent normal velocities. Then according to
(3.1), the structure-borne sound power level is obtained.

Now, the sound power level is computed according to (3.2) with the previously
transformed acoustic pressures into the frequency domain.

Finally, the radiation efficiency and radiation level can be computed according to
Equation (3.3).



4. Results

The results obtained from the procedures performed in the previous chapter are
presented in this section.

4.1. Monopole

4.1.1. Acoustic Pressures

The acoustic pressures obtained from both methods are compared in the Figures
4.1- 4.3 . In these figures, the blue curve is the input velocity signal of the monopole
surface taken from the sinusoidal input displacements also set as boundary condi-
tions in the surface of the monopole; the green curve displays the acoustic pressures
obtained in ABAQUS and the magenta curve the ones obtained in Virtual.Lab.

As explained in the theory of the monopole, the acoustic pressure is directly pro-
portional to the normal velocity. Hence the expected response to the velocity signal
should present the same pattern but displaced in time so many seconds as it takes
for the wave to travel from the surface to the microphone. Since we are working here
with different group meshes, these times will vary according to the mesh group and
they are summarized in the Table (4.1)

Table 4.1.: Analytical reaching time of wave according to meshgroup.

Group I Group II Group III
( 2-6kHz) (8-12kHz) (14-20kHz)

time (s) x10−4 7.5 1.875 1.071

The results from the two methods are similar. The difference lie in the response of
the first peaks of the wave but after a while they both show the same pattern. For
the FEM values the first peak response is either underestimated or neglected. This
effect could be attributed to the numerical damping control parameter α = −0.05,
which allows the automatic time stepping procedure to work smoothly in ABAQUS.

The values of the acoustic pressures are also computed analytically according to
(2.33). Then they are compared to the FEM and BEM values and are summarized
in the Table (4.2). The pressure values listed correspond to the peak values.

50
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(a)

(b)

(c)

Figure 4.1.: Comparison of acoustic pressures obtained in BEM and FEM. a)2kHz, b)4kHz, c)6kHz
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(a)

(b)

(c)

Figure 4.2.: Comparison of acoustic pressures obtained in BEM and FEM. a)8kHz , b)10kHz,
c)12kHz
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(a)

(b)

(c)

Figure 4.3.: Comparison of acoustic pressures obtained in BEM and FEM. a)14kHz , b)16kHz,
c)18kHz
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Table 4.2.: Summary of acoustic pressures of the monopole.

Frequency Analytical FEM BEM FEM relative BEM relative
(kHz) value (Pa) value (Pa) value (Pa) error (%) error (%)

2 69 67 62 1.8 9.9
4 235 226 212 3.7 6.6
6 440 381 403 13.5 8.3

8 2351 2299 2211 2.2 6.0
10 3121 3080 2929 1.3 6.1
12 3882 3765 3626 3.0 6.6

14 7360 7076 6920 3.9 6.0
16 8543 8391 8026 1.8 6.1
18 9716 9270 9132 4.6 6.0
20 10881 10462 10232 3.9 6.0

4.1.2. Radiation Efficiency

The radiation efficiency computed in the post-processing of both methods are com-
pared with the analytical radiation efficiency (See Figure 4.4). It is important to keep
in mind that we are working here with three different mesh densities as mentioned
before.

It can be noted that the results in VL always underestimate the values with a
smooth behavior while in ABAQUS the results oscillate around the analytical values.
In the FEM results, as expected, the lower the frequency the better results we get
for every mesh group. This is due to the fact that for lower frequencies we have a
more refined mesh leading to more accurate results.

Figure 4.4.: Radiation efficiency of the monopole
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Figure 4.5.: Comparison of acoustic pressures obtained in BEM and FEM for the case including the
bottom radiation (left) and the case neglecting the bottom radiation (right)
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4.2. Impacted tube

4.2.1. Acoustic Pressures

For the second example, the acoustic pressures obtained for both radiation cases and
methods in some microphones are shown in Figure 4.5. The red curve display the
Virtual.Lab results while the blue one represent the ABAQUS results.

For the case with the bottom radiation, the results exhibit a good similarity in
both methods.

Comparing the case where the bottom radiation is included to the one where this
is neglected, we can observe for the latter that in Virtual.Lab we obtain in general
higher values than the ones obtained in ABAQUS. Therefore the “untie” action,
i.e. neglecting the contribution of a surface in VL is not working as effective as in
ABAQUS.

Figure 4.6.: Vibrational modes of the tube restricted with two O-rings.
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4.2.2. Modal analysis

The natural frequencies and natural modes of vibrations of the tube restricted with
the two O-Rings are listed in Figure 4.6. This is chief information for the late acoustic
analysis because according to the case, some modes should be able to be mapped into
the sound power level plot and the radiation efficiency plot. The first 6 rigid modes
are captured in the subfigures a) - d). Subfigure a) is a rotational rigid mode around
y-axis; b) depicts 2 orthogonal modes for x- and z- axis; c) a translational mode in
y-axis and d) again 2 orthogonal modes.

4.2.3. Sound Power Level

The sound power level for the fully coupled system in both cases (including or ex-
cluding the bottom surface radiation) can be seen in Figure 4.7. This fully coupled
analysis was computed with the values obtained in ABAQUS. The vibrational modes
at 1929.6 Hz, 2829.2 Hz, 4995 Hz, 9782.3 Hz, 13014 Hz and 16026 Hz match with
the peaks of the fully coupled system without the radiation of the bottom surface.
On the other hand, the blue curve only shows the vibrational mode at 1929.6 Hz.
The other peaks in the curve depict spurious modes, i.e. non-physical modes.

Figure 4.7.: Sound Power Level of the fully coupled system for both cases in ABAQUS
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Figure 4.8.: Sound Power Level of the sequentially coupled system for both cases in ABAQUS

In Figure 4.8, since the sphere impacts on the center of the surface, the vibrational
modes in y-axis should have the main influence on the sound power level. This
behavior can be seen in Figure 4.8 for both cases where the other modes of vibration
have almost no effect on the sound radiation. Comparing Figures 4.7 and 4.8, it can
be concluded that the best workaround in ABAQUS to avoid spurious modes in this
type of problem would be the implementation of a sequentially coupled system.

For the case of the sequentially coupled system, both numerical methods results
were used to compute the sound power level. First, we have the system including the
bottom radiation (see Figure 4.9). For this case, we can see that the values corre-
sponding to the predominant vibrational modes match accurately for both methods.
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Figure 4.9.: Sound Power level of the sequentially coupled system including bottom surface radiation
in BEM and FEM

When neglecting the bottom surface radiation (see Figure 4.10), we can observe
that the same vibrational modes match with a little difference in the first mode at
1929.6 Hz. The sound power level computed with the values in VL are higher than
the ones in ABAQUS. This was expected because of the already discussed acoustic
pressure results.
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Figure 4.10.: Sound Power level of the sequentially coupled system neglecting bottom surface radi-
ation in BEM and FEM

4.2.4. Structure-borne sound power level

In this example, since we divide the surfaces of the tube according to their relevance
to the sound radiation, a simple study was performed to visualize the effect of the
inclusion or exclusion of a vibrating surface in the computation of the structure-
borne sound power level. In this way, the structure-borne sound power level and
the radiation efficiency of the tube was computed two times starting from the values
obtained in ABAQUS for the sequentially coupled system with radiation from the
bottom surface.

For the first case, the structure-borne sound power level (3.1) was computed with-
out taking into account the contributions of the bottom surface velocities.

For the second case, the same procedure was performed but the velocities on the
bottom surface were considered for the computation of the structure-borne sound
power level.

Finally, the radiation efficiency was computed with the two structure-borne sound
power values.

The results of the structure borne-sound power level for both cases can be seen in
Figure 4.11. The two dotted vertical lines represent the frequencies at which the main
differences are appreciated and happen to coincide also with the frequencies at which
the two modes of vibration (c)1929.6Hz and (h)13014Hz occur (see Figure 4.6).
These modes are the ones that mainly contribute to the vibration of this surface
because they are translational modes in the y-direction, i.e. the normal direction to
the surface.
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Figure 4.11.: Structure-borne sound power level of the sequentially coupled system with bottom
radiation in ABAQUS

The radiation efficiency is shown in Figure 4.12. As in the previous figure the two
dotted lines represent the same vibrational modes.

The contribution of the radiating surfaces for the computation of the structure-
borne sound power level is very important as we can observe. When the velocities of
the bottom surface are neglected, the radiation efficiency values are greatly overesti-
mated at the frequencies where this surface is mainly excited.
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Figure 4.12.: Radiation efficiency of the sequentially coupled system with bottom radiation in
ABAQUS

A similar study was performed for the fully coupled system in both cases, and the
results are summarized in the Appendix (Figures A.1 and A.2). The same pattern
can be seen in these results.

Taking these effects into account, the final results of the structure-borne sound
power level for our fully- and sequentially coupled systems for both cases are shown
in the appendix.

4.2.5. Radiation efficiency

The radiation efficiency is computed for both cases and methods as well. First, we
have the radiation efficiency of the sequentially coupled surface with bottom radiation
(see Figure 4.13). It is observed that the BE results show good agreement with the
FE results.
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Figure 4.13.: Radiation level of the sequentially coupled system considering bottom surface radiation
in BEM and FEM

For the other case, where the bottom radiation is neglected (see Figure 4.14), the
results differ, in particular for the first mode of vibration. Apart from that, the
corelation is as good as for the first case.

Figure 4.14.: Radiation efficiency of the sequentially coupled system neglecting bottom surface ra-
diation in BEM and FEM
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4.2.6. Time Comparison

The time for the submodel simulation in the sequentially coupled system was mea-
sured and compared between both methods. The simulation in VL is approximately
3000 times faster than the simulation in ABAQUS. The number of processors was
already taken into account for this computation since the simulations were run on
different computers.

The modeling time in VL for the same sequentially coupled system can be estimated
as approximately the same amount of time that it takes in ABAQUS to model the
acoustic medium and set the appropriate boundary conditions for the submodeling
case. For the two examples, the modeling for VL was performed relatively fast since
we were working with simple structures. Therefore there was no need to cover holes,
eliminate unnecessary ribs or neglect fillets. These properties of the structure may
be considered or not depending on the frequencies of study and the relative size of
these ones to the whole structure.



5. Concluding Remarks

Considering the results discussed in the previous chapter an evaluation of the perfor-
mance of Virtual.Lab in time domain IBEM can be summarized as follows.

The acoustic pressure results for both examples showed similar behavior in general.
Some discrepancies were found when trying to reproduce the untie effect of ABAQUS
in Virtual.Lab but on the other hand, the response in front of an abrupt signal is
better than the response obtained in ABAQUS.

The accuracy on Virtual.Lab is not as good as the one obtained for FEM in
ABAQUS. The relative error of the pressure values that could be computed for
the case of the monopole showed that in Virtual.Lab an error of approx 6% was
maintained along the frequency range. On the other hand, in ABAQUS, the error
percentage obtained was definitively lower with oscillating values.

Regarding the time consumption: The FEM is a tool that demands a considered
amount of time for acoustic exterior problems since the values in each node of the
acoustic domain have to be computed. The BEM has a big advantage over the FEM
in this field as it could be demonstrated by the pre-processing and simulation time
measured for these examples.

This investigation compares the results theoretically. In order to perform a better
evaluation of the software some recommendations can be made. To perform a more
practical example and compare the results with values measured in an experiment
could bring some more information about the performance of this tool. Another
recommendation can be to reproduce the exclusion of the surface contribution to the
radiation by means of another approach such as including surfaces with absorbing
properties or as choosing as a target mesh only the surfaces we want to include and
obtaining an open acoustic mesh which would not be an issue since the time domain
module works with the indirect BEM approach.

Depending on its use, Virtual.Lab could be a very powerful tool that has to be used
considering its advantages and disadvantages. The BEM approach for the acoustic
problems could give accurate enough results to predict the behavior of a system
thanks to the inexpensive way that the computation and visualization of the solution
in an exterior acoustic problem is performed.
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(a) (b)

Figure A.1.: Structure-borne sound power level (a) and radiation efficiency (b) for the fully coupled
system including and excluding the contribution of the velocities on the bottom surface
for the case in which the bottom radiation is included

(a) (b)

Figure A.2.: Structure-borne sound power level (a) and radiation efficiency (b) for the fully coupled
system including and excluding the contribution of the velocities on the bottom surface
for the case in which the bottom radiation is excluded

,
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Figure A.3.: Structure-borne sound power level for the fully coupled system considering both cases

Figure A.4.: Structure-borne sound power level for the sequentially coupled system considering both
cases
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