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ABSTRACT

Relaxation Dynamics of
Biological Membranes

Thiwanka Wickramasooriya

The goal of this project is to explore the relaxation dynamics of lipid fluid mem-
branes which can be found in biological or made-man systems through continuum
models and numerical simulations. So far the main focus has been on the equilib-
rium configurations of vesicles through minimization of the curvature energy subject
to constraints. Here, the goal is to describe the time-evolution of out-of-equilibrium
vesicle configurations with the effect of the surrounding fluid. This system has two

different dissipative mechanisms:
1. membrane dissipation
2. outer flow dissipation

Indeed, bio membranes are 2D fluids due to the large lateral mobility of the compo-
nents (lipid or other amphiphillic molecules). The membrane dissipation, arising from
the friction between the adjacent molecules as they undergo shear is modelled by for-
mulating the Stokes equations on a curved, time evolving surface. The bulk or solution
fluid dissipation follows the standard Stokes flow equations. The resulting equations
for the coupled system can only be solved analytically in very simple settings. The
problem is solved numericaly using a b-spline discretization. The membrane dissi-
pation is solved using b-spline based Galerkin methods and the Stokes dissipation is
solved using Boundary Intregal Methods.
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Chapter 1

Introduction

1.1 Motivation

The most notable and the basic difference between a living and a non living system is
its ability to sparate itself from its environment so that it can perform some functions
which are not possible in its sourrounding environment. This basic form can be seen in
all living cells found in single cellular bacteria to most advance creatures like humans.
Within the individual cell different vesicles for different functions have to separate
themself from each other. For an illustration of a living cell and various vesicles inside
see Fig. 1.1.

The basic structure nature invented for this are fluid membranes. In a cell these
were made out from lipid bilayer decorated by amphiphilc proteins. Fig. 1.2 These
membranes separate each organelle inside the cell from each other as well as individual
cell from its surrounding.

Studying the dynamics of the fluid membranes will help to understand the behavior
of the cell and its functions. This will help to find more effective drug delivery systems,
more effective drugs for diseases and what happens to a cell or organelle when it is sick
or in a different environment. Biology is not the only area where fluid membranes were
applied. Synthetic biomimitic systems, such as nano-scale chemical reactor networks
(Karlsson et al., 2002), are also made out of lipid bilayer fluid membranes. This will

also help the possibility of developing bio-mechanical systems such as biosensors.
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Figure 1.1: Various vesicles inside an animal cell (Port, 2004)

This study is focused on how to use a continuum approach to determine the
evolution of fluid membranes. The current methods like Coarse grained Simulation
Fig. 1.4 or the Molecular dynamic simulation Fig. 1.3 try to solve this by molecular
level approach. These methods have some advantages, They can predict the molecular
level processes happening in the membranes, like absorption of foreign partial and
can predict physical properties much accurately. If a very detailed analysis is needed
these methods are good. The problem with these molecular dynamics simulations
is that they can perform very limited size membranes for a very small time period.
Just by looking at the pictures one can understand the number of degrees of freedom
involved. To solve a whole vesicles membrane up to a comparable time scale with these
methods is not possible with the currently available computing power. In most of the
situations details up to molecular level is not necessary and only the global behavior
of the membrane is needed. In such a situation trying to solve such a large system is
a waste of time. This is where the continuum level approach becomes handy, it can
predict the overall behavior of the membrane for required time scales. The overall

system is million times smaller than the molecular level approach.
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Figure 1.2: Detailed view of lipid bilayer (Ruiz, 2007)

Figure 1.3: Time evolution in a molecular dynamics simulation (E.Lindahl and
0.Edholm, 2000)

1.2 Outline

The structure of the presnt report is as follows. The second chapter describes how
the mathematical formulation was done. It was given how the physical system was
modelled in to mathematical system, the formulation for static case and for dynamic
case. Chapter three describes how this mathametical model was discritisize in order
to do the numerical simulation. Fourth chapter gives the results from the simula-
tions, describing the qualitative and quantitative difference between each dissipative

potential. Chapter five gives conclusions about this study.
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Figure 1.4: Time evolution in a coarse grained simulation (Blood and Voth, 2006)



Chapter 2

Mathematical model

2.1 Curvature elasticity

The equilibrium shape of a fluid membrane is determined by its energy and the im-
posed constraints. The material parameters of the membrane such as bending rigidity
and spontaneous curvature will also play a major role in this. When compared with
the size of the vesicle the thickness of the membrane is two or three orders of magni-
tude smaller. So it can be safely assumed fluid membrane as 2-D surface embedded
in 3-D space. It was also assumed that the lipid bilayer is in a fluid state, it will not
resist shear forces in the lateral plane.

Any 2D surface I' can be locally characterized by its two radii of curvature R
and Ry. (see Fig. 2.1 for an illustration). The principle curvatures are the reciprocal
of them. The surface curvature energy is associated with the mean and the gaussian
curvatures which are defined as

1 1 1

HZ(E—FE) KZ(Rle)

Based on the above assumptions the local energy density can be written as

g(H — Co)? + kK
Here the material parameters k, k¢ are respectively called as bending rigidity and

5



6 Mathematical model

the gaussian bending rigidity. The bending rigidity of a surface can be evaluated but
it is difficult to evaluate the gaussian bending rigidity. Cj is called as the spontaneous
curvature of the surface. This can be considered as a measurement on the asymmetry
of the membrane. For instance, the number of lipids can be greater or/and the "head”
of the lipids can be larger in one monolayer than in the other. Or the chemical
composition of the fluid is different on both sides. Cp is not supposed to depend on

the local shape of the membrane.

planes
of principal
curvatures

tangent
plane

Figure 2.1: Radii of curvature of a surface (Gaba, 2006)

The curvature energy associated with a particular shape is given by integrating
the energy density over the surface area. When the above expression is integrated the
integral of the gaussian curvature over a closed surface is a topological invariant. The

expression for surface energy is (Seifert and Lipowsky, 1995),

Bag= / B - )2 ds
2

The curvature energy Epc is invariant with respect of reparametrizations of the
surface, it only depends on the shape. Physically, it does not chage upon tangential
velocity fields on the membrane, which do not change the shape. (Arroyo and DeS-

imone, 2009). In fact it can be shown that other properties such as Volume, Area
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are also invariant on parameterization. Even though most of the equations are for a

general system our focus will be on the axisymmetric case.

Vn

P(r, 2)

o

r

Figure 2.2: Coordinate system used, z-axis is the axis of rotation

We consider cylindrical coordinates, so that the change of variables between cylin-

drical and cartesian coordinates is geven by
x(r,2,0) = (r cos 0, r sin 0, z)

Here the axisymmetric surface is generated by revolving the curve defined in zr plane
around z axis. Any point P(r, z) on the generating curve is represented parametri-
cally as P(r(u), 2(u)), where u is a parameter. Some important parameters of the

generating curve can be defined as,

a=Vr?+2? b=—r"7 +7r'2"
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The axisymmetric element area is,
dS = 2w ardu
A tangent unit vector to the surface in the u direction and a unit normal are
1 1
o= E{r’,z'}, = a{—z’,r’}.
The velocity of the surface is

v={rz2}=vt+v,n,

Where v; is the tangential velocity field of the membrane and v, the normal velocity

field. hence,

1 1
v==(r'F+2%), vn==(=27+72).
a a
inversely,
1 1
7= =(r'v; — 2'vn), z= E(z’vt+r'vn)
a

2.2 Dissipative Mechanisms

2.2.1 Mathematical dissipation (L2)

The L, or the Willmore flow is a Lo gradient flow. This is a purely a mathematical
model without clear physical interpritation. This is considered because it is a standard

measure in the membrane dissipation. The L, dissipation is written as
Wi, [oa] = & / o2 dS
2 Jr

fi is the associated viscosity with the normal direction.
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2.2.2 Dissipation in the membrane

The inner flow dissipation is physically meaningful and is the main focus of this study.

The surface flow dissipation potentila is derived as (Arroyo and DeSimone, 2009)

Wolvs, vn] = / el 2+ iv 2—2& 3’+ZI7J + (H* — 2K)v? 3 dS
Dt,n—/ip ot art a a3Ut ar2vt ( - )'Un

This dissipation potential corresponds to a 2D stokes flow on a curved, time evolving
surface. This whole study will be based on this equation. The equation given above
is derived for the axisymmetric shape. Unlike in L, dissipation this equation contains
both normal and tangential velocities as well as first derivative of the tangential

velocity.

2.2.3 Dissipation in the ambient fluid

This is the dissipation happens due to the viscosity of the sourrounding fluid and it
should be included in the total dissipation. If the velocity of the bulk fluid particles
adjacent to surface is V', Then the rate of deformation tensor can be written as

D = [VV + VV7] and the dissipation ptential in the sourrounding fluid is
b
Wpa[V] = —/ D:DdJdVv
2 Jy

Here dV is the infinitesimal volume element.

2.3 Constraints

The membrane is subjected to three different constraints Area, Volume and the

Boundary constraints due to geometrical requirements.
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2.3.1 Area Constraint

The membrane is assumed to be inextensible. Because of this the total area of the
surface must be remain constant in the dynamics. For the L, flow this is applied
as a global constraint and for the surface flow this is applied as a local constraint,

physically comparable with the surfase Stokes flow. If the total area is,

Sz/dS’
P

Assuming the surface is closed global area constraint can be defined as
o=S=—/an ds.
T

The local area constraint is,

o= [o[Lmy -t a5 [o{ &k Lo 22] - icerarn}as

2.3.2 Volume Constraint

Volume can be either constrained or it can be let free in the dynamics. Physically, the
volume constraint is more justified. If the volume is set free the system can evolve until
it becomes a sphere in shape. If it is constrained it will evolve to achieve the lowest
possible energy with that volume to surface area relation. But for the coupled system
with Stokes flow volume must be constrained, because the sourrounding fluid will not
allow the membrane to change its volume. It can be proven for the axisymmetric

surface the enclosed volume is
V= / r’2 du

Volume constraint,

0=V= —/Un(27ra7") du
T
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2.3.3 Boundary Conditions

These constraints arise from the geometrical requirements or to prevent translations.
So these conditions depend on how the membrane is geometrically defined. For the
axisymmetric case geometrical constraints, two to fixe the curve on the axis of rotation,
two to keep the end tangencies perpendicular to the symmetric axis. In the case of
surface flow dissipation one additional constrain is required to fixed the membrane
on z axis, because surface flow do not constrant the translations along the symmetric

axis.

2.4 (Case studies

2.4.1 Static equilibrium

In the static study we want to find the minimum energy of the membranes under the
influence of constant volume and constant area. To find the shape with the minimum
curvature energy we start from the simplest shape sphere with a spontaneous curvature
C, value of zero. Then change the volume and/or spontaneous curvature step by step

until the desired values of them are reached.

Mathematical process

In order to get the shape of the minimum energy we find the minimum of the functional
which depend on curvature energy (EH¢), Volume (V) and the Area (S). But these
are not the only thing which going to effect this minimization. We have to take the
affect of the parameterization (A) too the energy is invariant w.r.t reparametrization
and we need to fix it. We will look for parametrization with approximately constant

speed a.

A= /P (a/)2dS
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Using penalty method we can write
min F = Egc +ki(V — Vo)® + ka(S — Sp)? + ks A

Here Vg, Sy are the initial volume and surface area (In this case the volume and
area of the starting sphere). ki, ks, k3 are the constant of penalization. This functional
is minimized.

Values of k1, ks, k3 are selected by Grosjean (Grosjean, 2008) as 10, 10, 1000. The
Augmented Lagrangian formulation was used to remove the parameters k1, ks. With
this formulation the minimization functional becomes

1
min Ly = Exc + kA + 25 [(V=Va)?+ (S — 80)%] = M(V = Vo) — Xa(S — Sp)

f3 is the penalization parameter and \ are lagrangian multipliers. The Augmented

Lagrangian scheme itself takes care of these parameters and the constraints are exactly

met within numerical tolerance.

2.4.2 Dynamics

In this section the time evolution of the system is analyzed. This problem is gov-
erned by the dissipation and the curvature energy. Without the surrounding fluid the
dissipation happens due to membrane dissipation. In the coupled problem (with the
sourrounding fluid) dissipation contains membrane dissipation and the Stokes dissi-
pation from the surrounding fluid. Here we study the relaxation of the membrane if
suddenly the spontaneous curvature is set to zero and/or if the volume constrain is

suddenly removed, so that the membrane is out of equlibrium.

Mathematical process

The behavior of the fluid membrane can be compared with a very simple mechanical

system consisting of a spring and a dashpot. Here the dashpot will dissipate energy
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in time as a function of velocity. The spring stores the potential energy and absorbs
energy propotionally to velocity. This is a conceptual model where the spring stands
for the curvature elasticity and the dashpot for the different dissipative mechanisums.

The constraints (Area, Volume) are not present in the conceptual model.

=

Figure 2.3: Spring Dashpot system

The figure shows a system consisting spring (spring constant k) and a dashpot
(viscosity ) in parallel. The free length of the system is lo. A constant external force
F is applied to the system, the spring is stretched and it will store some energy as
potential energy. The system is at equilibrium under the influence of external force
F. At an instant this external force is suddenly removed. Now the system is out of
equlibrium and tries to achieve a new equlibrium position. Potential energy of the
spring at any instant

B, = sk(z — o)

Rate of energy release in the spring
Gk = —Ek = —k(m — lo) z
The energy dissipation potential in the dashpot is
1

WD = E,UAL’Z

The dynamics of this system are given by the minimum of the difference in energy
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release rate in the spring and the energy dissipated in the dashpot :
min (WD - Gk)

min (%,u i + k(z —lp) ©)

minimizing this with respect to z
pi + k(z —lp) =0, which is a statement of balance of forces.

By solving this simple differential equation we can get the displacement as a function
of time

gy = e(_T,iHC)

C is a constant depend on the initial conditions of the system. It can be seen that this
system shows an exponential decay. In the dynamics of membrane the same thing
happens, the surface is in out of equlibrium state and wants to reduce its extra energy.
The dissipation in the membrane and the bulk fluid will act like the dashpot. Here
also we are neglecting the inertial effects because for typical membrane, the Reynolds
numbers re on the order of 107% or smaller. We will follow the same procedure to

formulate our equations.

One needs to collect all the dissipation potentials into the functional W v, v,),
here quadratic in the velocities. Note that these dissipation contributions can be al-
ternatively written in terms of the rate of change of the parametric curve, i.e. W[f, z].
The energetic mechanisms depend essentially on the shape of the surface, and are
collected in TI[z]. We can compute their rate of change I[r, 2] = &I -+ 4 6,11 - 2,
which depends parametrically on the shape (in the same way that W does) and is
linear on the velocities. We typically have (linear) local constraints on the velocities,
which we write as c(vg,v,) = 0 or &(7,2) = 0. We can also have global shape con-
straints C[z] = 0, which we linearize into C[#,#] = 0. The dynamics equilibrate the

dissipative and the energetic forces, or minimize W + IT with respect to v; and v, or
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7 and 2 subject to the constraints. Forming the Lagrangian
L7, 2, \|(A) = W[F, 2] 4 T[7, 2] — / N&(7, 2) dS — ACr, 2]
r
we find the velocities at each configuration given by = by finding stationary points,

ie.
L =0L=0L=00L=0

This is the basis for the numerical implimentation.



Chapter 3

Numerical implementation

3.1 Geometry and fields on the membrane

To solve the above equations numerically using a computer, they need to be trans-
formed in to discrete form. There were numeros different schemes to do this. The
most famous is to use Galearkin finite element approximation. Normally this method
use piecewise C° polynomials to approximate the given system and Gauss-Legendre
numerical integration to do the required integrations. This type of discritization is not
suitable in our case, because the discrete system is only C° continuous and the second
derivatives do not exists. In the membrane flow equation one needs to compute the
second derivatives and curve should be flexible enough to undergo large deformations.
In order to over come these difficulties here we use a b-spline base representation of
the curve. The curve is now represented parametrically and the actual integration is
done not on the curve but on the parametric domain. In otherwords no matter how
much the curve is deformed the parametric domain is fixed and invariant in time. And
the next nice thing about B-curve is that they are very flexible and one can modify
part of the represented curve without affecting the whole curve. The only difficulty
with the B-curves is that the calculations are bit more complicated than the standard

finite element calculations.

16



3.1 Geometry and fields on the membrane 17

3.1.1 B-splines and their derivatives

In order to define a B-curve two things are needed. The generating control point and
associated b-splines. The basis functions or b-splines are defined on the parametric
domain u on the knot vector. Knot vector U is the partition of the parametric domain.
Each point on the curve is a linear combination of the control points multiplied by the
associated values of b-splines. Actually each section on the knot vector will generate
one part of the curve called as a Bazier curve. The final curve is a combination of all
the Bazier curves Fig. 3.1. The degree of the generated curve is depend on the degree
of associate b-splines. Polygon made by the control points is called as the control
polygon. The resulting curve full fill the property called convex hull, the generated
curve is always inside the control polygon. If u is a parameter then any point C on

the curve is given by
n+l r(u) = Z?:ll Ni,p(u)”

C(u) = Z N;(u)P;, so
= z(u) = Z?:ll Ni,p(“)ri

Here P; is ith the control point and N;,(u) is the ith basis function. p represent

the degree of the basis functions.

O control point ® knot

N | ; ) L | |

To Q1 Uz us T4

Figure 3.1: Individual Bazier parts and respective knots (Laboratory, 2004)
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The knot vector U is defined as

m+1
o — ~
U= 0,0....0,up+1,up+2 ....... Um_p_l,l,l....].
N— N——
p+1 p+1

Here n + 1 is the number of control points and m -+ 1 is the number of knots in U
vector.

In general U do not need to be defined between 0 and 1. The knots can be
placed as one wish them to be, even you can have repeated knots just like in the
start and at end. But for our study in order to keep things consistant and to make
the integration easy the knot vector is strictly defined between 0 and 1, the knots
are equally spaced and don’t have any repeating knots except for start and end (non
periodic and uniform).

For a non periodic and uniform knot vector n, p, m related as
n=m-—-p—1

The basis functions (b-splines) are defined on this knot vector as, (Peegl and Tiller,
1997)

1 if u; <u <y
M’O(u) _ 7 . >~ Wil
0 otherwise
U — Uj Uitp+1 — u
N; u=———Z—N~_u+—l————N- _1(u
z,p( ) Uirp — Us i,p 1( ) Uirpt1 — Uil i+1,p 1( )

Tt was defined that 3 =0
First derivative of the curve C can be calculated as (Peegl and Tiller, 1997)

n+1

C(’U,), = ZNz,p(u)'Pz

where

P Ny () + —

, —_—
Nip(u)' = ) ] .
Uitp — Ui Uipp+1 — Uit

Nit1p-1 (u)

Higher order derivatives are computed by applying this recursively. In the imple-

mentation however modified algorithms are used to calculate the b-splines and there
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Figure 3.2: Cubic b-Spline functions

derivatives more efficiently. With each load step or

with each time step we are going

to modify the position of the control points. It is required to calculate all the gradients

and the damping matrices with respect to control points.

3.1.2 Static analysis

For the static analysis the minimization is done using the matlab fmincon function

and we need to supply the gradient of the minimization functional with respect to

each control points.
0Ly OL
VI, = ( A A

Here (71, zr) represent the control points.

ov

0L _ 0Bmo , , DA 1[(V—V{))——+(S

;. or; T ®a, T3

67‘1

Ory’ 9z

85 v . s
- So)a—m] - /\la_rI - Aaa—rl
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Values

Figure 3.3: Cubic b-Spline function’s first derivatives

OLi 0B, OA L[ .8V . 0S| _, oV 09
B = 0z ey, T |V W, T S")azf] My M0z

or __ or __
5E—NI Ozr =0
9z _ 9z _ NI
i =" o
da _ 1 9z _ Z NI
85‘61_ aNI 36zI a.NI
_ AN 1 AT 0z __ __angH InAT!
oH2 _ o7 0H O _ oy 0H
orr —2H8r 0zr _2H6z
o(a)? _ 2a 70 At 10a 2(a)? __ 24/ 10 IaTi 1. 9a
= Nir" +1'Ny —a'5- e = g Niz" + 2 Ny a5
8H _ 1 0b 3% , 2] 08a _ Ny OH _ 1 0b 3b , 2] 8a _ N
drr ~ a3 0rr + [a.4+ra.2] orr r2q  Ozr a3 0z + [a.4+'ra2] 0z1 ra

Box 3.1: Basic derivatives w.r.t Control Points (Grosjean, 2008)

Using the basic derivations given above we can compute the derivatives of Energy,

Volume, Area and parameterization functional(A).
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Figure 3.4: Cubic b-Spline function’s second derivatives
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Parameterization (A)

N2
94 _ 27r/ [(a')2 (r@ + aNI) + 8la) ar} du
87"1 Tr

o4 _ 7r/ [(a’)zr L + a(al)zar] du

EZ—I (9,21

The gradient of the minimization functional is calculated using above values.

3.1.3 Dynamics analysis

Similarly to the spring dashpot system, after discretization, we obtain a system of

ODE, which includes the componants,

‘D(P)‘P_{_I'(‘P)A = felastic(P)
L(PTP = 0

we next derive the expressions for the matrices and forcing vectors above.

Energetic contributions: curvature elasticity

We consider the curvature energy. In the static analysis of membranes, one computes

¢ = 6:Guo - Ny = 9
(97’1
and 3
3,
HC — 6,Gye - Ny = ——5 22
Itz Grc - Ni 821

These are the contributions to f,s.(P) from curvature elasticity.

Dissipative contributions

For the ease of calculations for a point u, which lies in side the ¢ th knot span one can

define, The local velocities,

v (u) = [-7 7] v (u) =[r" 7]
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The local b-spline matrix,

] Ni—(p-2) 0]
0 Ni—(p—2)
Ni_p-1 0
N™°(y) = 0 Ni—p-1
Niypa 0
i 0 Nitp1 |

The corrosponding global connectivity matrix,

T T T z T T T z T T T z
Q1,07 01,07 01,09 Q1,05 -+ G1,0, G1,0;,
z T z z z Ui z zZ z T z z
ay,a; a1,07 41,45 43,05 -+ 41,045 01,05
T T T z T : T z T H T z
Q9,01 Q9,07 Q9,0 G9,Q3 -+ (9,0n (9,0,
— z T z z z T zZ z z T z z
T'=| a3,a]7 a3,af a3,a5 a3,a5 --- a3,a;, a3,a;
T T 7 z T T T z T T T Z
am a’l a’n’ a2 a’n’ 0’2 a’n? a’2 a’n’ am a‘n? a’m
z T z z z T z z z ™ T zZ
L Qpy @1 Ay Qg Oy Qg G, g Oy Oy, Ay Ay i
where
ar, = 2(t+k)
ap, = 2(i+k)
az, = 2(i+k))+1

n

al = 2(+k)+1
k=-(p-2),-(-1),...,(p—1)

L, dissipation

The L, dissipation is

L . o[ 1
Weslon] = g /F”ids’ W[, 2] = g— /F (=7 +1'2)?ds.
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Tts variation follows as

a2

~ 1
oWr, = /1/ — (=21 +1'2) (=267 + r'6z) dS
T

If we define a local matrix B, as,

1

Bn — __,v;:r'ueNloc

a

which gives the local damping matrix,

DEz

n,loc

=[ / B.B2nardu
r

This local D2

o d2Mping matrix is assembled to the correct positions in the damping

matrix D»™ using the connectivity matrix 7'.
Note that the field v; remains largely undetermined with only this dissipation source.

To eliminate the indeterminacy we introduce the artificial dissipation

WLz,t[Ut] = g/v.?ds
r

like in the previous case we can calculate B as,
1 !
Bt = _,U;‘T"UeN oc
a
which gives the local damping matrix,

Dthoc = ﬁ/FBth%raTdu

This is assembled to D¢ get the final tangential damping matrix. The results should

be insensitive to the choice of ji, so a good choice for matrix conditioning is simply

~ A

fi = .
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Surface flow dissipation

The physical inner flow dissipation reads

Wplvs, vn] = / L 2—!— r—/v 2_2’0_n ﬂv’%——zi + (H? — 2K)v2 3 dS
DVt Un] = K . a t ar t a a3 t a,rQUt )Un

or
1/r'r+22\2 (P4 22\12
woli A =u [ 1 a[(To ) |+ |
ol 2] N/lq{a?( a ) Tl a
2 2741z [ﬁ r'r4+2'2 '+z’r’ T’7‘+z’z']
a a ad a ar? a

X 1o\ 2
a0 () s

Its variation is

Wplr, 2,67, 62] =/L/F{?

2b N I AN v e (T2
——CL—S[(—zr+Tz)( , )+(—z6r+r6z) —a—)]

[(—z"r'* V- 1'2) (78 + 26%) + (—26F + 1'63) (r'F + z'z')}

2 (7't + 22y r'or + 20z 21
[r +z ][r +z z] +a277“"2 (7' + 2/%) (/67 + 262)

a a

2_9
+2 (H—af5> (=2 178 ('8 4 z'(Sz")} ds

We can calculate the B’; by differentiating the B; matrix w.r.t u as,
B't _ (,Ul)crveNloc + 'vf"”e (N/)loc
= t

Now the resulting local damping matrix for membrane dissipation can be calculated

as
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1
(3t o 2 (Gt )
T

B/T b ol
_Dn ( By —Bt) + (H?*-2K)B,BL } dS

a

Like in the L, damping matrix we need to assemble thease local matrices in to the

resulting membrane dissipation damping matrix D™™ using the connectivity matrix
T.

Constraints

Volume constraint

Assuming the surface has no free end, this single constraint is simply

0=V-= —/vn(Zwar) du
r
The resulting constraint vector is

“"l / N2 277 du L”"l / Nir'2mr du.

Global area constraint

This single constraint is simply

0=39= —/an dS + QWTUtlbowndary'
r

Assuming the surface is closed, the resulting constraint vector is

L8 = / N;HZ'27r du L = / NiH7'27r du.



3.1 Geometry and fields on the membrane 27

Local area constraints

The weak statement of the constraint is

0 = —/IipL—lr(rvt)'—an} dS=—/Fp{% [g(r'vurz'z')]l—g(—z’r'—l—r'z)}dS

rla—ra " . r'a —ra 2" ! /
= —/p{ [T'——2—+—+HZ'] # -+ [z'—2+——Hr’} z'*-l—r—?'“'—l—z—z"}ZTrr du
r ra a ra a a a

L J

b

A

which results in the constraint matrices

A d 2 /
I, = _/NI (ANJ o+ %N",) 2rr du, L%, = —/NI (BNJ+ %N}) 27r du.
r r

Boundary conditions

For a symmetry boundary point, one has for each configuration that » = 0 and 2’ = 0.

The time-evolution needs to preserve these conditions, hence
F=4=0, or, f1=Fn=0,21—20=2,1—2,=0,

resulting in the matrix

0 00
150 _ 0 0 - 00
0 —1 00
0 0 1

0
1
0
0

10
00
0 1
(00 1 |

When the membrane dissipaion is consider without Stokes dissipation another addi-

tional boundary condition needs to be included to prevent the translation along z
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axis. now,
_ =T
100 0 - 0 000 O
000 O 0 001 0
L =1000 0 Zmid 000 O
010 —1 - 0 000 O
000 0 0 010 —1

Numerical Integration

All the integrals are evaluated using Gauss Legendra quadrature rules. The order of
the quadrature rule should be change according to the degree of the b-splines. If not
under integration can happen and the values obtained will be not correct. Here the
integration is performed on the u space. The integration are the knot spans, because
at each knot the piecewice polynominal definition of the b-spline are changing Fig. 3.5.

If the function being integrated is f(u) we can write,

u=1 1=m—2p  y=y; +1

f(u)dS =2m Z/ u)ardu

u=0 U=Uj

then applying the numerical integration

i=m—2p

’U—Uz+1 i=m—2p
2r Z / u)ardu = 2m Z (Uz+1 Uzzwjf (uiz)aluis)r ("%.7))

u=1u; j=1

where u;; is the jth Gauss point of the ith interval considered and Ny the number
of Gauss points considered in each subintervals. w; is the gauss weight associated

with each jth gauss point.

oo omta—o—omsmomee]

Uo Ul U2 U3

Figure 3.5: Gauss points inside each knot span.
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3.2 Boundary Element Method (BEM)

To couple the effect of the surrounding fluid the boundary integral methods are used.
In the relaxation of fluid membranes the main focus is to study the behavior of the
membrane, so we only need to get the effect of sourrounding fluid as the membrane
evolve in time. In this analysis the vesicle is assumed to be surrounded by an infinitely
large fluid domain. Here the system will not be solved for the surrounding fluid
domain, but only the effect of the bulk fluid on the membrane is calculated. Tt
is possible to calculate the behavior of the sourrounding fluid but it is not in our
interest. The governing force of the relaxation of the membrane is the curvature

energy. Ignoring constraints for the sake of simplicity, it was calculated as
ff%=DP

D is the damping matrix of the system.

The goal is now to obtain the effective damping matrix acting on the control
points describing the surface, encoding the effect of the sourrounding fluid. If o is the

traction and v is the membrane velocity then,

Power = / ov dS
r

Using b-spline basis functions we can approximate v as ZiN,;Pz- It is not necessary to
use the same basis functions (same elements) for membrane dissipation and for BEM.
Finally the two systems should be coupled in order to solve. The relationship between

these systems can be developed as
Power = Aa EiNiPi dsS
= % /F oN;dS P; = %:fdS P;
Using different set of basis functions () traction can be represented as

o =X Frpr



30 Numerical implementation

again Power can be written as
Power = / ov dS
P
= /Eka(pk udS
F
— Ek Fk, /QDkUdS
T
= %R [ pmdsP,
r
= XXy /‘PkNi F,dSP;
iy
From the above equations
fi= / NS Fy, = M Fy,
r

f=MF

where My, = fr @ N;dS. This is the matrix coupling the two different finite elements

used in the coupled problem.

BEM Formulation

Using single layer potential the velocity can be calculated as

v = ——1—— GodS

8y Jr
@G is the single layer stokeslet for the boundary elements and the i is the viscosity of

the surrounding fluid. For free space this is defined as (Pozrikidis, 2002),

A A

TiTj
7'2

Gij(m — @) = —0i;In(r) +

where & = & — o and 7 = ||
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With above interpolations, v = Nilj.; and o = @ Fy,

. 1
N;P;p; = —/ -——/GF. . dS
/1‘ ©j F(IDJ 871 o EPk

. 1
Pi/Ni'dS:—/'——‘/GF . dS
. </.73 FSDJ 81 Jr kPk
P M;; = AyFy

Using the results from the previous section

MTP, = AF
AIMTP, = F

Multiplying both sides by M
MA*MTP;=MF = f
So finally we indentify the bulk Stokes damping matrix as,

Dy = MA*TMT

Numerical Integration

The difficult task is the evaluation of the matrix A. This is evaluated using numer-
ical integration. This integration is complicate because of the existing singularity in
the stokeslet function when (z = xg). To over come this problem different order
of quadrature rules were used. Fig. 3.6. Eventhough theoratically different discriti-
sations can be used for the membrane and the stokes formulations, in the actual
implementation for same order b-splines were used.

u=1 1 =1
Aj = — / N; (— GdeS> ds

=0 871',Ll.b u=0
So the inner integration is done using one quadrature rule and the outer is done using
another quadrature rule. Two rules can not have overlapping points if this happens

the integration becomes a singularity. Like in the membrane dissipation the b-splines
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change there definition at each knot point. Therefore,

=m—2p y=u; +1 i=m—2p u=u;i1
Ajp=—2m Z 41% Z / GNkardu> ardu

u=u; . u=u;

Now we can use the numerical integration as

i=m—2p i=m—2p

u 1 P—

Ap=-2r Y (”1 >§:w, (ug7) [Mb 3 (_+12__>
i=1

> wiG (uge) Ni(ugh)a(ugh)r (tgr) | alug)r (ts)

N,j, Ny are respectively the outer and the inner Number of gauss points in side
ith interval. w;, wy, are the respective gauss weights in each gauss points. When both
inner and outer integration happens in the same interval the singularity needs to be
approximated. This was done using approximation for the elliptic integral of first

kind. (Heltai, 2009)

Ui Ui+

& Outer Integration gauss points

Inner Integration gauss points

Figure 3.6: Different gauss rules for inner and outer integration

3.3 Explicit coupled solution method

With the b-spline discritization after calculating the damping matrix, constraint ma-

trix and the energetic contribution we can assemble a simple time dependant equation
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D(P)P+L(P)A = foigstic(P)
L(P)'P = 0

The constraint matrix includes the volume, area, and symmetry constraints. The
volume constraint is kept as a option to analyze volume constrained case and the
volume not constrained case. It has to be noted that the area constrain will be
changed from global area constraint for L, dissipation to local area constraint for
surface flow dissipation. To take the effect of surrounding fluid we just add the Stokes
Damping matrix to the Membrane Damping matrix. So the final system of ODEs to

be solved are

[D(P) + Da(P)| P+ LA = futne(P)
L(PY'P = 0

We will consider initially a simple explicit algorithm,

P'n.+1 o P’n o n n
D(Pn)T + L(P )A Ci = .felastic(P )
P'n.—l—l - P'n.
Pn T —

In the implementation the time stepping was done using the GNU Scientific Li-
brary(GSL). All the time stepping functions in that library can be used to do the
time advance. All these time integrators have the capability of adaptive time step-
ping. It was set as a option to change from adaptive time stepping to constant time
stepping,. (software foundation GSL team, 2008) Discritisization, numerical integra-
tion and the solving was done using the subroutines available in A Finite Element
Differential Equations Analysis Library(deal IT) (deal IT team, 2009). To calculate the

b-spline functions available (GSL) b-spline subroutines were used.
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Embedded Runge-Kutta (2, 3) method.

4th order (classical) Runge-Kutta.

Embedded Runge-Kutta-Fehlberg (4, 5) method.
Embedded Runge-Kutta Cash-Karp (4, 5) method.
Embedded Runge-Kutta Prince-Dormand (8,9) method.
Implicit 2nd order Runge-Kutta at Gaussian points.
Implicit 4th order Runge-Kutta at Gaussian points.
M=1 implicit Gear method.

M=2 implicit Gear method.

Box 3.2: Available time integration schemes (software foundation GSL team, 2008)




Chapter 4

Relaxation dynamics of fluid
membranes

Here the relaxation dynamics of the out of equilibrium membrane are analyzed. The
shapes were generated by the static simulation by redusing the volume and/or the
spontaneous curvature of the membrane. Then suddenly the spontaneous curvature
was set to zero, or the volume constraint was released. The analysis are carried
out with L2 dissipation, membrane dissipation, stokes dissipation and combination
of membrane dissipation and stokes dissipation. The combined analysis of membrane
and stokes flow is the one that physically more meaning full. So the main focus is on

this will be on the coupled system.

4.1 Relaxation dynamics of fluid membranes

The numerical simulations were done for several shapes with volume constraint, and

without volume constraint. For all the simulations the material properties were taken

as,

4.1.1 Evolution in time without the volume constraint

The membrane is allowed to evolve in time by removing the volume constraint. In

this situation only initial shape will finally evolve to a sphere, the basic shape with

35
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Table 4.1: Material parameters used in the simulations

Parameter Value
Viscosity of bulk fluid py =1 x 1073 Nsm 2
Viscosity of the membrane p=>5x%10"? Nsm™!

Bending rigidity of the membrane rp=1% 101" J

minimum curvature energy. But the path of the time evolution is different from shape
to shape. For the same initial shape and with initial conditions the time evolution
followed by L2 dissipation and by the membrane dissipation is totally different. Here
the Stokes dissipation can not be considered because physically bulk fluid will tend
to constrain the volume. So considering Stokes dissipation without volume constran
is not physically meaningfull. We analyzed three different shapes an Oblate Fig. 4.1,
a Pearling Fig. 4.2 and a Stomatocyte. Fig. 4.3 (initial shape is in red)

In the figures some intermediate shapes were shown. They were not in constant
time intervals. All the systems show very fast change in shape at beginning and then
it goes down as it get close to the shape of the circle. Surface area is conserved up
to order of magnitude 10~*. The time integrate used have some affect on the surface
constraint. If the time integration is a very stable one then it can be seen that the
surface area is more conserved. The simulation results for the time evolution for these
three shapes were shown in Fig. ??. The graphs clearly shows that the membrane
dissipation and L2 dissipation time evolution is altogether different. It has to be
noted that the time was scaled down to fit in the same range. The stomatocyte
and the pearling are discontinuously transformed shapes from oblate and prolate.
But the relaxation paths with the volume constraint removed do not resemble any
connection between them. In the log log scale graphs of the dissipation one can see
a disscontinuity in the Oblate in the membrane dissipation, but this disscontinuity
is compleatley dissapiered in the L2 dissipation. Fig. ?77. Here it is appeared as a
change in the continuity of the energy.

For the oblate the L2 dissipation is higher than the membrane dissipation and for
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Figure 4.1: Time evolution witout volume constraint - Oblate

pearling and stomatocyte shows the opposite behavior, in general it is not possible
to come to a conclusion that wether L2 or membrane dissipation is higher, this will
entirely dipend on the shape being analyzed. Time evolution of the energy is very
consistant and invariant of reparametrization in most of the time. There can be minia-
ture fluctuation but these will disapier when the integration quadrature increased or
when a small time step is used. The time advancement of the dissipation is not so
consistant or invariant with reparametrization. There can be spike coming out corre-
sponding to each reparametrization. The time evolution of the three shapes without
volume constraint is shown in Fig. 4.4, 4.5, 4.6. This clearly shows the different paths
taken by the shapes.
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Figure 4.2: Time evolution witout volume constraint - Pearling

4.1.2 Evolution with volume constraint

The relaxation with both surface constraint and volume is considered here. This
can be understand as setting the spontaneous curvature Cp) to zero. With the vol-
ume constrained only the discontinuously transformed shapes such as stomatocyte,
pearling, will undergo relaxation. Shapes like oblate or prolate do not undergo relax-
ation with volume constrained because theory are in the equilibrium state and we are
not changing anything in there environment. Numerical simulations were done with
stomatocyte and pearling.

The relaxation dynamics of the membrane under L2 dissipation, membrane dis-
sipation and stokes dissipation is shown in the Fig. 4.9. The time difference in L2
dissipation and membrane dissipation can be clearly seen for both pearling and for

stomatocyte. Membrane dissipation and stokes dissipation takes same order of time
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Figure 4.3: Time evolution witout volume constraint - stomatocyte

to relax. It can be seen that for pearling the membrane dissipation is faster than
stokes flow but for the stomatocyte stokes dissipation is faster. The simulation for
the stomatocyte with membrane dissipation is not completed, maybe because of nu-
merical instabilities. When the energy is plotted in log scale the difference paths
follow by the two shapes clearly visible. Pearling undergoes very gradual transforma-
tion, but the stomatocyte at the beginning very slow and then it change the shape
drastically in a very short time. It is not possible to do a complete simulation of the
stomatocyte with only membrane dissipation passing this very fast shape change, all
the simulations stuck in this region. The simulations with only stokes flow or with
both stokes and membrane disspation was done upto the final equilibrium state. In
the log scale it can be seen that all the three dissipations follow similar shaped paths

when the volume is constrained. They show differences in relaxation time but gen-
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7 Oblate
" Pearling
__________________________________________ === Stomatocyte

Figure 4.7: Time evolution of different shapes with membrane dissipation

erally graphs shows similar behavior. Dissipation rate for pearling follows a gradual
and steady change in the simulations, but the simulations for stomatocyte shows lots
of spikes in the dissipation at each reparametrization. If the dissipation for the stom-
atocyte is closely examined one can see the increase in the dissipation rate in its rapid
transformation stage. This stage is almost a vertical straight line in log scale plot.
The relaxation was assumed to be acting like a spring damper system if this is true
it should show an exponential decay. The graph of log(E — Ejp) and the time should

be a straight line because

E =™ 4 B

Here Ej is the energy of the equilibrium shape and «, ¢ are constants. Fig. 4.10

shows this clearly, both pearling and the stomatocyte shows a linear decay in semi
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log scale. In this plots it can be seen that stokes flow and the membrane flow both
follow behavior but with different o values (see the difference in slope for stokes
dissipation and for membrane dissipation). It is interesting to note that the behavior
of the stomatocyte, in this semi log scale at the beginning it is almost a horizontal
straight line and then it shows the exponential decay corresponding to the rapid shape

changing region.

4.1.3 Characteristic length

With the material parameters used in the simulations the characteristic length 2 = ﬁ

(Arroyo and DeSimone, 2009) will be 5 pm. Above this length scale bulk viscosity is
the dominant dissipative mechanisum where below, membrane viscosity dominates.

If the vesical is larger than this length the relaxation time is given as £ l’f‘s’ and if

poR2
2K

the vesical is smaller than this length relaxation time is given as

(Arroyo and
DeSimone, 2009). Here Ry is the radius of the generating sphere corresponding to
that shape. Several simulations were carried out for the same shape with changing
Ry. The Fig. 4.11 shows the results in log log scale for pearling, the change of the slope
can be identified exactly at the length of ly = Sum. Radius smaller than this (red
colour) and radius lager than this (blue colour) almost follow a straight line showing
this behavior.

This suggests a new method to measure the membrane viscosity, by recording
experimentally the cahnging size Ry = ﬁ This parameter is otherwise very difficult

to measure.
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Chapter 5

Conclusions

This project models the dynamics of fluid membranes, with an emphasis on the effect
of the membrane flow dissipation coupled with the stokes dissipation due to surround-
ing fluid. Unlike the L, gradient flow, the membrane flow considers the lateral motion
within the membrane surface of the fluid particles making up the membrane. The first
~ two chapters disscuss about some biological aspects of the problem, the hypothesis
taken and explain the numerical modeling and implementation chosen. Third chap-
ter gives a detailed explanation about how the discretization was done and details
about the numerical implementation of the system. In this chapter a brief introduc-
tion about the b-splines and the boundary element methods were also included. The
fourth chapter focused on the results obtained from the simulations. In this chapter
we were able to predict the expected behavior of the system.

This study is only the beginning of the relaxation dynamics of biological mem-
branes coupled with the Stokes flow. The whole study was done assuming that system
has only the membrane and the surrounding fluid so that membrane do not have any
offect of other similar membranes directly in touch with it and the boundary for the
sourrounding fluid is the infinity. In reality this is not true, the membranes are not
along in a real situation, they can be enclosed inside another membrane like the inter-
nal organalles of a cell or there can be lot of other membranes which are located very
close to each other like in a colony of bacteria or the sourrounding cells. They may
be touching each other giving rise to coupled problems with two membranes and the

Stokes flow with enclosed boundary and on the effect of the sourrounding objects.
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Even for this very simple case there are lot to be done about the numerical stability
of the system, still it is not possible to simulate all the shapes generated from the
static code. Boundary element method needs to be improved. Currently it has an
integration error due to the singularity of the kernel at the corner elements which gets
higher and higher with the number of elements increased (Heltai, 2009).

On the other hand, this project only models vesicles of one component. The line
tension between two different components which induced budding can be modeled to
have a more realistic model. To represent the entire budding, the last thing to add,
is the separation of one vesicle in two. This kind of study was done before and leads
to a lot of different and interesting shapes but this study is not realistic biologically.
These are some ideas which would allow us to go deeper into in the subject but there
are many more ways of study:non-asymmetric shapes, topologically variant shapes,

others energetic mechanisms and interactions.
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