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Abstract

Transient Navier Stokes equation has been solved numerically using FEM (Finite
Elements Method). In order to model different phases, level set method is used and
enrichment is added to increase the accuracy. Rayleigh-Taylor Instability is used
as a bench mark to verify the code which has been implemented in MATLAB. The
results obtained from Transient Navier Stokes equation without enrichment are in
good agreement with obtained results from other numerical simulations. Although
elimination of surface tension affects the results specially in the case that stabiliza-
tion has not been applied, eddies have been observed in some values of viscosities in
Rayleigh-Taylor Instability which is a result of Using stable mini element.

The accuracy has been defined based on conservation equation, using an error
which is calculated along time stepping procedure to calculate volume changes. This
error is acceptably low and decreases by mesh refinement.
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Chapter 1

Introduction

Many practical applications in Computational Mechanics require solving numerically
the Navier-Stokes equations for a multiphase flow. It can be applicable in many cases
such as free surface flows which feature in marine engineering and are characterized
by wind-water interactions and unsteady waves, jet flows, bubble dynamics and lig-
uid film flows. Hence, it can be applied in a various range of industrial cases from
optimization the design of ships, submarines and liquid tanks, design of engines in
combustion view, and also design of coating and drying processes in the case of poly-
mer production [1].

This work aims at solving a two-phase Navier-Stokes flow for two immiscible ma-
terials. There are some difficulties in solving Navier stokes equations for two phase
case. The first one is that it is possible to model the fluid using Eulerian description
but we will confront problems along the interfaces. Other difficulties arise from non-
linear convective terms and unsteady term appearing in the equations.

Navier-Stokes equations are governing equations of the problem which can be
solved analytically in simple cases but numerical techniques are required to obtain
the approximations in general cases.

The technique which is used in this thesis to approximate solutions of partial dif-
ferential equations, as the Navier-Stokes, is the Finite Element Method (FEM). It is
based on a variational or weak statement of the problem and a discretization of the
variational equations. The FEM is generally attractive because it is robust, flexible in
its ability to model complex geometry, algorithmically modular, and mathematically
very well understood. The FEM has a long history in geodynamics, predominantly
because of its ability to accurately solve problems with strong gradients [2], but also



Figure 1.2: Bubbly flow



Figure 1.3: Jet flow



because its geometrical flexibility; it allows for modelling spherical and cartesian do-
mains without reformulating the equations in spherical coordinates. Adopting the
FEM as the basis for the numerical solution allows dealing with material properties
with steep variations (large gradients).

Another widely used technique to solve partial differential equations is the Finite
Difference method (FD). Both techniques, FEM and FD, are based on a discretiza-
tion (supported by a mesh) of the simulation domain. FEM uses unstructured meshes
allowing for concentrating elements in the regions where more resolution is needed
while leaving coarse regions where the solution is simpler or easier to interpolate. As
the standard version of FD requires using structured meshes, it is difficult to control
the resolution in different regions of the domain. Moreover, curved boundaries and
boundaries not parallel to the cartesian axis are difficult to handle with FD while it
is straightforward with FEM.

The mechanical flow problem based on Navier-Stokes equations is solved by a
mixed Finite Element Method with both velocity and pressure unknowns. Its mul-
tiphase character is handled by a level set technique. The level set approach is a
computationally efficient way of tracking the different materials location. It allows
for describing the interface without requiring it to conform with the mesh. A solution
with discontinuous gradient on the interface described by the level set is expected.
The discontinuity is generated by the jump of material properties across this interface.

Here we enrich the finite element solution allowing for a discontinuous gradient
inside the elements crossed by the level set, using a XFEM technique. Classical finite
elements cannot handle with such a solution. Moreover, the mechanical problem is
nonlinear due to the viscosity dependence on the velocity gradient. We found that
a basic Picard method suffices to solve the nonlinear problem up to the accuracy
required.



Chapter 2

Problem Statement of Navier
Stokes Equation

Strong formulation of unsteady Navier Stoke problem is stated as follows:

2.1 Strong Form

v — VvV 4 (v- V)u+Vp=pg in Qx]0,T7,
V-u=0 in Qx]0,T],
v=wvp on pl0,T],
—pn+v(n-V)v=t on Qy|0,T],

v(z,0) = vp(z) in .

(2.1)

(2.2)
(2.3)
(2.4)

(2.5)

pg is tepresentive of body force, vp, prescribed velocities on portion I'p of the
boundary and imposed boundary tractions t on the remaining portion I'y. v and p

are the velocity and pressure field respectively.

Equation 2.2 is governing equation of mass conservation. The problem must be
completed with suitable boundary conditions. Typically the velocity vp is prescribed



on a portion I'p of the boundary ( Equation 2.3).

A boundary traction t has been imposed on the complementary portion I'y as
Equation 2.4. Where vector n denotes the unit outerward normal to the boundary.
The initial value of the velocity field at the initial time ¢ = 0 is given in ) as described
in Equation 2.5.

Since no time derivative of pressure appears in governing equations, no initial
condition is specified for the pressure. Pressure is only presented by its gradient in
the Navier Stokes equations in contrary of velocity which is imposed eveywhere on
the boundary I'. Thus, the pressure is determined only up to an arbitrary constant.

» velocity
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Figure 2.1: Mini Element

The variable formulation with both velocity and pressure unknowns, leads to the
so-called mixed finite elements. Such methods present numerical difficulties caused
by the saddle point nature of the resulting variational problem. The algebraic system
for the nodal values of velocity and pressure in a Galerkin formulation is governed
by a partitioned matrix with a null sub matrix on the diagonal. Solvability of such
a system depends on a proper choice of finite element spaces for velocity and pres-
sure interpolation. In this work the wellknown minielement is used (Fig.2.1). This
triangular element is composed by three pressure nodes at the vertices (linearly in-
terpolated) and four velocity nodes (three linear nodes at the vertices and one central
quadratic node). The minielement satisfy the LBB compatibility condition ([3], [4]
and [5]) which guarantees the solvability of the system.

2.2 Finite Element Formulation

The formulation of the weak peroblem requires the following condition is satisfied



which means a function u is square-integrable on a domain €2

/ u?dQ < oo (2.6)
Q

where u € L2(Q). H"*(Q) is defined as the set of functions such that itself and
all its derivatives up to order k are in L*(£2).

The formulation of the weak form of the problem involves the definition of four
collections of functions: the test functions and the trial solution functions, for the ve-
locity field and for the pressure field. The space of velocity trial functions is denoted
by S. This collection of functions consists of all functions which are square—integrable,
have square integrable first derivatives over the computational domain €2 and satisfy
the Dirichlet boundary conditions on I'p. This collection is defined as:

S={uec H(Q)|u=uponlp} (2.7)

This space contains vector functions such that each component is in the corre-
sponding space of scalar functions.

The test functions for velocity belong to space v. Functions in this class have
the same characteristics as those in S, except that they are required to vanish in I'p
where the velocity is prescribed. Space v is defined as:

v={ve H (Q)|v=00nlp} (2.8)

Similarly, a space of function called Q is defined for the pressure. Since the space
derivatives of pressure do not appear in the weak form of the Stokes problem, the
functions in Q are simply required to be square integrable:

Q={qe L*(O)} (2.9)

This space is both the trial space and the test function space. In the case of a
purely Dirichlet velocity boundary condition, the pressure is defined up to a constant,
and its value must be prescribed at one point of the domain 2.



It follows that a function belonging to H' can be written as a linear combination
of nodal basis functions N:

= Z #:N; (2.10)

Be u” the trial solution for velocity and p” the trial function for pressure:

uh = wNy (2.11)
i=1
=1

Where N* and NP are the chosen interpolation function for the velocity and the
pressure respectively. The fact that the velocity space and the pressure space are
approximated independently leads to the nomenclature mixed formulation. In or-
der to obtain the weak formulation, the momentum equations are weighted by a test
function v” and the continuity equation by a test function ¢*. A finite element formu-
lation is said to be Galerkin formulation if the trial (S}, SI) and test spaces (V,, V")

pr My
are the same up to the Dirichlet boundary conditions:

Sk = Ly(Q) (2.13)
Sh = {u" € HY(Q) | u" = a}ondQp (2.14)
V= Ly(Q) (2.15)
Sh .= {ul € H(Q) | u" = 0}ondp (2.16)

The standard discrete weak formulation for the Navier Stokes equations can be
written as:

Find (u,p") € S& x Sk such that for all (v, ¢") € V! x VI :

[ (Bauh) - vhdv + [ (u® - Vuh) - vhdv + v [ Vul : Voldo — [p"(V - v")dv
Q Q ! a



= [ f-otdv+ [ t-otds+ [ ¢"(V-uP)dv (2.17)
[row e

9y

From a linear algebra perspective, the Galerkin method leads to the following
system by considering an implicit time discretization, here, backward Euler):

Mg:l +Kn+1 Ex On+1 Gn+1 un+1 fn+1 s Mg:lun
= (2.18)
GTn—I-l 0 pn+1 0

Where u and p are the arrays of nodal velocities and pressures. M, K and C are
mass, advective and convective matrix respectively. fis the body force. The above
defined matrices are given as:

K= / BTvBdv (2.19)
Q
(3= / N*uh VN*dV (2.20)
Q
G= / N?p(VN™)dV (2.21)
Q
f :/N“png (2.22)
Q

Where the gradient matrix, B is defined as:

ON;
m U
_ ON;
Bi - 0 Ozo (223)
dz1 Oz

10



Chapter 3

Multiphase Flow

3.1 Numerical Difficulties

There are some difficulties associated with the computation of two phase flow prob-
lems.

The first one is defining the accurate representation of the interface that seperates
the two fluids. There are several techniques in this case with their own advantages
and disadvantages.

Another numerical difficulty is originates from the fact that certain quantities
may be discontinuous across the interface, e.g, density, viscosity and pressure. The
simplest and most accurate technique to overcome this problem, is to regularize all
jumps. The density and viscosity can be regularize such that instead of jumping
discontinuously, they go smoothly from p; to py over several grid points. However, it
is shown that this smoothing approach introduces non-physical parameters leading
to thermodynamical aberrations [6].

Recently, some techniques have been introduced to impose sharp discontinuities
at the interface. Those techniques mainly rely on the partition of unity concept
where the knowledge of the discontinuies is introduced in the approximation space.
A popular example in the finite element community is the Extended Finite Element
Method (XFEM) [7], in the finite difference context is the Ghost Fluid Method [8]
and in the finite volume approach is the in-cell reconstruction technique [9].

11



3.2 Numerical Methods for Modelling Interface

Numerous techniques have been developed for incompressible two phase flow. The
main difference between the method is how the interface is represented. The way that
curvature and normal are calculated will naturally depend on the representation.

All interfaces representing Methods can be divided into two classes: interface cap-
turing (IC) and ihnterface tracking (IT) metods. In the first class, the interface, I' is
represented implicitly by a function defined on all the domain.This class includes the
Level Set method (LS) and the Volume Of Fluid method (VOF). In the second class,
the interface, I' is explicitly tracked. Among the front tracking methods, Marker
Particles (MP) method, the Moving Mesh (MM) methods and the Gridless Methods
(GM) are the most popular.

A short summary of the basic features of these methods is given in 3.1.

3.3 The Level Set Method

Flow problems are naturally described in an Eulerian framework where the compu-
tational mesh is fixed and the fluid moves with respect to the grid. The Eulerian
formulation facilitates the treatment of large distortions in the fluid motion. Its
drawback is the difficulty to follow interfaces between different materials. In an Eu-
lerian description the finite element mesh is thus fixed and the continuum moves and
deforms with respect to the computational mesh. As the material flows over the
mesh, the physical properties of one element (for example its density or viscosity)
will change through time due to material advection.

Level set methods are computational techniques for tracking moving interfaces;
they rely on an implicit representation of the interface. Since the introduction of
the level set method by Osher and Sethian [10], a large amount of bibliography on
the subject has been published. See, for instance, the cited review by Sethian and
Smereka [11] and the work by Osher and Fedkiw [12]. Level set methods are particu-
larly designed for problems in multiple space dimensions in which the topology of the
evolving interface changes during the course of events. This technique is commonly
used in engineering problems to track interfaces location [13], [14] and cracks [15],[16].
Tt is also used in computational geometry applications, in grid generations, computer
vision and other applications.

12



Table 3.1: Summary of techniques for interface computation: advantages and disad-

vantages
Method Advantages Disadvantages
VOF Conceptually simple Complex interface reconstruction
Good mass conservation
LS Conceptually simple Poor mass conservation
Easy to implement '
Automatic topological changes
MP Extremely accurate Mapping of interface mesh
onto Eulerian mesh
Sharp interface Manual breaking and merging
Remeshing if large deformation
MM Extremely accurate Remeshing if large deformation
Mesh motion difficult/costly in 3D
GM Automatic topological changes Expensive in 3D

Boundary conditions

13
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Figure 3.1: (a) The two materials are associated with thesign of the level set function.
The dotted line is the interface. (b) Surface representation of the level set function.

The level set technique describes the location of the interface between materials
by means of a function ¢, called level set function, defined on the simulation domain.
The sign of the level set function defines two geometrical domains using the following
convention:

>0 for x in domain 1
#(X,t)={ =0 for x on the interface (3.1)

<0 for x in domain 2

where x stands for a point in the simulation domain and t is the time. The in-
terface location is the set of points where the level set field vanishes (Fig.3.1). The
material corresponding to each point of the simulation domain is thus determined by
the sign of the level set function.

Initially, ¢ is set as a signed distance to the interface. Far enough from the inter-
face, ¢ is truncated by maximum and minimum cutoff values. The resulting level set
function describes the position of the interface independently of the computational
mesh.

In the practical implementation, ¢ is described (interpolated) with the finite el-
ement mesh, and therefore the resolution of the approximated interface depends on
the quality of this mesh. Usually the same mesh of the mechanical problem is used
to describe the level set function. This is a reasonable approach; same resolution is
obtained in describing interfaces and velocities used to update these interfaces.

14



The level set represents interfaces which do not necessarily coincide with the el-
ement edges. Thus, the same mesh can be used throughout the entire simulation
to describe the interface. Mesh adaptivity is allowed for element concentration in
the places where they are needed, while leaving coarse elements in less compromised
areas. To locate phases, smaller elements close to the level set are allowed for an
accurate description of the interface. As the level set function evolves, remeshing is
needed to update the fine part of the mesh following the interface.

The level set ¢ is a material property and consequently it is transported by the
velocity. Therefore, it is updated by solving the following pure advection equation
(first order hyperbolic)

where u is the velocity field computed by solving the Navier Stokes problem and
¢; the time derivative of the level set function. In this context, the velocity field is
known in all the points of the domain. Thus, the level set is transported integrating
equation 3.2 using an explicit timemarching scheme designed for the pure advective
problem: the twostep third order Taylor Galerkin method [17], [18]. This method is
straightforwardly implemented and computationally affordable. In similar situations
other authors use the HamiltonJacobi equation to transport the interface. This is
specially appropriate if the only available data is the front velocity, or if the velocity
depends on the front itself, for example on its curvature. In the present situation
the velocity is known everywhere as a vector and it is possible to directly integrate
the pure advection problem. In general, the time evolution of the level set function
is such that it does not conserve the property of being a truncated distance to the
interface (as set for the initial configuration). However, for the current application
this method is sufficiently accurate and it does not require any postprocess to recon-
struct the distance shape.

The level set approach may describe changes in the shape (topology) of the phases.
In practice, this allows the representation of detaching drops, merging bubbles, break-
ing sets, etc. This feature of the level set method is of great interest when used in
some geophysical situations, for example to model slab breakoff, delamination, or any
other process involving changes in the topology of the interface.

The description of the materials location given by the level set function is not

15



only useful for the mechanical problem, but it is also used in solving the Eulerian
multiphase thermal equation.

3.4 Space discretization

The level set is discretized in space using a linear interpolation

B(X,t) = ¢"(X,0) = Y Ni(X)i(t) = Np® (3.3)
1€Nin
where
¢ = [¢1: ¢2) srey ¢nlm] (34)

The transport equation of the level set 3.2 is discretized using 3.3 and yields

Ms® — G4@ =0 (3.5)
Where;
My = / NZ NpdV (3.6)
Q
Q

3.5 Time discretization

The level set function is updated at each time step by the transport equation 3.2,which
can be rewritten as

b= —u- Vo (38)
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This equation is integrated upon time using a twostep thirdorder TaylorGalerkin
method (2STG3), namely

5=t %Atdu” + At (3.9)

P = " + Atg" + %At%;“ (3.10)

The a parameter takes the value fracl9 to reproduce the phasespeed character-
istics of the singlestep TaylorGalerkin scheme [18]. Taking into account the incom-
pressibility equation 2.2, the second time derivative of the level set function ¢ can be
expressed as

¢p=—u-Vo=uV(u-V¢)=V((u-u)Ve) (3.11)
therefore, the first step of the TaylorGalerkin algorithm is given by

& =g+ %At(—u V) + aAPY - ((u - u)Vg™) (3.12)

Using the space discretization ® of the level set function ¢, the first and second
steps of the TG3 scheme are expressed in the following matrix forms

Myg™ = [My+ fracl3AtGy + aAPK,)| 3" (3.13)

1 -
Myg™ = [My + AtGy] ™ + §At2K¢<I>” (3.14)

where M, and G are defined in 3.6 and 3.7, and K4 comes from the discretization
of the last term of 3.12

K,—— / (u-w) (VNEVND)AV (3.15)

Note that Gy and Ky depend on the velocity field. In the practical implemen-
tation, the velocity field u™ of the n step is taken constant during the entire time
step and consequently the steady (quasistatic) Stokes problem is not solved for the

17



intermediate step q~5”

To keep the solution in the stability domain of the 25TG3 algorithm the time
increment At must be such that Courant vector (¢, ¢,) satisfy

3
2 4 .2
e +¢, < 1 (3.16)
where ¢; = uzﬁ—;, Cy = uyf—; and h; is the mesh size along the ith Cartesian direc-

tion. Thus, at most temporal steps the time increment A¢ is set to satisfy 3.17

3
2 2 __
=TT g

with 6 = 0.9, That means that at each time step each particle moves approx-
imately nine tenths of the size of the smallest element of the mesh. Nevertheless,
there are situations in which this time increment is too large: if the velocity is slow-
ing down to zero, in order to satisfy 3.17 the time increment grows to infinite. To
avoid immense time increments, the criterion 3.13 and 3.14 is combined with a time
increment for the diffusive part of the problem

(3.17)

Oh?
2k
where £ is the thermal diffusivity and h, the size of an element.

Atgips = (3.18)

3.6 Enriched Solution (XFEM)

The level set method is usually combined with an enrichment technique to improve
the accuracy of the solution in the vicinity the interface. The combination of finite el-
ement with these two numerical techniques is called eXtended Finite Element Method
(XFEM) [19]. XFEM is particularly suitable for multiphase problems in which the
strain rate is discontinuous across the interface due to the continuity of stress and a
step in the viscosity.

The enrichment technique used here adds dynamically some degrees of freedom
to the mechanical solution to catch the discontinuity exactly where it is expected to
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Figure 3.2: Discontinuous gradient is obtained using enrichment. The velocity gradi-
ent (strain rate) will be discontinuous across the interface, caused by the continuity
of stress and the step in the viscosity.

happen, i.e. over the interface described by the level set.

The enrichment improves the solution near the interface described by the level set.
Fig.3.2 shows how the enrichment technique modifies the solution inside multiphase
elements.

The mixed formulation of the Stokes problem uses different interpolations for
velocity u and pressure p. The minielement, shown in (Fig.2.1), determines these
interpolation spaces. Denoting by M, the indices associated with the vertex nodes
and N, for j € Ny, the corresponding shape functions, the interpolated pressure is:

p(z,t) 2 pa(m,t) = > Ni(@)Pi(t) (3.19)
JENin

The interpolation of the velocity also includes the bubble degrees of freedom IV;
for j € Nyws, namely:

19



w(z,t) >~ up(z,t) = Z N;(z)u;(2) (3.20)

J eMinUN bub
The level set formulation is interpolated in terms of the linear degrees of freedom:

$(z,t) = dn(mt) = Y Nj(z (3.21)

J€NMin

In order to improve the ability of the interpolation to represent the gradient dis-
continuities across the interface, the interpolation of the velocity and pressure are

enriched using a partition of the unity approach and a ridge function R, defined as
[14]:

R(z) = Z | 65 | N;(z Z ¢;N;(z) | (3.22)

jE€Nenr Jj€Nenr

Note that R is defined such that it is only different from zero in the elements
containing part of the interface. The enrichment affects only the degrees of freedom
corresponding to the vertex nodes of the elements in contact with the interface. The
set of indices corresponding to such nodes is denoted as AN.,,. Thus enriched inter-
polations of velocity and pressure are expressed as:

u(@t) = Y, N@ut)+ ) Mj)a;) (3.23)

jEMinUMub jENe'n.'r
and,

pu(zt) = > Ni@Pit)+ > Mj(z)b;() (3.24)

jEMin jENenr

Where a; and b; are, respectively, the additional degrees of freedom for velocity
and pressure and its associated interpolation function M is defined as

My(2) = R(@)Ny(x) (3.25)
A compact matrix expression of the interpolation of velocity and pressure is used
in the following:
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Chapter 4

GLS Stabilization

4.1 GLS Formulation of Navier Stokes Equation

Stabilization approach applied to the Transient Navier Stokes equations is Galerkin-
Least-Squares (GLS) method, in which a least-squares form of the element residual
is added to the basic Galerkin equations.GLS formulation deals with convection and
pressure stabilization. In this case, the main unknowns are approximated by the usual
finite element components and an additional subgrid scale term which enhances sta-
bility of the resulting problem [20].

The transient Navier Stokes equations is recalled as:

Owu+u-Vu—vAu+Vp=f (4.1)

V-u=0 (4.2)

After integration by part the weak form of the problem is written as following

in a space-time slab Qx|t,, t,41[. It consists of finding u and p, functions of space

and time such that the following weak form is satisfied for all test functions v and q
which are time dependant.

tn+1

[ Joww-v+vVu:Vu+ (u-Vu) - v—pV-v+qV-u— f v]dQdt
in Q

4 / [t — u(t)] - vd = 0 (4.3)
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u is assumed to be discontinuous between time slabs and, in particular, the no-
tation involved in the last term of 4.2 is u(t™) = lime_g+-u(tn, +¢€). This term
imposes weakly the continuity of the velocity at ¢, (and the initial condition when

= 0). It is remarked that the momentum and the continuity equations are written
as a single variational equation.

The discrete problem is obtained by approximation u and p. If u, and p, are the
finite element unknowns, we approximate u = up +% and p & py, that is, the velocity
is approximated by its finite element component plus an additional term that we call
subgrid scale or subscale.

The velocity and pressure interpolation in time are assumed as piecewise constant.
Velocity in the time interval [¢,, t,41[ is defined as:

1 ~
u k=gt 4 g (4.4)

And pressure in the time interval |t,, t,1[ is defined as:

P g gt (4.5)
n+1 n+1

In which up*' and pp*" are obtained using the standard finite element interpola-
tion. In particular, equal velocity-pressure interpolation is possible with the formu-
lation to be derived.

If in 4.3 u is replaced by u?*! = uj™ + "1, constant in ]t,,t.41, and p is
replaced by pﬁ“, the terms involving 4™*! are integrated by parts, and the test
functions are taken in the finite element space (also constant in the time interval
considered), one gets:

5t [ VUl : Vo, + (Wi Vupt) s v, — pp IV - o,
0
@V - ul — g ]dQ 4+ [ [ul T —ul] - vedQ
0

—5t/fbn+1 . (uAhvh + UJZ:-H . Vvh + th)dﬂ =) (4.6)
Q

Where notation A is used to indicate that the Laplacian needs to be evaluated
element by element and f"+! needs to be understood as the average of f in Jt,, 1]
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Equation 4.6 must hold for all test functions vy, and g, in their corresponding finite
element spaces. It is important to note that the advection velocity in 4.6 is u?*!

*

and also that the continuity between time slabs needs to be imposed in terms of this
velocity.

After deviding 4.6 by ¢t and integration by part over vy, 4.7 will be yielded as
following:

[ [=vAupt - vy +ut - Vugtlo, + Voo, — f747 - ,]d0
Q

1 - -
+ / [Eufﬂ —u v — AT vy, + VETT - ]dQ = 0 (4.7)
Q
The equation 4.7 is rewritten as:

nt+l_, . n
—v AUt 4t Vgt 4 pptt - ety B St

—yAGT + Vit =0 (4.8)

If we consider following assumption:

u'n.—l—l —yn

6t’U/* = T (49)

Equation 4.8 can be recalled as:

—vAuIt 4t Vgt 4 Vpptt — ot 4 San

—v AT+ VT =0 (4.10)

This equation states that 4+, pi*! has to be solution of the Navier-Stokes equa-

tions within each element taking account a piecewise constant time interpolation.

Our intention here is to recover a well-known GLS-type formulation, and for this
we need to make two additional assumptions. The first one is to take advection ve-

locity, up™ instead of u?™*. and the second one is to neglect §;u.
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Residual, Ry is defined as 4.11. By considering 4.11, 4.10 is rewritten to 4.12:

—vAG+ U VI = —Ry, (4.11)

Tas[fH — (—v AU+ upt Vuptt + Vit =~ R (4.12)

Where 7, is a numerical parameter for which an expression is proposed in the
next section and R“+1 is the residual defined for Navier Stokes equation evaluated
with uftt.

4.2 Extra Stablized Matrices

Considering all approximation, the final discrete problem to be solved for uﬁ“ and
p"h is:

f[at(u"+1 u) - v + vVUET s Vo + (upth - Vuptt) cop — ppHV - o
75 (VAR + up T - Vo) - R — 2 ]dQ =0 (4.13)
/ [GnV - uttt + 75V - REdQ =0 (4.14)
Q

From the above equation extra matrices, K, v and f which must be added to K,
G and the source term respectively, are obtained as:

Kn =700 / nH Ly NUyrH YNV (4.15)
Q
— / W (VNUYNPYIY (4.16)
Q
fng/ ntl Y NUdV (4.17)
Q
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Final stabilized system for obtaining stabilized pressure and velocity is as follow-
ing:

MZZI + KnHl L ontl KfT:—H G+l +’)’”+1 untl
GTn+1 _l_,.),Tn+1 0 pn+1 B

fn—l—l S ]?'n,-l-l + MAn:l’U,n
(4.18)
0

4.3 GLS Stabilization Factor

In order to obtain stabilization factor, 7, the left hand side of the following equation
is considered separately:

—vAu+uVu=—Ry (4.19)
as:
—vAu = —Rh (420)
and:
uw.Vu = —Ry (4.21)

At first we start with 4.20. If we assume u as a polynomial as:

u=ag+ a1z + agz? (4.22)
Then,

after applying 4.23 in 4.20:
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209 = — (4.24)
After replacing 4.24 in 4.22:

u(z) = %z(h —x) (4.25)

% is assumed as center of the interval for linear interpolation. So, it is equivalent
to 2 and 4.25 is rewritten as:

Ry, h?

The second step is to consider 4.21. In the same way by assuming velocity as a
polynomial function as it is defined in 4.22, 4.21 will be yield as:

(4.26)

u(e) = %x (4.27)

As it has been assumed before, x is equivalent to % So, 4.27 is yielded as:
Ry h
"= Tula

According to what is obtained in 4.26 and 4.28 and also what is obtained before
as u(z) = Tys Ra(z), Tqis, the stablization factor is obtained as:

(4.28)

nls = [z + (g1 B (429)
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Chapter 5

Results

5.1 Rayleigh-Taylor Instability

In order to prove the numerical method used in the current code, a typical bench-
mark for two phase flow, Rayleigh Taylor instability has been used. In this case, the
same values of viscosity of 0.00313 kgm~'s~! has been considered for both fluids.
Densities of 1.225 and 0.1694 K gm 3 for the upper and downer fluids respectively. A
1 m wide, 1.5 m height rectangular domain has been discretized using different grid
sizes which will be explained in the following sections.

The initial level set is defined as a cosine function,c = z5cos(27z) 4 0.7. The ini-
tial velocity field is zero, pressure field is hydrostatic. No-slip boundary condition
has been imposed on the bottom wall ans slip boundary condition on the side walls.
A prescribed zero pressure has been applied to the upper wall.

The abofve mentioned physical properties of viscosity and densities are defined so
that the obtained results will be comparable with those of available numerical results
of our case [21].

5.2 Convergence criteria

Since convective term is the nonlinear part of the equation and convective matrix has
been calculated according to the prescribed velocity, an iterative scheme is needed to
be defined in order to reach to the solution.
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Two different criteria has been taken account for convergence: Residual conver-
gence and velocity convergence.

In the first case, the residual value is calculated after each solution as:

[M][u]*
dt
in which [u]' and [P]' are prescribed velocity and pressure vectors in the first

iteration and previous velocity and pressure in the next iteration. The relative value
of residual is considered as convergence parameter in iterative scheme:

Residual = [f] + ~ (KIC Dl ~ [T (P! (5.1)

| [Residual] ||
I (] + 2By

Relative — Residual = (5.2)

Velocity error has been defined relatively as another parameter of convergence in
iterative scheme. In which [u]?® and [u]' are two consequative velocity vectors in each
iteration.

((ful® = [l ([ ~ [u])7)
[u]2 (K] fu]2"
In each time step, the iretative scheme is going on until both defined values in

5.2 and 5.3 decreased to the tolerance value assumed as 0.001 or limited iteration
number of 50 is satisfied.

Relative — Error = (5.3)

5.3 Transient Navier Stokes without enrichment

The following simulations illustrate the results which have been obtained based on
transient navier stokes solution without enrichment, in a discretized domain using
grid size of 30 x 45. The material propertise have been selected as described in 5.1.

The obtained results are not in good agreement with those of [21]. There is no
vortice visualized in our simulation while vortices started to be constructed after time
0.7 sec in the mentioned work. Assuming surface tension equal to zero can justify
this phenomena.
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Figure 5.1: Rayleigh-Taylor Instability at first time step; grid size of 30 x 45
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Figure 5.2: Rayleigh-Taylor Instability at time step 66; grid size of 30 x 45
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However, some results have been obtained with different values of viscosity and den-
sity (viscosity values of 0.8 and 0.5 kgm™'s~! and density values of 100 and 50
Kgm™3) which include vortices. Fig. 5.3, 5.4, 5.5, 5.6 and 5.7 illustrate Rayleigh-
Taylor instability at different time steps. Fig. 5.8 is brought [21] as a sample though
the physical properties are not the same.

Fig.6.9 and Fig.5.10 illustrate residual and velocity convergence related to illus-
trated simulation of Fig.5.2. These graphs prove the numerical method has been
applied in the code.

5.4 Volume conservation

The volume of each phase is expected to remain unchanged along the time stepping
procedure due to conservative equation. Therfore, volumetric changes in time can be
used to assess the accuracy of the numerical techniques.

As illustrated in 5.1, the finer the mesh, the better description of the level set,
hence, less volume variation is observed. Even with a coarse mesh small error has
been produced.

5.5 Lack of Symmetry

In this work, the mesh arrangement is completely symmetric. So, it is expected to
have symmetric results. But the results are not symmetric. At first glance, one may
think it comes from selected time integration method.

In order to check this possibility, an error has been defined as 5.4 In which [V]
is the obtained velocity vector and [Viyn,] is a vector with the same size as velocity
vector with the components equal to unit value exept on the boundries and symme-
try line which are replaced by zero. n is number of nodes. In order to eliminate the
nonlinearity error, the convective matrix has been removed.

symError = L‘% (5.4)

As it is illustrated in Fig.5.11, the value of error is increasing along time stepping
procedure but decreases by refining the mesh. It can be concluded that this error is
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Figure 5.9: Residual convergence at time step 66
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Table 5.1: Maximum volume variation on different grid size along time stepping
procedure

Grid size Initial Volume of Denser Fluid A Vol Error

30x45 0.8 0.0037 % 0.47
40x60 0.8 0.0032 % 04
o90x75 0.8 0.002 % 0.25

coming from time integration method and can be overcome by refining the mesh.
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Chapter 6

Conclusion

Presented results in Chapter 5 shows that the implemented code based on FEM
and level set method has the ability of modelling multiphase transient Navier Stokes
equations with high accuracy. Although the code has been implemented for stabilized
case and non stabilized one with enrichment convergence did not obtained. There
are some points to be mentioned for future work:

Surface tension has been assumed zero in the current code. It can be added to
the equation in order to have better results specially in Rayleigh-Taylor instability
case.

The deficiencies of implememnted code including enrichment and stablized equa-
tion has to be removed in order to get comparative results with non enriched transient
Navier Stokes equation.

Tank sloshing can be modelled as another bench mark to verify the code specially
in high contrasts of density and viscosity.
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