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Chapter 1 
 
General introduction 
 
 
1.1 Introduction. 
 
Finite element method (FEM) is a powerful technique for 
numerically solving complex problems in structural mechanics. 
In the FEM, the structural system is usually modeled by a set of 
appropriate finite elements, which are interconnected at points 
called nodes.  
The classical procedure of solving a structure problem is shown 
as follows. The theory of FEM for structural analysis can be 
presented via the virtual work principle. 
 
 

 
 
 
The principle of virtual displacements expresses the 
mathematical identity of external virtual work and internal 
virtual work: 
 

                         
 
The right-hand-side of the above equation shows the internal 
virtual work. It may be derived by summing up the virtual work 
in the individual element. Eq. (1-1) leads to the following 
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governing equilibrium equation for the system: 
 

                                                            (1-2) 
 
 
R is vector of external nodal forces. 
r is vector of system's nodal displacements. Displacements at 
any point of the finite element mesh can be yielded by 
interpolation with r. 
K is system stiffness matrix, which will be established by 
assembling the elements' stiffness matrices. 
 
The nodal displacements are found by solving the system of 
linear equations (1-2), symbolically: 
 

                                                  (1-3) 
 
During the above process of solving matrix equation, iterative 
solvers with initial value 0 might be always chosen as a proper 
tool. Generally, there are several iterative solvers: 
 
Jacobi Iteration Method, 
Gauss-Seidel Iteration Method, 
Conjugate Gradient Method, 
Quasi-Newton Methods, 
GMRES Method. 
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1.2 Iterative solvers 
 
An iterative solver attempts to solve a matrix equation by 
finding successive approximations to the solution starting from 
an initial guess. 
Iterative solvers are often useful to solve linear matrix equations 
involving a large number of variables, where direct methods 
(such as Gauss elimination) would be prohibitively expensive.  
To solve equations as:  
 

     (1-4) 
 
 
 
1) Jacobi Iteration Method: 
 
Jacobi method is for solving a matrix equation on a matrix that 
has no zeros along its main diagonal. In Jacobi iteration, each 
equation of the system is solved for the component of the 
solution vector associated with diagonal element. This 
procedure is repeated until some convergence criterion is 
satisfied. The Jacobi algorithm for the general iteration step (k):  
 

         (1-5) 
 
 
 
2) Gauss-Seidel Iteration Method: 
 
Gauss-Seidel method is an improved version of Jacobi method.  
For the general iteration step (k), the algorithm is:  
 

        (1-6) 
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The Gauss-Seidel method is applicable to strictly diagonally 
dominant, or symmetric positive definite matrices.  

 

 

 
3) GMRES Method:  
 
The generalized minimal residual method (GMRES) is another 
iterative method, which approximates the solution by the vector 
in a Krylov subspace with minimal residual.  
The Arnoldi iteration is used to find this vector. The algorithm 
for Arnoldi iteration is as follows:   
 
Start with vector q = b with norm 1.  

 
q1, q2...qn forms a basis for Kn.  
 
The vector xn∈Kn can be written as xn = Qnyn with yn ∈ Rn  
Hence, xn can be found by minimizing the norm of the residual:  

                                           (1-7) 
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4) Conjugate gradient method:  
 
The conjugate gradient method is an algorithm for the numerical 
solution of particular systems of linear equations, especially 
those whose matrix is symmetric and positive-definite. The 
typical idea of the method is that it does not repeat advance 
directions.  

Iterative scheme:                             (1-8) 
 

 is determined by solving a minimization problem in the  
advance direction:  
 

                                    (1-9) 
 
The advance directions in each iteration are chosen to be A-
conjugate and are defined as:  
 

                 (1-10) 
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1.3 Difficulty of two type problems. 
 
With the help of iterative solvers, solution for the system of 
linear equations (1-2) can be derived after definite iteration steps. 
At the same time, the structure problem can be valued by such a 
run. Comparing with the classical procedure, there are many 
applications that many runs may be needed. 
 
1) Stochastic Analysis: 
 
Instead of dealing with only one possible 'reality' of how the 
process might evolve under time, in a stochastic or random 
process there is some indeterminacy in its future evolution 
described by probability distributions. This means that even if 
the initial condition (or starting point) is known, there are many 
possibilities the process might go to, but some paths are more 
probable and others less.  
For stochastic analysis, inputs are series of random variables. 
Each input needs to run the whole procedure to get the output 
and the whole calculations might come to be very expensive. 
 
2) Optimization: 
 
Optimization is the process of modifying a system to make 
some aspect of it work more efficiently or use fewer resources. 
In optimization problems, Genetic Algorithm and Evolution 
Strategy might be involved. A genetic algorithm is a search 
technique used in computing to find exact or approximate 
solutions to optimization and search problems. As a result, 
several cases need to be run in optimization problems. 
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                                    Figure 1-1  
 
 
 
Both for stochastic analysis and Optimization, the total process 
might be time-consuming, which is the reason to introduce 
ANN Techniques. 
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1.4   ANN.  
 
An Artificial Neural Network (ANN) is an information-
processing paradigm that is inspired by the way biological 
nervous systems, such as the brain, process information. 
It is composed of a large number of highly interconnected 
processing elements (neurons) working in unison to solve 
specific problems. 
  
 

          
 
                     Figure 1-2: ANN´s scheme  
 
 
 
To filfull the function of an ANN, there are two processes 
needed to run: learning process and operative process. 
What has attracted the most interest in neural networks is the 
possibility of learning, which in practice means the following: 
  
Given a specific task to solve and a class of functions F, 
learning means using a set of observations, in order to find 

which solves the task in an optimal sense. 
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This entails cost function  

Such that     
 
The cost function C is an important concept in learning, as it is a 
measure of how far away we are from an optimal solution to the 
problem that we want to solve. 
 
 
 
1.5 Using ANN as initial solution. 
 
 

 
classical iterative solution                         ANN solution 
                        
                                      Figure   1-3  
 
 
The left graph shows that classical iterative solution can be 
derived by taking several steps from initial value 0 to the exact 
solution. In a more advanced way, ANN produce an initial value 
instead. From this ANN initial value, much fewer steps needed 
to be taken to arrive the approximate solution. In this way, time 
of computer work can be reduced. 
 
 



 
15 

 
                   Figure 1-4: Learning Process of ANN   
      
The graph above shows the process in learning of ANN.  
 
Step1 and step2: send input test values to FEM code. Then the 
corresponding output values are produced.  
Step3: ANN's Learning Process can be fulfilled with the help of 
both input test values and corresponding output values.  
In step2, the initial value for iterative solver is 0. 
 
 
 

 
                Figure 1-5: Operative Process of ANN   
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In operative process, ANN gives initial value for FEM code in 
step2.  
The number of rest input values should be much larger than the 
number of the test inputs during learning process. This is to 
ensure saving time of the scheme. 
 
 
 
 
 
1.6 Tools needed to implement 
 
STAC is a CIMNE code to produce random variables with 
Monte Carlo method. Program for ANN is needed to establish 
learning and operative processes.  
Program iterative solvers in CALTEP and build the relationship 
between FEM from CALTEP and ANN. 
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Chapter 2 
 
Application in Stochastic Analysis 
 
 
2.1 Objective.  
 
Stochastic Mechanics is a rapidly growing area of research, 
whose importance is being recognized not only in academic 
circles but also in industrial practice. In probability theory, a 
stochastic process is the counterpart to a deterministic process. 
A deterministic process deals with only one possible root of 
process, but in a stochastic or random process there is some 
indeterminacy in its future evolution described by probability 
distributions. This means that even if the initial condition is 
defined, there are still many possibilities of the process. The 
more possibilities a stochastic process has, the more expensive 
the calculation by finite element technique should be.  
The purpose of the test example is trying to reduce time of 
computer work. Firstly, implement the computational platform 
and analyze the behavior of the process using different iterative 
solvers. At last, introduce ANN (Artificial Neural Network) into 
the platform and research on the effect of reducing time. The 
most important thing is the measurement of the speed-up of the 
process.  
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2.2 Introduction of the test example. 
 
In our test example, there are three rooms in such a box with 
different conductivity in each room.  
The temperature on the left hand side is 0 and right hand side's 
temperature is 10. One possible solution of T is like the graph 
below. 
 
 

        
              Figure 2-1: description of the example  
 
 
 
 
The result depends on different values of conductivity ki, which 
are random variables with certain density functions, conducing 
this test example to be a stochastic analysis case. Random 
variables are produced by Monte Carlo method. Monte Carlo 
method is a computational algorithm that relies on repeated 
random sampling to compute their results. Monte Carlo method 
is very useful in studying systems for modeling phenomena with 
significant uncertainty in inputs, such as the different 
conductivities in these three rooms. In our case, we use STAC to 
produce random input data set for conductivities. 
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                      Figure 2-2: random input data  
 
 
 
Build the geometry of three rooms in a box and generate the 
mesh by GID as below, in which 148 nodes and 246 triangle 
elements exist: 
 

 
                 Figure 2-3: mesh of the example 
 
 
 
CALTEP is used to solve this problem. In CALTEP, for matrix 
equation: K · d = f, three iterative solvers are considered to use: 
Jacobi Iteration Method, Gauss-Seidel Iteration Method and 
Conjugate Gradient Method. For each iterative solver, Firstly, 
set three conductivities as chosen values Ki and run the code 
with initial value 0. The output is the result of temperature on 
each node of the mesh. Then using the output as the initial value 
to test 500 examples with random conductivities around the 
chosen value of Ki. In CALTEP, the convergence rate is set to 
be 1e-5.  
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During the process for each iterative solver, the effect of 
choosing different initial values will be examined.  
 
The conductivities will be chosen as K1= 4.2e+11, K2= 
2.1e+11 ,K3= 8.1e+11  The corresponding result of 
temperature on each node of the mesh is as followed:  
 

 
         Figure 2-4: result of temperature by GID 
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2.3 "Intelligent" Finite Element Method with Jacobi 
Iteration Method: 
 
Run the code in CALTEP once with initial value X0= 0. Number 
of iterations is 606. The output values are temperatures on the 
nodes of the mesh. Put these values into 2.vet file as the initial 
value that is  for 500 examples. Analyze number of 
iteration for each example.  
 
 

              
    Figure 2-5: result of iteration numbers by STAC  
 
 
Media=2.2308e+002 Var=3.9234e+003  
 
 
Number of iterations is 223.08. The total time is 4m14s. From 
these, we can see that the output of temperature on each node 
corresponding to the chosen conductivities is a better initial 
value than 0, because it can reduce number of iterations and 
save time. Plot shot number versus iteration number. 
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Figure 2-6: Plot of shot number versus iteration number  
 
 
Run the code by STAC for 500 examples again, using Jacobi 
solver, with initial value equal to 0. The average number of 
iteration is 607.84. The total time is 5m35s. 
Then calculate the speedup between choosing initial value as 0 
and as temperature on each node:  
Speeduptime= time1/time2=5m35s/4m14s=1.3189  
Speedupiter= number1/number2=607.84/233.08=2.6079  
 
In order to testify the time-up, we change initial value from 0 to  
αXexact. Examine the time-up's rate corresponding to different α.  
 
α=0.25   time=8:13  media=5.8356e+002   var=3.3375e+002  
α=0.75   time=7:36  media=4.8669e+002   var=1.9062e+002  
α=0.95   time=7:27  media=3.4802e+002   var=9.6793e+001  
α=0.99   time=6:27  media=2.1305e+002   var=2.4899e+001  
α=0.999 time=6:10  media=6.0146e+001   var=2.1311e-001  
α=1        time=6:01  media=1                      var=0 
 
 
Plot α versus iteration number and time.  
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     Figure 2-7: Plot of α versus iteration number 
 
 

 
    Figure 2-8: Plot of α versus iteration number 
 
 
At last, introduce an Artificial Neural Network (ANN) into the 
platform. To fulfill the function of an ANN, there are two 
process needed to be run: learning process and operative process. 
The ANN program's built in the platform of Flood. 
During the learning process, 100 examples are needed to run by 
STAC to produce Training Data Set, which is the input test 
value for the neural network. The number of hidden neurons is 
set to be 20. The purpose of the learning process is to produce 
MultilayerPerceptron.dat file, which is an essential part in 
operative process.  
During the operative process, with the help of 
MultilayerPerceptron.dat file produced by the learning process, 
initial values for matrix equations mentioned above can be 
obtained corresponding to different conductivities. These initial 
values can help to reduce the number of iteration during the 
process of solving matrix equations. The idea is shown as below: 



 
24 

 
 

             
 Figure 2-9:  steps taken from initial value to the solution  
 
 

After introducing ANN, 500 examples are run by STAC. 
Numbers of iteration are reduced as: 

 

 
     Figure 2-10: result of iteration numbers by STAC  
 
 
Comparing the initial values produced by ANN with 
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approximate results obtained from FEM code in CALTEP, the 
distances are shown as follows: 
 

 
Figure 2-11: distance between initial values by ANN and results 
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2.4 "Intelligent" Finite Element Method with Gauss Seidal 
Method:  
 
Run the code once with initial value X0= 0. Number of iterations 
is 340. The output values are temperatures on the nodes of the 
mesh. Put these values into 2.vet file as the initial value, which 
is  for 500 examples, to solve matrix equations. 
Analyze number of iteration for each example.  
 

                
      Figure 2-12: result of iteration numbers by STAC  
 
 
Number of iterations is 140.18. The total time is 3m27s. From 
these, we can see that the output of temperature on each node 
corresponding to the chosen conductivities is a better initial 
value than 0, because it can reduce number of iterations and 
save time. Plot shot number versus iteration number. 
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Figure 2-13: Plot of shot number versus iteration number  
 
Run the code by STAC for 500 examples again, using Gauss 
Seidal solver, with initial value equal to 0. The average number 
of iteration is 339.65. The total time is 4m24s. 
 
Then calculate the speedup between choosing initial value as 0 
and as temperature on each node:  
Speeduptime= time1/time2=4m24s/3m27s=1.2754 
Speedupiter= number1/number2=339.65/140.18=2.4230 
 
In order to testify the time-up, we change initial value from 0 to  
αXexact. Examine the time-up's rate corresponding to different α.  
 
α=0.25   time= 5:34  media= 3.2802e+002   var= 1.0506e+002 
α=0.75   time= 5:21  media= 2.8000e+002   var= 6.0876e+001 
α=0.95   time= 5:18  media= 2.1020e+002   var= 3.4832e+001 
α=0.99   time= 5:5    media= 1.4056e+002   var= 1.2748e+001 
α=0.999 time= 4:59  media= 5.1370e+001   var= 3.7485e-001 
α=1        time= 4:44  media=1                       var=0 
 
 
Plot α versus iteration number and time.  
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Figure 2-14: Plot of α versus iteration number and time 

 
 
 
At last, introduce an Artificial Neural Network (ANN) into the 
platform. To fulfill the function of an ANN, there are two 
process needed to be run: learning process and operative process. 
The ANN program's built in the platform of FLOOD. 
 
During the learning process, 100 examples are needed to run by 
STAC to produce Training Data Set, which is the input test 
value for the neural network. The number of hidden neurons is 
set to be 20. The purpose of the learning process is to produce 
MultilayerPerceptron.dat file, which is an essential part in 
operative process.  
During the operative process, with the help of 
MultilayerPerceptron.dat file produced by the learning process, 
initial values for matrix equations mentioned above can be 
obtained corresponding to different conductivities. These initial 
values can help to reduce the number of iteration during the 
process of solving matrix equations. 
When introducing ANN, 500 examples are run by STAC. 
Number of iteration are reduced as: 
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     Figure 2-15: result of iteration numbers by STAC 
 
Comparing the initial values produced by ANN with 
approximate values obtained from FEM code in CALTEP, the 
distances are shown as follows: 
 

        
Figure 2-16: distance between initial values by ANN and results 
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2.5 "Intelligent" Finite Element Method with Conjugate 
Gradient Method: 
 
Run the code once with initial value X0= 0. Number of iterations 
is 54. The output values are temperatures on the nodes of the 
mesh. Put these values into 2.vet file as the initial value, which 
is  for 500 examples, to solve the matrix equations. 
Analyze number of iteration for each example.  
 

           
     Figure 2-17: result of iteration numbers by STAC 
 
 
 
Number of iterations is 36.52. The total time is 3m2s. From 
these, we can see that the output of temperature on each node 
corresponding to the chosen conductivities is a better initial 
value than 0, because it can reduce number of iterations and 
save time. Plot shot number versus iteration number. 
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 Figure 2-18: Plot of shot number versus iteration number  
 
 
Run the code by STAC for 500 examples again, using conjugate 
gradient solver, with initial value equal to 0. The average 
number of iteration is 55.106. The total time is 3m5s. 
 
Then calculate the speedup between choosing initial value as 0 
and as temperature on each node:  
Speeduptime= time1/time2=3m5s/3m2s=1.0165 
Speedupiter= number1/number2=55.106/36.52=1.5089 
 
In order to testify the time-up, we change initial value from 0 to  
αXexact. Examine the time-up's rate corresponding to different α.  
 
α=0.25     time=4:10    media=5.4414e+001     var=5.7822e+000  
α=0.75     time=4:18    media=5.1534e+001     var=4.4497e+000  
α=0.95     time=4:22    media=4.6766e+001     var=4.5644e+000  
α=0.99     time=4:6      media=3.8956e+001     var=3.2325e+000  
α=0.999   time=4:15    media=3.5094e+001     var=2.4140e+000  
α=1          time=4:6      media=1                        var=0  
 
Plot α versus iteration number and time.  
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    Figure 2-19: Plot of α versus iteration number 
 
 

 
     Figure 2-20: Plot of α versus iteration number 
 
 
 
At last, introduce an Artificial Neural Network (ANN) into the 
platform. To fulfill the function of an ANN, there are two 
process needed to be run: learning process and operative process. 
The ANN program's built in the platform of FLOOD. 
 
During the learning process, 100 examples are needed to run by 
STAC to produce Training Data Set, which is the input test 
value for the neural network. The number of hidden neurons is 
set to be 20. The purpose of the learning process is to produce 
MultilayerPerceptron.dat file, which is an essential part in 
operative process.  
During the operative process, with the help of 
MultilayerPerceptron.dat file produced by the learning process, 
initial values for matrix equations mentioned above can be 
obtained corresponding to different conductivities. These initial 
values can help to reduce the number of iteration during the 
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process of solving matrix equations. 
 
 
When introducing ANN, 500 examples are run by STAC. 
Number of iteration are reduced as: 
 
 

 
Figure 2-21: result of iteration numbers by STAC  
 
 
 
Comparing the initial values produced by ANN with 
approximate values obtained from FEM code in CALTEP, the 
distances are shown as follows: 
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Figure 2-12: distance between initial values by ANN and results  
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2.6 Conclusion: 
 
After testing three iterative solvers with ANN technique, the 
effect of reducing computer time has been proved. The 
measurement of the speed-up of the process is shown as 
followed: 
 
MEASUREMENT OF THE SPEED-UP OF ITERATIONS 

Iterative solvers Initial value as 0/ Initial value produced by ANN  
     Jacobi method 3.5416 
 Gauss Seidal method 2.9703 
Conjugate gradient 
method 

1.3874 

       Figure 2-13: Measurement of the speed-up of iterations  
 
From the above graph, we can find that the effect of the speed-
up of introducing ANN into Jacobi method is most tremendous. 
The time consumed by computer during Jacobi iteration process 
when choosing initial value as 0 is more than 3 times as the time 
taken by Jacobi iteration process when setting initial value with 
the help of ANN technique. 
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Chapter 3 
 
Application in Optimization 
 
 
3.1 Objective.  
 
Optimization is the process of modifying a system to make 
some aspect of it work more efficiently or use fewer resources. 
In optimization problems, Genetic Algorithm and Evolution 
Strategy might be involved. A genetic algorithm is a search 
technique used in computing to find exact or approximate 
solutions to optimization and search problems. Genetic 
algorithms are implemented in a computer simulation in which a 
population of abstract representations of candidate solutions to 
an optimization problem evolves toward better solutions. As a 
result, more cases need to be run in optimization problems. 

An airfoil is the shape of a wing. An airfoil-shaped body moved 
through a fluid produces a force perpendicular to the motion 
called lift. Flight airfoils have a characteristic shape with a 
rounded leading edge, followed by a sharp trailing edge. We 
simulate a set of similar airfoils with different shapes, and try to 
optimize the best shape of airfoil.  

The NACA airfoils are airfoil shapes for aircraft wings 
developed by the National Advisory Committee for Aeronautics 
(NACA). The shape of the NACA airfoils is described using a 
series of digits following the word "NACA." The parameters in 
the numerical code can be entered into equations to precisely 
generate the cross-section of the airfoil and calculate its 
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properties. Equation for a symmetrical 4-digit NACA airfoil is 
shown as followed: 

 

where: 
 c is the chord length, 
 x is the position along the chord from 0 to c, 
 y is the half thickness at a given value of x.                       (3-1) 
                    
  
We simulate a set of similar airfoils with different shapes, and 
try to optimize the best shape of airfoil with optimal force of lift 
and drag. More important task is trying to reduce time of 
computer work by introducing ANN techniques. 
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3.2 Introduction of the test example. 
 
This example simulates the fluid flow on a domain with an 
airfoil inside. For this case, there will be both Neumann and 
Dirichlet conditions imposed on the boundaries. The geometry 
of the airfoil´s model is build as followed: 

 
             Figure 3-1: geometry of the test example in GID  
 
The outer flow field for airfoils is one application of potential 
flow. In fluid dynamics, potential flow describes the velocity 
field as the gradient of a scalar function: the velocity potential. 
 

                                                               (3-1) 
 

                                              (3-2) 
 
Because of similarity between equation (3-2) and heat 
conduction equation, we can use CALTEP to solve this problem.  
Now in CALTEP, the meaning of the function is no longer 
temperature.  
 
The conditions are: 
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                    On the left of domain: 10
n

!
=  

                    On the right of domain: ! =0                  
                    On the top and bottom of domain, and the boundary 

of airfoil:  
Select the problem type as CALTEP2000, and mesh: 
 

 
                 Figure 3-2: mesh of the example in GID 
 
 
At the same time, .cal file, the input file for CALTEP has been 
received. Calculate with iterative solver in CALTEP. Number of 
iterations is 9195. The result of pressure is shown as followed: 
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                    Figure 3-3: result of pressure by GID  
 
 
 
 
Plot the pressure vs. x and y coordinates of the boundary of the 
airfoil respectively. 
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Figure 3-4: plot of pressure versus x coordinate of nodes on the  
                   boundary of airfoil by GID  
 
 
 

 
   Figure 3-5: plot of pressure versus y of nodes on the boundary                  
 
 
 
With the result of pressure of each node on the airfoil´s 
boundary, lift and drag force of airfoil by flow can be calculated. 
The airfoil´s lift: 
 -1.822497942270840E-012 
 The airfoil´s drag: 
  1.815381621501750E-010 
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3.3 Optimization of airfoils. 
 
Introducing all the input and output files into STAC. In STAC, 
16 variables of data and 1 variable of result have been defined: 
 
 

 
 
              Figure 3-6: the setting of variables of input  
 
 
 

 
 
            Figure 3-7: the setting of variables of output  
 
 
Simulation of different airfoil can be achieved by changing 
those 16 variables of data and the variable of result can show the 
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number of iterations for each case.  
 
For example, run 200 cases in STAC with different shape of 
airfoils: 
 
 

       
              Figure 3-8: result of iteration numbers   
 
 
The mean value of number of iterations for Jacobi solver is 
9489.3. 
 
IN STAC, reset the variable of result as two variables: force of 
lift and force of drag. Run 200 cases in STAC with different 
shape of airfoils again and try to find the best shape of airfoil: 
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             Figure 3-9: the airfoil ́s lifts of 200 cases  
 
 
 

          
       Figure 3-10: the airfoil ́s drags of 200 examples 
 
 
 
Among 200 shapes of airfoil, the best shape with least force of 
lift and biggest force of drag is obtained by setting the 16 
variables of data as: 
 
1.758051708E-01  3.090463331E-01  4.013961822E-01  5.261907726E-01  
5.554660255E-01  5.270220612E-01  4.236484830E-01  2.560271772E-01  -
1.758052e-001  -3.090463e-001  -4.013962e-001  -5.261908e-001  -5.554660e-001  -
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5.270221e-001  -4.236485e-001  -2.560272e-001  1.522219039099205E-012  
2.089909148799025E-010 
 
These 16 variables of data mean y coordinate value of nodes on 
the boundary of airfoil. They can together define the shape of 
airfoil as: 
 
 

 
               Figure 3-11: the optimal shape of airfoil 
 
 
The optimal design of airfoil produces the least force of lift as 
1.522219039099205E-012, and the best force of drag as  
2.089909148799025E-010. 
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3.4 Introducing ANN for reducing time. 
 
In previous work, 200 cases with different shapes of airfoil have 
been run in STAC.  With 200 cases´ results, the learning process 
of ANN can be fulfilled. 
 
 

 
                 Figure 3-12: iteration number of each shot after 
introducing ANN  
 
 
The mean value of number of iterations for Jacobi solver is 
6529.1.  Comparing with the result obtained by setting initial 
value as 0, number of iterations deduced obviously. Calculate 
the speedup: 
Speedupiter= number1/number2=9489.3/6529.1=1.4534 
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3.5 Conclusion. 
 
 
In this chapter, we testify the speed-up of introducing ANN 
technique into an application in optimization. The purpose is to 
calculate the force of lift and drag for 200 airfoils with different 
shapes and to try to find the airfoil with optimal shape. During 
calculating the governing equilibrium matrix equations, we use 
iterative solvers. As it is mentioned before, for Jacobi iterative 
solver, normally we set the initial value as 0. The mean number 
of iterations for Jacobi solver is 9489.3. Then ANN method has 
been introduced. The learning and using processes have been 
implemented. With the help of ANN, a proper initial value is 
provided. Using this initial value, the mean number of iterations 
for Jacobi solver can be reduced to 6529.1. Decreasing of 
number of iteration means the speed-up of computer work.  
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Chapter 4 
 
Conclusions 
 
 
CALTEP is a calculus program to solve heat conduction 
problems of 2D models. In this thesis, two problems 
respectively in stochastic analysis and optimization have been 
solved in the platform of CALTEP.  
During the process, three iterative solvers have been 
implemented in CALTEP: Jacobi iteration method, Gauss-
Seidal iteration method, and conjugate gradient method. 
After solving the problems in CALTEP, ANN technique has 
been introduced into the computational platform. Flood is a 
comprehensive implementation of the multilayer perceptron 
neural network. It has been modified to fulfill the process of 
learning and using.  
The traditional way to solve the problem using iterative solvers 
is to set the initial value as 0. After introducing ANN, Flood 
predicts an approximate solution to the problem. If using this 
approximate solution as an initial value, number of iterations 
can be reduced.  
In stochastic analysis and optimization, usually many runs are 
needed. If number of iterations is reduced in each run, a lot of 
time of computer work should be saved as a total.  
 The thesis is aiming to develop an ¨intelligent¨ finite element 
method of solving a specific class of problems in quasi real time 
using ANN techniques and iterative solvers. From the results 
discussed in previous chapters, the purpose is well fulfilled.  
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