Master Thesis

Enhanced Finite Element Analysis with
ANN Techniques

Kuan Zhang

Supervisor: Prof. Eugenio Onate
Prof. Francisco Zarate

CIMNE
Technical University of Catalonia

25 June 2009



Acknowledgments

I would like to thank my supervisors, Professor Eugenio
Onate and Professor Francisco Zarate, for their guidance,
support, and inspiration through my study at CIMNE.

I am sincerely grateful to Dr. Robert Lopez for his help
during the implementation of Artificial Neural Network
program.

This thesis is one part of my study in Erasmus Mundus
Master in computational mechanics. I really appreciate this
chance to study in Swansea University and UPC in Barcelona. I
would like to thank Professor Pedro Diaz for his help my study
and living during these 2 years.






Contents

Chapter 1 General introduction..........cccovviiinennnnniiiiciccscscennnnns 6
L1 Introduction. ... ...c.veeii e e 6
1.2 Tterative SOLVETS. .. .ot e 8
1.3 Difficulty of two type problems............ccoooiiiiiiiiiii i, 11
LA AN N e 13
1.5 Using ANN as initial solution.................ooiiiiiiiiiiii i, 14
1.6 Tools needed to implement.................oooiiiiiiiiiiiiiiiiieen, 16
Chapter 2 Application in Stochastic Analysis.......cccceveeecerceeinnnnen 17
2 B o) 175 < 17
2.2 Introduction of the test example...............cooiiiiiiiiiiiiii .. 18
2.3 "Intelligent" Finite Element Method with Jacobi Iteration

Method. ... 21
2.4 "Intelligent" Finite Element Method with Gauss Seidal

Method. ... 26
2.5 "Intelligent" Finite Element Method with Conjugate Gradient

Method. ... 30
2.6 ConclusiOn .........coiuiiiiii 35
Chapter 3 Application in Optimization........cc.ccvevvieiiiiiiiinnriecnen 36
TR0 0 o) 1715 4 36
3.2 Introduction of the test example................coiiiiiiiiiiiii i, 38
3.3 Optimization of airfoils.............coo i 42
3.4 Introducing ANN for reducing time .............c.ccoeviiiiiiiiinnnn.. 46
3.5 ConClUSION. ...ttt 47
Chapter 4 ConcluSionsS.......ccceviiiiiiiinnnneeeieicsscsssessnssesssssssssones 48
Preferences.....ccovvveiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiniiiiiinnntticiennnnnes 49






Chapter 1

General introduction

1.1 Introduction.

Finite element method (FEM) is a powerful technique for
numerically solving complex problems in structural mechanics.
In the FEM, the structural system is usually modeled by a set of
appropriate finite elements, which are interconnected at points
called nodes.

The classical procedure of solving a structure problem is shown
as follows. The theory of FEM for structural analysis can be
presented via the virtual work principle.

INFUT > FEM  ————— QUTPUT

The principle of virtual displacements expresses the
mathematical identity of external virtual work and internal
virtual work:

External virtual work = f dela dV
v (1-1)

The right-hand-side of the above equation shows the internal
virtual work. It may be derived by summing up the virtual work
in the individual element. Eq. (1-1) leads to the following
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governing equilibrium equation for the system:

R=Kr+R" (1-2)

R is vector of external nodal forces.

r is vector of system's nodal displacements. Displacements at
any point of the finite element mesh can be yielded by
interpolation with r.

K is system stiffness matrix, which will be established by
assembling the elements' stiffness matrices.

The nodal displacements are found by solving the system of
linear equations (1-2), symbolically:

r=K (R-R’ (1-3)

During the above process of solving matrix equation, iterative
solvers with initial value 0 might be always chosen as a proper
tool. Generally, there are several iterative solvers:

Jacobi Iteration Method,
Gauss-Seidel Iteration Method,
Conjugate Gradient Method,
Quasi-Newton Methods,
GMRES Method.



1.2 Iterative solvers

An iterative solver attempts to solve a matrix equation by
finding successive approximations to the solution starting from
an initial guess.

[terative solvers are often useful to solve linear matrix equations
involving a large number of variables, where direct methods
(such as Gauss elimination) would be prohibitively expensive.
To solve equations as:

"
A-x=b Zg‘?. X = .E-r'.r' [1=1, 2, 3...n)
= (1-4)

1) Jacobi Iteration Method:

Jacobi method is for solving a matrix equation on a matrix that
has no zeros along its main diagonal. In Jacobi iteration, each
equation of the system is solved for the component of the
solution vector associated with diagonal element. This
procedure is repeated until some convergence criterion is
satisfied. The Jacobi algorithm for the general iteration step (k):

_.:l':" n_ 2 . {i,_ ”_,.___{_-':‘ — .:"..!'_-.._L"__J":l (i=1, 2, 3..n})
i 21 Z i (1-5)

2) Gauss-Seidel Iteration Method:

Gauss-Seidel method 1s an improved version of Jacobi method.
For the general iteration step (k), the algorithm is:

i1 L
_{__f 1 _ L (5_2 .:7!-_.-_;":_"‘_:: _ E ﬂ,rul] (i=1, 2, 3..n)
= (1-6)



The Gauss-Seidel method is applicable to strictly diagonally
dominant, or symmetric positive definite matrices.

3) GMRES Method:

The generalized minimal residual method (GMRES) is another
iterative method, which approximates the solution by the vector
in a Krylov subspace with minimal residual.

The Arnoldi iteration is used to find this vector. The algorithm
for Arnoldi iteration is as follows:

Start with vector g = b with norm 1.
= gr — Agr—y
for jfrom 1to &—1
hjk—1 < q;q
"-I.'-.' F— |_1l||___ — "L'!_,'_-;.'—l"-f__.'
Jil'!.','l.',' 1 ||"I!'I||
fi'.l_-
"Iii. =1
ql, g2...qn forms a basis for Kn.

r’“. .

The vector xnEKn can be written as xn = Qnyn with yn € Rn
Hence, xn can be found by minimizing the norm of the residual:

Fn = H:r: Un — €1. (1-7)



4) Conjugate gradient method:

The conjugate gradient method is an algorithm for the numerical
solution of particular systems of linear equations, especially
those whose matrix is symmetric and positive-definite. The
typical idea of the method is that it does not repeat advance

directions.
: »*l=x+a, p’
Iterative scheme: 74 (1-8)

&, is determined by solving a minimization problem in the
advance direction:

i I.' g
pr.r)

[}"-' . J'\I)'r":} (1-9)

The advance directions in each iteration are chosen to be A-
conjugate and are defined as:

(1-10)
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1.3 Difficulty of two type problems.

With the help of iterative solvers, solution for the system of
linear equations (1-2) can be derived after definite iteration steps.
At the same time, the structure problem can be valued by such a
run. Comparing with the classical procedure, there are many
applications that many runs may be needed.

1) Stochastic Analysis:

Instead of dealing with only one possible 'reality' of how the
process might evolve under time, in a stochastic or random
process there is some indeterminacy in its future evolution
described by probability distributions. This means that even if
the initial condition (or starting point) is known, there are many
possibilities the process might go to, but some paths are more
probable and others less.

For stochastic analysis, inputs are series of random variables.
Each input needs to run the whole procedure to get the output
and the whole calculations might come to be very expensive.

2) Optimization:

Optimization is the process of modifying a system to make
some aspect of it work more efficiently or use fewer resources.
In optimization problems, Genetic Algorithm and Evolution
Strategy might be involved. A genetic algorithm is a search
technique used in computing to find exact or approximate
solutions to optimization and search problems. As a result,
several cases need to be run in optimization problems.
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Figure 1-1

Both for stochastic analysis and Optimization, the total process
might be time-consuming, which is the reason to introduce
ANN Techniques.
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1.4 ANN.

An Artificial Neural Network (ANN) is an information-
processing paradigm that is inspired by the way biological
nervous systems, such as the brain, process information.
It is composed of a large number of highly interconnected
processing elements (neurons) working in unison to solve
specific problems.

Hidden

Output

Figure 1-2: ANN's scheme

To filfull the function of an ANN, there are two processes
needed to run: learning process and operative process.

What has attracted the most interest in neural networks is the
possibility of learning, which in practice means the following:

Given a specific task to solve and a class of functions F,
learning means using a set of observations, in order to find

ffeF which solves the task in an optimal sense.

13



This entails cost function C' : FF — R
* L —
Such thatc(f ) < C(f} vf c F

The cost function C is an important concept in learning, as it is a
measure of how far away we are from an optimal solution to the
problem that we want to solve.

1.5 Using ANN as initial solution.

exact solution approximate solution
/ Xann

Pl 1Y
h
h

Xo

classical iterative solution ANN solution

Figure 1-3

The left graph shows that classical iterative solution can be
derived by taking several steps from initial value 0 to the exact
solution. In a more advanced way, ANN produce an initial value
instead. From this ANN initial value, much fewer steps needed
to be taken to arrive the approximate solution. In this way, time
of computer work can be reduced.
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Figure 1-4: Learning Process of ANN

The graph above shows the process in learning of ANN.

Step1 and step2: send input test values to FEM code. Then the
corresponding output values are produced.

Step3: ANN's Learning Process can be fulfilled with the help of
both input test values and corresponding output values.

In step2, the initial value for iterative solver is 0.

INPUT QUTPUT

Operative Process
Figure 1-5: Operative Process of ANN
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In operative process, ANN gives initial value for FEM code in
step2.

The number of rest input values should be much larger than the
number of the test inputs during learning process. This is to
ensure saving time of the scheme.

1.6 Tools needed to implement

STAC is a CIMNE code to produce random variables with
Monte Carlo method. Program for ANN is needed to establish
learning and operative processes.

Program iterative solvers in CALTEP and build the relationship
between FEM from CALTEP and ANN.
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Chapter 2

Application in Stochastic Analysis

2.1 Objective.

Stochastic Mechanics is a rapidly growing area of research,
whose importance is being recognized not only in academic
circles but also in industrial practice. In probability theory, a
stochastic process is the counterpart to a deterministic process.
A deterministic process deals with only one possible root of
process, but in a stochastic or random process there is some
indeterminacy in its future evolution described by probability
distributions. This means that even if the initial condition is
defined, there are still many possibilities of the process. The
more possibilities a stochastic process has, the more expensive
the calculation by finite element technique should be.

The purpose of the test example is trying to reduce time of
computer work. Firstly, implement the computational platform
and analyze the behavior of the process using different iterative
solvers. At last, introduce ANN (Artificial Neural Network) into
the platform and research on the effect of reducing time. The
most important thing is the measurement of the speed-up of the
process.
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2.2 Introduction of the test example.

In our test example, there are three rooms in such a box with
different conductivity in each room.

The temperature on the left hand side is 0 and right hand side's
temperature 1s 10. One possible solution of T is like the graph
below.

L}

;‘)f; Ke=ky=k1 kKe=ky=k2 Ka=Ky=k1
F

To=0 COne possible solution of T s like this: T>=10
L1 -
T:
, Ty
I'I
!
K| —— random variabbhe T

Figure 2-1: description of the example

The result depends on different values of conductivity ki, which
are random variables with certain density functions, conducing
this test example to be a stochastic analysis case. Random
variables are produced by Monte Carlo method. Monte Carlo
method is a computational algorithm that relies on repeated
random sampling to compute their results. Monte Carlo method
is very useful in studying systems for modeling phenomena with
significant uncertainty in inputs, such as the different
conductivities in these three rooms. In our case, we use STAC to
produce random input data set for conductivities.

18
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Figure 2-2: random input data

Build the geometry of three rooms in a box and generate the
mesh by GID as below, in which 148 nodes and 246 triangle
elements exist:

Figure 2-3: mesh of the example

CALTEDP is used to solve this problem. In CALTEP, for matrix
equation: K - d = f, three iterative solvers are considered to use:
Jacobi Iteration Method, Gauss-Seidel Iteration Method and
Conjugate Gradient Method. For each iterative solver, Firstly,
set three conductivities as chosen values Ki and run the code
with initial value 0. The output is the result of temperature on
each node of the mesh. Then using the output as the initial value
to test 500 examples with random conductivities around the
chosen value of Ki. In CALTEP, the convergence rate is set to
be le-5.
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During the process for each iterative solver, the effect of
choosing different initial values will be examined.

The conductivities will be chosen as Ki=4.2e+11, Ko=
2.1e+11 ,K3=8.1e+11[+/m's]. The corresponding result of
temperature on each node of the mesh is as followed:

Figure 2-4: result of temperature by GID

20



2.3 "Intelligent" Finite Element Method with Jacobi
Iteration Method:

Run the code in CALTEP once with initial value Xo= 0. Number
of iterations is 606. The output values are temperatures on the
nodes of the mesh. Put these values into 2.vet file as the initial

value that is 0 = e for 500 examples. Analyze number of
iteration for each example.

i 4 1y i rlrrvnlo Supeicr 3% b Nl ior 5%

FH A0 P - il A N o oy R DR R B e

E L . L L = "
™ - rd e - i T T

Shmero de Teos

Figure 2-5: result of iteration numbers by STAC

Media=2.2308e+002 Var=3.9234e+003

Number of iterations 1s 223.08. The total time i1s 4m14s. From
these, we can see that the output of temperature on each node
corresponding to the chosen conductivities 1s a better initial
value than 0, because it can reduce number of iterations and
save time. Plot shot number versus iteration number.
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Figure 2-6: Plot of shot number versus iteration number

Run the code by STAC for 500 examples again, using Jacobi
solver, with 1nitial value equal to 0. The average number of
iteration is 607.84. The total time is 5Sm335s.

Then calculate the speedup between choosing initial value as 0
and as temperature on each node:

Speeduptime= timel/time2=5m35s/4m14s=1.3189

Speedupiter= number1/number2=607.84/233.08=2.6079

In order to testify the time-up, we change initial value from 0 to
aXexact. Examine the time-up's rate corresponding to different a.

0=0.25 time=8:13 media=5.8356e+002 var=3.3375e+002
0=0.75 time=7:36 media=4.8669¢+002 var=1.9062e+002
0=0.95 time=7:27 media=3.4802e+002 var=9.6793e+001
0=0.99 time=6:27 media=2.1305e¢+002 var=2.4899e+001
0=0.999 time=6:10 media=6.0146e+001 wvar=2.1311e-001
o=1 time=6:01 media=1 var=0

Plot a versus iteration number and time.
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Figure 2-7: Plot of a versus iteration number
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Figure 2-8: Plot of a versus iteration number

At last, introduce an Artificial Neural Network (ANN) into the
platform. To fulfill the function of an ANN, there are two
process needed to be run: learning process and operative process.
The ANN program's built in the platform of Flood.

During the learning process, 100 examples are needed to run by
STAC to produce Training Data Set, which is the input test
value for the neural network. The number of hidden neurons is
set to be 20. The purpose of the learning process is to produce
MultilayerPerceptron.dat file, which is an essential part in
operative process.

During the operative process, with the help of
MultilayerPerceptron.dat file produced by the learning process,
initial values for matrix equations mentioned above can be
obtained corresponding to different conductivities. These initial
values can help to reduce the number of iteration during the
process of solving matrix equations. The idea is shown as below:
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Figure 2-9: steps taken from initial value to the solution

After introducing ANN, 500 examples are run by STAC.

Numbers of iteration are reduced as:

Media= 171.63

var= 3.1690e+3

Evolicidn Promecios Irdervalo Suponor 95% Intervala Infenar S5%

5|74 251,714
23,371 237,371
s B 77307
et 2008 555

E i 104,343

g i %i\l‘\-"'-'-,_;mn_—-.,_ . e — 160K

E Jsy ———— o LG5 658
51,716 151,315
3553 L0 873
.63 172/63
D8, 28Y 108,268
"% 5 EF G FE §F§

Mieners de Tires

Figure 2-10: result of iteration numbers by STAC

Comparing the initial values produced by ANN with

24



approximate results obtained from FEM code in CALTEP, the
distances are shown as follows:

— Ewnlucion Promedios Inipnealn Supenor 55% rtervalke Inferor B5%
o 00604079
o 0,0548481
o 0,045088¢
o 00437285
g o 00383688
i o 0,02609
= o 0,0070403
o ] 0,0214805
o — e R
o £,0103509
Py~ 000481917
" & § 5 5 g 8§ oz @
Wimsero de Tires

Media= 1.7576e-2 wvar= 2.5158e-004
Figure 2-11: distance between initial values by ANN and results
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2.4 "Intelligent" Finite Element Method with Gauss Seidal
Method:

Run the code once with initial value Xo= 0. Number of iterations
is 340. The output values are temperatures on the nodes of the
mesh. Put these values into 2.vet file as the initial value, which

1s 40 = Leraer for 500 examples, to solve matrix equations.
Analyze number of iteration for each example.

= SRl Wl anbD Sipeid 95 % i sl e e 5

4. | T " : . 193, 17
9,6 : : : 180
104, e . 3 LB 7
H7E 5E H H LT, X
g FI-CNET . '} L&
141,47 1 : : Lih4
g 153,99 | L e i 153,93
b4, 38 A X 14
: i (§F:
1. 31 . 138,381
led ' 1 L 1 1 1 L
= B P
Wi e Teoe
Media=1.4018e+002 Var=1.2813e+003

Figure 2-12: result of iteration numbers by STAC

Number of iterations 1s 140.18. The total time 1s 3m27s. From
these, we can see that the output of temperature on each node
corresponding to the chosen conductivities is a better initial
value than 0, because it can reduce number of iterations and
save time. Plot shot number versus iteration number.
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Figure 2-13: Plot of shot number versus iteration number

Run the code by STAC for 500 examples again, using Gauss
Seidal solver, with initial value equal to 0. The average number
of iteration 1s 339.65. The total time is 4m24s.

Then calculate the speedup between choosing initial value as 0
and as temperature on each node:

Speeduptime= timel/time2=4m24s/3m27s=1.2754

Speedupiter= number1/number2=339.65/140.18=2.4230

In order to testify the time-up, we change initial value from 0 to
aXexact. Examine the time-up's rate corresponding to different a.

0=0.25 time= 5:34 media= 3.2802e+002 var= 1.0506e+002
0=0.75 time= 5:21 media= 2.8000e+002 var= 6.0876e+001
0=0.95 time= 5:18 media=2.1020e+002 var= 3.4832e+001
0=0.99 time=15:5 media=1.4056e+002 var=1.2748e+001
0=0.999 time= 4:59 media= 5.1370e+001 var= 3.7485e-001
o=1 time= 4:44 media=1 var=0

Plot a versus iteration number and time.
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Figure 2-14: Plot of a versus iteration number and time

At last, introduce an Artificial Neural Network (ANN) into the
platform. To fulfill the function of an ANN, there are two

process needed to be run: learning process and operative process.
The ANN program's built in the platform of FLOOD.

During the learning process, 100 examples are needed to run by
STAC to produce Training Data Set, which is the input test
value for the neural network. The number of hidden neurons is
set to be 20. The purpose of the learning process is to produce
MultilayerPerceptron.dat file, which is an essential part in
operative process.

During the operative process, with the help of
MultilayerPerceptron.dat file produced by the learning process,
initial values for matrix equations mentioned above can be
obtained corresponding to different conductivities. These initial
values can help to reduce the number of iteration during the
process of solving matrix equations.

When introducing ANN, 500 examples are run by STAC.
Number of iteration are reduced as:
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Media= 114.35 wvar= 1.152Be+3
Figure 2-15: result of iteration numbers by STAC

Comparing the initial values produced by ANN with
approximate values obtained from FEM code in CALTEP, the
distances are shown as follows:

Evaludidn Promedics miorvals Superor 55% ImBervalo Inberor 555
E.iﬁ!ﬁl? 0, 02elT
0,MBB377 0,018857T7
0, is3ar, N i P 0,0175337

L, 1;-"_;‘1?%-_“-.“-';_‘_“1—#%'\—'_'_”_' 0,01 B1E0F

i, W 1048257

E i, 17 0003

= 0120 0,00 20078
0,fI07138 0,0107138
0,005 34572 0,00534472
0,0273558 0,0073E58
0, D GTTR 00065115
"% EEEEEEEE

Himaro de Tirs

Media= 1.6674e-2 wvar= 1.3886e-004
Figure 2-16: distance between initial values by ANN and results
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2.5 "Intelligent" Finite Element Method with Conjugate
Gradient Method:

Run the code once with initial value Xo= 0. Number of iterations
is 54. The output values are temperatures on the nodes of the
mesh. Put these values into 2.vet file as the initial value, which
1s 40 = Leraer for 500 examples, to solve the matrix equations.
Analyze number of iteration for each example.

Bwshmadns P oo i Sopeeicr S5 % TR
37,96 . : . . : . . . - 37,95
Cp R £ v

J B : : :
AT, 080 e s ; LT A : : . & 37,09
¥ T t ' 1 '
TR 1 e it B ET o P e T L]
i

B neoim

I Th

1 5 7E04
Ea; SEn B L - i 4 95 S4En
£ I L R T T T e i & I 1 ]
] --\.-\. .- 4 34 4T5H
3 '|.||'|a-.:..:. .:_'\-1 M
Y IR + 3, B0

- % &8 B § § z B g B

mnwErn de Timos
Media=3.6524e+001 Var=1.1532e+001

Figure 2-17: result of iteration numbers by STAC

Number of iterations is 36.52. The total time is 3m2s. From
these, we can see that the output of temperature on each node
corresponding to the chosen conductivities is a better initial
value than 0, because it can reduce number of iterations and
save time. Plot shot number versus iteration number.
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Figure 2-18: Plot of shot number versus iteration number

Run the code by STAC for 500 examples again, using conjugate
gradient solver, with initial value equal to 0. The average
number of iteration is 55.106. The total time is 3m5s.

Then calculate the speedup between choosing initial value as 0
and as temperature on each node:
Speeduptime= timel/time2=3m5s/3m2s=1.0165

Speedupiter= number1/number2=55.106/36.52=1.5089

In order to testify the time-up, we change initial value from 0 to
aXexact. Examine the time-up's rate corresponding to different a.

0=0.25
0=0.75
0=0.95
0=0.99
0=0.999
o=1

time=4:10
time=4:18
time=4:22
time=4:6
time=4:15
time=4:6

media=5.4414¢e+001
media=5.1534e+001
media=4.6766e+001
media=3.8956e+001
media=3.5094¢+001
media=1

Plot a versus iteration number and time.
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Figure 2-19: Plot of a versus iteration number
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Figure 2-20: Plot of a versus iteration number

At last, introduce an Artificial Neural Network (ANN) into the
platform. To fulfill the function of an ANN, there are two

process needed to be run: learning process and operative process.
The ANN program's built in the platform of FLOOD.

During the learning process, 100 examples are needed to run by
STAC to produce Training Data Set, which is the input test
value for the neural network. The number of hidden neurons is
set to be 20. The purpose of the learning process is to produce
MultilayerPerceptron.dat file, which is an essential part in
operative process.

During the operative process, with the help of
MultilayerPerceptron.dat file produced by the learning process,
initial values for matrix equations mentioned above can be
obtained corresponding to different conductivities. These initial
values can help to reduce the number of iteration during the
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process of solving matrix equations.

When introducing ANN, 500 examples are run by STAC.
Number of iteration are reduced as:

— Evohicin Promadios Imipnsaln Superion 35% Inizrsaio Infenor 55%
41,5568 41,8558
"-LE"?!’ 41,3540
::liq_-..-.l i " . ELEE
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E EE). TH '_._,...1' s 19,8853
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’E IESS 30,5055
AT IWALIF
15 17,5218
%4 37,43
59381 386, 0351

" 2 &8 8 & B 7 F 9
Milimars da Tiros

Media= 39.7/18  var= 8.9444e+0
Figure 2-21: result of iteration numbers by STAC

Comparing the initial values produced by ANN with
approximate values obtained from FEM code in CALTEP, the
distances are shown as follows:
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Figure 2-12: distance between initial values by ANN and results
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2.6 Conclusion:

After testing three iterative solvers with ANN technique, the
effect of reducing computer time has been proved. The
measurement of the speed-up of the process is shown as
followed:

MEASUREMENT OF THE SPEED-UP OF ITERATIONS

Iterative solvers | Initial value as 0/ Initial value produced by ANN

Jacobi method 3.5416

Gauss Seidal method [2.9703

Conjugate gradient 1.3874
method

Figure 2-13: Measurement of the speed-up of iterations

From the above graph, we can find that the effect of the speed-
up of introducing ANN into Jacobi method is most tremendous.
The time consumed by computer during Jacobi iteration process
when choosing initial value as 0 is more than 3 times as the time
taken by Jacobi iteration process when setting initial value with
the help of ANN technique.
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Chapter 3

Application in Optimization

3.1 Objective.

Optimization is the process of modifying a system to make
some aspect of it work more efficiently or use fewer resources.
In optimization problems, Genetic Algorithm and Evolution
Strategy might be involved. A genetic algorithm is a search
technique used in computing to find exact or approximate
solutions to optimization and search problems. Genetic
algorithms are implemented in a computer simulation in which a
population of abstract representations of candidate solutions to
an optimization problem evolves toward better solutions. As a
result, more cases need to be run in optimization problems.

An airfoil 1s the shape of a wing. An airfoil-shaped body moved
through a fluid produces a force perpendicular to the motion
called lift. Flight airfoils have a characteristic shape with a
rounded leading edge, followed by a sharp trailing edge. We
simulate a set of similar airfoils with different shapes, and try to
optimize the best shape of airfoil.

The NACA airfoils are airfoil shapes for aircraft wings
developed by the National Advisory Committee for Aeronautics
(NACA). The shape of the NACA airfoils is described using a
series of digits following the word "NACA." The parameters in
the numerical code can be entered into equations to precisely
generate the cross-section of the airfoil and calculate its
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properties. Equation for a symmetrical 4-digit NACA airfoil is
shown as followed:

=y 2 3 4
102960 f“f—o.mso(f)—o.aslﬁ(f) +0.2843(E) —0.1015(5)
0.20 V e c e C e

where:

c is the chord length,
x 1s the position along the chord from 0 to c,
y 1s the half thickness at a given value of x. (3-1)

We simulate a set of similar airfoils with different shapes, and
try to optimize the best shape of airfoil with optimal force of lift
and drag. More important task is trying to reduce time of
computer work by introducing ANN techniques.
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3.2 Introduction of the test example.

This example simulates the fluid flow on a domain with an
airfoil inside. For this case, there will be both Neumann and
Dirichlet conditions imposed on the boundaries. The geometry
of the airfoil’s model is build as followed:

Figure 3-1: geometry of the test example in GID

The outer flow field for airfoils is one application of potential
flow. In fluid dynamics, potential flow describes the velocity
field as the gradient of a scalar function: the velocity potential.

dp O
U= = ——
dx Oy (3-1)
%0 20
Ap=—2 L =0
or: oy (3-2)

Because of similarity between equation (3-2) and heat
conduction equation, we can use CALTEP to solve this problem.
Now in CALTEP, the meaning of the function is no longer
temperature.

The conditions are:
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On the left of domain: ¢ =10
n

On the right of domain: -0

On the top and bottom of domain, and the boundary
8
of airfoil: =

Select the problem type as CALTEP2000, and mesh:

0

N\ / /\\\ /\ / \ / \\_ N\ / /\\\ ,/" f

/
—

\VAVAVAVAVAVAVAVAY
/\\ WAWA AVAVAVA:,
- - Jx’f’ \/ /

Foy

Figure 3-2: mesh of the example in GID

At the same time, .cal file, the input file for CALTEP has been
received. Calculate with iterative solver in CALTEP. Number of
iterations is 9195. The result of pressure is shown as followed:
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[

TEMPERATURA

1.2309e-09
1.0941e-09
9.5735e-10

- 8.2059e-10
- 6.8382e-10
5.4706e-10
4.1029e-10
2.7353e-10
1.3676e-10

0

Figure 3-3: result of pressure by GID

Plot the pressure vs. x and y coordinates of the boundary of the
airfoil respectively.

TEMPERATURIA

1.09e-09

1.04e-09

9.9e-10

9.4e-10

8.9e-10

8.4e-10
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7.4e-10

6.9e-10

I T
—*— Set 1 boundary graph (1).

X-Variation

T
.56

T
1.12

T
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Figure 3-4: plot of pressure versus x coordinate of nodes on the
boundary of airfoil by GID

Figure 3-5: plot of pressure versus y of nodes on the boundary

With the result of pressure of each node on the airfoil’s
boundary, lift and drag force of airfoil by flow can be calculated.
The airfoil’s lift:

-1.822497942270840E-012
The airfoil’s drag:

1.815381621501750E-010
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3.3 Optimization of airfoils.

Introducing all the input and output files into STAC. In STAC,
16 variables of data and 1 variable of result have been defined:

— 136U'U o.oo :I
= [5age --/0.061728395061728392 0.15937120370000000 0
=& Ficheros de Datos -50.24691358024691357 0.28987168200000000 O
= [E] batch.batch123 (C:\Docun 5o|0-55555555555555547 0.52940650070000000 O
-3 Variables op|0.98765432098765427 0.4110119501000000 0
B y1 o4/1.5432098765432098 0.48614121710000000 0
B y2 05|2-2222222222222219 0.43964470040000000 O
e y3 ~|3.0246913580246906 0.32540581020000000 0
93
B y4 04)3.9506172839506171 0.213449659370000000 0
B y5 0e/5-0 0.0099999999999998701 O
2 v opEScape
¥ . , escape escape escape Utilities Variables CreateldlwaysNew
e y7 =
@ ¥8 op|eScape escape escape
Pﬁ‘ ¥9 oo EScape escape escape Utilities Variables CreatellwaysNew
escape escape escape eometry reate urbhslLine
e y10 Byt G c NurbsLi
- y11 Jy0.0 0.0 0
B y12 102|0.061728395061728392 ~0.15937120000000000 0O
) - y13 ~-/0.24691358024691357 -0.28957170000000000 O
103
B y14 1(4/0-55555555555555547 ~0.52940650000000000 0
s B4 y1s 10e/0.98765432098765427 ~0.4110120000000000 0O
0] B yi6 10g 1. 5432098765432098 -0.48614120000000000 0O
5 1072 -2222222222222219 -0.43964470000000000 0O
B | | Ll 1683.0246913580246906 -0.32540580000000000 O
2 | 1003 -9506172839506171 -0.21344970000000000 0O =
E @ Datos I @“Resultadnsl =,‘ﬁ,nnalisis] El o 2 _,,_I

Figure 3-6: the setting of variables of input

= [= ,El 4 =% C:\Documents and Settings'zhangiCaltep200 10l x|
=& Ficheros de Resultados 1| Indicador de esScrituUra .........
E]E'l 7.sal {C:\Documents and § 2 Escala de las coordenadas ......
=3 Variables 3 MATERIAL NUMBER .......civununnn
.5 number of iteration 4 Numero del material ............
5 Conductividad termica ¥ ........
6 Conductividad termica ¥ ........
7 Conductividad termica Z ........
8 Densidad ......ciiiiiinnnnnnnnnn
a Fuente de calor ......cceeeeennns

10| number of iterations 2859

11

| | >l
I —

Figure 3-7: the setting of variables of output

Simulation of different airfoil can be achieved by changing
those 16 variables of data and the variable of result can show the
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number of iterations for each case.

For example, run 200 cases in STAC with different shape of
airfoils:

10200
10000
9800 [l II " | ||.
9500 il " I

9400 - | |
9200
9000
8500
8600
8400

iterations

1 17 33 49 B5 81 97 113 129 145 161 177 193

shots
Figure 3-8: result of iteration numbers

The mean value of number of iterations for Jacobi solver is
9489.3.

IN STAC, reset the variable of result as two variables: force of

lift and force of drag. Run 200 cases in STAC with different
shape of airfoils again and try to find the best shape of airfoil:
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— Ewvolucion Promedios

3,51883e-012

— Intervalo Superior 95%

Intervalo Inferior 95%

- 3,51883e-012
2,85643e-012 L 2,85643e-012
2,19403e-012 1 2,19403e-012

g 153163012 1 1,53163e-012
w 8,60233e-013 L 8,69233e-013
E 2,06834e-013 4 2,06834e-013
& _4,55565e-013 - - -4,55565e-013
& 1,11796e-012 L -1,1179%6e-012
-1,78036e-012 - -1,768036e-012
-2,44276e-012 - -2,44276e-012
-3,10516e-012 : ; : -3,10516e-012
TN 7 B R g A% & o3
NﬁMEI;O de Tiros
Figure 3-9: the airfoil s lifts of 200 cases
— Evolucion Promedios — Intervalo Superior 95% Intervalo Inferior 95%
1,92648-010 r=-a-==-r-s-m=sssrosonssssrossasosopssasos o 1,9264e-010
1,907886-010 Ff pyed-- - - beeedemmmboeadaactonadocitoiio 1 1 00788e-010
1,88936e-010 4}-- ,,, 1,88936e-010
S 1,87084e-010 - ;wﬂ____ur -~ 1,87084e-010

1,85232e-010
1,8338e-010

1,51528e-010
1,79676e-010
1,77824e-010
1,75972e-010
1,74121e-010

™ 1,85232e-010
E 1,3338e-010
® 1,81528¢-010
% 1,79676e-010
1,77824e-010
1,75972e-010
1,74121e-010

1

1

— — —_ I — —
N X g N T 8 9
Namero de Tiros

Figure 3-10: the airfoil s drags of 200 examples

Among 200 shapes of airfoil, the best shape with least force of
lift and biggest force of drag is obtained by setting the 16
variables of data as:

1.758051708E-01 3.090463331E-01 4.013961822E-01 5.261907726E-01
5.554660255E-01 5.270220612E-01 4.236484830E-01 2.560271772E-01 -
1.758052e-001 -3.090463e-001 -4.013962e-001 -5.261908e-001 -5.554660e-001 -
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5.270221e-001 -4.236485¢-001 -2.560272e-001 1.522219039099205E-012
2.089909148799025E-010

These 16 variables of data mean y coordinate value of nodes on
the boundary of airfoil. They can together define the shape of
airfoil as:

Figure 3-11: the optimal shape of airfoil

The optimal design of airfoil produces the least force of lift as
1.522219039099205E-012, and the best force of drag as
2.089909148799025E-010.
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3.4 Introducing ANN for reducing time.

In previous work, 200 cases with different shapes of airfoil have

been run in STAC. With 200 cases’ results, the learning process
of ANN can be fulfilled.

7200

7000

6800

6600

iterations

6400

6200

6000

5800 454

1 5 9 13 17 21 25 289 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 11
shots

Figure 3-12: iteration number of each shot after
introducing ANN

The mean value of number of iterations for Jacobi solver is
6529.1. Comparing with the result obtained by setting initial
value as 0, number of iterations deduced obviously. Calculate
the speedup:

Speedupiter= number1/number2=9489.3/6529.1=1.4534
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3.5 Conclusion.

In this chapter, we testify the speed-up of introducing ANN
technique into an application in optimization. The purpose is to
calculate the force of lift and drag for 200 airfoils with different
shapes and to try to find the airfoil with optimal shape. During
calculating the governing equilibrium matrix equations, we use
iterative solvers. As it 1s mentioned before, for Jacobi iterative
solver, normally we set the initial value as 0. The mean number
of iterations for Jacobi solver is 9489.3. Then ANN method has
been introduced. The learning and using processes have been
implemented. With the help of ANN, a proper initial value is
provided. Using this initial value, the mean number of iterations
for Jacobi solver can be reduced to 6529.1. Decreasing of
number of iteration means the speed-up of computer work.
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Chapter 4

Conclusions

CALTERP is a calculus program to solve heat conduction
problems of 2D models. In this thesis, two problems
respectively in stochastic analysis and optimization have been
solved in the platform of CALTEP.

During the process, three iterative solvers have been
implemented in CALTEP: Jacobi iteration method, Gauss-

Seidal iteration method, and conjugate gradient method.

After solving the problems in CALTEP, ANN technique has
been introduced into the computational platform. Flood is a
comprehensive implementation of the multilayer perceptron
neural network. It has been modified to fulfill the process of
learning and using.

The traditional way to solve the problem using iterative solvers
is to set the initial value as 0. After introducing ANN, Flood
predicts an approximate solution to the problem. If using this
approximate solution as an initial value, number of iterations
can be reduced.

In stochastic analysis and optimization, usually many runs are
needed. If number of iterations is reduced in each run, a lot of
time of computer work should be saved as a total.

The thesis is aiming to develop an “intelligent™ finite element
method of solving a specific class of problems in quasi real time
using ANN techniques and iterative solvers. From the results
discussed in previous chapters, the purpose is well fulfilled.
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