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1 Introduction

1.1 Motivation

The Electric Transmission lines used to transmit power from power station to
other units, are prone to damage due to various conditions. Some of reasons
could be identified as the weather conditions pertaining to rain which causes cor-
rosion, windy loads causing vibrations, temperature effects etc, which are prone
to causes damages. The damages of these high transmission lines are quiet dan-
gerous, as it carries high voltage and could cause casualties with loss of power
transmission to important sectors. Hence a proper and regular monitoring sys-
tem needed as these lines are installed for long use. One of damages presented is
related to generation of crack and crack propagation.The conventional methods
have been on lines of visual inspection which include high amount risk and very
expensive. This demands for the need to have better experimental and simula-
tions methods to overcome the problems and avoid casualties with measurements
done from distance far from the transmission lines. One method that could be
realized is non destructive testing method using ultrasonic waves.

The simulation in past and present have been modeled through the methods
like Modal Decomposition method and Finite element method. These methods
gets complicated for crack having other than vertical cross-section. The Boun-
dary Element method can yield results for different cross sectional cracks with
less time invested in the computation. The work in this thesis concentrates on
analysis of mode conversions at free edge.

Initiated

Figure 1.1: Damage detection in transmission lines by wave propagation.
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1 Introduction

1.2 Introduction

Mode conversion occurs when an incident wave for example longitudinal wave
hits surface at discontinuities. The work presented here is to study the mode
conversion behavior at free edge of a cylinder using Boundary Element method.
For the free edge, all the incident wave gets completely reflected back, and to
study the behavior of same superposition of waves done of both incident and
reflected waves. The choice of waves used have been Guided waves due to their
advantage of long distance propagation and are weakly attenuated.

The modal decomposition method is quiet robust for vertical cracks but as the
crack geometry gets complicated, the modes available for the constant cross sec-
tion at initial can’t be used. In the following boundary element method is for-
mulated in conjunction with modal decomposition method to analyze the wave
propagation and mode conversion in structures. The analysis on semi infinite
cylindrical structure being case of interest. The region near the free edge is mo-
deled using surface 2D elements, while the rest of the structure is modeled using
volume 3D elements. A FE based method developed from [Mace et al.] is applied
to get all possible wave modes and wave numbers, respectively. The obtained
results could be integrated to the left and right cross-sectional boundaries of the
boundary element modeled waveguide cross-section.

Figure 1.2: Boundary elements near free edge region

The elastodynamic behavior of the discretized waveguide is described by the ba-
sic boundary integral equation [Gaul et al.], which could be formulated in matrix
form as

H u = G q (1.1)

where, H and G matrices represents the contributions of the traction and displa-
cements fields respectively on the boundary of the domain and u and q are the
unknown displacement and traction fields. Now, above equation holds true for
any geometry, such that changes in geometry of the domain brings changes only
to the H and G matrices. Hence, the method is suitable for any types of disconti-
nuities. Also, the method is better for secondary field variable results also. Due to
reduction in the order of elements used in boundary elements, the time consump-
tion for computations for complicated geometries involving discontinuities is less

2



1 Introduction

compared to finite element method. The boundary conditions associated with the
traction free circumferential surface and free edge surface, enable to set the nodal
traction on the respective surfaces to zero. Also, the relations of displacement
and tractions at the left and right cross-sectional boundaries of the waveguide are
known. The system of equation could solved as

A y = F (1.2)

where, y contains all the unknown variables. The main task is to estimate the
reflection coefficients, which accounts for the relation between the intensity of
reflected waves with incident waves, at spectrum of frequencies which can give
notions about the different modes generated with increase in frequency. Each pro-
pagating mode obtained in reflection coefficient over different frequencies follow
the continuity and conservation of energy principles at each individual frequency.

3



2 Guided Waves in Cylindrical
structures

2.1 Wave Guide

Disturbances in infinite or semi-infinite media, usually only have a significant ef-
fect within relatively small depths. This could be explained as when in free space
the waves travel as a spherical wave in all directions, due to which the power loss
increases squarely with respective to distance from source. This fact significantly
limits the range in which the body waves can be used for crack detection. Hence
required to confine the propagation in one direction to reduce the loss.

Previous experiment results enable that in a cylindrical rod, a disturbance is re-
flected at the surface of the rod with less attenuation due to geometrical effects.
These structure which allow waves to travel long distances with weak attenuation
are referred as Wave Guides. The confinement of waves inside the waveguide are
associated with the multiple reflections from the boundaries as shown in figure
2.1. Due to large distance travel, it justifies the use of elastic waves for damage
detection. The Guided waves are the ultrasonic waves that are similar to Rayleigh

Figure 2.1: Multiple internal reflections in cylindrical waveguide

and lamb waves, whose velocity is not only dependent on the material properties
but also onto the thickness of the material and frequency.
For one dimensional axial wave propagation, the partial differential equation is
[see Achenbach [1]]

∂2uz
∂z2

=
ρ

E

∂2uz
∂t2

. (2.1)

But the equation 2.1 couldn’t be applicable for higher frequencies as there results
don’t agree with experiments ones. To a solution more applicable, dispersive
behavior of the waves needed to be taken into account. Here, we would assume

4



2 Guided Waves in Cylindrical structures

harmonic solutions for longitudinal and lateral components to satisfy the gover-
ning equation of wave propagation, the Lamé- Navier equation

(λ+ µ)uj,ij + µui,jj + ρbi = ρui, (2.2)

which is satisfied by displacement fields of the form

ui = ûie
(kixi−ωt). (2.3)

The above for cylindrical wave guide could be expressed as

u(x, t) = û(x1, x2)ei(kx3−ωt) (2.4)

x3

x1

x2

r

θ

Figure 2.2: cylinder in polar and cartesian coordinates

Using the Helmholtz decomposition u = ∇φ+∇× ψ, the harmonic solutions of
same need to satisfy the boundary conditions. For the completeness of solution,
decoupling condition ∇.ψ = 0 is utilized. With example of traction free cylinder,
makes the stresses on boundaries to zero. Also the relations between stress, strain
and displacement available from Hooke’s law and constitutive laws. The harmonic
solution assumption could be reduced with consideration of flexural, torsional and
longitudinal modes on scalar and vector potential φ and H respectively to

φ = AJn(αr) cosnθei(kx3−ωt)

(2.5)

Hz = BJn(βr) sinnθei(ξz−ωt)

(2.6)

Hθ = −CJn+1(βr) cosnθei(ξz−ωt)

(2.7)

Hr = CJn+1(βr) sinnθei(ξz−ωt).

where

α2 =
ω2

c2
L

− k2 and β2 =
ω2

c2
T

− k2 (2.8)

The coefficients cL and cT are the longitudinal and transverse wave speed, which
depend on the material parameters λ and µ.

cL =

√
(λ+ 2µ)

ρ
, cT =

√
µ

ρ
. (2.9)
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2 Guided Waves in Cylindrical structures

where the two lamé constants λ and µ could be associated with the known mate-
rial parameters like Young’s modulus (E), shear modulus (G) and Poisson’s ratio
(ν), such that

µ =
E

2(1 + ν)
λ =

Eν

(1 + ν)(1− 2ν)
. (2.10)

More complicated differential equations for the other coefficients exists [see Graff [6]].
All the solutions are replaced into displacement assumptions from Helmholtz de-
composition. The same are then substituted into stress on surface from the
constitutive law. When subjected to boundary conditions,

σrr = σrθ = σrz = 0, (2.11)

the system of equations containing the coefficients makes the determinant equal
to zero and giving the general frequency equation. The determinant specifies the
frequency equation for all modes.

2.2 Dispersion Curves

Extraction of roots of frequency equation would yield solutions for phase velocity
versus frequency or frequency times thickness. These plots shows how phase
velocity changes with respect to frequency giving the idea about the stretch or
dispersive behavior while wave propagation. Similarly, the plot between wave
number and frequency could also be obtained as wave number represented in
terms of velocity and frequency. An example of same for longitudinal wave known
as Pochhammer-Chree frequency equation is presented as

2α

a
(β2 +k2)J1(αa)J1(βa)− (β2 − k2)

2
J0(αa)J1(βa)−4k2αβJ1(αa)J0(βa) = 0

(2.12)

A dispersion curve for a cylindrical rod with radius a =2 mm and steel material
parameters have been shown in figure 2.3.

In following analysis, damping is neglected hence wave numbers have purely
real part.

Material Density : 2700 kg/m3

Young’s Moduls : 210 GPa

Poissons ratio : 0.25

(2.13)

The individual modes could be obtained from the choice of order of the Bessel
function used in frequency equation. Longitudinal modes are characterized such
that the displacement and stress fields are independent of the coordinate θ and
rotational symmetry in the axial direction. For this, condition is n = 0. The
displacement fields for the cylinder has been shown in figure 2.4. It could be

6



2 Guided Waves in Cylindrical structures

Figure 2.3: Dispersion curve

seen in figure 2.4 that the longitudinal mode has displacement only in axial and
radial components as these are independent of θ and the tangential displacement
is zero. The same when extended to flexural mode, the condition for the same
is that the order of Bessel function n ≥ 1. The flexural mode is dependent
on the circumferential angle unlike longitudinal mode. The frequency equation
is obtained similarly by replacing the displacements into stresses expressions on
traction free surface with r = a, obtained are three homogeneous equations and
equating determinant to zero yields frequency equation. The displacement fields
in the axial, radial and tangential directions are shown in Figure 2.5. The current
ordern = 1, the tangential displacement profile of the edge nodes are removed by
dividing the number of extrema. Here, the existence of two extreme points leads
to a nodal line through the cylinder cross section, allowing the nodes of any shifts
and hence no vibration.

7



2 Guided Waves in Cylindrical structures

X
3

x1 x2

x1 x2

x1 x
2

Figure 2.4: a) axial displacement b) radial displacement c)tangential displace-
ment of traction free cylinder for longitudinal mode

2.3 Waveguide-FE Method

The dynamic behavior of structure could be analyzed using the Waveguide finite
element method. The method transforms the dynamic stiffness matrix containing
the mass and stiffness matrix into transfer matrix. The solution of transfer matrix
is obtained in form of eigenvalues and eigenvectors which represent wave number
and wave modes respectively. The equation of motion for a waveguide structure
is expressed as

Mü + Cu̇ + Ku = F (2.14)

where, M represents the mass matrix, C damping matrix, K stiffness matrix, u
unknown nodal displacement vector and F the load vector. The harmonic time
equation of motion in explicit form is represented as

(−ω2M + iωC + K)û = F̂ (2.15)

The equation above could be expressed as

D̃û = F̂ (2.16)

where, D̃ is referred as dynamic stiffness. The above could be rearranged in with
respect to unknown displacements and forces on right, left and interior nodes as
shown in figure 2.6.

8



2 Guided Waves in Cylindrical structures

x
3

x
1

x
2

x
2

x
1

x1

x
2

Figure 2.5: a) axial displacement b) radial displacement c)tangential displace-
ment of traction free cylinder for flexural mode with n=1

Figure 2.6: Fine discretization of cylinder into left and right segments

While no applied forces forces on interior, the system would be reduced inclusive
with the terms associated with interiors nodes also, as represented below,[

DLL DLR

DRL DRR

] [
uL
uR

]
=

[
FL

FR

]
(2.17)

For symmetric mass, stiffness and damping matrices, the dynamic stiffness matrix

9



2 Guided Waves in Cylindrical structures

is also symmetric. For no external forces applied, the continuity of displacements
and equilibrium of forces at two different cross-sections namely (1) and (2) are
used as

u
(2)
L = u

(1)
R F

(2)
L + F

(1)
R = 0. (2.18)

The above represented with help of Transfer matrix as[
u

(2)
L

F
(2)
L

]
= T

[
u

(2)
R

F
(2)
R

]
(2.19)

where T Transfer matrix depending only on dynamic stiffness matrices is expres-
sed as

T =

[
−D−1

LRDLL D−1
LR

−DRL + DRRD
−1
LRDLL −DRRD

−1
LR

]
(2.20)

The wave propagation is represented by the above transfer matrix, and solving
for the eigenvalues and vectors are means to represent wave numbers and mode
shapes. Considering the free wave propagation, the successive displacements and
forces are represented as[

u
(2)
L

F
(2)
L

]
= λe

[
u

(2)
R

F
(2)
R

]
(2.21)

The factor λe = eik∆l could be replaced, with ∆l being the thickness as shown in
figure 2.6. Hence above could be transformed into a form using equation 2.19 as

T

[
u

(2)
R

F
(2)
R

]
= eik∆l

[
u

(2)
R

F
(2)
R

]
(2.22)

Although the above equation represents the basic principle of waveguide FEM,
but require numerical treatment due to ill conditioned eigenvalues. Once known
the eigenvalues and vectors, this could be utilized for representation of displace-
ment field of the waveguide structure.

10



3 Theory and Formulation

3.1 Governing Equations for 3D Elastodynamics

3.1.1 Formulation of field equations

The constitutive law relating the stresses with strains could be used to obtain the
field equation of elastodynamics.

σij = λ δij εkk + 2µ εkk, (3.1)

where, σ and ε are symmetric stress and strain tensors respectively, with small
strain deformation tensor defined as

εij =
1

2
(ui,j + uj,i). (3.2)

The equilibrium equation is presented below,

σij,j + ρbi = ρüi. (3.3)

With substitution of equation 3.1in above results in the required field equation,
we obtain

(λ+ µ)uj,ij + µui,jj + ρbi = ρui. (3.4)

(λ+ µ)∇(∇.u) + µ∇2u + ρb = ρü. (3.5)

The equation is also famously known as Lame’ navier equation. Using the vector
identity ∇2u = ∇(∇.u)−∇×∇× u, the equation obtained is

(λ+ 2µ)∇(∇.u)− µ∇×∇× u + ρb = ρü. (3.6)

Introducing the two constants associated with the material parameters, c2
1 =

(λ+ 2µ)

ρ

and c2
2 =

µ

ρ
, the field equation 3.5 could be represented as

(c2
1 − c2

2)∇(∇.u) + c2
2∇2u + b = ü. (3.7)

The previous equation would be used in later sections for the derivation of fun-
damental solution. The two constants c1 and c2 are related to wave velocities,
which are explained in coming steps. The Navier equation could be transformed

11



3 Theory and Formulation

into the elastodynamic wave equation by using the Helmholtz decomposition of
the displacement vector field vector into its rotational and solenoidal part.

u = ∇φ+∇× ψ, (3.8)

with ∇× (∇φ) = 0 and ∇.(∇× ψ) = 0 taken into consideration. Here φ and ψ
are the scalar and vector potentials respectively. The Helmholtz decomposition
could be utilized for any piecewise differentiable vector with consideration that it
decreases to zero with an order of r−2, when at large distances r from the origin.
For the completeness of the solution of the displacement vector, a condition for
decoupling between the three terms associated with vector potential and one term
of scalar potential is utilized as

∇.ψ = 0. (3.9)

Hence the field equation 3.7 could be presented as

∇(c2
1∇2φ− ρφ̈) +∇× (c2

2∇2ψ − ρψ̈) + ρb = 0. (3.10)

Neglecting the body forces, the above equation is true if the inside bracket terms
are equal to zero, which results in wave equations associated with scalar and
vector potentials respectively,

c2
1∇2φ = φ̈, (3.11)

c2
2∇2ψ = ψ̈. (3.12)

Applying divergence and curl respectively on equation 3.10, gives the general
wave equations, where used dilatation part is θ = ∇.u = ∇2φ and rotational part

is ω = −1

2
∇× u = −∇2ψ.

c2
1∇2θ = θ̈, (3.13)

c2
2∇2ω = ω̈. (3.14)

For time harmonic elasticity, the displacement could be transformed into its real
and complex parts: u = û eiωt, where û is the amplitude of the displacement and
ω is the circular frequency.

(c2
1 − c2

2)∇(∇.û) + c2
2∇2û = −ω2û. (3.15)

û = u, is taken for generalization.

3.1.2 Integral Representation

The general field equation represented in terms of elasticity tensor from genera-
lized Hooke’s law, forms the basic step for obtaining the integral equation.

Cijkluk,lj + ρbi = ρüi. (3.16)

12



3 Theory and Formulation

With time harmonic motion assumption,

Cijkluk,lj + ρω2ui + ρbi = 0. (3.17)

The equation 3.17 is in strong form and converted into its weak form by weighted
residuals method. Although a step further on weak form, i.e. applying Green’s
second identity makes the possibility of obtaining the inverse statement helpful
to get the representation formula in boundary integral equation. Weighting the
equation 3.17 with a test function as fundamental solution u∗i , we obtain∫

Ω

(
Cijkluk,lj + ρω2ui + ρbi

)
u∗i dΩ = 0. (3.18)

Equation 3.18 has the approximation of u and not the exact value of u. Applying
Green’s first identity to the term uk,lj, we obtain∫

Ω

Cijkluk,lju
∗
i dΩ =

∫
Ω

(Cijkluk,lu
∗
i ),j dΩ−

∫
Ω

Cijkluk,lu
∗
i,jdΩ. (3.19)

Applying divergence theorem to transfer the domain integral to boundary inte-
gral, ∫

Ω

Cijkluk,lju
∗
i dΩ =

∫
Γ

Cijkluk,lu
∗
injdΓ−

∫
Ω

Cijkluk,lu
∗
i,jdΩ. (3.20)

The Green’s second identity obtained by once again doing the integration by parts
and applying divergence theorem,∫

Ω

Cijkluk,lju
∗
i dΩ =

∫
Γ

Cijkluk,lu
∗
injdΓ−

∫
Γ

Cijkluku
∗
i,jnldΓ +

∫
Ω

Cijkluku
∗
i,jldΩ∫

Ω

Cijkluk,lju
∗
i dΩ =

∫
Γ

Cijkluk,lnju
∗
i dΓ−

∫
Γ

Cijklu
∗
i,jnlukdΓ +

∫
Ω

Cijkluku
∗
i,jldΩ

(3.21)

Using constitutive equation from Hooke’s law σij = Cijkluk,l (including the linear
relation between strain and displacement), we can rewrite the above equation as∫

Ω

Cijkluk,lju
∗
i dΩ−

∫
Ω

Cijkluku
∗
i,jldΩ =

∫
Γ

σijnju
∗
i dΓ−

∫
Γ

σ∗klnlukdΓ. (3.22)

The above relation could also be obtained from the reciprocal work principle with
consideration of 2 domains (Ω and reciprocal domain Ω∗), such that the work done
remains same when carried by application of stress state with reciprocal strain
and vice versa. The result of same is depicted below∫

Γ

σiju
∗
injdΓ−

∫
Ω

σij,ju
∗
i dΓ =

∫
Γ

σ∗ijuinjdΓ−
∫

Ω

σ∗ij,juidΩ. (3.23)

The method of weighted residual is more generally applicable for any linear dif-
ferential operator with constant coefficients, on the contrary reciprocal theorem

13



3 Theory and Formulation

shows predominance due to its advantage of taking the reciprocal domain Ω∗ to
infinity. In equation (reciprocal), it could be observed that the differential opera-

tor

(
∂2

∂xl∂xj
=

∂2

∂xj∂xl

)
is self adjoint and taking the symmetrical elastic tensor

(Cijkl = Cklij) into account, the equation becomes∫
Ω

Cijkluk,lju
∗
i dΩ−

∫
Ω

Cijklu
∗
k,ljuidΩ =

∫
Γ

σijnju
∗
i dΓ−

∫
Γ

σ∗ijnjujdΓ. (3.24)

Using Cauchy law ti = σijnj, we obtain∫
Ω

Cijkluk,lju
∗
i dΩ−

∫
Ω

Cijklu
∗
k,ljuidΩ =

∫
Γ

(tiu
∗
i − t∗iuj) dΓ (3.25)

Adding and subtracting (ρω2uiu
∗
i ) would yield a Helmholtz differential operator

on both u and u∗,∫
Ω

Cijkluk,lju
∗
i dΩ+

∫
Ω

ρω2uiu
∗
i dΩ−

∫
Ω

Cijklu
∗
k,ljuidΩ−

∫
Ω

ρω2u∗iuidΩ =

∫
Γ

(tiu
∗
i − t∗iuj) dΓ

(3.26)

∫
Ω

(
Cijkluk,lj + ρω2ui

)
u∗i dΩ−

∫
Ω

(
Cijklu

∗
k,lj + ρω2u∗i

)
uidΩ =

∫
Γ

(tiu
∗
i − t∗iuj) dΓ

(3.27)

Considering the body force term associated with the reciprocal domain (Ω∗)
namely b∗i for the state variables (σ∗ij, u

∗
i,j), from equation 3.18, the previous equa-

tion could be rewritten in terms of body forces as∫
Ω

ρ (b∗iui − biu∗i ) dΩ =

∫
Γ

(tiu
∗
i − t∗iui) dΓ. (3.28)

For the case of point load of the reciprocal field, the body force is represented as
ρbi = δ(x, ξ)ni, where δ represents the Dirac distribution and ni indicating the
direction of applied force. It is important to notice that force when applied in one
direction could also produce deformations in other directions (x, y, z) too. Using
the sifting property of the Dirac distribution,∫

Ω

ρb∗i (x, ξ)ui(x)dΩ =

∫
Ω

δ(x, ξ)niui(x)dΩ = ui(ξ)ni (3.29)

For the applied forces in 3 directions, above relation yields only the product of
ith component, although there are other components of displacement too present.
To have determination of all, it is ensured to have 3 fundamental solution u∗i
in each direction which is represented as umi meaning that the displacement is
measured at a defined point in direction of i when applied load in direction of m.
This yields

u∗i (x) = u∗mi(x)ni. (3.30)

14



3 Theory and Formulation

Here, m represents the direction of the excitation and i represents the direction
in which value being measured. The fundamental equation is hence calculated
for displacement tensor u∗mi, such that factor of δij is multiplied with Dirac delta
distribution, as presented in next topic relating to derivation of fundamental
solution. Hence the equation 3.28 could be formed as

umi(ξ)nmni −
∫

Ω

ρbi(x)u∗mi(x, ξ)nmdΩ =

∫
Γ

u∗mi(x, ξ)nmti(x)dΓ

−
∫

Γ

t∗mi(x, ξ)nmui(x)dΓ

um(ξ)−
∫

Ω

ρbiu
∗
midΩ =

∫
Γ

u∗mi(x, ξ)ti(x)dΓ−
∫

Γ

t∗mi(x, ξ)uj(x)dΓ

(3.31)

For no body forces, the above equation is reduced to body-force free Somigliana
identity, also the refereed to representation formula in boundary element method.

um(ξ) =

∫
Γ

u∗mi(x, ξ)ti(x)dΓ−
∫

Γ

t∗mi(x, ξ)ui(x)dΓ (3.32)

3.1.3 Fundamental Solution

The Fundamental solution relates to the solution of differential form Lu = δ(x, ξ)
in full space where x and ξ represents the filed vector and load vector respecti-
vely. The general field equation for 3D elastodynamics (equation 3.15), could be
modified with the substituting the body forces on the reciprocal field to represent
the body force term as, ρb∗j = δ(x, ξ)δij, where load is applied along direction ”i”
at a point”j”. Hence the equation 3.15 could be reformulated in index notation
as

(c2
1 − c2

2)u∗ik,kj + c2
2 u∗ij,kk + ω2uij = −1

ρ
δ(x, ξ)δij (3.33)

Taking c2
2 common and using c2

2 =
µ

ρ
, we obtain

(
c2

1

c2
2

− 1

)
u∗ik,kj + u∗ij,kk +

ω2

c2
2

u∗ij = − 1

µ
δ(x, ξ)δij (3.34)

The aim is to convert the equation above in a form whose fundamental solution is
known. One such notion could be to introduce a tensor potential Gij to represent
u∗ik as,

u∗ik = Gij,mm +
ω2

c2
1

Gij −
(

1− c2
2

c2
1

)
Gim,mj (3.35)

15



3 Theory and Formulation

Hence, the derivatives of uik could be simplified with Gik,mmkj = Gim,kmkj to the
expressions

u∗ik,kj =
ω2

c2
1

Gik,kj +
c2

2

c2
1

Gim,mkkj,

u∗ij,kk = Gij,mmkk +
ω2

c2
1

Gij,kk −
(

1− c2
2

c2
1

)
Gim,mjkk. (3.36)

Hence equation 3.34 becomes(
c2

1

c2
2

− 1

)[
ω2

c2
1

Gik,kj +
c2

2

c2
1

Gim,mkkj

]
+

[
Gij,mmkk +

ω2

c2
1

Gij,kk − (1− c2
2

c2
1

)Gim,mjkk

]
+

ω2

c2
2

[
Gij,mm +

ω2

c2
1

Gij − (1− c2
2

c2
1

)Gim,mj

]
= − 1

µ
δ(x, ξ)δij

(3.37)

Simplifying the above equation,

Gij,mmkk +
ω2

c2
1

Gij,kk +
ω2

c2
2

Gij,mm +
ω2

c2
1

ω2

c2
1

Gij = − 1

µ
δ(x, ξ)δij (3.38)

Introducing the definition of wave number as the ratio of circular frequency to

the wave speed, k1 =

(
ω

c1

)
and k2 =

(
ω

c2

)
, the equation could be written as

Gij,mmkk + k2
1Gij,kk + k2

2Gij,mm + k2
1k

2
2Gij = − 1

µ
δ(x, ξ)δij (3.39)

with scalar potential G, such that Gij = Gδij, the above equation could be
represented as(

∇2 + k2
1

) (
∇2 + k2

2

)
(G) = − 1

µ
δ(x, ξ) (3.40)

Taking (∇2 + k2
2) (G) = F , would result in a form of Helmholtz equation.(

∇2 + k2
1

)
F = − 1

µ
δ(x, ξ) (3.41)

Now, we can derive the fundamental solution of Helmholtz differential operator
on F , and use it again for the inhomogeneous Helmholtz equation form in G, to
get the complete fundamental solution. Transforming equation 3.41 into polar
coordinates with assumption of radial symmetry;

1

r2

∂

∂r

(
r2∂F

∂r

)
+ k2F = − δ(r)

4πµr2
(3.42)

The above equation could be represented as a inhomogeneous Helmholtz equation
of (rF )

∂

∂r

(
∂(rF )

∂r

)
+ k2(rF ) = − δ(r)

4πµr
(3.43)
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3 Theory and Formulation

Taking F as dependent only on r,

d2(rF )

dr2
+ k2(rF ) = − δ(r)

4πµr
(3.44)

The solution of an differential equation of form
d2(y)

dr2
+ k2(y) = 0 is given as,

y = C1e
−ikr + C2e

ikr, here y is replaced by rF , and hence the solution could be
presented as

F =
C1e

−ikr

r
+
C2e

ikr

r
(3.45)

From Sommerfield radiation condition, it could be concluded that, for large dis-
tance r, there are no reflections and hence the part in the Helmholtz solution
accounting for reflected waves could be taken to zero. Hence C2 = 0. Also for
r → 0, expansion of exponential series with comparison of Laplace fundamental

solution yields that C1 =
1

4πµ
;

F =
e−ikr

4πµr
(3.46)

Now,F could be substituted to get the fundamental solution for inhomogeneous
Helmholtz equation in G as.

(∇2 + k2)G = F =
e−ikr

4πµr

d2G

dr2
+

2

r

dG

dr
+ k2

2G =
e−ikr

4πµr

The solution of homogeneous part is the general solution of Helmholtz equation

Gh =
D1e

−ikr

r
+
D2e

ikr

r
(3.47)

here considering the variation of constants as k1 could be replaced with k2 in
previous relations, it results in coefficients D1 and D2 with (a = 1, b = 2) and
(a = 2, b = 1).

D1(r) =
1

8πµkb(kb − ka)
e−ir(kb−ka) D2(r) =

1

8πµkb(kb + ka)
e−ir(kb+ka) (3.48)

From here, the particular part of solution is obtained as

Gh(r) =
1

4πµ(k2
b − k2

a)
e−irka (3.49)

Hence the tensor G could be represented as

Gij(r) =
1

4πµ(k2
2 − k2

1)

e−irk1 − e−irk2
r

δij (3.50)

17



3 Theory and Formulation

The above result could be substituted in equation 3.35 to obtain the fundamental
solution of displacement as

u∗ij =
1

4πµ
(ψδij − χr,ir,j) (3.51)

where

ψ =

[
1 +

1

(ik2r)
2 +

1

(ik2r)

]
e−ik2r

r
− k2

1

k2
2

[
1 +

1

(ik1r)
2 +

1

(ik1r)

]
e−ik1r

r

χ =

[
1 +

3

(ik2r)
2 +

3

(ik2r)

]
e−ik2r

r
− k2

1

k2
2

[
1 +

3

(ik1r)
2 +

3

(ik1r)

]
e−ik1r

r

(3.52)

The traction field could be obtained by taking the directional derivative of the
displacement field.

t∗ij =
1

4π
[(
dψ

dr
− 1

r
χ)(δij

∂r

∂n
+ r,jn,i)−

2

r
χ(njr,i − 2r,ir,j

∂r

∂n
)− 2

dχ

dr
r,ir,j

∂r

∂n
+

(
c1

2

c2
2
− 2)(

dψ

dr
− dχ

dr
− 2χ

r
)r,in,j] (3.53)

Both displacement and tractions have been functions of ψ and χ, which contains
exponential terms. A series exponential expansion would reduce the two as

ψ =
1

2r

(
1 +

c2
2

c1
2

)
+ ik2

∞∑
n=0

1

(n+ 1)(n+ 3)

[
n+ 2 +

(
c2

2

c1
2

)n+3
]

(ik2r)
n

n!

χ = − 1

2r

(
1− c2

2

c1
2

)
+ ik2

∞∑
n=0

n

(n+ 1)(n+ 3)

[
1−

(
c2

2

c1
2

)n+3
]

(ik2r)
n

n!

(3.54)

Substitution of obtained ψ and χ into displacement fields show that it converges
with the elastostatics fundamental solution of displacement fields. These func-
tions so can be split as

ψ =
1

2r
(1 +

c2
2

c1
2
) +O(k2)

χ = − 1

2r
(1− c2

2

c1
2
) +O(k2)

(3.55)

To analyze the low frequency behavior of the tractions one can rewrite equation
3.53 as

t∗ij =
1

4π
[A(

∂r

∂n
δij + r,jn,i) + r,ir,j

∂r

∂n
B + r,in,jC] (3.56)
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where,

A =
dψ

dr
− χ

r

B =
4χ

r
− 2

dχ

dr

C = (
c1

2

c2
2
− 2)(

dψ

dr
− dχ

dr
− 2

χ

r
)− 2

χ

r
(3.57)

Substitution of exponentials by their series expansions gives for the above terms

A = − 1

r2

c2
2

c1
2

+ k2
2
∞∑
n=0

n+ 2[1 + (c2/c1)n+4]

(n+ 2)(n+ 4)

(k2r)
n

n!

B = − 3

r2
(1− c2

2

c1
2
)− k2

2
∞∑
n=0

2(n− 1)

(n+ 2)(n+ 4)
[1− (c2/c1)n+4]

(k2r)
n

n!

C =
1

r2

c2
2

c1
2

+ k2
2
∞∑
n=0

−2 + (n+ 4)(c2/c1)n+2 − 2(n+ 3)(c2/c1)n+4

(n+ 2)(n+ 4)

(k2r)
n

n!

(3.58)

Which could also be presented with splitting the singular and nonsingular terms
as

A = − 1

r2

c2
2

c1
2

+O(k2
2)

B = − 3

r2
(1− c2

2

c1
2
) +O(k2

2)

C =
1

r2

c2
2

c1
2

+O(k2
2)

(3.59)

Similarly, for k2 → 0 the results coincide with the elastostatics fundamental
solution for traction fields.

3.1.4 Boundary Integral equation

The displacement at any point ξ inside the domain could be calculated once the
displacements and tractions on the boundary are known, as shown in represen-
tation formula equation 3.32. The Dirac distribution property holds valid only
inside domain, and not onto boundary.∫

g(s)δ(s, ξ) =


g(ξ) if ξ ∈ Ω

0 if ξ /∈ Ω , ξ /∈ Γ
undefined if ξ ∈ Γ

(3.60)

But the representation formula is valid for complete domain including the boun-
dary. Hence, ξ could be taken to boundary to calculate the unknown terms asso-
ciated with displacement and traction fields with special considerations. When
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3 Theory and Formulation

ξ ∈ Γ i.e. (r → 0), the fundamental solution presented above shows singular
behavior. One method to transfer load point onto boundary without much loss
of Dirac property, is to extend the boundary with symmetric shape body element.
For smooth boundary a hemisphere in three dimensional and semicircle in two
dimensional case could be chosen, such that the load point on the old boundary
is equidistant from the boundary of the extended part as shown in figure 3.1. The

Figure 3.1: Extended boundary in 2D with semicircle around the load point ξ

new domain boundary Γn could be expressed as

Γn = Γ− Γ∗ε + Γε (3.61)

where Γ represents the original boundary of domain, with extended domain ha-
ving the boundary as Γε and Γ∗ε being the interface. The above relation holds
true for the condition Γ = lim

ε→0
Γn, where ε represents the radius of the extended

boundary with center as the load point.

Figure 3.2: Geometry of extended domain ξ

The figure 3.2 represents the geometry of the extended domain, and it could be
observed the angle made by normal vector n at the field point X is π, for smooth
boundaries with constant element.
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3 Theory and Formulation

The representation formula could now be expressed on the new domain as

um(ξ) = lim
ε→0

∫
Γ−Γ∗ε

u∗mi(x, ξ)ti(x)d(Γ− Γ∗ε)−
∫

Γ−Γ∗ε

t∗mi(x, ξ)ui(x)d(Γ− Γ∗ε) +

lim
ε→0

∫
Γε

u∗mi(x, ξ)ti(x)dΓε − lim
ε→0

∫
Γε

t∗mi(x, ξ)ui(x)dΓε (3.62)

Observing the fundamental solution of displacement and traction field, it is
evident that the displacement field contains singularity of (1/r) and traction
field containing the singularity of (1/r2) which are weak and strong singularities
respectively. More about the treatment of same are dealt in topics associated
with numerical integration. Hence the fundamental solution could be presented
in a form

u∗mi =
1

r
umi

′

t∗mi =
1

r2
t
′

mi

(3.63)

where u
′
mi and t

′
mi are the terms containing no singularity and r = x − ξ = ε.

The above expressions could be also expressed in polar coordinated to have ease
in determination of elemental area in polar coordinates as Γε = r2sinθ dθ dφ.
Where,

r =
√
x2 + y2 + z2

x = r cosθ sinφ ; y = r sinθ sinφ ; z = r cosφ.

(3.64)

From above, the nonsingular terms in fundamental solution also can be expressed
in polar coordinates with dependence only on φ and θ, with normal vector being

in direction of r such that ni = r,i =
∂r

∂ri
= [cosθ sinφ , sinθ sinφ , cosφ]T The

terms associated with the extended boundary Γε could be simplified with above
considerations

lim
ε→0

∫
Γε

u∗mi(x, ξ)ti(x)dΓε = lim
r→0

∫
φ

∫
θ

(
u
′
mi(θ, φ)

r
r2sinθ dθ dφ

)
ti

= lim
r→0

∫
φ

∫
θ

(
u
′

mi(θ, φ)rsinθ dθ dφ
)
ti

= 0

lim
ε→0

∫
Γε

t∗mi(x, ξ)ui(x)dΓε = lim
r→0

∫
φ

∫
θ

(
t
′
mi(θ, φ)

r2
r2sinθ dθ dφ

)
ui

= lim
r→0

∫
φ

∫
θ

(
t
′

mi(θ, φ)sinθ dθ dφ
)
ui

= cmiui

(3.65)
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Here, cmi is referred as constant free term. For a smooth boundary with 0 ≤
θ < π/2 and 0 ≤ φ < 2π, cmi = −1

2
δmi. Replacing obtained expression in

equation 3.62, the representation formula is expressed in simplified boundary
integral equation

cmi(ξ)ui(ξ) +−
∫

Γ

t∗mi(x, ξ)ui(x)dΓ =

∫
Γ

u∗mi(x, ξ)ti(x)dΓ (3.66)

where, −
∫

Γ
t∗miuidΓ is the Cauchy principle value integral and

cmi = δmi + lim
r→0

∫
Γε

t
′

midΓ (3.67)

The equation 3.66 is the basic boundary integral elastodynamics equation in
3D and forms the basis for determination of field variables simultaneously. The
Numerical methods are used to solve the equation using the conventional shape
functions with known boundary conditions. The numerical treatment follows in
next chapter.
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4.1 Numerical Implementation of BIE

The available boundary integral equation is discretized into finite elements to ap-
proximate the solution for actual boundary value problem with given boundary
conditions. The collocation point weighted residual method is used as the nume-
rical approximation, where as Galerkin method could also be used which gives the
advantage of symmetric matrix system to solve but require more computational
efforts. The finite elements used to discretize the boundary are called boundary
elements as the unknown variables are on the boundary and hence to solve a
3D boundary value problem we would require only 2D surface elements on the
boundary of the 3D domain. This reduces the order of system of equations to be
solved for.

4.1.1 Boundary Elements

As we require only 2D surface elements for 3D domain’s boundary, our concen-
tration would be more on the same. The mostly used 2D surface elements are
quadrilateral and triangle. The discretized boundary into E number of finite
elements could be represented as

Γ =
E∑
e=1

Γe. (4.1)

As the shape functions are described in local coordinates, the variables asso-
ciated with the Cartesian coordinates are transformed to the local coordinates
as

xe(η, ξ) =
n∑

m=1

φmx
e
m (4.2)

where, e refers to the specific element with n number of nodes. With the iso-
parametric concept, the same shape functions could be used to approximate the
boundary field variables.

ue(η, ξ) =
n∑

m=1

φmu
e
m

te(η, ξ) =
n∑

m=1

φmt
e
m

(4.3)
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Figure 4.1: a)Constant 2D element b) Linear 2D element c) Bilinear quadratic
2D element

Table 4.1: Element table

Order Quadrilateral Triangular

Constant φ1 = 1 φ1 = 1

Linear

φ1 = (1/4)(1− η)(1− ξ) φ1 = η
φ2 = (1/4)(1 + η)(1− ξ) φ2 = ξ
φ3 = (1/4)(1− η)(1 + ξ) φ3 = 1− η − ξ
φ4 = (1/4)(1 + η)(1 + ξ)

Bi-Quadratic
φ1 = η(2η − 1) φ1 = (1/4)η(η − 1)ξ(ξ − 1)
φ2 = ξ(2η − 1) φ2 = (1/2)(1− η2)ξ(ξ − 1)
φ3 = (1− η − ξ)(2(1− η − ξ)− 1) φ3 = (1/4)η(1 + η)ξ(ξ − 1)
φ4 = (1/2)η(1 + η)(1− ξ2) φ4 = 4ηξ
φ5 = (1/4)η(η + 1)ξ(ξ + 1) φ5 = 4ξ(1− η − ξ)
φ6 = (1/2)(1− η2)ξ(ξ + 1) φ6 = 4(1− ξ − η)η
φ7 = (1/4)η(η − 1)ξ(ξ + 1)
φ8 = (1/2)η(η − 1)(1− ξ2)
φ9 = (1− η2)(1− ξ2)

More about the transformation for evaluation of integrals are discussed in next
section. Now introducing the discretized boundary to approximate the integrals,
the representation formula is expressed in matrix form as

cu +−
∫

Γ

t∗u dΓ =

∫
Γ

u∗t dΓ (4.4)
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where,

u∗ =

 u∗11 u∗12 u∗13

u∗21 u∗22 u∗23

u∗31 u∗32 u∗33

 t∗ =

 t∗11 t∗12 t∗13

t∗21 t∗22 t∗23

t∗31 t∗32 t∗33

 (4.5)

u =

 u1

u2

u3

 t =

 t1

t2

t3

 (4.6)

c = 1/2I for the boundary points where the boundary is smooth and c = I for
internal points, I being the unit 3× 3 diagonal matrix. In general,

c =

 c11 c12 c13

c21 c22 c23

c31 c32 c33



u =

 u1

u2

u3

 =

 φ1 0 0 φ2 0 0 ... φN 0 0
0 φ1 0 0 φ2 0 ... 0 φN 0
0 0 φ1 0 0 φ2 ... 0 0 φN





u1
1

u1
2

u1
3

.

.
uN1

uN2

uN3



(4.7)

t =

 t1

t2

t3

 =

 φ1 0 0 φ2 0 0 ... φN 0 0
0 φ1 0 0 φ2 0 ... 0 φN 0
0 0 φ1 0 0 φ2 ... 0 0 φN





t1
1

t1
2

t1
3

.

.
tN1

tN2

tN3



(4.8)
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Writing the matrix assembly on load point ξl,

c(ξl)u(ξl) +
E∑
e=1

n∑
m=1

(
−
∫

Γ(e)

t∗(x, ξl) φm(x) dΓ

)
u(e)
m

=
E∑
e=1

n∑
m=1

(∫
Γ(e)

u∗(x, ξl) φm(x) dΓ

)
t(e)
m

(4.9)

Consecutive numbering of global nodes replaces the double summation by a sum-
mation over all global nodes N .

c(ξl)u(ξl) +
N∑
n=1

Hlnun =
N∑
n=1

Glntn (4.10)

where,

Hln =

∫
Γ(n,e)

t∗(x, ξl) φn(x)dΓ and

Gln =

∫
Γ(n,e)

u∗(x, ξl) φn(x)dΓ

(4.11)

For n = l, which corresponds to the diagonal entries of H and G matrices,
strong and weak singular integrals exist in H and G matrices respectively. ForN
unknown boundary variables, the equation system could be expressed in as


Ĥ11 ... H1i ... H1N

...
. . .

...
...

Hi1 ... Ĥii ... HiN
...

. . .
...

...

HN1 ... HNi ... ĤNN




u1
...
ui
...

uN

 =


G11 ... G1i ... G1N

...
. . .

...
...

Gi1 ... Gii ... GiN
...

. . .
...

...
GN1 ... GNi ... GNN




t1
...
ti
...
tN


(4.12)

Hu = Gt (4.13)

with Ĥ = cl + Hll

4.1.2 Numerical Integration

Boundary element method involves integrals associated with the calculations of H
and G matrices whose integrands are the contributions of fundamental solution
of primary and secondary variable and shape functions. The integration is carried
out depending upon the relative position load point ξ to the boundary element.
The numerical integration scheme using Gauss quadrature rule is used for the
regular integrals but when the integration point coincides with the load point,
there would be cases of weak and strong singularity in fundamental solutions.
Below are explained ways for numerical integration of the possible cases featuring
in boundary elements.
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4.1.2.1 Regular Integrals Gaussian Quadrature

If n points are considered, an (n + 1)st- degree polynomial can be fit to the n
points and integrated. The resulting formulas have the form:

I =

∫ b

a

f(x)dx =
n∑
i=1

Wif(xi) (4.14)

where xi are the locations at which integrand function f(x) is known and Wi

are the weighting functions. Here, for n points, it could be observed that 2n
parameters are available and it makes possible to fit a polynomial of degree 2n−1.
To integrate exactly a polynomial of degree 2n − 1, proper choice of xi and Wi

is required and which forms the Gauss quadrature formula by transforming the
integral of function F in limits [-1,1].

I =

∫ −1

−1

F (s)ds =
n∑
i=1

WiF (si) (4.15)

The multidimensional integrals can be calculated by the tensor product of the
one-dimensional quadrature formula. The two dimensional integral is integrated
on the reference square [−1, 1] × [−1, 1] and similarly the three dimensional on
reference cube.∫ 1

−1

∫ 1

−1

f(ξ, η)dξdη ≈
n1∑
i=1

n2∑
j=1

f(ξi, ηj)WiWj (4.16)

∫ 1

−1

∫ 1

−1

∫ 1

−1

f(ξ, η, ζ)dξdηdζ ≈
n1∑
i=1

n2∑
j=1

n3∑
k=1

f(ξi, ηj, ζk)WiWjWk (4.17)

Each boundary element of the original domain has to be transformed to the
reference element, which could be obtained by introducing the term of Jacobian
defined as the norm of the normal vector pointing outwards at the quadrature
points of the element. Figure 4.2 shows the transformation to the local coordi-
nates.

Figure 4.2: Transformation from global system to local system
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dΓ(e) = J (e)ds1ds2 (4.18)

where s1 and s2 represents the local coordinates of the element. These would be
equated to the quadrature points for the integral calculation for the local element.
Also, Jacobian could be obtained as follows:

J (e) = |t(e)1 × t
(e)
2 | (4.19)

here t
(e)
1 × t

(e)
2 gives the normal vector at position (s1, s2), and the tangential

vectors are obtained by:

t
(e)
1 :=

∂X(e)

∂s1

= t
(e)
2 :=

∂X(e)

∂s2

(4.20)

where X(e) denotes the position vector from global coordinates to the local ele-
ment. The partial derivatives could be obtained from the knowledge of boundary
elements discretized with shape functions covered in section of discretization of
boundary elements.

For 2D case,∫
Γ(e)

f(x1, x2, x3)dΓ =

∫ 1

−1

∫ 1

−1

f(x1(ξ, η), x2(ξ, η), x3(ξ, η))J(ξi, ηi)dξdη

=

n1∑
i=1

n2∑
j=1

f(x1(ξi, ηi), x2(ξi, ηi), x3(ξi, ηi))J(ξi, ηi)WiWj

(4.21)

4.1.2.2 Weak and Strong Singularities

The singularity exists when the collocation point or the integration point coincides
with the load point. If the integration exists but function is not continuous
at load point, it is referred to weak singularity. If both integral and function
aren’t continuous at the load point, it refers to strong singularity. The H matrix
contains the contributions of secondary variables (here tractions) involving strong
singularity at the diagonal terms. Weak singularity is observed in the primary
variable (here displacement). For constant eleents, the weak singularity exists
at diagonals terms of G matrix, for other elements, arbitrarily distributed in
combination of load point and integration point. Weak and strong singularity
terms present in fundamental solutions are presented below.

2D 3D

WeakSingularity ln r 1/r

StrongSingularity 1/r 1/r2

(4.22)

where, r denotes the distance between the position vector of a node in boundary
element and the load point. The weak singularity issues could be resolved by
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regularising the transformation for example transformation to polar coordinates,
Lachat-Watson transformation. Due to use of Cartesian coordinate system, later
is used here. Regularising Transformation refer to the transformation of the the
domain such that the contribution from Jacobian would cancel out the effect of
weak singularity term , as shown below.∫ ∫

f(x, y)

r
dxdy =

∫ ∫
f(ξ, η)

J

r
dξdη (4.23)

The integral is regularized with J canceling the term r in denominator and regu-
larizing the integral for limr→0 J = 0. The Lachat and Watson method transfor-
mation is applied to triangle. The figure 4.3 below shows different possibility of
dividing the reference element into triangles pertaining to singular points. The
resulted subdivided triangles are transformed to local coordinates of a quadri-
lateral whose two sides are merged (or two corner points) to single side at the
collocation point. This quadrilateral with 2 points having same coordinates, pro-
duces the Jacobian magnitude to zero of type r to eliminate the effect of weak
singular term 1/r.

Figure 4.3: Possibilities of division of 2D Quad element into triangular elements

Strong Singularity treatment: Using the Cauchy principle value, the integral
was split into constant free term and cauchy integral part.

[Ĥs]jj = [cs]j + [Hs]jj (4.24)

Although there are various methods to calculate Cauchy Principle Value problem
numerically, but due to difficulties in the calculation of constant free term in
cases of non smooth boundary, here we take use of indirect calculation of diago-
nal entries of H matrix (Gaul and Schweizer (1998)), which eventually contains
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Figure 4.4: Transforming triangular element to quad with Jacobian = 0

the strong singularity. The diagonal entries in statics calculated for by taking
constant displacements and zero traction for rigid body motion.

H1 = G0 (4.25)

From above equation the diagonal entries of H matrice could be obtained as the
negative sum of the off diagonal terms, as shown below.

[Ĥs]jj = −
∑

n=1;n6=j

[Hs]jn (4.26)

But the above is valid only for elastostatics but not for elastodynamics, as va-
riables are dependent on the time. However, the diagonal terms of elastodynamics
case could also be split into constant free term and integral part as

[Ĥ]jj = [c]j + [H]jj (4.27)

The independent free term c here is same as the free term of static case.

[c] = [cs] (4.28)

The above statement is quiet evident as reported by [ref Gaul and Fiedler] that
as r → 0 is same as ω → 0. It follows

lim
r→0

t∗(x, ξ) = lim
ω→0

t∗(x, ξ)

= t∗s(x, ξ)

(4.29)

So, that the constant free term for dynamic case could be obtained as

c = I + lim
ε→0

∫
Γε

ts(x, ξ)dΓx

= cs

(4.30)

From equation 4.24, equation 4.26 and equaion 4.28

[c]j = [cs]j = −
∑

n=1;n6=j

[Hs]jn − [Hs]jj (4.31)

30



4 Implementation

and hence the result could be replaced in equation 4.27 to obtain the diagonal
terms of H matrix for elastodynamic case.

ˆ[H]jj = −
∑

n=1;n6=j

[Hs]jn + ( [H]jj − [Hs]jj) (4.32)

The difference ( [H]jj − [Hs]jj) is the difference of the dynamic and static funda-
mental traction solution over an element. Individual terms are singular in nature
but the difference would cancel the singularity term and leaves with the series
expansion term as shown in theory related to fundamental solution for elastody-
naimcs.
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5 Verification and Application

5.1 Verification

The BEM code is required to be verified on the cases whose analytic solutions are
available. The same could also be compared with the commercial codes available
with ease in changes made in boundary conditions, material properties, geometry
etc. The parameter like displacement amplitude at a point or for complete surface
could be taken as variable for comparison and verification between the methods.
A simple example for 3D case time harmonic problem is described below.

A cube of dimensions A cube of dimensions 6m X 6m X 6m is subjected to
uniform traction field of 100N/m2 on to the top surface. The shear tractions on
all faces of cube are zero and the normal displacement are constraint on lateral
and lower faces. The material is Aluminum whose properties are shown in Table
5.1.

Figure 5.1: Mesh of cube with constant elements having normals pointing
outwards

Table 5.1: Aluminum Material Properties

Property Value Units

Young’s Modulus (E) 70 GPa
Density (ρ) 2700 kg/m3,

Poisson’s ratio (ν) 0.3375
Shear Modulus (µ) 26.168 GPa
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5 Verification and Application

The cube is discretized using constant elements, where the number of nodes are
equal to the number of elements. For solving interior elastodynamic problem, the
mesh has to performed such that all the normals are always pointing outwards.
The use of commercial software Hypermesh gives the preliminary mesh with mesh
on boundary with linear quad elements. The available coordinates of nodes are
used to obtain the midpoint of each element accounting as the node of the constant
element.

The Finite Element Method -ANSYS is used to solve the above problem with
same material and geometrical parameters. The discretization of complete do-
main is done using SOLID 45 which has 8 nodes with each node having three
degree of freedom i.e. translations in three coordinate directions. The used mesh
in ANSYS contains 6 elements on every edge of the cube, resulting in total num-
ber of elements as 216. Also need to take care here about the frequencies being
used in code. Throughout BEM code angular circular frequency (ω) is used,
where as ANSYS gives results with respect to frequency. Hence for comparison,
BEM results are plotted over actual frequency range and not circular frequency.
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Figure 5.2: Amplitude of displacement at center of upper surface vs frequency

The results of both BEM code and FEM using Ansys have been plotted in
figure 5.2 for the displacement at the center node of the upper surface under
uniform traction. It could be seen that the results are very close, but for higher
frequency there is a slight difference.

The same could be verified for the displacement over the whole upper surface,
monitoring the displacement of each node. The boundary conditions shows that
theoretically all the upper surface nodes should undergo same displacement, which
are satisfied in both FEM and BEM code.
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The analytical resonance frequency for above problem is obtained by;

ω =
(2n− 1)π Cp

2L
(5.1)

where, n = 1, 2.... are the respective eigen frequencies. Hence, the first and third
eigen frequencies for above problem are 261.91 and 785.74 Hz. These values
obtained in figure are very close to the analytic solutions. Although for higher
frequencies, re meshing is required to satisfy the thumb rule to have more accurate
representation of wave propagation

max(x1, x2) ≤ λmin
10

. (5.2)

where, x1, x2 represent the edge lengths of the element.

5.2 Modal Decomposition Method

The modal decomposition method is used for the determination of reflection co-
efficients and transmission coefficients in structures. The method is suitable only
for vertical cracks. The coefficients are calculated such that both the continuity
and boundary conditions are fulfilled. The waves which are reflected at the dis-
continuities not only carry the information about the position of the crack but
also the geometry (usually measured in depth of crack). A schematic diagram of
same could be seen figure 5.3.

Figure 5.3: Mode conversion at crack section in x3 direction of propagation

The incident wave would be partially reflected and transmitted. The time
harmonic wave propagation representation for displacement field of the incident,
reflected and transmitted mode is presented below

uinc = α ûinc e
ikincx3

urefl =
N∑
j=1

βj ûj eik
jx3

utrans =
N∑
j=1

γj ûj eik
jx3

(5.3)

where, uinc, urefl, utrans are the displacement field associated with the incident,
reflected and transmitted propagating waves. All the reflected and transmitted
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waves form the respective fields, which contains both the propagating and evanes-
cent waves. The superposition of the wave fields allow us to define the reflection
R and transmission coefficients T,

R =
β

α
; T =

γ

α
. (5.4)

For a free edge surface there are no transmission of waves, hence only the super-
position of incident and reflected wave fields for both displacements and tractions
could be said as

u = ûince
−ikincx3 +

N∑
j=1

βjûjeik
jx3

t = t̂ince
−ikincx3 +

N∑
j=1

βj t̂
j
eik

jx3

(5.5)

Following the boundary conditions at the free edge x3 = 0,

Figure 5.4: Reflected waves from free edge

t|x3=0 = t̂inc +
N∑
j=1

βj t̂
j

= 0 (5.6)

Rewriting the above in matrix notation,

tinc + Treflβ = 0 (5.7)

Least square solution minimizes of the residual surface traction and used to
calculate β could be obtained from above as

β = −(TH
reflTrefl)

−1
TH

refltinc (5.8)

The above holds true for the conservation of energy, with the total power of
reflected wave equal to the total power of incident wave.
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5.3 BE Model

Boundary element method is used at the regions near the free edge. The region
near free edge is discretized using surface constant elements. From previous

Figure 5.5: BE Model with constant quad elements near free edge

section we could write directly the displacement and traction fields at cross-
section Γ1 as the superposition of incident waves and all possible reflected waves
from free edge times their amplitudes.

uΓ1 = uinc + Ureflβ (5.9)

tΓ1 = tinc + Treflβ (5.10)

The above equations are represented in matrix form with k number of nodal
points used to discretize the near free edge region using constant elements.

[ uΓ1 ]3k×1 = [ uinc ]3k×1 + [ Urefl ]3k×N [ β ]N×1 (5.11)

[ tΓ1 ]3k×1 = [ tinc ]3k×1 + [ Trefl ]3k×N [ β ]N×1 (5.12)

on Γ1, where

uinc =



ux1(x
1
3)

ux2(x
1
3)

ux3(x
1
3)

ux1(x
2
3)

...

...

...
ux1(x

k
3)

ux2(x
k
3)

ux3(x
k
3)


tinc =



tx1(x
1
3)

tx2(x
1
3)

tx3(x
1
3)

tx1(x
2
3)

...

...

...
tx1(x

k
3)

tx2(x
k
3)

tx3(x
k
3)


(5.13)
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Urefl =



u1
x1

(x1
3) u2

x1
(x1

3) ... ujx1(x
1
3) ... ... uN−1

x1
(x1

3) uNx1(x
1
3)

u1
x2

(x1
3) u2

x2
(x1

3) ... ujx2(x
1
3) ... ... uN−1

x2
(x1

3) uNx2(x
1
3)

u1
x3

(x1
3) u2

x3
(x2

3) ... ujx3(x
1
3) ... ... uN−1

x3
(x1

3) uNx3(x
1
3)

u1
x1

(x2
3) u2

x1
(x2

3) ... ujx1(x
2
3) ... ... uN−1

x1
(x2

3) uNx1(x
2
3)

...
...

...
... ... ...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

u1
x1

(xk3) u2
x1

(xk3) ... uNx1(x
k
3) ... ... uN−1

x1
(xk3) uNx1(x

k
3)

u1
x2

(xk3) u2
x2

(xk3) ... uNx2(x
k
3) ... ... uN−1

x2
(xk3) uNx2(x

k
3)

u1
x3

(xk3) u2
x2

(xk3) ... uNx3(x
k
3) ... ... uN−1

x3
(xk3) uNx3(x

k
3)


(5.14)

Trefl =



t
1
x1

(x1
3) t

2
x1

(x1
3) ... t

j
x1

(x1
3) ... ... t

N−1
x1

(x1
3) t

N
x1

(x1
3)

t
1
x2

(x1
3) t

2
x2

(x1
3) ... t

j
x2

(x1
3) ... ... t

N−1
x2

(x1
3) t

N
x2

(x1
3)

t
1
x3

(x1
3) t

2
x3

(x2
3) ... t

j
x3

(x1
3) ... ... t

N−1
x3

(x1
3) t

N
x3

(x1
3)
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1
x1

(x2
3) t

2
x1

(x2
3) ... t

j
x1

(x2
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N−1
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(x2
3) t

N
x1

(x2
3)
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...
... ... ...

...
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...
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...
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...

...
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. . .

...
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1
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N−1
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1
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x2

(xk3) ... t
N
x2

(xk3) ... ... t
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

(5.15)

As we know from previous section that uinc, tinc, Urefl and Trefl are known from
Waveguide-FE method, but the unknowns uΓ1 , tΓ1 and β are more than the
equations available. The BE model will give us a relation between the unknown
displacement and traction field variables on complete boundary of the BE model,
and hence at cross-section Γ1.

Hu = Gt (5.16)

where, u and t contains the displacement filed and traction fields of all the nodes
respectively. The system of equation could be split as[

H11 H12

H21 H22

] [
uΓ1

uΓ−Γ1

]
=

[
G11 G12

G21 G22

] [
tΓ1

tΓ−Γ1

]
(5.17)

where, Γ− Γ1 represent the surface which has known traction boundary condi-
tions. In above system, the known traction boundary conditions could be induced
to eliminate the unknown displacement field on Γ− Γ1 . For our case, Γ− Γ1 is
traction free and hence tΓ−Γ1 = 0 This reduces the system of equations to,[

H11 H12

H21 H22

] [
uΓ1

uΓ−Γ1

]
=

[
G11

G21

] [
tΓ1

]
(5.18)
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The system of equation now have only two variable vectors uΓ−Γ1 and β present
in terms associated with Γ1, which could be solved by static condensation.

uΓ−Γ1 = −H−1
22 [ H21uΓ1 −G21tΓ1 ] (5.19)

replacing back into equation

[H11 −H12 H−1
22 H21]uΓ1 = [−H12 H−1

22 G21 ] tΓ1 (5.20)

[H11−H12 H
−1
22 H21] [uinc +Ureflβ] = [G11−H12 H

−1
22 G21 ] [tinc +Treflβ] (5.21)

The above equations can be solved for unknown β by transforming into form
Aβ = b. where,

A = {[H11 −H12 H−1
22 H21] Urefl − [G11 −H12 H−1

22 G21 ] Trefl}3k×N (5.22)

and

b = {−[H11 −H12 H−1
22 H21] uinc + [G11 −H12 H−1

22 G21 ] tinc}3k×1 (5.23)

As it is evident that A is not square matrix, it is required to convert equation
into a form to get unique solution for β, which is done by taking multiplying both
sides by the conjugate transpose of A, and hence β could be obtained as

β = (AHA)
−1
AHb (5.24)

where, AH represents the conjugate transpose of A. The reflection coefficient
could be obtained as the ratio of the amplitudes of the reflected waves to the
amplitude of incident wave.

Rjn = βj/α (5.25)

where, R represents the total reflection coefficients obtained from the incident
modes, with each incident mode giving rise to j modes of reflections. for a single
incident wave mode, with α = 1

R = β = (AHA)
−1
AHb (5.26)

5.3.1 Application

The practical application considered here is of a traction free cylinder with free
edge (basis being motivation from high transmission lines). The cylinder specifi-
cations are presented below.

Daiamter : 2 m

Length : 0.5 m

Material : Aluminum

Boundary Conditions : lateral and free edge traction free

(5.27)
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Although the actual dimensions of cylinder and the frequency range are in
millimeters and kHz respectively, but due to numerical considerations associated
with the conditioning of the matrices, the dimensions are taken in meters and
frequency in Hz. The change in order of dimensions could be justified form the
dimensional analysis. Dimensional analysis is based on the fact that a physical
law must be independent of the units used to measure the physical variables.
The units have only been changed and hence only the changes is in the amplifi-
cation of the values of displacement and tractions without effect on the changes
in the relation between the amplitudes trends with respect to the frequency or
frequency times thickness. As could also be observed for the dispersion curve
when plotted for wave number versus frequency-thickness, an increase in order of
103 in dimensions balanced by order decrease in frequency.
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Figure 5.6: Reflection Coeffiecient of reflected waves from free edge of cylinder
over a frequency range for incident F(1,1) wave

Figure 5.6 shows the reflection coefficient of the associated reflected waves
from free edge of the cylinder due to an incident wave F (1, 1). The figure shows
a constant reflection coefficient value with single mode F (1, 1) propagating wave
till small frequency range. With increase in frequency, the propagating modes
increases and hence results in more complicated trends for the total reflection coef-
ficient from these propagating modes. The comparison between the FE-Modal de-
composition method and BEM values are very close until small frequency ranges,
and shows a little variations for increase in frequency where other propagating
modes also originate. This could be accounted to relaxation of the discretization
criterion, as same mesh being used for all frequencies in BEM analysis. The value
of reflection coefficient cannot be more than unity for any single mode in free edge
case, as unit reflection coefficent means the complete reflection of incident wave
without any mode conversion. The discussion of the same could be elaborated
with plotting the energy of the reflected waves over the frequency range.

The conservation of energy principle applicable for free edge ensures that the
input energy induced by a single incident mode must be equal to the sum of ener-
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gies associated with the multiple reflected modes. Figure 5.7 shows the variation
of the energy associated with the reflected modes over the frequency range. With
incident wave energy equal to unity, the plot should ideally produce a constant
unity value over the complete frequency range to follow energy principle. There
a slight variations from the unity value as the frequency increases. The solution
from BEM analysis is based on the integral equations and not on virtual work
principle, so that the aim was mainly to minimize the residual error and not
considering the minimizing the total energy, which results in overshooting of the
value above unity also. Other inevitable errors could be associated to approxi-
mations in field variables, numerical integration, discretization and finite number
of propagating modes used in mode superposition at interface of coupling.
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Figure 5.7: Energy associated with the reflected waves from free edge of a cylinder
for incident Flexural wave

After observing the solutions for incident Flexural wave F(1,1), the same could
be extended to monitor the reflection coefficient plot over a frequency range with
single longitudinal wave as incident wave. The portion of the plot at lower fre-
quency is point of concern as the higher frequency tend to show deviation depicted
in above application. Figure 5.8 shows the obtained reflection coefficient over fre-
quency range of 100-1000 kHz.

From figure 5.8, it is observed that till frequency of 700 kHz, the reflection co-
efficient is constant and does not exceed the analytical limiting value of 1. Below
frequency level of 600 kHz, there has been no mode conversion and hence all the
incident waves are reflected with zero energy loss. But in the range from 600 -
750 kHz, the first mode conversion taking place giving rise to other longitudinal
modes, and resulting in start of more complex behavior to monitor. In between
750-800 kHz, there exists an sudden increase in the value of reflection coefficient
exceeding the limit value of 1. The similar explanations could be expected as
observed in previous case of incident flexural waves.

Also, the plot of the energy associated with the propagating modes being shown
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5 Verification and Application

in figure 5.9, where could be observed clearly a constant value till a range with
folllowing complete conservation of energy and later on shows deviation with
increase in frequency.
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Figure 5.8: Reflection Coefficient of reflected waves from free edge of cylinder over
a frequency range for incident L(0,1) wave
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Figure 5.9: Energy associated with the reflected waves from free edge of a cylinder
for incident longitudinal wave
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6 Experimental Verification

6.1 Experimental Setup

Apart from the numerical solutions with comparison between the conventional
FE-Modal decomposition and Boundary Element method, it is also evident to
compare the solutions with experimental results for have practice correlation.
The experimental setup is shown in figure 6.1.

Figure 6.1: Energy associated with the reflected waves from free edge of a cylinder
for incident longitudinal wave

The direct output from experimental setup is measured radial velocity com-
ponents. For this, the Laser Doppler vibrometer (LDV) is placed in such a way
that the incident signal is perpendicular to the circumference of the cylinder to
measure the radial velocity components as shown in figure 6.2.

The motivation behind selecting points A and B was to differentiate between
the traveling longitudinal and flexural wave. As longitudinal waves show uniform
radial displacement over any circumferential cross-section. so the velocity mea-
sured at points A and B are same for these waves. But there exists two types
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6 Experimental Verification

of flexural waves, and the radial displacement is not same at points A and B.
Hence, signal correspond to difference between the velocity at points A and B
representing flexural waves.

Figure 6.2: Normal velocity components for two types of flexural wave

The process of measurement starts with an excitation of the disturbance from
a Piezeo electric transducer. With the help of a signal generator and amplifier,
required frequency of excitation with proper strength could be achieved and in-
duced to transducer to transfer the disturbance in the waveguide cylinder. The
measurements are taken after a span of time interval, so as allow the disturbance
to reach at steady level after reflections from free edge. The LDV sensing unit
placed at a distance near the free edge. The sensor’s incident waves get reflected
from the circumferential surface of the waveguide and means for the measurement
of the velocity with which particles vibrate with superposition of reflected waves
from free edge. The measured values are made into readable format by using an
oscilloscope and thereafter using a code based on modal decomposition method
to get the reflection coefficient of the reflected waves form the free edge of the
used cylindrical wave guide.

6.2 Results

The longitudinal waves have been point of interest of study for experimental
measurements, and hence would look the results corresponding to the same. But
to excite only longitudinal wave alone is not possible in practical situations and
hence encounter the signals associated with generation and reflections of flexural
waves and Torsional waves.

The experiment is performed at 200 KHz, where fundamental L(0,1) and F(1,1)
waves exists and torsional waves don’t show up due to symmetry. The figure 6.3
shows the signals associated with incident and reflected waves (herein, Longitudi-
nal and Flexural waves) at two points A and B as shown in figure 6.2. It could be
seen clearly from the plot, that the Longitudinal waves are observed earlier than
Flexural waves. This makes task easy for concentration to be focused on Longi-
tudinal waves , as the Flexural waves are not affecting the earlier waves. With
each incident wave type, both Longitudinal and Flexural waves are obtained due
to reflections from the free edge. The energy associated with the Longitudinal
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6 Experimental Verification

waves is calculated with known the displacement fields associated with the modes
shapes of Longitudinal and Flexural waves. Due to equal radial displacement of
Longitudinal waves at the circumference of the cylindrical waveguide, the ob-
tained displacement at points A and B using the results from velocity data of
experiments are equal and hence the instantaneous amplitude factor could be ob-
tained as the ratio measured displacement to displacement associated with modal
shapes of longitudinal waves.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
-3

-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

V
e
lo

c
it
y

(m
m

/s
)

Point A

Point B

L(0,1)
inc

L(0,1)

F(1,1)
refl

Figure 6.3: Velocity measured at two points for Longitudinal and Flexural waves

â = um/ûr (6.1)

where, â,um and ûr represents the instantaneous amplitude , measured displace-
ment and modal displacements of longitudinal waves respectively. Modal radial
displacement ûr are normalized to have unit average power, such that instanta-
neous power P̂ could be expressed as the root mean square value of the instan-
taneous amplitude.

P̂ = 2â2 (6.2)

A time integration over a period duration of the instantaneous power would re-
sult in determination of the energy associated with the propagating longitudinal
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waves.

E =

∫ t2

t1

P̂dt (6.3)

The reflection coefficient from experimental data is calculated using the ratio of
the energy associated with Longitudinal reflected waves and incident waves. For
the frequency of 200 kHz used in experiments, the calculated reflection coefficient
is 1, which coincides with the simulation results shown in figure 5.8.
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7 Conclusion and Outlook

From the motivation for detection of discontinuities in cylindrical structures, the
Boundary Element method was coupled to the Finite Element- Modal decom-
position method to study the mode conversion behavior at the free edge of the
waveguide cylinder. The hybrid approach of combining the boundary elements
with FE-modal decomposition method is advantageous than conventional ap-
proach for various forms of discontinuities. The method has shown good conver-
gence with the results obtained from FE-modal decomposition and experimental
methods for range of frequencies at lower regime (around 600 kHz). The com-
plicated behavior with increase in the frequency yielding different modes are not
accurately determined but are satisfactory for trend representation. This would
require enhancement of discretization with correlation to the frequency change
to yield better accurate results. The energy plot has not been convincing for
higher frequency regime, where the expected result were to have an unit power
from the combined contribution of incident and superimposed reflected waves.
The reason associated is the method’s dependence on solving boundary integral
equation using the collocation method to minimize the residuum than minimizing
the energy functional.

The rate at which the results converge has been better due to the use of 2D
surface elements than 3D volume elements for discretization at the discontinuous
region, herein free edge. Although, this includes the numerical errors associated
with interpolation for coupling of surface elements and volume elements with em-
phasis on the continuity condition at the coupling interface and also increase the
computational time.

Although, for lower frequencies being field of interest have shown good results,
but the method would require still some improvements to achieve more precise
and accurate results for even higher frequencies. The amount of computational
time could well be decreased with inclusion of methodology to solve the sym-
metric model of the cylindrical waveguide structure. This would also evidently
decrease the effort and time for interpolation at the coupling of surface elements
to volume elements. Also, using Galerkin method, the system of equations in-
volving non symmetric matrices could be transformed into symmetric matrices,
so that conventional approaches could be used to solve the systems of equations
with ease. Galerkin method gives flexibility in choice of shape function for the
primary and secondary variables, where using quadratic elements for displace-
ment fields and constant elements for traction fields would improve the quality of
results with less time for computation. The virtual work principle based hybrid
displacement or stress boundary element method would work on the minimization
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7 Conclusion and Outlook

of energy and would satisfy the condition of constant unit power over frequency
range. The method could be extended for the applications for studying the mode
conversion at discontinuities of any form. The same code would be sufficient to
proceed for cracks with inclusion of transmissions factors, while the only changes
are made into geometry and hence are changes in H and G matrices. This would
be computed at very less time when compared to conventional approach.
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