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Abstract

This work is a preliminary work for the development of a numerical strategy for

the optimal control of Fluid-Structure Interactions systems. A simple model is chosen

to address such problems. This work focuses only on the solution of highly nonlinear

systems, ignoring the coupling aspect of Fluid-Structure Interaction problems. A sim-

ple three-spheres micro-swimmer is chosen as a model problem. The motion equations

of the micro-swimmer are presented and later expressed as an optimal control prob-

lem. The Variational approach is applied to the micro-swimmer problem and necessary

equations are derived.

A monolithic computational strategy is suggested for the solution of a nonlinear

two-point boundary value problem. The validation of the numerical strategy for linear

and nonlinear problems are presented. Finally, the optimal stroke of the swimmer is

obtained for different initial guesses. Furthermore, the analysis of different numerical

integration methods is conducted. A comparative study is also done to monitor the

energy waste for different number of strokes necessary to reach a prescribed displace-

ment. It is shown that the formulation and numerical strategy used in this work are

suitable to the micro-swimmer problem and can be extended to more complex systems.
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1 INTRODUCTION

1.1 MOTIVATION AND AIM OF THE THESIS

This work is a preliminary study for solving the optimal control problem in Fluid-

Structure Interaction (FSI) systems. In recent years, the study of problems involv-

ing both fluid and structural domains has increased significantly and many numerical

techniques have been developed to solve such systems. After great advances in the

coupling of the problem, perhaps the next step in this field of research is to optimize

those systems by adapting the different optimization techniques the problem. Among

the different ways of optimizing a system, this work will focus on the optimal control

theory with the aim of later applying it to systems with fluid-structural interaction.

Many FSI systems are controlled by a small number of parameters, which can be

varied during process. Therefore, it can be often desirable to optimize the choice of

those parameters and the process itself, with the objective of reducing the energy

waste, the total process time or any other feature of the system. Applications range

from the control of wind turbine generators and aeroplane control surfaces to the

swimming motion of micro organisms, see Fig.1.1. In the power generation context,

the optimization of the process is directly related to the efficiency of the system and,

hence, the amount of energy generated. For example, in a wind turbine the energy

produced is controlled by the transmission of the rotation of the blades to the power

generator. This control is done by a gearbox and the optimal choice of the gear may

vary depending on the intensity of the wind at a given instant.

This work addresses such problems on a conceptual level. Initially, a small model

problem will be formulated and appropriate mathematical techniques will be chosen

for the optimal parameter control. A computational strategy will be developed to solve

highly nonlinear problems, as it is often the case of FSI systems. The computational

strategy will be applied to a micro-swimmer problem, which is one of the simplest one

dimensional FSI problems. However, the problem solved in this work will not deal with

the coupling of the systems, but with the direct solution of the motion equations that

govern the micro-swimmer problem.
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CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Examples of FSI systems with variable control parameters. (a) Wind

turbines; (b) Micro swimmers.

1.2 STATE OF THE ART

1.2.1 Optimal control theory

The idea of optimal control began a long time ago with the calculus of variations,

the branch of mathematics that deals with finding the maximum or minimum of a

functional. It is argued that the first optimal control problem was the brachystochrone

problem proposed by Johann Bernoulli in 1696 [Sussman, 1996], which is to find the

path of quickest descent between two points with different height. Bernoulli’s problem

was a true minimum-time problem and it explicitly asked for the optimal path that

minimizes the time, which can be viewed as the performance index in an analogy with

the optimal control problems.

The modern theory of optimal control had its main developments during the 1950s

with the formulation of two main optimization techniques: Dynamic Programming,

introduced by R. E. Bellman [Bellman, 1952], and the Pontryagin’s Minimum Principle

[Pontryagin et al., 1956]. The approaches are significantly different but both of them

still have applications nowadays. The Dynamic Programming makes use of the principle

of optimality and it is suitable for solving discrete problems, allowing a significant

reduction in the computation of the optimal controls, see [Kirk, 1998]. It is also possible

to obtain a continuous approach to the principle of optimality that leads to the solution

of a partial differential equation called the Hamilton-Jacobi-bellman equation. An

alternative approach to the optimal control problem is to use the calculus of variation

2



CHAPTER 1. INTRODUCTION

and the Pontryagin’s Minimum Principle that results in the Hamiltonian approach,

which is generalization of the Euler-Lagrange equations. The variational approach

will lead to the solution of a nonlinear two-point boundary value problem and it will

require appropriate techniques for its solution. The variational approach presents a

more elegant solution and it will be the one used in the solution of the micro-swimmer

optimal control problem.

1.2.2 The micro-swimmer problem

The micro-swimmer problem has strong relevance in different fields of science, such

as, biology, nano-mechanics and medicine. For this reason, many authors have worked

to find mechanisms capable of swimming in systems with high viscosity and small di-

mensional scales. Those circumstances require special swimming mechanisms to allow

the propagation of the swimmer in the viscous media. One of the pioneering works in

this field is given in [Purcel, 1977] and it is shown that animals like scallops can not

swim in a highly viscous flow by the opening and closing movement of a single hinge.

Purcel proposed that a non-reciprocal motion is required to produce a net displacement

because it breaks the time-reversal property of the Stokes equations. Following that,

a number of micro-swimmers have been proposed, such as, swimmers made of joined

rods, spheres with prescribed tangential velocities and liked spheres undergoing shape

changes [Putz and Yeomans, 1999]. One example of a swimmer capable of self propul-

sion in a viscous driven motion, which is also one of the simplest swimmers proposed,

is the three-spheres swimmer introduced by Najafi [Najafi and Golestanian, 2004].

Many authors have used the three-linked-spheres swimmer as a model problem

to their analysis. In 2008, Alouges and collaborators introduced the idea of finding

the optimal strokes of a micro-swimmer, using the three-spheres swimmer as their

model in [Alouges et al., 2008]. Later, they expanded their work to axisymmetric

micro-swimmers in [Alouges et al., 2010]. The synchronization of micro-swimmers and

the hydrodynamic interaction in low Reynolds number were studied with the three-

spheres swimmer in [Putz and Yeomans, 1999] and [Alexander and Yeomans, 2008].

This swimmer will be used in this work with the objective of finding the optimal

relative displacement of the spheres that results in a certain net displacement with the

minimum energy waste.

3



CHAPTER 1. INTRODUCTION

1.3 LAYOUT OF THE THESIS

Chapter 2 introduces the optimal control theory. The main aspects of an optimal

control problem are presented, such as, the state variable representation of systems,

the choice of the performance index and the restrictions experienced by the control and

state variables. The chapter also brings the formulation of the two main approaches

to the problem, the Dynamic Programming and the Variational approach.

In chapter 3, the formulation of the micro-swimmer problem is given. The motion

equations of the micro-swimmer are presented, as well, as the Oseen-tensor formulation

of the problem. Next, the kinematics of the problem are discussed, resulting in the

ordinary differential equation that governs the motion of the swimmer. A simple four-

stage stroke is then presented and the numerical solution of the motion of the swimmer

will be verified with the data found in the literature.

In chapter 4, the optimal control theory is applied to the micro-swimmer problem.

The performance index of the problem is defined as the minimal energy waste and the

system is rewritten using the state variable representation. The Hamiltonian approach

is applied and the optimal control equations necessary for the solution are obtained.

Chapter 5 presents the numerical procedure adopted in the solution of the problem.

The time discretization of the problem is applied by using the generalized midpoint rule.

Next, a monolithic approach for solving linear optimal control equations is introduced

and the verification of the methodology is done by solving linear problems with exact

analytical solution. Finally, the Newton-Raphson method is applied to the monolithic

approach and example problems are solved to verify the nonlinear procedure.

In chapter 6,s the numerical procedure is applied to the micro-swimmer problem.

The optimal stroke of the swimmer is obtained with an energy waste reduction. Other

local minimum of the solution are also presented and compared with the initial strokes

studied. Next, a convergence analysis of the different types of numerical integration

is done. At last, the comparison of the energy waste for achieving a certain point in

space with one single stroke and with several small strokes are presented.

Chapter 7 brings the conclusions of this thesis and some directions for future works.

4



2 OPTIMAL CONTROL THEORY

The main objective of the optimal control theory is to determine the control inputs

that will cause the system to satisfy its physical constraints while extremizing, that

is, maximizing or minimizing a chosen performance index or criterion. The standard

approach to the problem is to quantify the value of each possibility, so that the best

controls for a certain problem may be found. Examples of optimal control problems are

found in different areas of engineering and applied math, such as, minimizing the fuel

consumption of an aircraft, maximizing the range of a rocket, minimizing the amount

of material used in the manufacturing of an object or even in maximizing the profits

of an economic enterprise.

The two main approaches to the optimal control problem are the Dynamic Program-

ming and the Variational approach. The dynamic programming approach is based in

the principle of optimality and has introduced a significant reduction in the compu-

tational time, if compared with the global evaluation of all possibilities of a system.

Furthermore, a continuous approach of the principle of optimality may be presented,

which results in the solution of the partial differential Hamilton-Jcaobi-Bellman equa-

tion. The approach based on the principle of optimality gives a closed-loop solution,

Fig.2.1a, resulting in a global search of the optimal controls. More efficient and elegant,

the variational approach uses the Pontryagin’s minimum principle, which is a gener-

alization of the Euler-Lagrange approach . However, the variational, or Hamiltonian,

approach is an open-loop optimal control, Fig.2.1b, and gives the optimal values for

specific initial conditions.

In this chapter, the general aspects of the optimal control problem are discussed,

such as, the description of the problem, the different possibilities of objective functions

commonly used and their formulation. The two main procedures used in the optimal

control solution, dynamic programming and variational approach, are presented and

derived. More details of the optimal control theory may be found in [Kirk, 1998],

[Naidu, 2003] and [Subchan and Zbikowski, 2009].

5



CHAPTER 2. OPTIMAL CONTROL THEORY

(a)

(b)

Figure 2.1: (a) Closed-loop optimal control system; (b) Open-loop optimal control

system.

2.1 PROBLEM DESCRIPTION

The main steps of the formulation of the optimal control problem are the modelling

of the controlled system, the specification of a performance criterion and the physical

constraints to be satisfied, that is, path, initial and terminal constraints. Each one of

those steps is discussed next.

2.1.1 Optimal Control Formulation

Many model problems in engineering are governed by first or higher order ordinary

differential equations (ODEs). However, it is possible to formulate higher order differ-

ential equations as a system of first order ODEs depending on the state and control

variables only. State variables are the quantities x1(t), x2(t), ..., xn(t) that, if known at

time t = t0, are known for a time t ≥ t0, provided that the inputs of the system are

given. The control variables u1(t), u2(t), ..., un(t) are the inputs of the system at each

instant t and can be chosen according to the controller’s interests. The state variable

representation of systems is convenient for the solution of problems, numerically or

analytically, and has strong physical motivation [Kirk, 1998].

A general nonlinear optimal control problem is to find the optimal control u∗(t)

(* indicates the optimal value throughout this work) that causes a certain system of

differential equations

6



CHAPTER 2. OPTIMAL CONTROL THEORY

ẋ = f (x(t),u(t), t) (2.1)

to give the optimal trajectory x∗(t) that optimizes a chosen performance index

J = S (x(tf ), tf ) +

tf∫
t0

V (x(t), u(t), t) dt. (2.2)

In equations (2.1) and (2.2), x(t) is the vector containing the state variables and u(t)

the vector of control variables. The aspects and the choice of the performance index

are discussed in the following section.

2.1.2 Performance Index

The objective of the optimal control theory is to choose the control input, such that,

it will result in the “best” possible output. The characterization of best output depends

on the physical property or function (performance index) that one wants to minimize or

maximize. Examples of performance index are time, energy, fuel consumption, terminal

cost, among others. Therefore, the choice of the performance index will depend on

the properties of each problem and on the interests of the operator or designer. A

description of some of the common performance index used are presented next.

2.1.2.1 Minimum-Time Problems

If the objective of the problem is to reduce the total time of a certain process, the

problem can be classified as a minimum-time problem (or time-optimal control system).

This type of problem consists of transferring the system from an initial state x(t0) to a

specified final state x(tf ) in minimal time. The performance measure to be minimized is

J =

tf∫
t0

dt = tf − t0 = t∗. (2.3)

Operations in which the time consumed is more important than any other factor

such as energy or fuel consumption are suitable for this type of problem formulation.

Some typical examples where the minimum-time performance index is used are the

7



CHAPTER 2. OPTIMAL CONTROL THEORY

interception of attacking aircraft and missiles, and the slewing mode operation of a

radar or gun system.

2.1.2.2 Terminal Control Problems

In a terminal control problem, one is interested in minimizing the error (or devia-

tion) between the desired final state xd(tf ) and the actual final state xa(tf ). The target

error may be defined as the vector x(tf ) = xa(tf ) − xd(tf ). Since both the positive

and negative deviations of the final state are undesirable, it is convenient to define the

performance criterion as the squared of the error vector. The terminal cost problem

written in matrix notation is defined as

J = xT (t)Fx(t), (2.4)

where F is a positive semi-definite weighting matrix. As it will be shown later, the

performance index might involve more than one term to be minimized. Hence, the

weighting matrix F can evaluate the importance of the terminal cost term to the

overall performance criterion, as well as the different contributions of each term inside

the vector x(t) to the system.

2.1.2.3 Minimum-Energy Control Problems

In most control problems, the selection of the control inputs acts directly on the

energy consumption of the system. This energy consumption will later determine, for

example, the amount of fuel or electrical current that the system will require. There-

fore, one might be interested in minimizing the energy consumption for economical

and/or environmental reasons, or simply to increase the system’s efficiency. The min-

imization of the total power or total energy rate may be defined as

J =

tf∫
t0

uT (t)Pu(t) dt. (2.5)

Here, P is a positive definite matrix that weights the control variables. In the example

of an electric current network minimization, the matrix P is correspondent to the elec-

trical resistance associated to each control. One can also think of problems where the

8



CHAPTER 2. OPTIMAL CONTROL THEORY

state variables are determinant to the system’s energy consumption. Such problems

may be stated as

J =

tf∫
t0

xT (t)Qx(t) dt (2.6)

where Q, in this case, is the respective weighting semi-positive matrix of the state

variables. The weighting matrix defines, among other things, the importance of the

energy consumption to the total value of the performance index.

2.1.2.4 General Optimal Control Problems

A general problem may involve the minimization of one or more of the conditions

described above. Combining all cases presented in only one criterion function, the fol-

lowing performance index is obtained,

J = xT (t)Fx(t)

tf∫
t0

[
xT (t)Qx(t) + uT (t)Pu(t)

]
dt. (2.7)

The above equation is also called the performance index for the linear regulator optimal

control problem. Notice that the matrices P and Q might be time dependent or even

dependent on the state variables, resulting in a nonlinear problem. Therefore, one may

also define the general nonlinear form of the performance index as

J = S (x(tf ), tf ) +

tf∫
t0

V (x(t), u(t), t) dt. (2.8)

The problems of optimal control may also be classified according to their perfor-

mance index J . A problem where the performance index is determined only by the

terminal cost is called the Mayer problem, while the Lagrange problem has only the

integral cost term and the Bolza type problem presents both integral and final state

components of (2.8).

9
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2.1.3 Constraints

Physical constraints appear in optimal control problems in two main forms, bound-

ary conditions and control (or state) restrictions. The first is necessary for any optimal

problem solution. As it will be shown later in this chapter, the initial state of the

problem is essential in the variational approach. However, it can be omitted in the

dynamic programming, resulting in a global search other than a local minimization.

That is, the search will find not only the optimal path, but the optimal path for all

possible initial conditions. With respect to the final condition, it might be defined in

different manners, for example, as an imposed final state x(tf ) = xf and free final time

tf or as a free final state x(tf ) and imposed final time tf = T .

Restrictions in the control and state variables are also often found in real problems.

For example, an automobile has a maximum limitation in the acceleration depending

on the engine power, and its deceleration is restricted by the braking system parame-

ters. Maximum and minimum constraints in the state variables can also be found, such

that, the path must be within a certain admissible area of the space. Those restrictions

may be mathematically represented by

U− ≤ u(t) ≤ U+ X− ≤ x(t) ≤ X+ (2.9)

In this work, the constraints in the control and state variables will be left aside.

The unconstrained problem has less complications and leads to more elegant results.

As an initial approach to the optimal control problem, it will serve as a good evaluation

parameter of the methodology implemented.

2.2 DYNAMIC PROGRAMMING APPROACH

The Dynamic Programming approach for the optimal control problem was first

introduced by R. E. Bellman in 1952 [Bellman, 1952]. The idea of the dynamic pro-

gramming is that it minimizes a discrete multistage optimization problem such that

for each stage all options are evaluated and the best discrete value is stored. For that,

the dynamic programming make use of the principle of optimality as it will defined fur-

ther in this section. Notice that the discretization of the admissible controls and state

variables is generally a discrete approximation of a continuous space and, therefore,

10
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errors associated to the discretization are normally found in the dynamic programming

solution. This approach is suitable to digital computers but an alternative approach

might also be presented, which leads to the solution of the Hamilton-Jacobi-Bellman

partial differential equation. The derivation of the partial differential equation is pre-

sented in this section and more details on the dynamic programming approach and the

principle of optimality might be found in [Kirk, 1998], [Subchan and Zbikowski, 2009],

[Knowels, 1981] and [Dyer and McReynolds, 1970].

2.2.1 The Principle of Optimality

The principle of optimality states that if an optimal control is broken into two

pieces, then the last piece is itself optimal. The basic assumption of the principle of

optimality is that the system can be characterized by its state x(t) at time t, which

completely summarizes the effect of all inputs u(t) prior to time t. This allows for a

local characterization of optimality as given in the following formal statement of the

principle [Primbs, 1999]:

Definition 2.1: Principle of Optimality: If u∗(τ) is optimal over the interval

[t, tf ], starting at state x(t), then u∗(τ) is necessarily optimal over the subinterval

[t+∆t, tf ], for any ∆t such that tf − t ≥ ∆t > 0.

Computationally speaking, the principle of optimality allows a significant reduction

of the memory and time used in the solution, with respect to a global search of all

admissible values of the control variables. A global search would require the storage of

all possible control variables at each time step and the evaluation of all allowable paths

to obtain the combination with the lowest performance index (an exhaustive search).

Using the principle of optimality it is possible to work backward from the final state

x(tf ) and search within each time interval the optimal control input for that specific

step. Then, only the optimal value of each time step needs to be stored in the code,

reducing significantly the number of combinations evaluated and the computational

cost in the optimal control analysis.

2.2.2 The Hamilton-Jacobi-Bellman Equation

Alternatively to the discrete multistage approach of the dynamic programming, it is

possible to use a continuous approach to the principle of optimality that will lead to the

11
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solution of a partial differential equation called the Hamilton-Jacobi-Bellman equation.

Using equations (2.1) and (2.2) as our optimal control problem and considering only

the integral term of the performance index in (2.2), the minimal performance index for

the optimal state x∗(t) with initial condition x(0) = x0 is represented by J∗(x(t0), t),

such that

J∗(x(t0), t) =

tf∫
t0

V (x∗(t), u∗(t), t) dt. (2.10)

Notice that J∗(x(t0), t) is independent of the control u(t), since the knowledge of the

minimal performance index already determines the necessary controls u∗(t) for achiev-

ing its minimum. From the principle of optimality, one may obtain the minimum of

the performance index function J∗(x∗(t), t) for a an arbitrary initial state along the

optimal path x∗(t) at time t,

J∗(x∗(t), t) =

tf∫
t

V (x∗(τ), u∗(τ), t) dτ . (2.11)

The attempt of finding the controls that will minimize (2.11) can start by using the

additive property of integrals and the principle of optimality, such that

J∗(x(t), t) = min
u(τ)
t≤τ≤tf


t+∆t∫
t

V (x(τ),u(τ), τ) dτ + J∗(x(t+∆t), t+∆t)

 . (2.12)

That is, the optimal cost at an arbitrary state is the minimum cost to move to x(t+∆t)

plus the optimal cost J∗(x(t +∆t), t +∆t) from the state x(t +∆t), as stated in the

principle of optimality. Therefore, the problem of finding the optimal control over the

total time interval is reduced to finding the optimal control in the subinterval [t, t+∆t].

If the interval ∆t is small enough, the integral term in (2.12) can be approximated

by V (x(t),u(t), t)∆t. Also, the optimal term J∗(x(t+∆t), t+∆t) at x(t+∆t) can be

expanded in a Taylor series with respect to the point (x(t), t), resulting in
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J∗(x(t), t) = min
u

{
V (x(t),u(t), t)∆t+ J∗(x(t), t) +

∂J∗

∂t
∆t

+

(
∂J∗(x(t), t)

∂x

)T

[x(t+∆t)− x(t)]

}
.

(2.13)

Dividing all terms by ∆t, considering ∆t to be small enough and knowing that

the terms of J∗(x(t), t) does not depend on the minimization of u(t), (2.13) may be

rewritten as

∂J∗(x(t), t)

∂t
+min

u

{
V (x(t),u(t), t) +

(
∂J∗(x(t), t)

∂x

)T

[f(x(t),u(t), t)]

}
= 0. (2.14)

Furthermore, introducing the Hamiltonian function H as

H = V (x(t),u(t), t) +

(
∂J∗(x(t), t)

∂x

)T

f(x(t),u(t), t) (2.15)

and knowing that the minimized control u∗(t) will result in the optimal value of the

variables involved in the Hamiltonian, the Hamilton-Jacobi-Bellman equation might

be obtained:

J∗
t (x(t), t) +H (x∗(t),u∗(t), J∗

x, t) = 0, (2.16)

where the notation J∗
t and J∗

x denotes to the partial derivatives of J∗(x(t), t) with

respect to the time t and the state x(t) respectively.

The Hamilton-Jacobi-Bellman equation is, for most real problems, a nonlinear par-

tial differential equation in J∗ and it presents many difficulties in its solution. The

boundary condition for this equation is the terminal cost given by the term S(x(tf ), tf )

in (2.8) and can be applied for problems with fixed final time or free final time tf

equally. Simple problems might be solved by guessing the form of the cost function

V (x(t),u(t), t), however, for most problems it is not possible to find a solution so easily

[Kirk, 1998]. In the dynamic programming solution it was shown that the continuous

process is approximated by a discrete system and, using recurrence equations, one ob-

tains an exact solution to the approximated problem. In the Hamilton-Jacobi-Bellman
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approach the continuous problem is not discretized, but the numerical solution for

the nonlinear partial equation often requires a discretization. Therefore, the second

approach leads to an approximate solution of the exact problem. In both cases the

solution can be obtained by a closed-loop optimal control and its accuracy will be de-

pendent on the quality of the discretization of the system (dynamic programming) or

of the solution (continuous approach).

2.3 VARIATIONAL APPROACH TOOPTIMAL CONTROL PROBLEMS

Alternatively to the dynamic programming solution of the optimal control problem

presented in section 2.2, the variational approach to the optimal control problem is

presented, which is based on a generalization of the calculus of variations. The vari-

ational approach is also called the indirect approach to the solution of the optimal

control problem. Necessary conditions for an extremum are derived by considering

the first variation of the performance index J with constraints adjoined in the manner

of Lagrange method. The approach is called indirect, because the optimal control is

found by solving the auxiliary two-point boundary value problem, rather than by a

direct focus on the original problem.

2.3.1 Variational Formulation

The general nonlinear problem given by the system of differential equations in (2.1)

is considered, minimizing a performance index with final and integral cost functions as

shown in (2.2). This problem is called the Bolza problem. It is also assumed that the

problem has initial conditions and free-final time and state. The problem is to solve

the system of differential equations

ẋ(t) = f(x(t),u(t), t) (2.17)

such that the performance index

J(u(t)) = S(x(tf ), tf ) +

tf∫
t0

V (x(t),u(t), t) dt (2.18)

is minimized, whilst the following boundary conditions are satisfied,
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 x(t0) = x0

x(tf ) is free and tf is free.
(2.19)

Notice that, if S is considered to be a differentiable function, the final cost term of

the performance index equation may be rewritten as

S(x(tf ), tf ) =

tf∫
t0

d

dt
[S(x(t), t)] dt+ S(x(t0), t0) (2.20)

so that the performance index becomes

J(u(t)) =

tf∫
t0

{
V (x(t),u(t), t) +

d

dt
[S(x(t), t)]

}
dt+ S(x(t0), t0). (2.21)

However, since the initial state x(t0) and the initial time t0 are fixed, the initial cost

term does not affect the minimization of J . Therefore, only the integral term of the

functional needs to be considered,

J(u(t)) =

tf∫
t0

{
V (x(t),u(t), t) +

d

dt
[S(x(t), t)]

}
dt. (2.22)

Using the chain rule of differentiation, it is possible to rewrite the term containing the

time derivative of S in (2.22) as

d

dt
[S(x(t), t)] =

[
∂S(x(t), t)

∂x

]T
ẋ(t) +

∂S(x(t), t)

∂t
(2.23)

Then, making use of (2.23), the performance index functional (2.22) can be rewritten

and it becomes

J(u(t)) =

tf∫
t0

{
V (x(t),u(t), t) +

[
∂S(x(t), t)

∂x

]T
ẋ(t) +

∂S(x(t), t)

∂t

}
dt. (2.24)

Now, the functional J is considered to be on its minimum and, therefore, the state

and control variables to be optimum, x∗(t) and u∗(t). Also, the differential equation

15



CHAPTER 2. OPTIMAL CONTROL THEORY

constraints are introduced to form the augmented functional

Ja(u
∗(t)) =

tf∫
t0

{
V (x∗(t),u∗(t), t) +

[
∂S(x∗(t), t)

∂x

]T
ẋ∗(t)

+
∂S(x∗(t), t)

∂t
+ λ∗T (t) [f(x∗(t),u∗(t), t)− ẋ∗(t)]

}
dt

(2.25)

by using the optimal Lagrange multiplier vector λ∗(t) and the dynamic equations in

(2.17). For convenience, the Hamiltonian H is also introduced as function of the La-

grange multiplier, the state and control variables, such that,

H(x(t),u(t),λ(t), t) = V (x(t),u(t), t) + λT [f(x(t),u(t), t)] (2.26)

and equation (2.25) can be rewritten as

Ja(u
∗(t)) =

tf∫
t0

{
H(x∗(t),u∗(t),λ∗(t), t) +

∂S(x∗(t), t)

∂x
ẋ∗(t)

+
∂S(x∗(t), t)

∂t
− λ∗T (t)ẋ∗(t)

}
dt

=

tf∫
t0

L(x∗(t), ẋ∗(t),u∗(t),λ∗(t), t) dt.

(2.27)

As defined in the boundary conditions of the problem (2.19), it is assumed that

both final state x(tf ) and final time tf are free. Later it will also be shown that this

boundary condition is the most general form and other cases of final boundary con-

dition may be derived from this one. Furthermore, the variation of Ja is obtained by

introducing the variations δx, δẋ, δu, δλ and δtf in (2.27), resulting in
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δJa(u
∗(t)) =

tf∫
t0

{[
∂H
∂x

(x∗(t),u∗(t),λ∗(t), t) +
∂2S

∂x∂x
(x∗(t), t) +

∂2S

∂x∂t
(x∗(t), t)

]
δx(t)

+

[
∂H
∂u

(x∗(t),u∗(t),λ∗(t), t)

]
δu

+

[
∂H
∂λ

(x∗(t),u∗(t),λ∗(t), t)− ẋ(t)

]
δλ(t)

+

[
∂S

∂x
(x∗(t), t)− λ(t)

]
δẋ(t)

}
dt

+ [L(x∗(tf ), ẋ
∗(tf ),u(t),λ(tf ), tf )] δtf = 0 .

(2.28)

The term outside the integral in (2.28) appears by using the first variation and expand-

ing about each variable in a Taylor series as shown in [Kirk, 1998]. Also, notice that

the variation δJa is zero, since it is evaluated with optimal values and, therefore, on

an extremum. Next, the integration by parts on the coefficient of δẋ(t), the last term

inside the integral, is used. Since the state is prescribed at t0 and free only at tf , the

variation δx(t0) is zero and (2.28) may be rewritten as

δJa(u
∗(t)) =

tf∫
t0

{[
∂H
∂x

(x∗(t),u∗(t),λ∗(t), t) +
∂2S

∂x∂x
(x∗(t), t) +

∂2S

∂x∂t
(x∗(t), t)

− d

dt

∂S

∂x
(x∗(t), t) + λ̇(t)

]
δx(t) +

[
∂H
∂u

(x∗(t),u∗(t),λ∗(t), t)

]
δu(t)

+

[
∂H
∂λ

(x∗(t),u∗(t),λ∗(t), t)− ẋ(t)

]
δλ(t)

}
dt

+ [L(x∗(tf ), ẋ
∗(tf ),u(t),λ(tf ), tf )] δtf

+

[
∂S

∂x
(x∗(tf ), tf )− λ(tf )

]
δx(tf ).

(2.29)

The relation (2.23) is used for the time derivative of the S term in (2.29). Moreover, it

is assumed that the second partial derivatives of S are continuous and that the order of

differentiation can be interchanged, then, the terms of S inside the integral add to zero.

On an extremum, maximum or minimum, the integral of (2.29) must vanish regardless

of the boundary condition. Then, the integral term becomes
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tf∫
t0

{[
∂H
∂x

(x∗(t),u∗(t),λ∗(t), t) + λ̇(t)

]
δx(t) +

[
∂H
∂u

(x∗(t),u∗(t),λ∗(t), t)

]
δu

+

[
∂H
∂λ

(x∗(t),u∗(t),λ∗(t), t)− ẋ(t)

]
δλ(t)

}
dt.

(2.30)

Using the differential equation (2.17) and the definition of the Hamiltonian (2.26), it

is shown that the coefficient of δλ(t) is zero on an extremum, resulting in the state

equations that are written as

ẋ∗(t) =
∂H
∂λ

(x∗(t),u∗(t),λ∗(t), t). (2.31)

In addition, the Lagrange multipliers are arbitrary, so they can be selected in such a

way that the coefficient of δx(t) becomes equal to zero, that is,

λ̇
∗
(t) = −∂H

∂x
(x∗(t),u∗(t),λ∗(t), t). (2.32)

The equations (2.32) are called the costate equations and the Lagrange multiplier λ(t)

will be henceforth called the costate. Finally, the term containing the variation δu(t)

is independent and its coefficient must be zero. Thus,

0 =
∂H
∂u

(x∗(t),u∗(t), λ∗(t), t). (2.33)

Moreover, it is shown in Fig.2.2 that the variation between the final state δxf and

the state at the final time δx(tf ) are different, because of the free final time tf . The

variation δxf can be defined as

δxf = δx(tf ) + ẋ(tf )δtf . (2.34)

Substituting equation (2.34) in the term outside the integral of (2.29), knowing

that, on an extremal, the variation δJa and the integral of (2.29) for any t ∈ [t0, tf ] are

zero, the following equations are obtained,
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Figure 2.2: Variations for free-final time and free-final state system [Naidu, 2003].

0 =

[
L(x∗(t), ẋ∗(t),u∗(t),λ∗(t), t)−

[
∂S

∂x
(x∗(tf ), tf )ẋ

∗(tf )− λ∗T ẋ(tf )

]]
δtf

+

[
∂S

∂x
(x∗(tf ), tf )− λ∗(tf )

]
δxf .

(2.35)

Next, using the definition of the functional L(x∗(t), ẋ∗(t),u∗(t),λ∗(t), t) in (2.27), the

resulting equation is

0 =

[
H(x∗(tf ),u

∗(tf ),λ
∗(tf ), tf ) +

∂S

∂t
(x∗(tf ), tf )

]
δtf

+

[
∂S

∂x
(x∗(tf ), tf )− λ∗(tf )

]
δxf .

(2.36)

Equation (2.36) is the fundamental equation for applying the boundary condition at

the free-final point and it admits a variety of situations, which will be discussed later.

Equations (2.31) to (2.33) are the necessary conditions to determine the optimal

control and, together with the boundary condition equation at the final point (2.36),

are sufficient to solve an optimal control problem. If the problem is considered to have

n state variables and m control variables, the variational approach will lead to the

solution of 2n equations referent to (2.31) and (2.32), plus m equations of (2.33). Also,

a set of n equations x∗(t0) = x0 and an additional set of n or n+1 equations, whether

or not tf is specified, from (2.36). The problem of optimal control results, therefore,

in a two-point boundary value problem and, very often, nonlinearity also occurs. The
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Figure 2.3: Different types of final boundary condition: (a) Fixed final time and state;

(b) Free final time and fixed final state; (c) Fixed final time and free final state; (d)

Free final time and state [Naidu, 2003].

appearance of nonlinearity will be later seen in chapter 4 and often requires numerical

techniques for its solution, which are discussed in section 6.

2.3.2 Boundary Conditions

As mentioned in section 2.3.1, it is assumed that the initial conditions of the problem

are completely defined, that is, time and state are known a priori at the initial stage.

However, questions are still posed to the treatment of the final boundary conditions.

The optimal control problem involves the solution of the state (2.31), costate (2.32)

and control (2.33) equations, the n equations of the initial state, x(t0) = x0, and the

solution of the final boundary condition (2.36). It is now presented the different cases

of final condition that may arise in optimal control problems, as illustrated in Fig.2.3.
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The first type of problem studied is when both final time tf and final state x(tf )

are given. In this case, the variations δxf and δtf are zero. Then, the additional n

equations necessary for the solution of the problem come from the given values at the

final point,

x∗(tf ) = xf . (2.37)

Still assuming the final state to be fixed, it is considered that the final time is now free,

as illustrated in Fig.2.3b. Then, the variation δtf is zero and may be substituted in

(2.36). Moreover, since the variation δxf is arbitrary, the set of n equations required

are given by

(
H +

∂S

∂t

)
∗tf

= 0. (2.38)

Here, the notations of the equation were simplified and the terms ∗tf means that the

functionals are evaluated for the optimal values and at the final time.

Now, it is considered that the final time is specified and the state is free at the

final point, as shown in Fig.2.3c. In this case, it is the variation δxf that is zero and

substituted into (2.36). Then, the equations that needs to be satisfied are

λ∗(tf ) =

(
∂S

∂x

)
∗tf

. (2.39)

At last, the condition of free final time and free final state may also be found in op-

timal control problems. This condition was the motivation for the derivation of (2.36)

and, in this case, both variations δtf and δxf are arbitrary. Therefore, their coefficients

must be zero and it results that,

(
H +

∂S

∂t

)
∗tf

=

(
∂S

∂x
− λ

)
∗tf

= 0. (2.40)

Also, notice that if S = 0, that is, if the performance index contains only the integral

term, (2.40) becomes

H(x∗(tf ),u
∗(tf ),λ

∗(tf ), tf ) = λ∗(tf ) = 0. (2.41)
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The conditions for the free final time and free final state shown above consider the

case where the variables tf and x(tf ) are independent. Variations of this final boundary

conditions may be found, when the final state lies on a curve or a surface that changes

with the final time. Further discussion on the treatment of the boundary condition

necessary for the solution of the optimal control problem may be found in [Kirk, 1998]

and [Naidu, 2003].
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3 THE MICRO-SWIMMER PROBLEM

In an usual swimming mechanism, the swimmer obtains a forward movement by

performing cyclic movements and, because of inertia, the motion of the second half of

the period does not cancel the motion of the first half. This is the mechanism seen,

for example, when a human being swims in a swimming pool or when fish swim in the

ocean. However, in the microscopic world, such as, when observing the propagation

of a bacteria in a certain organic media or when dealing with micro-robots for nano-

medicine applications, the usual swimming mechanism is not valid anymore. In a micro-

swimmer motion, the inertia term is generally negligible if compared to the viscous

term. Therefore, it is a case of low Reynolds number and the motion is governed

by the Stokes equations. It was shown by Purcel that, at low Reynolds number, a

scallop with a single hinge cannot advance through a reciprocal opening and closing

motion, which is also known as the “scallop theorem” [Purcel, 1977]. Then, for a

micro-swimmer to propagate in a viscous media, it needs to perform a non-reciprocal

movement to break the time-reversal symmetry of the Stokes equations. Otherwise, all

the motion that the scallop obtains when opening the hinge will be recovered when the

scallop closes it at the end of each cycle, returning the scallop to its initial position.

The swimmer introduced by Najafi and Golestanian [Najafi and Golestanian, 2004]

is used in this work as a model problem. The simplest one-dimensional form of the

swimmer is presented in Fig.3.1, where all three spheres have equal radius a. The

swimmer motion is governed by the relative displacement x and y between spheres

1− 2 and 2− 3 and, consequently, the motion of its center of mass c.

Figure 3.1: Geometry of the thee-spheres micro-swimmer.
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In this chapter the motion equations of the three-spheres micro-swimmer is pre-

sented and the kinematics involved in the problem. It is also discussed the Oseen-

tensor approach of the motion that can be used when dealing with a low Reynolds flow

[Batchelor, 1975], due to the linearity of the Stokes equations. Furthermore, a descrip-

tion of a non-reciprocal stroke for the three-spheres swimmer is presented. Finally, a

motion analysis is performed to verify the methodology used and to check the existence

of a net displacement of the swimmer after one completed cycle.

3.1 EQUATIONS OF MOTION

3.1.1 Governing equations

To derive the equations of motion of the micro-swimmer problem, one should first

start discussing the general equations involved in the problem. From the fluid dynamic

theory, it is known that the governing equations of an arbitrary fluid motion are the

Navier-Stokes equations. For a viscous incompressible fluid, with density ρ, dynamic

viscosity µ and without the presence of body forces, the Navier-Stokes equations are

given by

ρ

(
∂vf

∂t
+ vf · ∇vf

)
= −∇p+ µ∇2vf (3.1)

∇ · vf = 0. (3.2)

Here, vf is the vector of the fluid velocities in the directions of the coordinate system

(in this work the fluid velocity vector is represented by vf to avoid confusion with the

control variables vector u used in chapter 2). Equation (3.1) is called the momentum

equation and expresses the balance between the forces and the rate of changes of the

linear momentum. The second Navier-Stokes equation, equation (3.2), is known as the

continuity equation and assures the flow to be volume preserving, in the case of an

incompressible flow.

The Navier-Stokes equations present a nonlinearity due to the inertial term on

the right hand side of (3.1). However, at a sufficiently low Reynolds number, dimen-

sionless number that measures the ratio between the inertial and viscous terms, the
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inertial term of the Navier-Stokes equations can be neglected. This defines the regime

of Stokes-flow, as it is the case of the micro-swimmer problem. Then, the fluid velocity

field vf is governed by the Stokes equations, which can be written as

µ∇2vf −∇p = 0 (3.3)

∇ · vf = 0, (3.4)

where µ is the dynamic viscosity of the fluid and p is the pressure field in the medium.

Without the inertial terms, the above governing equations have a linear behavior and

this allows an alternative approach to the micro-swimmer problem as it is discussed

next.

3.1.2 The Oseen-tensor formulation

It is assumed that each sphere moves in the fluid with a velocity vector vi, with i

being the index of each sphere. By solving the Stokes equations (3.3) and (3.4), the

fluid velocity is obtained and, hence, the corresponding stress tensor. Moreover, one

can retrieve the force vector fi acting on each sphere from the stress tensor. Since

the Stokes equations are linear and, therefore, the stress tensor and velocity field are

linearly related, the velocity vector can be written as a linear combination of the forces

acting on each sphere, such that,

vi =
3∑

j=1

Sij fj with i = 1, 2, 3 . (3.5)

The tensor Sij is symmetric and it is known as the Oseen tensor. It depends on the

viscosity, the geometry of the immersed bodies and their relative orientation. From

the hydrodynamic interaction of particles in a viscous media, the Oseen tensor, in its

general form, is defined by [Batchelor, 1975],

Sij =
1

6πµR

[
Aij(φ)

r⊗ r

r2
+Bij(φ)

(
I− r⊗ r

r2

)]
. (3.6)

Assuming that the distances between the spheres are sufficiently large, the compo-

nents Aij(φ) and Bij(φ) were presented in [Najafi and Golestanian, 2004] and may be
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given as

Aij =


1 +O(φ4), i = j

3

2
φij +O(φ3), i ̸= j

(3.7)

Bij =


1 +O(φ4), i = j

3

4
φij +O(φ3), i ̸= j

(3.8)

where φij = a/rij is a dimensionless quantity, with a being the radius of the spheres

and rij the norm of the vector rij = ri − rj, which is the distance between the ith and

j th spheres. For simplicity, only the translational motion is being considered because

the problem is one dimensional, although, the rotational motion can be taken into

account in a similar way.

Equations (3.6) to (3.8) define the relation between the velocities and forces of the

spheres for a general two or three dimensional problem. However, for the one dimen-

sional model problem studied, the terms Sij in (3.5) become scalar values. Gathering

the components Sij in the matrix S(x, y), also called the Oseen matrix, it is possible

to rewrite the linear system of equations of the the spheres as


v1

v2

v3

 = S(x, y)


f1

f2

f3

 . (3.9)

The Oseen matrix in (3.9) may be simplified as S(x, y) = S∞(x, y)+E(x, y), where

E(x, y) is the error associated to the power of φ. For the one dimensional case, it can

be shown that the only nonzero term in (3.6) is Aij. This occurs because the term Aij

relates the velocity to the forces parallel to the motion, while the term Bij relates the

velocity to perpendicular forces. Since the motion is one dimensional, there are only

forces normal to the motion, that is, acting on the horizontal axis of Fig.3.1. Hence,

the S∞(x, y) matrix with only the Aij term can be written as follows,

26



CHAPTER 3. THE MICRO-SWIMMER PROBLEM

S∞ =
1

πµ



1

6a

1

4x

1

4(x+ y)

1

4x

1

6a

1

4y

1

4(x+ y)

1

4y

1

6a


. (3.10)

Notice that for S∞(x, y) to be considered, it is assumed that the values φij are

sufficiently small, that is, the magnitude of the distances between the spheres are

sufficiently larger than their radius. If that is the case, the error associated to the

power of φ in (3.7) can be neglected. Alternative approximation for the Oseen tensor

may be found in [Rotne and Prager, 1969]. The Oseen matrix (3.10) together with

(3.9) define the hydrodynamic interaction between the spheres in a viscous media, as it

can be seen in [Batchelor, 1975] and [Najafi and Golestanian, 2004], and it will be used

throughout this work as the constitutive equation of the three-spheres micro-swimmer

problem.

3.1.3 Kinematics of the swimmer

By definition, a swimming mechanism must be capable of self-propulsion, that is,

it is capable of propagating in the fluid without the aid of external force and, hence,

the system is force-free. Therefore, the energy expended by the swimmer for the rel-

ative motion of the spheres is generated internally and, assuming that there are no

body forces such as gravity, the sum of forces acting on the spheres must be zero

[Alouges et al., 2008]:

f1 + f2 + f3 = 0 . (3.11)

Moreover, since all three spheres are identical, same radius and same mass, the center

of mass is the average of the positions x1, x2, x3 of spheres 1, 2 and 3, respectively.

Then, the velocity of the center of mass c of the swimmer is the average of the velocities

of the spheres and may be given as
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ċ =
dc

dt
= (v1 + v2 + v3)/3. (3.12)

By performing a simple geometric analysis of the three-spheres swimmer presented

in Fig.3.1, it is possible to establish that x = x2 − x1 and y = x3 − x2. Then, one

may write the velocities of the spheres 1 and 3 in terms of the velocity of sphere 2 and

the rate of change of the relative displacements ẋ and ẏ between spheres 1−2 and 2−3,

 v1 = v2 − ẋ

v3 = v2 + ẏ
(3.13)

The relation in (3.13) is important to reduce the number of state variables in the

system. Also, as it will be seen later, it gives the two remaining equations to find

the functions that relate the center of mass c with the rate of change of the relative

displacements ẋ and ẏ.

Due to the symmetry of the the Oseen matrix S(x, y) and because the system sat-

isfies (3.11), it can be shown that the center of mass c satisfies the following ODE

[Alouges et al., 2008]:

dc

dt
= Vx(x, y)

dx

dt
+ Vy(x, y)

dy

dt
, (3.14)

where the functions Vx(x, y) and Vy(x, y) can be computed from S(x, y) by solving

(3.11) to (3.13), together with the system of equations presented in (3.9). The ODE

in (3.14) is the governing equation of the micro-swimmer problem and by introducing

a certain history of the pair (x, y) in the equation, it is possible to obtain the net

displacement of the swimmer. The main difficulty comes from the functions Vx(x, y)

and Vy(x, y) that must be evaluated for each instant (x, y) and are extremely nonlinear.

For the one dimensional three-sphere swimmer, where the hydrodynamic interac-

tion of the spheres is driven by (3.10), it is possible to obtain the functions Vx(x, y)

and Vy(x, y) of the micro-swimmer by solving the following system of equations
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

v1 = v2 − ẋ

v3 = v2 + ẏ

ċ = (v1 + v2 + v3)/3

0 = f1 + f2 + f3
v1

v2

v3

 = 1
πµ


1
6a

1
x

1
4(x+y)

1
x

1
6a

1
y

1
4(x+y)

1
y

1
6a




f1

f2

f3


With the computational aid of the software Wolfram Mathematica and its symbolic

tool, the system above was solved in terms of the variables ċ, v1, v2, v3, f1, f2 and f3.

The functions Vx(x, y) and Vy(x, y) are defined as the coefficients multiplying ẋ and ẏ,

respectively, form the resulting function of ċ(x, y). Using the simplify function of the

program, the following equations for Vx(x, y) and Vy(x, y) were obtained

Vx(x, y) =
a
(
−2xy (x+ y)

(
2x2 − y2

)
+ a

(
6x4 + 6x3y − 3x2y2 − 3xy3 − 3y4

))
−12x2y2 (x+ y)

2
+ 12axy (x+ y) (x2 + 3xy + y2) + 9a2 (x4 − 2x3y − 5x2y2 − 2xy3 + y4)

(3.15)

and

Vy(x, y) =
a
(
−2xy (x+ y)

(
x2 − 2y2

)
+ 3a

(
x4 + x3y + x2y2 − 2xy3 − 2y4

))
−12x2y2 (x+ y)

2
+ 12axy (x+ y) (x2 + 3xy + y2) + 9a2 (x4 − 2x3y − 5x2y2 − 2xy3 + y4)

(3.16)

As it is seen, equations (A.1) and (3.16) are extremely nonlinear and it is important

to notice that the fluid viscosity µ disappears, making the functions dependent on the

geometry of the swimmer only, radius a and distances x and y. Using (A.1) and (3.16)

in (3.14), and introducing a certain history of the pair (x, y) it is possible to obtain the

velocity of the center of mass ċ for each instant (x, y). The velocities of each sphere

may also be obtained, by using the following relation

v =


v1

v2

v3

 =
1

3


3ċ− (2ẋ+ ẏ)

3ċ+ (ẋ− ẏ)

3ċ+ (ẋ+ 2ẏ)

 . (3.17)
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Figure 3.2: The four-stage non-reciprocal stroke of the three-sphere swimmer.

It is also possible to recover the displacement history of each sphere as well as

that of the center of mass by using numerical integration. It is expected that at the

end of each complete cycle the final position of sphere 2 coincides with the center of

mass. Hence, the net displacement obtained after each cycle may be measured by the

difference of final and initial positions of sphere 2 after the completion of the cycle.

3.2 VERIFICATION OF THE SWIMMER’S MOTION

To check the validity of the equations presented in section 3.1, the four-stage stroke

for the three-spheres swimmer is presented. A simple analysis is performed by in-

troducing the four-stage motion and the results will be checked with the available

literature.

3.2.1 The four-stage stroke

With the objective of breaking the time reversal property of the Stokes equations

(3.3) and (3.4), as mentioned previously, Najafi and Golestanian introduced a non-

reciprocal motion for the three-sphere swimmer [Najafi and Golestanian, 2004]. The

stroke is subdivided in four stages and allows the swimmer to obtain a net displacement

∆ at the end of each cycle. An illustration of the four-stage stroke is shown in Fig.3.2.

In the four-stage stroke, the rods of the swimmer have initial length D, that is,

30



CHAPTER 3. THE MICRO-SWIMMER PROBLEM

x0 = y0 = D. Moreover, it will be considered that the rate of change of the distance

between the spheres will be made with constant velocity w. The steps of the four-stage

motion are described below:

(I → II) In the first stage, the swimmer contracts the left arm of a length ϵ and,

due to the hydrodynamic interaction of the spheres, the swimmer moves a short

distance to the left.

(II → III) Then, the right arm is contracted by the same amount while the left arm

remains fixed with length D − ϵ. This stage will result in a movement of the

swimmer to the right.

(III → IV ) Next, the right arm is kept with fixed lengthD−ϵ and the left arm recover

its initial length D, which causes the swimmer to move to the right again.

(IV → I) Finally, the right arm also returns to its initial length and the swimmer

move a short distance back to the left.

Since the stages that produce a movement to the right direction are done with the

opposite arm contacted, the hydrodynamic interaction are higher and a final displace-

ment ∆ to the right is obtained at the end of the cycle. This stroke successfully breaks

the time reversal symmetry and it was used by different authors to analyze the micro-

swimmer problem. The four-stage stroke will serve as a reference for the following

analysis and its efficiency will later be discussed. The four-stage stroke will also be

referred as the NG-stroke, in reference to its authors.

3.2.2 Numerical results of the motion analysis.

To solve the motion of the swimmer a simple code was written in Matlab, imple-

menting the ODE in (3.14). The trapezoidal rule was used as the numerical integration

to obtain the displacement of the spheres, once calculated their velocities. It was cho-

sen a radius a = 0.05 mm and an initial distance D = 0.5 mm between the spheres,

resulting in a ratio a/D = 0.1. A history of the relative displacements (x, y), obey-

ing the four-stages stroke, was introduced with 32 integration points, 8 points in each

stage. The total time of the stroke was imposed as T = 1 s and the velocity w of the
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Figure 3.3: Dimensionless displacement of the swimmer obtained in a complete cycle

as a function of the dimensionless relative displacement of the spheres.
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Figure 3.4: (a) Displacement and (b) Velocity of the spheres during one complete

four-stage stroke, using 32 time steps.

relative motion can be obtained by w = 4ϵ/T , being the relative displacement ϵ the

entry value of the numerical solution.

To evaluate the methodology and equations presented in this chapter, a mapping

of the net displacement ∆ with respect to different relative displacements ϵ was per-

formed. The evolution of the dimensionless net displacement ∆/a with respect to the

dimensionless relative displacement ϵ/a was compared with the values presented in
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[Najafi and Golestanian, 2004]. The results can be found in Fig.3.3.

The velocity and displacement history of all three spheres during the complete

four-stage stroke, for ϵ = 0.2 mm, are presented in Fig.3.4a and 3.4b, respectively.

The results presented in this section demonstrate that the methodology and motion

equations used in the analysis of the swimmer is coherent with the model proposed by

Najafi and Golestanian, 2004. Furthermore, the error associated with the numerical

integration seems not to play an important role in this analysis, since an accurate result

was obtained with small number of time steps. Once the validation of the equation

used in the analysis tool of the swimmer’s motion is done, it is possible to implement

the optimal control theory in the problem, as it is shown in the following chapters.
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4 SWIMMER AS AN OPTIMAL CONTROL

PROBLEM

As presented in chapter 2, the optimal control problem is to define the control

variables that solve a system of equations, while minimizing a certain functional called

the performance index. In this chapter, the equations of motion of the micro-swimmer

problem are rewritten using the optimal control formalism, that is, they are written in

terms of the state and control variables. It is also chosen a performance index for the

problem that minimizes the energy consumed during one cycle. Special care is given

to define the performance index, writing it in terms of the control variables and in

agreement with the formalism adopted.

4.1 OPTIMAL CONTROL FORMULATION

4.1.1 State variable representation of the micro-swimmer problem

It was established in section 3.1.3 that the motion of the center of mass c of the

swimmer after each stroke is given by (3.14). To relate the micro-swimmer problem

with the optimal control problem of chapter 2, it will be defined the velocities ẋ and ẏ

of the relative motion of the spheres as the system’s controls u1 and u2, respectively.

Furthermore, using the same technique used to transform a higher order differential

equation into a system of first order ODEs, it can be done a variable substitution to

drop out the time derivatives from (3.14). Then, the governing system of equations in

the optimal control formalism may be defined as



dx

dt
= u1,

dy

dt
= u2,

dc

dt
= u1Vx(x, y) + u2Vy(x, y).

(4.1)

By using this methodology, the state variables of the problem are the distances x and

y between the spheres and the center of mass c of the swimmer. For a more elegant

formulation, it is also convenient to use a matricial formulation of the system, which

can be written as
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ẋ = F(x, y) u (4.2)

where

ẋ =


ẋ

ẏ

ċ

 , u =

 u1

u2

 (4.3)

and

F(x, y) =


1

0

Vx

0

1

Vy

 . (4.4)

The vector ẋ is the time derivative of the position, or state, vector x = [x, y, c]T and

u is the control vector that contains the relative velocities of the spheres. The matrix

F(x, y) measures the response of the system’s velocity with respect to its controls. In

(4.4), the variables Vx and Vy are understood to be Vx(x, y) and Vy(x, y), respectively,

but the short notation will be used henceforth for simplicity. Moreover, notice that

(4.2) is equivalent to the nonlinear form of (2.1) and, hence, a similar procedure for

the optimal control solution, based on the variational approach, will be applied.

4.1.2 Performance index for minimal energy

The energy spent by the swimmer to complete a certain movement can be obtained

by the integral of the forces acting on each sphere and their respective velocity fields.

However, using (3.9), the energy can be rewritten in terms of the velocity vector v and

the Oseen matrix S(x, y),

E =

tf∫
t0

f · v dt =

tf∫
t0

vT · S−1(x, y)v dt. (4.5)

Notice that the velocity vector v is the vector containing the velocities of each sphere,

and it is not equivalent to the time derivative of the state variables vector ẋ of (4.3).
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It is convenient to rewrite the energy equation (4.5) using the optimal control for-

malism. For that, one must first write the vector of velocities v defined in (3.17) in

terms of the time derivatives of the state variables ẋ,

v =
1

3


3ċ− (2ẋ+ ẏ)

3ċ+ (ẋ− ẏ)

3ċ+ (ẋ+ 2ẏ)

 =
1

3


−2 −1 3

1 −1 3

1 2 3


︸ ︷︷ ︸

A


ẋ

ẏ

ċ

︸ ︷︷ ︸
ẋ

. (4.6)

Furthermore, substituting (4.2) into (4.6), the velocities of the spheres v in terms of

the control vector u are obtained, such that,

v = A ẋ = A (F(x, y) u) = B(x, y) u , (4.7)

where the tensor B(x, y) is defined as,

B(x, y) =
1

3


(3Vx − 2)

(3Vx + 1)

(3Vx + 1)

(3Vy − 1)

(3Vy − 1)

(3Vy + 2)

 . (4.8)

Finally, substituting (4.7) and (4.8) into (4.5), the equation of the energy consumed

in the system becomes

E =

tf∫
t0

vT · S−1(x, y)v dt

=

tf∫
t0

(B(x, y)u)T S−1(x, y) B(x, y)u dt

=

tf∫
t0

uT BT (x, y) S−1(x, y) B(x, y)︸ ︷︷ ︸
P(x,y)

u dt .

If the energy waste functional is chosen to be minimized in the optimal control

problem, the performance index of the problem may be defined as
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J =

tf∫
t0

uTP(x, y)u dt. (4.9)

Notice that the performance index (4.9) is written in terms of the control variables

and it is equivalent to the functional presented in (2.5). Therefore, the micro-swimmer

problem can be defined as a minimum-energy control problem with a Lagrange type

performance index. Now that the swimmer is formulated as an optimal control problem,

the variational approach discussed in section 2.3 can be used to solve the problem, as

it is presented next.

4.2 VARIATIONAL APPROACH TO THE MICRO-SWIMMER OPTI-

MAL CONTROL PROBLEM

4.2.1 Hamiltonian formulation: Matrix form

It is convenient to introduce a general approach to the optimal control micro-

swimmer problem. In this section the tensorial form of the optimal control equations

are presented. This results in a more elegant form of the equations and a more general

representation as well, that is, that can be applied to different variations of the micro-

swimmer problem. First, the Hamiltonian function is defined by using (4.2) and (4.9),

such that,

H(x,u,λ) = uT P(x, y)u + λT [F(x, y)u] , (4.10)

where λ is the vector containing the Lagrange multipliers, or costate variables. The

necessary conditions for the optimal control problem were defined in chapter 2 and

are given by the derivatives of the Hamiltonian with respect to the control, state and

costate variables. Assuming the existence of an optimal control vector u∗ and optimal

state vector x∗ that minimize the performance index (4.9), the state and costate equa-

tions of the optimal control micro-swimmer problem are given by

∂H
∂λ

= ẋ ⇒ ẋ∗ = F(x, y) u∗ (4.11)
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and

∂H
∂x

= −λ̇ ⇒ λ̇+ u∗T ∂P(x, y)

∂x
u∗ + λT ∂F(x, y)

∂x
u∗ , (4.12)

respectively. Each of the equations above consists of a set of n equations, where n is

the number of state variables in the system and, hence, the number of costate vari-

ables as well. In the costate equations (4.12) the derivatives of the tensors P(x, y) and

F(x, y) are also known as the gradient of P(x, y) and F(x, y). The gradients of the

second order tensors result in third order tensors and are written in indicial notation as

∂P(x, y)

∂x
= grad P(x, y) = Pij,k i, j = 1, 2 ; k = 1, 2, 3 ,

∂F(x, y)

∂x
= grad F(x, y) = Fmn,k m, k = 1, 2, 3 ; n = 1, 2 .

The last necessary equations for the solution of the optimal control problem are

the control equations, which give the minimization of the Hamiltonian. The control

equations are given by the derivatives of the Hamiltonian with respect to the control

variables, such that,

∂H
∂u

= 0 ⇒ P(x, y)u ∗+λTF(x, y) = 0 , (4.13)

and result in a set of m equations, with m being the number of control variables in

the system. Equations (4.11) to (4.13) satisfy the necessary conditions for finding the

optimal solution of the problem and result in a system of 2n+m equations.

4.2.2 Hamiltonian formulation: Direct solution

The performance index presented in (4.9) presents a multiplication between the

tensor P(x, y) and the control vector u. Notice that u is a vector of dimensions 2× 1

and P(x, y) is a 2× 2 tensor. The result of the inner product inside the integral gives

a scalar function dependent on x, y and the controls u1 and u2. Expanding the term

inside the integral and renaming it as a function j(x, y, u1, u2), the performance index

may be rewritten as
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J =

tf∫
t0

j(x, y, u1, u2) dt. (4.14)

To proceed with the analysis, it is important to look inside the function j(x, y, u1, u2),

since later it will be needed to derive j(x, y, u1, u2) in terms of the control and state

variables. The term j(x, y, u1, u2) can be defined as

j(x, y, u1, u2) =
1

9πµ

{
u2
1j1(x, y) + u2

2j2(x, y) + u1u2j3(x, y)
}
, (4.15)

with j1(x, y), j2(x, y) and j3(x, y) being the terms of the tensor P(x, y), such that,

j1 = P(1, 1), j2 = P(2, 2) and j3 = P(1, 2)+P(2, 1). The functions of j1, j1 and j3 are

defined in the appendix A, as well as their required derivatives.

Next, with the function j(x, y, u1, u2) being defined, it is possible to obtain the

Hamiltonian functional of the problem. The Hamiltonian is obtained by applying the

Lagrange multipliers λ1, λ2 and λ3 to each term of the right hand side of the system

(4.1) and adding them to the term inside the integral of the performance index (A.2),

such that,

H = j(x, y, u1, u2) + λ1u1 + λ2u2 + λ3 (u1Vx + u2Vy) . (4.16)

Next, the state, costate and control equations defined in (2.31), (2.32) and (2.33),

respectively, are applied. Then, taking the derivatives of the Hamiltonian with respect

to the variables x, y, c, λ1, λ2, λ3, u1 and u2, it is possible to obtain the eight necessary

equations for the solution of the micro-swimmer optimal control problem, which are

given as follows,

1 :
∂H
∂x

= −λ̇1 ⇒ λ̇1 +
∂j

∂x
+ λ3

(
u1

∂Vx

∂x
+ u2

∂Vy

∂x

)
= 0

2 :
∂H
∂y

= −λ̇2 ⇒ λ̇2 +
∂j

∂y
+ λ3

(
u1

∂Vx

∂y
+ u2

∂Vy

∂y

)
= 0

3 :
∂H
∂c

= −λ̇3 ⇒ λ̇3 = 0
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4 :
∂H
∂λ1

= ẋ ⇒ ẋ− u1 = 0

5 :
∂H
∂λ2

= ẏ ⇒ ẏ − u2 = 0

6 :
∂H
∂λ3

= ċ ⇒ ċ− (u1Vx + u2Vy) = 0

7 :
∂H
∂u1

=
1

9πµ
(2u1j1 + u2j3) + λ1 + λ3Vx = 0

8 :
∂H
∂u2

=
1

9πµ
(2u2j2 + u1j3) + λ2 + λ3Vy = 0

Since there are also only eight unknown variables, the equations above are sufficient to

obtain the solution of the optimal controls u1 and u2. Consequently, the optimal path,

that is, the values of x, y and c, can also be obtained. The eight equations presented

are the ones that will be use in the numerical analysis of the problem.

Both approaches presented for the formulation of the optimal control equations are

equivalent and may be used next to solve the micro-swimmer problem. As it is seen,

the problem results in solving a set of differential equations and it will require the use

of numerical to obtain the solution. Also, because of the high nonlinearity of some

of the equations, it is necessary to use the Newton-Raphson method in the analysis.

The numerical techniques and procedure used in this work to solve the optimal control

problem are presented in the following chapter, as well as the results obtained in the

numerical analysis.
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The optimal control equations are the control, state and costate equations that

results in a system of differential equations, with the number of equations dependent

on the number of state and control variables. The first step in the approach adopted

for the solution of the problem is to discretize the problem in time. Therefore, the

time derivatives that appear in the optimal control equations can be handled by the

use of a numerical integration method, such as, the generalized midpoint rule. After

the discretization in time, the problem is solved by using a monolithic approach, that

is, all the equations will be solved simultaneously. Hence, the optimal controls and the

optimal path, given by the state variables, are obtained for the entire time interval at

once. This simultaneous solution approach is particulary well suited, since the optimal

control problem is a two-point boundary value problem. However, recent works have

presented alternative solutions, such as, for example, the Receding Horizon Approach

described in [Primbs, 1999] and [Primbs et al., 1999].

In this chapter the numerical procedure adopted in the solution of the optimal con-

trol equations is described. The time discretization and the monolithic approach used

in the solution of the problem are presented. Examples with a known exact analytical

solution are also solved numerically to verify the procedure. Moreover, the Newton-

Raphson method is implemented in the procedure to deal with nonlinear problems,

such as the micro-swimmer problem, and a nonlinear problem is solved and compared

with the results found in the literature. The computational strategy described in this

chapter is then used to solve the micro-swimmer problem, as shown in chapter 6.

5.1 DISCRETIZATION OF THE TIME DOMAIN

The generalized midpoint rule is used to discretize the variables of the optimal

control problem in time. Notice that the final time might be known or unknown, de-

pending on the boundary conditions of the problem. If the final time is unknown,

it will result in an open time domain and the inclusion of the additional boundary

condition equations in (2.36). If the final time is known, the problem presents a fixed

number of time steps and a fixed time increment ∆t. First, the system of equations
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Figure 5.1: Discretization of the time domain.

that results from the variational approach will be rewritten, as seen in chapter 2. The

system containing the state, costate and control equations is given by



ẋ∗(t)− ∂H
∂λ

(x∗(t),u∗(t), λ∗(t), t) = 0,

λ̇
∗
(t) +

∂H
∂x

(x∗(t),u∗(t), λ∗(t), t) = 0,

∂H
∂u

(x∗(t),u∗(t), λ∗(t), t) = 0,

(5.1)

where the Hamiltonian is defined in (2.26). The vector x = [x1, x2, ..., xn]
T contains

the n state variables, λ = [λ1, λ2, ..., λn]
T the costate and u = [u1, u2, ...um]

T the m

controls of the system. The system (5.1) is a two-point boundary value problem and

needs an initial and a final condition to be solved.

The time domain can be discretized in subintervals as represented in Fig.5.1. Using

the generalized midpoint rule for the numerical integration, the states, costates and

controls are evaluated at a time instant tk+θ, with tk ≤ tk+θ ≤ tk+1 and tk+1− tk = ∆t.

Then, the variables may be rewritten as


xk+θ = θxk+1 + (1− θ)xk,

λk+θ = θλk+1 + (1− θ)λk,

uk+θ = θuk+1 + (1− θ)uk,

(5.2)

where x has n state variables and u m control inputs. Moreover, the value of θ may

be chosen, such that, θ = 1 results in the implicit backward Euler scheme, θ = 0 in the

explicit forward Euler scheme and θ = 1/2 gives the trapezoidal rule of integration.

The time derivatives of the vectors x and λ, which appear in the system of differen-

tial equations (5.1), may be replaced by the following general derivative approximation,
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
dx

dt

∣∣∣∣
k+θ

=
xk+1 − xk

∆t
,

dλ

dt

∣∣∣∣
k+θ

=
λk+1 − λk

∆t
.

(5.3)

Again, the discretized derivatives presented above are evaluated at a time instant tk+θ.

The time step increment ∆t depends on the number of integration points and on the

size of the time interval. The choice of an appropriate time step increment is of great

importance for the solution of the problem, especially when dealing with nonlinear

problems. The time discretization will increase the number of equations in the system

by N +1 equations times the size of the original system, 2n+m equations, where N is

the number of time steps. In the monolithic solution of the problem, the equations of

each time step will be assembled in one single matrix and solved simultaneously. Next,

the procedure used to solve the system of equations will be discussed, once the system

is discretized.

5.2 MONOLITHIC APPROACH TO LINEAR PROBLEMS

Since the variational approach to the optimal control problem results in a two-

point boundary value problem, the trivial approach is not to use an iterative solution

method, but to solve the equations using a monolithic scheme. When solving all the

equations of the problem simultaneously, the main questions arise in the assembly of

the equations of the system and the inclusion the boundary conditions in the solution.

The assembly and the treatment of the boundary conditions will be made in analogy

with the implicit finite differences schemes and are discussed next.

5.2.1 Matrix assembly

Consider a problem with two state variables and one control variable, that is, n = 2

and m = 1, resulting in a total of 5 optimal control equations (neq = 2n +m). Eval-

uating the variables at tk+θ and using (5.2) and (5.3), it is noticed that for one time

step, the discretization depends only on the value of the variables in two time instants,

tk and tk+1. The controls uj, however, are calculated at the time instants tk+θ and not

at tk and tk+1, resulting in only one control per time step. For a discretization with

only two time steps, N = 2, the assembly of the matrix C containing the coefficients

43



CHAPTER 5. NUMERICAL PROCEDURE

of each variable can be represented as follows,

C =



c1
(0)
x1 c1

(0)
x2 c1

(0)
λ1 c1

(0)
λ2 c1

(0+θ)
u1 c1

(1)
x1 c1

(1)
x2 c1

(1)
λ1 c1

(1)
λ2 0 0 0 0 0

c2
(0)
x1 c2

(0)
x2 c2

(0)
λ1 c2

(0)
λ2 c2

(0+θ)
u1 c2

(1)
x1 c2

(1)
x2 c2

(1)
λ1 c2

(1)
λ2 0 0 0 0 0

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

c5
(0)
x1 c5

(0)
x2 c5

(0)
λ1 c5

(0)
λ2 c5

(0+θ)
u1 c5

(1)
x1 c5

(1)
x2 c5

(1)
λ1 c5

(1)
λ2 0 0 0 0 0

0 0 0 0 0 c1
(1)
x1 c1

(1)
x2 c1

(1)
λ1 c1

(1)
λ2 c1

(1+θ)
u1 c1

(2)
x1 c1

(2)
x2 c1

(2)
λ1 c1

(2)
λ2

0 0 0 0 0 c2
(1)
x1 c2

(1)
x2 c2

(1)
λ1 c2

(1)
λ2 c2

(1+θ)
u1 c2

(2)
x1 c2

(2)
x2 c2

(2)
λ1 c2

(2)
λ2

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

0 0 0 0 0 c5
(1)
x1 c5

(1)
x2 c5

(1)
λ1 c5

(1)
λ2 c5

(1+θ)
u1 c5

(2)
x1 c5

(2)
x2 c5

(2)
λ1 c5

(2)
λ2


(5.4)

where c1
(0)
x1 is the coefficient of the state variable x1 in the first equation at the time

instant t0, c2
(1)
x2 the coefficient of x2 in the second equation at the time instant t1 and

so on. Notice that, for most problems, each equation does not depend on all variables,

so it is expected many of the coefficients in the matrix C to be zero. Furthermore,

due to the derivative approximation, the coefficient matrix also depends on the time

step interval ∆t. The blocks of coefficients in (5.4) separate the equations of each time

step and it can be seen that the controls only appear at the center of the time step.

Moreover, the coefficient matrix multiplies the vector of variables

X =
[

x
(0)
1 x

(0)
2 λ

(0)
1 λ

(0)
2 u

(0+θ)
1 x

(1)
1 x

(1)
2 λ

(1)
1 λ

(1)
2 u

(1+θ)
1 x

(2)
1 x

(2)
2 λ

(2)
1 λ

(2)
2

]T
,

(5.5)

such that, CX = 0. The matrix C has dimensions 10× 14 and the vector X contains

14 variables. It is clear that the problem requires four boundary conditions, two initial

and two final conditions. The nature of the conditions, however, depends on each

problem. For example, if the final state is known, x
(2)
1 and x

(2)
2 are prescribed, and if

the state is unknown at the end of the time interval, λ
(2)
1 and λ

(2)
2 are defined according

to (2.39). For a general case, it can be shown that the coefficient matrix has N × neq

lines and [(N +1)× neq − 1] columns. Which implies that 2n boundary conditions are

required, that is, the states x(0) are known at the origin and either x(N+1) or λ(N+1)

are known at the final time instant.
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5.2.2 Boundary conditions

As it is done in most finite differences schemes, the boundary condition results in

the elimination of the respective known terms in the coefficient matrix C and in the

vector of variables X. The terms of the known variables are, then, sent to the right

hand side of the equilibrium equation, that is, in the residual vector R. However, the

treatment of the boundary condition presented here differs from the standard boundary

condition procedure seen in the one dimensional finite element method or in implicit

finite difference schemes, mainly due to the non-squared shape of the coefficient matrix.

Consider that the initial and final state are known and the boundary conditions

are given by x0 = [x
(0)
1 , x

(0)
2 , ..., x

(0)
neq ] and xf = [x

(N+1)
1 , x

(N+1)
2 , ..., x

(N+1)
neq ], respectively.

Then, the columns corresponding to the known variables can be suppressed and C will

become a squared matrix. The coefficients of the columns suppressed, together with

the values of the boundary conditions vectors, will be sent to the right hand side of

the equation. If Cx0 and Cxf are the columns of the known initial and final variables

that were suppressed, the residual vector may be obtained as

R = −Cx0 · x0 −Cxf · xf , (5.6)

where Cx0 and Cxf are matrices of dimensions n × NL, where NL = (neq × numdt)

is the number of lines in the C matrix. The inner product of those matrices with the

boundary condition vectors x0 and xf , result in vectors with NL variables. In the case

with only two time steps, (5.4) is reduced to 10 columns and the optimal control system

becomes



c1
(0)
λ1 c1

(0)
λ2 c1

(0+θ)
u1 c1

(1)
x1 c1

(1)
x2 c1

(1)
λ1 c1

(1)
λ2 0 0 0

c2
(0)
λ1 c2

(0)
λ2 c2

(0+θ)
u1 c2

(1)
x1 c2

(1)
x2 c2

(1)
λ1 c2

(1)
λ2 0 0 0

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

c5
(0)
λ1 c5

(0)
λ2 c5

(0+θ)
u1 c5

(1)
x1 c5

(1)
x2 c5

(1)
λ1 c5

(1)
λ2 0 0 0

0 0 0 : cc1
(1)
x1 c1

(1)
x2 c1

(1)
λ1 c1

(1)
λ2 c1

(1+θ)
u1 c1

(2)
λ1 c1

(2)
λ2

0 0 0 c2
(1)
x1 c2

(1)
x2 c2

(1)
λ1 c2

(1)
λ2 c2

(1+θ)
u1 c2

(2)
λ1 c2

(2)
λ2

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

0 0 0 c5
(1)
x1 c5

(1)
x2 c5

(1)
λ1 c5

(1)
λ2 c5

(1+θ)
u1 c5

(2)
λ1 c5

(2)
λ2





λ
(0)
1

λ
(0)
2

u
(0)
1

x
(1)
1

x
(1)
2

λ
(1)
1

λ
(1)
2

u
(1)
1

λ
(2)
1

λ
(2)
2


=



r1

r2

r3

r4

r5

r6

r7

r8

r9

r10


(5.7)

The variables r1, r2, ..., r10 are the components of R defined in (5.6). If the vector R
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is non zero the system has a nontrivial solution, which gives the optimal values of

the state, costate and control variables. In the next section some examples of linear

problems that have analytical solutions are solved. The numerical solutions obtained

with the approach presented here will be compared with the exact solution of the

problems to validate the methodology used.

5.2.3 Verification of the linear monolithic approach

5.2.3.1 Example with fixed initial and final state

Consider the problem of solving the second order differential equation ẍ = u. Using

the state variable representation, the equation can be rewritten with two state variables

and one control, given by the following system of equations,


ẋ1(t) = x2(t),

ẋ2(t) = u(t).

(5.8)

Moreover, the performance index of the problem is given by

J =
1

2

tf∫
t0

u2(t) dt, (5.9)

with the following fixed state boundary conditions,

x(0) = [1 2]T ; x(2) = [1 0]T . (5.10)

Hence, the Hamiltonian of the problem can be written as,

H =
1

2
u2 + λ1x2 + λ2u. (5.11)

The system has two state variables and one control, so it is expected five optimal

control equations. The optimal control equations can be obtained by substituting the

Hamiltonian in the state, costate and control equations presented in (5.1). Applying

the time discretization (5.2) and (5.3) to the optimal control equations, the following

discrete equations are obtained
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0 = λk+1
1 − λk

1

0 = λk+1
2 − λk

2 + [θλk+1
1 + (1− θ)λk

1]∆t

0 = xk+1
1 − xk

1 − [θxk+1
2 + (1− θ)xk

2]∆t

0 = xk+1
2 − xk

2 − uk+θ∆t

0 = uk+θ + [θλk+1
2 + (1− θ)λk

2]

(5.12)

With the discrete equations above, it is possible to assemble the coefficient matrix

and solve the problem by applying the boundary conditions as described previously.

This example problem also has an exact analytical solution and its derivation is found

in [Naidu, 2003]. The exact solution of the state and control variables are given by,

x∗
1(t) = 0.5t3 − 2t2 + 2t+ 1,

x∗
2(t) = 1.5t2 − 4t+ 2,

u∗(t) = 3t− 4.

The exact solutions are shown in Fig.5.2, together with numerical results obtained by

using the monolithic approach. It is seen that the numerical result matches well with

the analytical solution of the problem. Due to the simplicity of this first example, the

solution of a more elaborated problem is required to completely validate the monolithic

approach for linear problems, as it is shown next.

5.2.3.2 Example with fixed initial and free final state

It will be considered the same second order differential equation solved in the previ-

ous section, ẍ = u, with the state variable representation as written in (5.8). However,

a more complex performance index is used, which involves the integral terms, as well

as the terminal cost terms. The performance index of the problem is given by

J =
1

2
[x1(2)− 4]2 +

1

2
[xx(2)− 2]2 +

1

2

tf∫
t0

u2(t) dt, (5.13)

with the following boundary conditions,

x(0) = [1 2]T ; x(2) = free. (5.14)
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Figure 5.2: Numerical and analytical solution for the fixed initial and final state prob-

lem, using backward Euler (θ = 1) and N = 10.

Although the performance index is different than the one in the previous example, the

integral term is the same and, hence, the Hamiltonian of the problems is given by

H =
1

2
u2 + λ1x2 + λ2u. (5.15)

Since the Hamiltonian above is the same as in (5.11) the discrete equations of the

optimal control system will also be the same equations shown in (5.23). The main

difference of this example problem is at the final boundary condition. Looking at the

general performance index in (2.8), it can be defined the function S of the performance

index as,

S =
1

2
[x1(2)− 4]2 +

1

2
[xx(2)− 2]2 . (5.16)

Furthermore, since the final state is free, the costate variables are defined according to

(2.39) and result in,
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λ∗
1(2) =

∂S

∂x1

= x1(2)− 4,

λ∗
2(2) =

∂S

∂x2

= x2(2)− 2.

With the costate defined at the final boundary conditions, the system of equation

can be assembled in the matrix form in a similar way. At the final time step, the

costate and the respective columns of coefficients are suppressed and added to the

residual vector. The analytical solution of the problem is also found in [Naidu, 2003]

and are given as follows,

x∗
1(t) =

1

14
t3 − 2

7
t2 + 2t+ 1,

x∗
2(t) =

3

14
t2 − 4

7
t+ 2,

u∗(t) =
3

7
t− 4

7
.

The comparison between the numerical results obtained and the analytical results

is shown in Fig.5.3. Once again, the numerical results match with the exact solution,

even for a small number of time steps. Therefore, the monolithic approach for linear

problems is considered to be appropriate. In the following section it is introduced

the monolithic approach to nonlinear problems, which will later be used in the micro-

swimmer problem.

5.3 MONOLITHIC APPROACH TO NONLINEAR PROBLEMS

A different solution method will have to be presented for the solution of nonlinear

problems. The approach used in section 5.2 would result in a nonlinear coefficient ma-

trix C and it would not be straight forward to invert the matrix and obtain the solution

of the vector of variables X. Therefore, the Newton-Raphson method is used together

with the monolithic approach to deal with the nonlinearity. The Newton-Raphson

method requires the creation of the Jacobian matrix and a different construction of

the residual vector. The description of the Newton-Raphson procedure is found in the

appendices and the validation of the nonlinear monolithic approach is presented later

in this section.
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Figure 5.3: Numerical and analytical solution for the fixed initial and free final state

problem, using trapezoidal rule (θ = 1/2) and N = 10.

5.3.1 Newton-Raphson procedure and the monolithic approach

The Newton-Raphson method is the most famous iterative method for obtaining

the root of a function or the solution of a system of nonlinear equations. Geometrically

speaking, the method approximates the function f(x) by a linear function tangent to

f at the iteration point (xi) and, through an iterative process, the method obtains a

quadratic convergence towards the root of the function, or the solution in the case of

a nonlinear system of equations, see appendix B.

In the solution of a system of equations, the Newton-Raphson method approximates

the equations by the first-order Taylor’s series expansion. The solution is obtained by

solving the following equations at each iteration,

J(xk)∆xk+1 = −R,

xi+1 = xi +∆xk+1,
(5.17)

where R is the residual vector and J is the Jacobian matrix. The residual vector

in the nonlinear case can be given by the discrete optimal control equations, that is,

combining (5.1) with (5.2) and (5.3). The assembly of the residual vector is done by

50



CHAPTER 5. NUMERICAL PROCEDURE

simply allocating the neq discrete optimal control equations in the residual vector at

each time step, resulting in a vector R with NL lines, where NL = neq × N , that is,

number of optimal control equations equations times number of time steps.

The Jacobian J is the derivative of the discrete equations with respect to each one

of the variables of the system. Being X the vector that contains all variables, as it is

given in (5.5) for a problem with n = 2, m = 1 and N = 2, the Jacobian matrix may

be represented by

J =
∂R

∂X
=



∂R1

∂X1

∂R1

∂X2

· · · ∂R1

∂XM

∂R2

∂X1

∂R2

∂X2

· · · ∂R2

∂XM

...
...

. . .
...

∂RN

∂X1

∂RN

∂X2

· · · ∂RN

∂XM


(5.18)

The number of discrete variables in the vector X is given by NC = [(N + 1)× neq − 1]

and, therefore, the Jacobian matrix J has dimensionsNL×NC . To obtain the increment

∆xk+1 in (5.17) the Jacobian needs to be invertible and, hence, a squared matrix. To

transform the Jacobian in a squared matrix, it can be noticed that the number of

columns of the matrix needs to be reduced by 2n. This reduction derives from the

boundary conditions.

5.3.2 Boundary conditions in the nonlinear approach

In the nonlinear monolithic methodology the inclusion of the boundary conditions is

straightforward. The first step is to suppress in the Jacobian the columns corresponding

to the known variables. Differently from the linear approach, it will not be necessary to

send the deleted columns to the right-hand side of the system of equations. The known

variable are already been taken into account in the residual and the only caution that

needs to be taken is not to update the boundary values in (5.17) during the iterative

process. The algorithm of the nonlinear monolithic approach is given in table 5.1.

5.3.3 Verification of the nonlinear monolithic approach

The validation of the nonlinear problem will be made by solving two example prob-

lems. The first is a linear problem similar to the ones solved in section 5.2.3, but with
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Define the initial (x0, y0, 0) and final conditions (x0, y0,∆c)

Define the number of time steps N

Start with an initial guess: X = X0

While |R(Xk)| > tol and k < N

Loop over the time steps

- Compute and assemble the Residual vector R(Xk)

- Compute and assemble the Jacobian matrix J(Xk)

End

- Apply boundary conditions according to section 5.3.2

- Obtain ∆Xk+1 from J(Xk)∆Xk+1 = −R(Xk)

- Update the variables: Xi+1 = Xi +∆Xk+1

End

Table 5.1: Algorithm of the monolithic approach with the Newton-Raphson method.

different boundary condition. The linear problem is expected to have convergence in

one time step and it will be solved to be compared with its exact analytical solution.

The second problem is a nonlinear problem presented in [Primbs et al., 1999] and it

will be compared with the results obtained by the authors.

5.3.3.1 Linear example problem with one fixed and one free final state

As the previous examples, the problem consists of solving the equation ẍ = u which

can be written in a state variable representation as


ẋ1(t) = x2(t),

ẋ2(t) = u(t).

(5.19)

The performance index of the problem is also by

J =
1

2

tf∫
t0

u2(t) dt, (5.20)

but with boundary conditions defined as,

x(0) = [1 2]T ; x1(2) = 0; x2(2) = free. (5.21)
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Then, the Hamiltonian is also given by

H =
1

2
u2 + λ1x2 + λ2u. (5.22)

Hence, using the midpoint rule integration, it is possible to obtain the discrete op-

timal control equations. The assembly of the residual vector may be written as

R(k + 1) = 0 = λk+1
1 − λk

1,

R(k + 2) = 0 = λk+1
2 − λk

2 + [θλk+1
1 + (1− θ)λk

1]∆t,

R(k + 3) = 0 = xk+1
1 − xk

1 − [θxk+1
2 + (1− θ)xk

2]∆t,

R(k + 4) = 0 = xk+1
2 − xk

2 − uk+θ∆t,

R(k + 5) = 0 = uk+θ + [θλk+1
2 + (1− θ)λk

2],

(5.23)

with k varying from 0 to N , number of time steps. Moreover, the Jacobian can be

obtained by taking the derivatives of the above discrete equations with respect to each

of the variables. For one time step, the Jacobian Jk+θ is given as

Jk+θ =



0 0 −1 0 0 0 0 1 0

0 0 (1− θ)∆t −1 0 0 0 θ∆t 1

−1 (1− θ)∆t 0 −1 0 1 θ∆t 0 0

0 −1 0 0 −∆t 0 1 0 0

0 (1− θ) 0 0 1 0 θ 0 0


. (5.24)

After the appropriate assembly of the Jacobian matrix and according to the bound-

ary condition of the problem, the columns corresponding to the derivatives with respect

to x
(0)
1 , x

(0)
1 , x

(N+1)
1 and λ

(N+1)
1 should be suppressed, since those variables are known

at the boundaries.

The analytical solution of the problem is presented in [Naidu, 2003] and it is shown

in Fig.5.4a, together with the numerical solution obtained. It is seen that both solutions

are in agreement. Moreover, the convergence of the norm of the residual vector is

presented in Fig.5.4b and, as expected for a linear problem, it converges in one single

time step.
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Figure 5.4: (a) Numerical and analytical solution and (b) residual convergence for the

one fixed and one free final state problem, using trapezoidal rule (θ = 1/2) and N = 10.

5.3.3.2 Nonlinear oscillator example problem

The two-dimensional nonlinear oscillator problem is presented in [Primbs et al., 1999]

and it is written in a state variable representation as,


ẋ1 = x2

ẋ2 = −x1

(π
2
+ arctan(5x1)

)
− 5x2

1

2(1 + 25x2
1)

+ 4x2 + 3u

(5.25)

with the following performance index,

J =

∫ ∞

0

(
x2
2 + u2

)
dt. (5.26)

The Hamiltonian and derivatives of the oscillator problem were obtained by using the

symbolic tool of Matlab. Then, using the nonlinear monolithic methodology discussed,

the solution is presented in Fig.5.5, obtained for a time increment ∆t = 0.2 and 50 time

steps. The cost of taking the system from the initial to the final position is measured

by the integral of the performance index (5.26) and the map of the variables x1 and x2

is shown in Fig.5.6a. The cost obtained with the numerical approach is presented in

table 5.2. The error with respect to the cost obtained in [Primbs et al., 1999] decreases

with the number of time steps and for 500 time steps, time increment ∆t = 0.02 s, the
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Figure 5.5: Numerical and analytical solution of the nonlinear oscillator problem, using

backward Euler (θ = 1/2) and ∆t = 0.2 s.
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Figure 5.6: (a) Values of the states x1 and x2 and (b) residual convergence of the

nonlinear oscillator problem, using backward Euler (θ = 1/2) and ∆t = 0.2 s.

relative error is 0.03%. Furthermore, The convergence of the norm of the residual is

shown in Fig.5.6b and it has a quadratic behavior, which is expected when using the

Newton-Raphson procedure.

The numerical results obtained are satisfactory and complete the verification of the

monolithic approach to the optimal control problem. It is known that the monolithic
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Table 5.2: Solution of the cost of the nonlinear oscillator problem.

Optimal Solution Cost

Numerical result - ∆t = 0.4s 33.1

Numerical result - ∆t = 0.2s 32.8

Numerical result - ∆t = 0.1s 32.4

Numerical result - ∆t = 0.02s 31.8

Result - Primbs (1999) 31.7

approach presented is not efficient in terms of computation and might be computation-

ally too expensive when dealing with large system of equations. However, it is adequate

for one dimensional problems and it will be implemented in the micro-swimmer problem

in the following chapter.
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6 NUMERICAL RESULTS

In this chapter the numerical results obtained for the optimal control of the micro-

swimmer problem are presented. Some examples were solved to show the relevance of

the proposed problem, especially when comparing the efficiency of the optimal path

obtained with some of the other strokes that have been proposed. Also, the impor-

tance of an appropriate initial guess in the solution and the convergence of different

numerical integration methods are demonstrated. Finally, the comparison of the energy

consumption of a displacement with one single stroke and several strokes is studied.

The results presented in this chapter are obtained by applying the methodology

presented throughout this work. The micro-swimmer as an optimal control problem

was formulated according to chapter 4, resulting in the eight equations presented in

section 4.2.2. Those equations were discretized in time by applying the midpoint rule

of numerical integration which, depending on the value of the parameter θ, can result

in the forward Euler, backward Euler or trapezoidal rule methods.

6.1 SOLUTION OF THE MICRO-SWIMMER PROBLEM

In the numerical analysis, it was considered a three-sphere swimmer with radius

a = 0.05 mm swimming in a water medium with viscosity µ = 103 kg ·mm−1s−1. The

proposed problem is to make the swimmer obtain a displacement of ∆ = 0.01 mm at

the end of one cycle, during a total time tf = 1 s and while minimizing the energy

waste of the stroke. The initial shape of the swimmer used in the analysis was defined

as x0 = y0 = 0.3 mm and, hence, the final boundary condition of the stroke was also

imposed to be xf = yf = 0.3 mm, but with a net displacement ∆ = 0.01 mm. Other

parameters used in the analysis, such as, the initial guess and the number of time steps

are described next.

6.1.1 Optimal stroke

To obtain the optimal stroke of the problem the NG-stroke, described in section

3.2.1, is used as the initial guess in the numerical analysis. The parameter ϵ was chosen

to give a net displacement ∆ = 0.01 mm in the end of one cycle with tf = 1s. Recalling
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Figure 6.1: Optimal stroke for a net displacement ∆ = 0.01 mm and tf = 1 s, using

the NG-stroke as initial guess.

the definitions given in section 3.2.1, the NG-stroke is defined by the parameter ϵ,

which is the amount of relative displacement of the spheres in each stage of the cycle.

To obtain the necessary displacement and time during the NG-stroke, it was found

ϵ = 0.1225 mm. Taking the NG-stroke as the initial guess of the nonlinear monolithic

approach, the result obtained for the optimal path is presented in Fig.6.1. The results

were computed for θ = 1/2, trapezoidal rule, and with a total number of integration

points N = 64 . The relative displacements and velocities of the spheres are shown in

Fig.6.2a and Fig.6.2b, respectively. The convergence of the residual in the numerical

solution of the optimal stroke is given in Fig.6.3 and shows the quadratic convergence

obtained in the solution.

Table 6.1: Energy consumption of the optimal and NG strokes.

NG-stroke (J) Optimal stroke (J) Energy saving

Numerical solution 0.195 0.16658 16.76 %

Alouges (2008) 0.278 0.229 21.40 %

The value of energy consumption obtained for both strokes are given in table 6.1.
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Figure 6.2: (a) Variation of x and y and c in one cycle; (b) Velocity of the relative

motion of the spheres for optimal stroke.
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Figure 6.3: Convergence of the Newton-Raphson procedure for the optimal stroke

solution.

The values of the energies obtained by Alouges in [Alouges et al., 2008] are also pre-

sented in the table. It is noticed the existence of a discrepancy between the energy

values obtained numerically and the ones presented by Alouges. Not even the energy

waste of NG-stroke obtained matches the one given in the reference. The value given

by Alouges for the relative displacement of the NG-stroke that gives a net displacement

of 1 mm is ϵ = 0.144 mm. However, according to the motion equations presented in

chapter 3, a net displacement of ∆ = 0.0159 mm was found in this work for the same

relative change of ϵ = 0.144 mm. This difference in the results can be explained in
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Figure 6.4: Dimensionless displacement for initial distance ratio of D = 10a and

D = 6a.

Fig.6.4. Following the same methodology used to validate the swimmer’s motion equa-

tions with the motion given by [Najafi and Golestanian, 2004], the curve for an initial

distance of D = 6a was obtained. The point given by Alouges in [Alouges et al., 2008]

is not situated along the curve. Hence, if the motion equations differs from one another,

the results obtained in the energy consumption analysis are not comparable.

6.1.2 Local minima for various initial guesses

It has been observed during the numerical analysis that the solution of the micro-

swimmer problem has other local minima. Depending on the initial guess, different

stroke paths were obtained, but they do not correspond to the optimal stroke of the

problem. A net displacement with positive variation of the relative distances between

the spheres can be obtained, that is, with the expansion of the swimmer’s arms. This

stroke is called the Naive stroke and a net displacement of ∆ = 0.01 mm is obtained

with a relative expansion of the arms of ϵ = −0.22 mm.

If the Naive stroke is used as an initial guess, the optimal solution obtained was

named the Bean stroke due to its shape, Fig.6.5a. The solution was obtained by using

the trapezoidal rule with N = 64 and the convergence of the residual is shown in

Fig.6.5b. The displacements and velocities are shown in Fig.6.6a and Fig.6.6b.
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Figure 6.5: (a) Bean stroke for a net displacement ∆ = 0.01 mm and tf = 1 s, using

the Naive stroke as initial guess; (b) Convergence of the Newton-Raphson procedure

for the Bean stroke solution.
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Figure 6.6: (a) Variation of x and y and c in one cycle; (b) Velocity of the relative

motion of the spheres for Bean stroke.

Another stroke that can give a final net displacement is the “Heart” shape stroke.

This stroke involves a more complex path in which one stroke has two relative minima.

The Heart function is given by r = ϵ(x0 + cos(π+2tπ)), with the points being defined

by x = r cos(π+2tπ) and y = r sin(π+2tπ). For obtaining the net displacement of 0.01

mm, it was found the value of ϵ = 0.1145. If the Heart stroke is used as initial guess,

and using the same parameters used in the Bean solution, the solution of the optimal

problem converges to another local minimum called the Pretzel solution. The stroke
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Figure 6.7: (a) Pretzel stroke for a net displacement ∆ = 0.01 mm and tf = 1 s, using

the Heart stroke as initial guess; (b) Convergence of the Newton-Raphson procedure

for the Pretzel stroke solution, using N = 120.
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Figure 6.8: (a) Variation of x and y and c in one cycle; (b) Velocity of the relative

motion of the spheres for pretzel stroke.

is presented in Fig.6.7a and the convergence of the residual is presented in Fig.6.5b.

The displacements and velocities of the relative distance of the spheres for the Pretzel

solution are shown in Fig.6.8a and Fig.6.8b.

Using a circular stroke, given by sinusoidal functions, with a radius of 0.0727 mm

and a center on the point (0.3, 0.3) mm, the swimmer also obtains a net displacement

of ∆ = 0.01 mm. If the circle stroke is used as initial guess, the solution converges to
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Figure 6.9: (a) Circle stroke for a net displacement ∆ = 0.01 mm and tf = 1 s

and using the Circle stroke as initial guess; (b) Convergence of the Newton-Raphson

procedure for the optimal stroke solution, using N = 120.
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Figure 6.10: (a) Variation of x and y and c in one cycle; (b) Velocity of the relative

motion of the spheres for circle stroke.

the optimal stroke, Fig.6.9a, but with a slow convergence, Fig.6.9b. The difficulty of

the solution to converge to the optimal path is due to the small difference in the energy

consumption of both strokes. Hence, since the solution starts from a point with low

energy waste, it is harder for the numerical procedure to find the global minimum of

the problem. The energy waste of the strokes used as initial guess are shown in table

6.2 and the energy of the local minimum strokes are shown in table 6.3. The shape

changes x and y and their velocities are shown in Fig.6.10a and Fig.6.10b.
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Table 6.2: Energy consumption (Joule) of the initial guess strokes with ∆ = 0.01 mm.

NG-stroke Naive stroke Heart stroke Circle stroke

Numerical solution 0.1949 0.5571 0.5571 0.1672

Table 6.3: Energy consumption (Joule) of the optimal strokes with ∆ = 0.01 mm.

Optimal stroke Bean stroke Pretzel stroke

Numerical solution 0.1665 0.3060 0.3792

The results shown in the tables above demonstrate that the optimal stroke found

is indeed the stroke with the smallest energy waste. Although the value of the optimal

stroke energy is still smaller, the difference between the expended energy in the circle

stroke and the optimal stroke is very small. This small difference explains why the

convergence shown in Fig.6.9b is slow. Since the initial guess is already very close to

the optimal solution, the search for the optimal path becomes more difficult. All the

results presented in this section were made with the use of the trapezoidal rule. Next,

the influence of the numerical integration method on the results will be shown.

6.2 OTHER NUMERICAL ANALYSES

6.2.1 Analysis of the numerical integration method

Using the NG-stroke as the initial guess and, therefore, having the optimal stroke

as the solution of the problem, three numerical integration methods will be analyzed.

For θ = 0 the problem is solved with the forward Euler method, for θ = 1/2 with

trapezoidal rule and backward Euler for θ = 1. The approach used is to start with a

low number of integration points and check if the methods converge to one single value

when increased the number of points.

The solution for N = 60 is presented in Fig.6.11. It is observed that the solution

with forward Euler is distorted to the right, while the solution with backward Euler is

distorted to the left. In other words, due to the characteristics of the discretization, the

forward Euler scheme prioritizes the initial condition over the final condition, whereas

the backward Euler gives more importance to the final conditions of the system. In-

creasing the number of time steps, Fig.6.12 shows the solution for 10× more integration
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Figure 6.11: Different numerical integration methods with N = 60.
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Figure 6.12: Different numerical integration methods with N = 600.

points. It is seen that both backward Euler and forward Euler schemes converge to

the solution of the trapezoidal rule. The trapezoidal rule solution, on the other hand,

is stable for both types of discretization. The reason of the stability of the trapezoidal

rule is the balanced nature of the scheme, that uses the previous and next time instants

in the computation of the variables in each time step. Hence, the scheme gives equal

importance to the initial and final conditions and it seems to be appropriate for the

solution of boundary value problems.
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Figure 6.13: Relative energy consumption per number of strokes required to reach

∆ = 0.01 mm.

6.2.2 Multiple strokes vs. one single stroke

One may be interested in checking whether the minimum energy of the swimming

mechanism to reach a certain point in space comes from a single stroke with large

deformations or from multiple strokes of small relative displacements. To answer this

question it was calculated the energy waste by the swimmer to move an amount of

∆ = 0.01 mm in tf = 1 s with one single step, as presented previously. Furthermore,

it was obtained the energy waste of the swimmer to move an amount of ∆/ns, where

ns is the number of strokes of the swimmer. The total energy consumption is then

assumed to be the energy obtained times the number of strokes.

The results of the energy waste versus the number of strokes are shown in Fig.6.13.

It can be seen that the energy consumption increases with the number of strokes needed

to reach the destination point. However, this growth in the energy expended seems to

reach an asymptotic value for a large ns. It can be concluded that it is desirable to try

to reach the destination with the minimum number of strokes. Naturally, limitations

in the geometry of the micro-swimmer may restrict the choice of number of strokes,

but whenever it is possible, the motion should be done with one single stroke to reduce

the energy waste.
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7 CONCLUSIONS

7.1 SUMMARY AND CONCLUSIONS

Throughout this work, a numerical procedure for solving the optimal control prob-

lem of a micro-swimmer was presented. The theory of the optimal control was described

in chapter 2. There, the two main approaches for solving optimal control problems were

detailed, the Dynamic Programming approach and the Variational approach. The later

approach was used in the micro-swimmer problem. Furthermore, the kinematics and

governing equations of the three-spheres micro-swimmer problem were presented in

chapter 3. To verify the governing equations, the simple four-stage stroke was solved

numerically and compared with the results in [Najafi and Golestanian, 2004]. The evo-

lution of the final displacement of the swimmer in one cycle, with respect to the amount

of relative displacement imposed, matched perfectly the results presented by Najafi and

Golestanian.

The first step in the optimal solution was to represent the three-spheres micro-

swimmer as an optimal control problem. In chapter 4, the theories and equations

presented in chapters 2 and 3 were combined. The state representation of the problem

resulted in having the relative distances x and y and the center of mass c as the state

variables of the system. The control inputs were assumed to be the velocities of the

relative movement between the spheres, ẋ and ẏ. The energy waste was selected as

the performance index, that is, the function to be minimized during the process. The

energy waste was also formulated by using the optimal control formalism and it resulted

in a Lagrange type performance index dependent on the control inputs. The problem

was solved by the Hamiltonian approach and resulted in three state equations, three

costate equations and two control equations, resulting in the eight necessary optimal

control equations.

The micro-swimmer optimal control problem formulated in this work resulted in a

nonlinear two-point boundary value problem. To solve the problem a monolithic strat-

egy was suggested. First, the time discretization of the problem was done by applying

the generalized midpoint rule. Next, the monolithic procedure for linear problems was
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introduced. The treatment of the boundary conditions and the matrix assembly were

described in section 5.2. Linear problems with known exact solutions were solved to

verify the linear monolithic strategy. The numerical solutions with trapezoidal rule

matched well with the corresponding exact solutions even for a small number of time

steps and the strategy was considered satisfactory. Then, the Newton-Raphson pro-

cedure was implemented to transform the monolithic approach in a nonlinear strat-

egy. The algorithm used in the numerical procedure was described in section 5.3 and

example problems were solved to verify the strategy. The solution of the linear ex-

ample problem displayed excellent numerical results, with the residual converging in

one single iteration. A nonlinear problem was also solved. The results presented in

table 5.2 showed that the numerical solution converges to the solution presented in

[Primbs, 1999] with the increase of the number of time steps. Hence, the verification

of both linear and nonlinear monolithic strategies was considered satisfactory and the

nonlinear strategy was used in the three-spheres micro-swimmer problem.

Applying the nonlinear monolithic procedure to the micro-swimmer optimal control

problem formulated in chapter 4, an optimal stroke was obtained. An initial guess was

used by considering the NG-stroke with same net displacement. Comparing the values

of the energy saved in the optimal stroke with the ones shown in [Alouges et al., 2008], a

discrepancy in the results was found. It was shown in Fig.6.4 that the motion analysis of

the referenced literature did not match the one used in this work and, hence, the results

are not comparable. However, the motion equations used in this work were verified with

the introductory work of the three-spheres swimmer, [Najafi and Golestanian, 2004].

Other local minima were also found for the problem. Using several different strokes

that produce similar net displacement at each cycle, but with higher energy cost,

different optimal solutions were found. The energy waste for each of these strokes

were presented in section 6.1.2 and the optimal stroke showed an energy reduction

of 16.76% with respect to the NG-stroke. The analysis of the numerical integration

methods have shown that the forward and backward Euler schemes present difficulties

in the accuracy of the solution for small number of time steps. However, the solution

with those schemes converged to the optimal solution for high discretization of the

time period. The trapezoidal rule, on the other hand, has shown satisfactory results

even for small number of time steps, which can be explained by the balanced nature
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of the scheme, that takes into account the initial and final conditions equally. Finally,

the analysis of a net displacement done by one single stroke and ns small strokes was

presented in section 6.2.2. It was shown that the higher the number of strokes needed

for the swimmer to reach a certain point, the higher the power consumption. Hence,

when possible, the swimmer should reach its destination with one single stroke to

reduce the energy waste.

7.2 SCOPE FOR FUTURE WORKS

Although the numerical strategy presented in this work has provided good results, it

is not ideal for solving complex systems. When dealing with higher-dimensional prob-

lems, the number of variables in the system will increase significantly. Furthermore,

in most FSI systems the time interval might be undefined and other techniques might

be needed to be applied, such as, the Receding Horizon approach, see [Primbs, 1999].

Hence, it is suggested that future works focus on the numerical strategy to develop

a non monolithic approach. One possible idea is to develop a iterative process that

computes two or three time steps at the time and makes a loop over the time domain

until convergence is achieved.
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A VARIATIONAL APPROACH -

CALCULATIONS

Derivatives of Vx and Vy

The functions Vx and Vy are given as:

Vx(x, y) =
a
(
−2xy (x+ y)

(
2x2 − y2

)
+ a

(
6x4 + 6x3y − 3x2y2 − 3xy3 − 3y4

))
−12x2y2 (x+ y)

2
+ 12axy (x+ y) (x2 + 3xy + y2) + 9a2 (x4 − 2x3y − 5x2y2 − 2xy3 + y4)

(A.1)

and

Vy(x, y) =
a
(
−2xy (x+ y)

(
x2 − 2y2

)
+ 3a

(
x4 + x3y + x2y2 − 2xy3 − 2y4

))
−12x2y2 (x+ y)

2
+ 12axy (x+ y) (x2 + 3xy + y2) + 9a2 (x4 − 2x3y − 5x2y2 − 2xy3 + y4)

Splitting the functions into their numerator and denominator, the following func-

tions are defined:

fx = a[−2xy(x+ y)(2x2 − y2) + a(6x4 + 6x3y − 3x2y2 − 3xy3 − 3y4)]

fy = a[−2xy(x+ y)(x2 − 2y2) + 3a(x4 + x3y + x2y2 − 2xy3 − 2y4)]

g = −12x2y2(x+ y)2 + 12axy(x+ y)(x2 + 3xy + y2)

+9a2(x4 − 2x3y − 5x2y2 − 2xy3 + y4)

such that,

Vx(x, y) = fx/g,

Vy(x, y) = fy/g.

and

∂Vx

∂x
=

∂fx
∂x

1

g
− fx

g2
∂g

∂x
,

∂Vx

∂y
=

∂fx
∂y

1

g
− fx

g2
∂g

∂y
,

∂Vy

∂x
=

∂fy
∂x

1

g
− fy

g2
∂g

∂x
,

∂Vy

∂y
=

∂fy
∂y

1

g
− fy

g2
∂g

∂y
.
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The derivatives of fx and fy are given as follows,

∂fx
∂x

= a[−2y(x+ y)(2x2 − y2)− 2xy(2x2 − y2)− 8x2y(x+ y) + a(24x3 + 18x2y − 6xy2 − 3y3)],

∂fx
∂y

= a[−2x(x+ y)(2x2 − y2)− 2xy(2x2 − y2) + 4xy2(x+ y) + a(6x3 − 6x2y − 9xy2 − 12y3)]

∂fy
∂x

= a[−2y(x+ y)(x2 − 2y2)− 2xy(x2 − 2y2)− 4x2y(x+ y) + 3a(4x3 + 3x2y + 2xy2 − 2y3)],

∂fy
∂y

= a[−2x(x+ y)(x2 − 2y2)− 2xy(x2 − 2y2) + 8xy2(x+ y) + 3a(x3 + 2x2y − 6xy2 − 8y3)],

and the derivatives of g are given as,

∂g

∂x
= −24xy2(x+ y)2 − 24x2y2(x+ y) + 12ay(x+ y)(x2 + 3xy + y2)

+12axy(x2 + 3xy + y2) + 12axy(x+ y)(2x+ 3y) + 9a2(4x3 − 6x2y − 10xy2 − 2y3),

∂g

∂y
= −24x2y(x+ y)2 − 24x2y2(x+ y) + 12ax(x+ y)(x2 + 3xy + y2)

+12axy(x2 + 3xy + y2) + 12axy(x+ y)(3x+ 2y) + 9a2(−2x3 − 10x2y − 6xy2 + 4y3).

Derivatives of the performance index

In the computation of the optimal control equations of the micro-swimmer problem,

the derivatives of the terms inside the integral of the performance index needs to be

derived. If the performance index of 4.9 is rewritten as

J =

tf∫
t0

j(x, y, u1, u2) dt. (A.2)

with j(x, y, u1, u2) being defined as

j(x, y, u1, u2) =
1

9πµ

{
u2
1j1(x, y) + u2

2j2(x, y) + u1u2j3(x, y)
}
. (A.3)

Then the terms j1, j2 and j3 are given by:

j1(x, y) = (3Vx − 2)rx1 + (3Vx + 1)rx2 + (3Vx + 1)rx3

j2(x, y) = (3Vy − 1)ry1 + (3Vy + 2)ry2 + (3Vy − 1)ry3

j3(x, y) = [(3Vy − 1)rx1 + (3Vy + 2)rx2 + (3Vy − 1)rx3]

+ [(3Vx − 2)ry1 + (3Vx + 1)ry2 + (3Vx + 1)ry3].

(A.4)
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Moreover, the functions rxi and ryi with i = 1, 2, 3. are written as

rx1 =

(
3Vx − 2

6a
+

3Vx + 1

4x
+

3Vx + 1

4(x+ y)

)
rx2 =

(
3Vx − 2

4(x+ y)
+

3Vx + 1

4y
+

3Vx + 1

6a

)
rx3 =

(
3Vx − 2

4x
+

3Vx + 1

6a
+

3Vx + 1

4y

)
ry1 =

(
3Vy − 1

6a
+

3Vy − 1

4x
+

3Vy + 2

4(x+ y)

)
ry2 =

(
3Vy − 1

4(x+ y)
+

3Vy − 1

4y
+

3Vy + 2

6a

)
ry3 =

(
3Vy − 1

4x
+

3Vy − 1

6a
+

3Vy + 2

4y

)

The derivatives of the terms j1, j2 and j3 with respect to x are presented as follows,

∂j1
∂x

=

(
3
∂Vx

∂x
rx1 + (3Vx − 2)

∂rx1
∂x

)
+

(
3
∂Vx

∂x
rx2 + (3Vx + 1)

∂rx2
∂x

)
+

(
3
∂Vx

∂x
rx3 + (3Vx + 1)

∂rx3
∂x

)
,

∂j2
∂x

=

(
3
∂Vy

∂x
ry1 + (3Vy − 2)

∂ry1
∂x

)
+

(
3
∂Vy

∂x
ry2 + (3Vy + 1)

∂ry2
∂x

)
+

(
3
∂Vy

∂x
ry3 + (3Vy + 1)

∂ry3
∂x

)
,

∂j3
∂x

=

(
3
∂Vy

∂x
rx1 + (3Vy − 2)

∂rx1
∂x

)
+

(
3
∂Vy

∂x
rx2 + (3Vy + 1)

∂rx2
∂x

)
+

(
3
∂Vy

∂x
rx3 + (3Vy + 1)

∂rx3
∂x

)
+

(
3
∂Vx

∂x
ry1 + (3Vx − 2)

∂ry1
∂x

)
+

(
3
∂Vx

∂x
ry2 + (3Vx + 1)

∂ry2
∂x

)
+

(
3
∂Vx

∂x
ry3 + (3Vx + 1)

∂ry3
∂x

)
.

The derivatives with respect to y are done in a similar way. Furthermore, in the

computation of the Jacobian Matrix in chapter 6 it is necessary to obtain the discrete

second derivatives of the optimal control equations. Using chain rule and derivating

the above equations term by term the second derivatives were obtaind, which will not

be presented due to the length of the equations.
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B THE NEWTON-RAPHSON METHOD

Solution of a single nonlinear equation

To find the roots of a nonlinear equation, one of the most popular methods is the

Newton-Raphson method. It is one of the most powerful procedures in all numerical

analysis and it always converges quadratically if the initial approximations is suffi-

ciently close to the root [Hoffman, 2001]. Its only disadvantage is the evaluation of the

derivative f ′(x) of the function. Given a nonlinear function f(x), the Newton-Raphson

method approximates the function by a linear function g(x) that is tangent to f(x)

and find the solution for g(x) = 0. Approximating the derivative by the first order

terms of the Taylor series,

f(xi+1) = f(xi) + f ′(xi)(xi+1 − xi) +O(x2), (B.1)

where O(x2) is the error of the higher order terms. Ignoring the error and considering

the root of the function to be f(xi+1) = 0, the solution of xi+1 is presented as

xi+1 = xi −
f(xi)

f ′(xi)
. (B.2)

The iterative process of (B.2) gives a quadratic convergence of the solution and it

is graphically represented in Fig.B.1.

Figure B.1: Newton-Raphson method.
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Solution of a system of nonlinear equations

If one is interested of solving a system of nonlinear equations such that F(x) = 0

and F(x) = Ax− b, the Newton-Raphson iteration is written as,

∆xi+1 = −[F(xi)]−1F(xi) (B.3)

xi+1 = xi +∆xi+1 (B.4)

where [F(xi)]−1 can also be viewed as the Jacobian matrix, matrix that contains the

derivatives of the equations with respect to each of the variables. The convergence of

the solution of a nonlinear system of equation can also be proven to be quadratic. The

convergence analysis of the Newton-Raphson method and more details of the numerical

procedure may be found in [Hoffman, 2001] and [Golub and Ortega, 1992].
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Control: A Control Lyapunov Function and Receding Horizon Perspective”, Asian

Journal of Control, Vol. 1 No. 1, pp. 14-24, March 1999.

[Putz and Yeomans, 1999] Putz, V. B., Yeomans, J., M., “Hydrodynamic Synchro-

nisation of Model Microswimmers”, J. Sat. Phys, vol. 137, pp. 1001-1013, 2009.

[Rotne and Prager, 1969] Rotne, J., Prager, S., “Variational treatment of hydrody-

namic interaction in polymers”, J. Chem. Phys, vol. 50 (11), pp. 4831-4837, 1969.

[Subchan and Zbikowski, 2009] Subchan, S. , Zbikowski, R., “Computational Opti-

mal Control”, John Wiley and Sons, United Kingdom, 2009.

[Sussman, 1996] Sussman, H. J., “From the brachystochrone to the maximum princi-

ple and back”, In Proceedings of the 35th IEEE Conference on Decision and Control,

p. 1588-1593, Kobe, Japan, December 1996.

77


