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Abstract

This work deals with making the search process with Evolution Strat-
egy with Covariance Matrix Adaptation (CMA-ES) more efficient.
Methods are proposed to initialise the optimisation with predefined
knowledge instead using a random initialisation in the context of aero-
dynamic design optimisation. In aerodynamics, the search for better
shape is always in research. Conventional numerical optimisation pro-
cesses results in huge amount of data sets as a result of each optimi-
sation. But most often only the best designs are taken into considera-
tion. Graening, (2) developed a framework to extract the meaningful
information about the shape from those data sets. This approach
extends by means of developing a common framework to incorporate
the knowledge extracted from the designs, so that the search process
can be initialised in order to achieve the new outperforming designs.

This thesis is split into two parts: (i) Development of frame work
for quantifying interaction effects between the design and the perfor-
mance. (ii) Developing an optimal strategy to initialise the search
process. Firstly, for quantifying interaction effects linear as well as
non-linear interaction effects are analysed. Statistical techniques such
as multiple regression and information theory are applied to quantify
the parameter interaction effects. Second part deals with developing
a common framework to initialise the optimisation by means of in-
corporating the knowledge into the covariance matrix. The developed
framework is applied to 2D Gas turbine blade optimisation for the
validation of the knowledge incorporation technique.
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Chapter 1

Introduction

‘Evolution is an optimisation process -Ernst W. Mayr. ’

With the increased availability and affordability of high speed computers in
the recent decades, evolutionary computational techniques emerged successfully
as a potential tool in solving broad range of practical problems in optimisation,
machine learning and design. These techniques include genetic algorithms(GAs),
evolution strategies(ESs), and evolutionary programming(EPs). As the Evolution
provides inspiration for computing the solutions to problems that have previously
appeared intractable, in recent years along with parallel machines the activity of
research on evolutionary optimisation has been increased. This work Primarily
deals with evolutionary strategies that have been initially introduced by Rechen-
berg (1965, 1973) and Schwefel (1965, 1977) at the Technical University of Berlin
and in particular one of its variant called evolution strategy with covariance matrix
adaptation (CMA-ES) (1), as it provides good convergence rate even for small
population sizes.

Optimisation, the act of achieving best results under any circumstances is al-
ways a part of every product design process. There exists, huge amount of
datasets as a result of any design optimisation process. Graening (2) proposed
a method to extract useful knowledge from those datasets. Integration of this
knowledge into the optimisation process will certainly lead to a more efficient de-
sign process. Thus the motive of this work is to incorporate the priori knowledge
acquired from existing designs which are the results of previous manual or com-
putational optimisations into the algorithm. More precisely, this work is aiming
towards: finding an optimal shape of the given geometry regarding its aerodynamic
performance by setting up the strategy parameters of the evolutionary design op-
timisation run.
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1.1 Motivation

1.1 Motivation

1.1.1 Search for an Optimal Shape

Shape of the design plays a vital role in any design process as most of the key
design variables that control performance are related to shape. In many com-
plex engineering design problems, particularly in aerodynamics, (optimisation of
aircraft wing cross sections,Turbine Blade Design optimisation, etc..) tradition-
ally an approach of numerical optimisation models are applied to increase the
performance of the design. In this High-fidelity analysis models are employed in
which each function evaluation requires Computational Fluid Dynamics (CFD)
simulation which always has the huge economic impact due to enormous amount
of computing time using parallel machines. This numerical approach typically
involves many repetitive function calls to the high-fidelity analysis codes to ob-
tain the merits of the different combinations of design variables. These methods
may reach global optimum if the objective function and the constraints are dif-
ferentiable and convex. But in most real world optimisation problems such as,
non-convex problems obtaining the global optimum with the traditional methods
is a tedious task.

Alternatively, stochastic evolutionary design optimisation models like ES, GAs
have shown considerable success in locating the global optimum even for non-
convex and continuous domain tasks with high robustness. However, due to
stochastic components and the need for large number of evaluations, this search
strategy is always more expensive with respect to computational resources. Re-
cent researches in evolution strategies use the self adaptation techniques like
covariance matrix adaptation, where the strategy parameters of the optimisation
strategy are object to the optimisation as well. This shows the advantage of
combining evolutionary design optimisation with high fidelity simulations. The
Basic approach will be replacing the high fidelity simulation codes with the minia-
ture model such as Target Shape Design, as described in (3) and (4) along with
the covariance matrix adaptation. Cumulative step size adaptation, an inspired
property of CMA-ES which enables the extraction of information from past gen-
eration, fastens the adaptation of the strategy parameters, which inturn results
in high convergence rate even at a small population size.

1.1.2 Search for an Optimal Strategy

Setting various parameters of an evolutionary algorithm such as population
size, probability of mutation, etc... is crucial for a good performance of the op-
timisation algorithm. This work deals with the setting the strategy parameters
as they define the initial search distribution or mutation distribution, with the
knowledge acquired from huge amount of hetrogenous design data during the pre-
vious optimisation runs in order to find the optimal shape. As CMA-ES modifies
both the objective as well as strategy parameters through only one stochastic

2



1.2 Outline

source (Covariance Matrix), stochastic influence of the mutation is greatly re-
duced. Adapting the precise values of these parameters greatly influences search
strategy of the algorithm.

Comprehensive knowledge observed (during the numerical optimisation meth-
ods) on local differences in design shows the amount of direction of surface modifi-
cations. Graening’s (2) framework was able to extract the meaningful knowledge
on local differences in design. This work extends with developing a framework
for adapting them as strategy by reducing the uncertainty about the knowledge
extracted and incorporating it into the algorithm so that further optimisation can
be initialised in order to achieve optimal solutions. Statistical techniques such as
regression techniques and concepts from information theory are investigated and
adapted to identify and reduce uncertainty about the knowledge.

1.2 Outline

Chapter 2: In this preliminary chapter brief discussion on evolutionary com-
putation and in specific, fundamental mathematical principles which are needed
for further explanations are outlined. Therein, the decomposition of covariance
matrix and the relation of its geometric interpretation to the multivariate normal
distribution are discussed. Furthermore, the evolution strategy with covariance
matrix adaptation is described in detail along with the self adaptation in general.

Chapter 3: Main focus of this chapter is to obtain an overview of knowledge
incorporation in general and the methods applied for incorporation of the knowl-
edge into evolutionary algorithm. An approach adapted in this thesis for knowl-
edge incorporation for the initialisation of the initial optimisation strategy is also
briefly discussed.

Chapter 4: In this section important statistical concepts which are core to
this work are briefly explained. Methods for identifying the parameter interaction
effects are also explained. Furthermore, the model for quantification of interaction
effects using multiple regression and information theory also discussed here.

Chapter 5: In this chapter, a method on incorporating knowledge into CMA-
ES is proposed. The framework for setting up the strategy parameters is derived
here using linear as well as non-linear interaction effects. Also, different models
for initialising the optimisation are discussed.

Chapter 6: This chapter demonstrates the capabilities of incorporated knowl-
edge by applying the described techniques for the optimisation of 2D Gas Turbine
Blade. The results are compared in detail in terms of initialisation, adaptation
of the strategy and their impact on the convergence rate of the algorithm.

3



1.2 Outline

Chapter 7: Finally, the work done in this thesis is summarised and concluded.
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Chapter 2

Evolutionary Computation

Nature has been always the best source of inspiration for problem solving.
While considering most powerful problem solvers, there are two promising candi-
dates:

(i) The Human Brain (that created “the wheel, New York, wars, and so on ”)

(ii) The evolutionary process (that created the human brain)

Attempts to design the problem solvers inspired by second candidate led to
the field of Evolutionary Computation (5). As discussed in previous chapter,
there exists several techniques in evolutionary computation. The Darwinian the-
ory is the common underlying principle behind them. It can be stated as given
a population of individuals, the environmental pressure causes the natural selec-
tion (Survival of the fittest), which causes a rise in the fitness of the population.
Fitness is viewed as adaptation capability to the environment which in technical
systems is estimated by defining a suitable quality function as an abstract of the
fitness so that some of the better candidates are moved to successive generations
in the search for the global optimum. Figure (2.1) represents the general flow of
the evolutionary computation (1).

In evolutionary computations, the initial population of µ individuals (parents)
are generated randomly. The objective parameters are encoded into the chromo-
somes of the individuals as real valued parameters. Hence, stochastic components
such as mutation and recombination constructs the ancestors that build the off-
spring population (λ). The evaluation of the individuals in their environment is
done by assigning a fitness value to the individuals of the offspring population and
based on that the parents for the next generation are calculated. Thus the selec-
tion process defines the parents for the next generations. The evolutionary cycle
continues till the required criterion is met. The mutation which generates the
offsprings (possible solutions) and the quality measure which defines the problem
are influential components of the algorithm. As the population extends from the
initial set of individuals, that also plays alternatively an important role, when

5



Figure 2.1: Picture depicting the general flow of the evolutionary optimisation.
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2.1 Mathematical Preliminaries

the priori information about the the problem is given.

This chapter further proceeds with the description based on important mathe-
matical concepts and definitions which are required for the subsequent treatments,
primarily in the context of CMA-ES. These include, the decomposition of covari-
ance models, the gaussian distribution to adapt the covariance model for the
continuous parameter optimization. Furthermore, theory behind CMA-ES and
adaptation procedure to find the optimum are also explained in broader context.

2.1 Mathematical Preliminaries

2.1.1 Covariance Matrix

Covariance indicates the measure of strength of correlation between two or
more random variables. The sample covariance for the two random variables X

and Y each with a sample size of N is defined by the expectation value,

Cov(X,Y ) = ΣN
i=1

(xi − xi)(yi − yi)

N
(2.1)

Cov(X,Y ) = 0, is said to be uncorrelated. Positive covariance (Cov(X,Y ) >

0), indicates that X and Y are proportional. While Considering X = Y ,

Cov(X,Y ) = σ2
x

Cov(X,Y ) = V ariance(x)

in correlation terms,

r =
cov(X,Y )

σxσy

r2 =
σxy√
σxxσyy

(2.2)

Hence the elements of the covariance matrix are the variances and covariances
of the parameter.

2.1.2 Eigen Decomposition of Covariance Matrix

Positive Definite Matrix has a particularly simple expression for a class of
matrices often used in multivariate analysis such as correlation, covariance, or
cross-product matrices. A matrix C ∈ Rn×n is said to be positive semi-definite
when for all non-zero vectors X , as XXT > 0

C=XCXT (2.3)

This implies that a positive-definite matrix is always symmetric.

7



2.1 Mathematical Preliminaries

The eigen-decomposition plays a vital role as it is used to find the maximum
(or minimum) of functions involving these matrices. Importantly, the positive
semi-definite matrix C is characterized by the following properties :

1. Eigenvalues are always positive or null. d1 . . . dn > 0 .

2. Eigenvectors are pairwise orthogonal when their eigenvalues are different.
Q = [q

1
. . . q

n
].

Because eigenvectors corresponding to different eigenvalues are orthogonal, it
is possible to store all the eigenvectors in an orthogonal matrix QQT = I.

This implies the following equality:

Q−1 = QT

Therefore one can express eigen decomposition of the matrix C as follows,

C=QD2QT (2.4)

where,
Q is an orthogonal matrix, (QQT = QTQ = I). Columns of Q forms the or-
thonormal basis of eigenvectors.
D = d iag(d1 . . . dn) is a diagonal matrix with square roots of the eigenvalues of
C as the diagonal elements.

Similarly eigen decomposition of the C−1 can be computed as follows,

C−1 = (QD2QT )−1 = (QD−2QT ) = Qdiag

(

1

d2
1

. . .
1

d2
n

)

QT (2.5)

from the above, we can further derive

C
1

2 = QDQT (2.6)

and the inverse,

C− 1

2 = QD−1QT (2.7)

Covariance Matrix (C) used in the algorithm is a symmetric positive definite
matrix, C ∈ Rn×n for all x ∈ Rn.

8



2.1 Mathematical Preliminaries

2.1.3 Multivariate Normal Distribution

The multivariate normal distribution also known as gaussian normal distribu-
tion is the generalization of 1D normal distribution to N Dimensions. The mean
value is the modal value that corresponds to the distribution mean m ∈ R.

Multi-variate normal distribution N(m,C) is estimated from the mean m ∈
Rn covariance matrix C. This can be shown as,

N(m,C) = 1
(2π)N/2|C|1/2

exp
(

−1
2
(x − X)⊤C−1(X − m)

)

whereas,
The covariance matrix describes the shape of the distribution. This distribu-

tion is explained with its Geometrical interpretation into ellipsoids(X ∈ R | XTC−1X =
1). The squared axes lengths of the ellipsoids relates to the eigenvalues and di-
rection is defined by the eigenvectors vectors of the Covariance Matrix (2.2).

Figure 2.2: Multivariate Normal Distribution - modes of estimation

where as,
(1) N(0, σ2I), represents the distribution N(0, σ2I). The Identity produces

the isotropic distribution.

(2) N(0,D2), represents the distribution N(0,D2) The Diagonal matrix (eigen-
values) D scales the the spherical distribution with the coordinate axis (axis par-
allel oriented ellipsoid).

(3) N(0,C), represents the distribution N(0,C) (i.e with the full rank covari-
ance matrix C = QDQT ) QQT defines the orientation for the ellipsoid with n2−n

n

degrees of freedom where n

9
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2.2 The CMA Evolution Strategy

2.2 The CMA Evolution Strategy

Self Adaptation of the strategy parameters during the search process, the mo-
tivation behind the application of CMA-ES for the optimisation problem as it
enables the use of the information possible solutions in the form of individuals
from the past generation. Strategy parameters are defined in the form covari-
ance matrix which defines the multi variate normal distribution for the mutation
operator. Self adaptation reduces the complexity in the dimension of the search
process and enables faster adaptation of strategy parameters resulting in higher
convergence speed of the optimisation algorithm.

2.2.1 Self Adaptation

Self adaptivity means strategy parameters of the algorithm are varied during
the run in certain manner: these parameters are included in the chromosomes
and coevolve with the solutions.

With the estimation of covariance matrix from the distribution, the search
process initialised with the mutation of objective parameters. This enables the
realisation of the correlated mutations and direction of the search space i.e. en-
ables the rotation of the search space. In order to proceed, the adaptation of the
covariance matrix is based on the population and the path of the evolution.

Thus the estimation of covariance matrix is done in two steps,

(i) adaptation of the estimated whole covariance matrix from the distribution
i.e. self adaptation

(ii) observation of the evolution path.

Continuous parameter optimization i.e.the search process Rn → R begins with
estimating the initial set of population of individuals (objective parameters).
Then sampling them by multivariate normal distribution with the zero mean.
The cycle proceeds with constructing the offsprings from the parents. (’In bio-
logical terms ’genotype-phenotype mapping’). Thus the next point in the search
space is estimated as follows,

X
g+1
k ∼ mg + σg

N(0,Cg) − k = 1 . . . λ (2.8)

where,

g is the generation number 0, . . . , n, the operator ∼ denotes the same dis-
tribution both sides of the formula. N(0,Cg), denotes the multivariate normal
distribution, X

g+1
k ∈ Rn, k-th offspring for the successive generations, mg ∈ Rn,

mean value of the search distribution at generation g and σg ∈ R+, is the “over-

10



2.2 The CMA Evolution Strategy

all” standard deviation, step size or the global step size at generation g. The
number of offspring λ ≥ 2.

Hansen and ostermeir (6) considers by choosing the distribution with zero mean
value, parents are regarded as the best approximation to the optimum known so
far and describes the distribution with “non-zero mean value”, as extrapolation
i.e.moving the population from one parametric space to another also the effect of
extrapolation are small.

In order to move the search to the next generation, the algorithm extends in
estimating move operator (distribution mean ) mg+1, the covariance matrix Cg+1,
and the global step size σg+1.

2.2.2 Selection and Recombination

The move operator or mean of the next search distribution g+1 ) is given as the
weighted average of wi = 1

µ
be the selected parent.

Let xi:λ be the i-th ranked solution, such that f(xi:λfxλ:λ)

mg+1 = Σµ
i=1wix

g+1
i:λ (2.9)

The survivor selection i.e survivor of the fittest is deterministic. It is only
based on fitness rankings. The Survivors having the fitness value with closer
proximity to existing parents are only allowed to become the parent for the next
generation. Selection of new parents, µ, is done in two ways,

– selection of individuals from the offsprings the best of them becomes the
parent of the next generation while the current parent is always disre-
garded. This is termed as µ, λ or Non-Elitist strategy.

– selection of individuals from the union set of parents and offsprings, (i.e.
the generated offsprings competes with the parents). This is termed as,
µ + λ or Elitist strategy.

Recombination scheme involves two parents that create one child. To obtain λ

offsprings, the recombination is performed λ times. CMA-ES adapts intermediate
recombination scheme by averaging the values of the parent alleles. Generally,
the recombination scheme is estimated as λ

2
.

2.2.3 Covariance Matrix Adaptation

The covariance matrix from the distribution mean and the selected parents from
the survivor population is estimated by,

Cg+1
µ = Σµ

i=1wi(xi
g+1 − mg+1)(xi

g+1 − mg+1)T (2.10)

11



2.2 The CMA Evolution Strategy

where, Cg+1
µ is an estimator for the distribution of i.e. successful steps.

In order to achieve good convergence speed, the population size λ has to be
small which in turn causes trouble in calculating the reliable estimator for a good
covariance matrix. The inclusion of information from the previous generations
for the estimation of the covariance matrix helps to overcome this problem while
retaining the convergence speed even at small population sizes. With the inclu-
sion of information from the certain no.of previous generations, the mean of the
estimated covariance matrices from all generations are calculated as follows,

Cg+1 =
1

g + 1
Σg

i=0

1

σ2
i

Ci+1
µ (2.11)

CMA-ES initialises the search process with the covariance matrix as unity
(C0 = I).

Figure 2.3 shows how the distribution changes with the update of the covari-
ance matrix. In the left the ellipsoid represents the initial covariance matrix.
Ellipsoids in the middle and the right side shows the change in search direction
and the distribution as a result covariance matrix updation.

Figure 2.3: Change in the distribution with the update of Covariance Matrix.
The vectors indicate change in direction of the search with the update from

each generation.

Thus search process with CMA-ES can be summarized as follows. Initially
information about the objective parameters are encoded into parents. Then with
the random mutation distribution CMA-ES maps the information to descendants
(local optima). The selection for the next generation is done such that the best
parents according to objective function or fitness function are ensured as parent
for next generation. The estimation of covariance matrix defines the strategy

12

Chapter1/Chapter1Figs/EPS/cmaupdate.eps


2.2 The CMA Evolution Strategy

for the offsprings of the next generation which is explained by the geometrical
interpretation of the mutation distribution. Self adaptation takes place by with
the updation of the learning and evolution steps into the covariance matrix.

The priori knowledge about the search is included as strategy parameters.
This enables the intialisation of the search with predefined mutation distribution
instead random This will refine and speed-up the search process. Thus this work
proceeds with estimating and analysing the initialisation of the search the process
with the knowledge at hand.

13



Chapter 3

An Overview of Knowledge

Incorporation

Generally, problems seldom emanate due to the isolation of the system. Ap-
proaching it with predefined knowledge or the information about the history of
the problem at hand results in further development of the system. In practice,
often evoultionary algorithms have been applied where experience and knowledge
about the problem available but not used. In such applications, a performance
benefit can be achieved by utilising the existing knowledge, provided that knowl-
edge doesn’t heavily deviate the search from the generation of optimal solutions.
In the context of design optimisation, knowledge of the existing designs are ap-
plied to drive further optimisations with the motive of achieving increasingly
efficient or optimal designs. This section analyses the different ways to incorpo-
rate the knowledge into the evolutionary algorithm.

There exists two approaches to incorporate knowledge into the evolutionary
algorithm. The first one adds knowledge as priori before running the algorithm.
The later one extracts information from the previous generations and feeds it
back into the algorithm. This is described as self-adaptation in CMA-ES. Thus
this chapter proceeds with analysing different modes of knowledge incorporation
methods. Generally prior knowledge can be incorporated in the following phases
of the algorithm. This is summarised in three phases as follows (Fig.3.1). (5)

* Initialisation phase

* Crossover and mutation phase

* Fitness evaluations phase

3.1 Initialisation Phase

The common and obvious approach is to incorporate the knowledge during the
initialisation phase. Incorporating the knowledge at this phase can be advanta-
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3.1 Initialisation Phase

Figure 3.1: Figure indicating possible places to incorporate knowledge into evo-
lutionary cycle with CMA-ES
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3.2 Crossover and Mutation Phase

geous due to the following considerations,

* Eliminating the need for reinvention of the wheel by using existing so-
lutions inturn this also reduces the computational costs by means of
increased convergence rate.

* A non-random initial population can route the search in the needed re-
gions of the search space which has the high probability to find the new
outperforming solutions.

* Considering as a whole, this deterministic search process with the prior
knowledge at the initialisation phase could lead to better results than
the the randomly initialised evolutionary search.

In the following some of the existing methods in which initialisation function
can be changed from simple random creation (5).

Seeding the population with one or more previously known good solutions
arising from other optimisation techniques. These vary from trial and error to
the use of greedy constructive heuristics using instance-specific information. Ap-
plication for this can be found in operations research problems such as schedule
hardest first on scheduling and planning or nearest neighbour-heuristics for Trav-
eling Salesman -like problems.

In Selective Intialisation a large number of random solutions are created
and considerably a good set of initial population of individuals are choosen to
undergo the evolution. This can be done as a series of N k-way tournaments
instead of selecting the best N from K.N solutions. Alternatively, selecting a set
based not only on fitness but also on diversity so as to maximise the coverage
of the search space. Executing a local search with each member of the initial
population containing a set of points that are locally optimal with respect to
some move operator (7).

Applying such methods to identify possibly best solutions then to proceed with
the high mutation rate. This is done to generate the individuals in the needed
space and direction. With this approach of initialising with the existing knowl-
edge, proportion of the solutions are increased along with the mean performance.
However the variance in performance is decreased. It can be understood as there
exists no occasional good runs resulting from the EA completely searching entirely
new regions of the space and coming up with novel solutions.

3.2 Crossover and Mutation Phase

Alternatively, parallel researchers proposed so-called intelligent variation oper-
ators to incorporate problem or instance specific knowledge. In a simple case,
these might take the form of introducing bias into the operators. for example, a
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3.2 Crossover and Mutation Phase

binary coded algorithm is used to select features for use in another classification
algorithm, efforts can be done to deviate the search process towards more com-
pact feature sets by using higher probability for mutating from the allele value use
to don’t use instead vice versa. Smith (8), suggests a related approach in which
genes encode for microprocessor instructions, which clusters obviously into sets
with similar effects. Hence the mutation operator was biased to incorporate this
expert knowledge. This incorporation directs the mutations such that it happens
more likely between the instructions in the same group instead shuffling between
groups.

Another approach which varies slightly from the above uses problem specific in-
stead instance specific knowledge which can be noticed in the modified one-point
crossover operator for protein structure prediction as in (9). The authors suggest
that heritable features being combined by recombination were folds, or fragments
of three-dimensional structures. A property of the problem is that during folding
protein structures can be free to rotate about peptide bonds. Effective applica-
tion of this knowledge by the modified operator by testing explicitly maximum
possible different orientations of the two fragments. This is accomplished by try-
ing all the possible allele values in the gene at the crossover point in order to
find energetically highly favorable ones. When there is no feasible confirmation,
different crossover points were selected and the process has been started from the
beginning. It can be noticed how the incorporation of local search phase can be
incorporated.

On the other side, the operators are modified to incorporate the instance-
specific knowledge. This usage of instance-specific knowledge works by maintain-
ing the diversity within the population to restrict the premature convergence.
Diversity is maintained by ensuring that the offspring inherits all of the edges
common to both parents, but none of the edges that are present in only one
parent. The intelligent part of the operator emerging from nearest neighbour
heuristic to join together with the inheritants from the parents. This exploits the
instance-specific edge length information.

In the context of optimization, use of surrogate models are suggested by Rasheed
(10). The author suggests two approaches for setting up and applying the sur-
rogate models to speed up genetic-algorithm based optimisations. In these ap-
proaches functional approximations of the fitness function which helps to fasten
the search. One method fastens the search by keeping genetic operators more
informed. The informed operators (IO) replaces the pure randomness with de-
cisions that are driven by the surrogate models. Evolution operators such as
initialisation, mutation and crossover are replaced by informed intialisation, in-
formed mutation and informed crossover respectively.
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3.3 Fitness Evaluations Phase

In Informed Initialisation, for generating an individual in the initial popu-
lation, a number of uniformly random individuals in the design space has been
generated and then the best among them is selected according to the surrogate
model. The number of random individuals is a parameter of the method with a
default value of 20.

In Informed Mutation, several random mutations are generated among the
base point. Mutation is randomly generated by randomly selecting the proper
parameters for the mutation. The mutation which seems best according to the
surrogate model is returned as a result of the mutation. The number of random
parameter of the method has five as the default value.

Informed Crossover is done by randomly selecting two parents according to
the usual selection strategy. These two parents are fixed and will not change as
the effect of informed crossover operation. Multiple crossovers are conducted by
randomly selecting its internal parameters and applying it to those two parents
in order to produce a potential child. Internal parameters are governed by the
chosen crossover method. Hence informed mutation is applied to every potential
child and result of this informed crossover is the best point as considered in the
context of surrogate models.

The other one fastens the search by genetically engineering some of the individ-
uals instead of applying a Darwinian approach. This generates the new individ-
uals using crossover/mutation, with iteration in which individuals are generated
by running mini-optimisation using the approximations and returning the best
point found therein. The application of informed operators framework to aircraft
design optimisations and engineering design domains did consistently produce
effective results.

3.3 Fitness Evaluations Phase

Computationally efficient meta models or approximate models find the common
use in evolutionary optimisations when the original fitness function is computa-
tionally expensive for problems like 3D aerodynamic design optimisations. These
surrogate models are applied to assist the algorithm to obtain acceptable solu-
tion using a limited number of evaluations based on the expensive original fitness
functions and by applying meta-models to fitness functions. These approaches
can be interpreted as how the knowledge from the model can be applied to guide
the evolutionary search. In these approaches individual and generation based
control can be done to ensure that the these approximate fitness functions will
converge to the true optimum. Jin (11), suggested a framework for managing
these approximate models with the generation or individual based control of the
evolution.
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3.3 Fitness Evaluations Phase

The following main constraints must be addressed while applying these mod-
els which are based on expert and the user knowledge. The main constraint is
to improve the quality of the model with the given limited number of training
data. Another one is predicting how often the approximate model should be used
which is widely interpreted as model management or evolution control. Dennis
(12), suggests a framework for model management based on his investigation with
combining approximate models with conventional optimisations. Researches in
this direction shows that managing approximate models requires a strong inter-
action among the optmisation and fidelity of the applied model which is primarily
based on the trust-region method. With this, one can be assured that the search
process converges to the acceptable solution of the original problem.

Generally, individual or generation based evolution control are applied to com-
bine the approximate models with the original fitness function. With the individual-
based evolution control, the approach is that all the individuals are first evaluated
using the approximation or surrogate model. Then some of the individuals among
them are chosen so that they undergo the re-evaluation using the original fitness
function. The following criterias are analysed for the selection of individuals.

Choosing the individuals randomly for re-evaluation considered as not efficient
in reducing number of expensive evaluations. Its reasonable to choose the best
individuals from previous optimisations which are suggested based on the approx-
imate models which might result in better approximation of the fitness values.
Selection of most uncertain individuals, leads to high exploration of the unknown
regions in the search space as that space is searched very less. K-means clustering
algorithm helps to identify the most representative individuals. This is done by
dividing the population by number of clusters and the individuals which are at
close proximity to the cluster centres are selected for re-evaluation for each clus-
ter. This has the advantage of good distribution of the number of samples which
inturn improves the performance such as high online learning in neural networks.
Furthermore, it encourages the exploration of unknown regions because individ-
ual which is located far from the current search space usually will get selected for
re-evaluation. This selection of most uncertain and the best individuals can also
be done by the hybrid strategies.

Generation based evolution control is done by evaluating all the individuals
for specified number of generations and also the re-evaluation is done for all
the individuals for one or more generations. This generation based control with
a fixed frequency of using the original fitness function is not highly preferred.
Hence frequency of applying the original fitness function has to be adapted to
ensure the effectivity of the algorithm.

However, with the incorporation of knowledge in evolutionary optimisations by
fitness approximation certainly improves the convergence speed of the optimisa-
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3.3 Fitness Evaluations Phase

tion. On the other hand particularly, in multi modal fitness landscapes this has
the high probability for premature convergence which can worsen the optmisa-
tion process. Ulmer (13), suggests an approach called model assisted evolution
strategy to address this problem which uses the Gaussian process approximation
model to preselect the most promising individuals before applying expensive true
fitness functions. Hence this preselection process has been refined by identify-
ing the likelihood of each individual to improve the overall best found solution.
Gaussian processes are applied due to its advantage of providing probabilistic
interpretation of the model prediction.

Hence this strategy attempts to find the trade-off between the concerns of
optimisation and the generation of suitable approximation model of the fitness
landscape. This was done by introducing probability of improvement (POI) crite-
rion to detect the highly promising individuals. POI controls the balance between
exploitation and exploration of by making use of probabilistic interpretation of
Gaussian models. This approach of model assisted ES with POI pre-selection has
considerably increased capacity to sample in unexplored spaces.

However, eventhough with the increasing research efforts, the application of
approximate, surrogate or meta-models for optimisation problems, have found
only limited success in the usage of real world optimisation problems. Primarily
the limitations are due to,

* The Curse of Dimensionality which results in hurdles to construct the
accurate approximate model.

* Lack of massive parallelism with the existing strategies

* Considerably less emphasis on global convergence properties of these
combination of evolutionary optimisation techniques.

Thus this work proceeds with developing a common framework to incorpo-
rate the knowledge in the following manner. Efforts are made to incorporate
the domain knowledge at hand possibly from existing best designs, wind tunnel
experiments etc. to the covariance matrix so that the search process can be ini-
tialised with the definition of search direction and search space. Knowledge from
previous generations is taken care by CMA-ES in the form of self adaptation.
Incorporation of knowledge in the fitness function through approximate model
for this work is followed as described in chapter 6.
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Chapter 4

Quantification of Parameter

Interactions

In the context of Design Optimization, knowledge can be expressed as coherence
between design variables and the influence of them on the overall performance
of the design. Especially in aerodynamic design optimization, identifying and
modeling those coherences or interaction effects is a challenging task. Concep-
tually two different techniques from regression analysis and information theory
are described. Hence, the models applied to detect and quantify the parameter
interaction effects which are analysed for this work are also explained.

4.1 Interaction Effects Using Multiple Regres-

sion

Regression techniques uses the moderated causal relationships 4.1 to model and
detect the interactions. Generally regression models assume a functional rela-
tionships between dependent and independent variables.

Considering, the performance variable Y which is dependent on the value of
the independent design parameters X1 . . . Xr. The simplest type of relationship
between the performance and the design parameters x1 . . . xr is a linear relation-
ship. Multiple regression for the given constant coefficients β1 . . . βr is defined as
follows,

Y = αβ0 + β1X1 + β2X2 + . . . + βrXr + e (4.1)

whereas e is the residual term. α is the least square estimate for the perfor-
mance variables. β1 . . . βr are the regression coefficients for X1 . . . Xr respectively.
Equation 4.1 describes the linear regression of the performance variable for the
set of design variables with the following assumptions (15),

* The design variables are fixed in nature and have positive variance.

* The rank of the sample data matrix equals the number of columns and
is smaller than the number of parameters.
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4.2 Interaction Effects Using Information Theory

Figure 4.1: Illustration of moderated causal relationship - the nature relationship
between X1 and Y varies, depending on the value of X2

* The residual at a given set of fixed values of X are normally distributed
and have the variance that is equal to the residual value at any other
fixed set of values of X.

The regression coefficient βi provides the knowledge on the influence of each
design variable Xi on the performance variable Y . Commonly, the product terms
(X1X2 ) are used to model the interaction effect in the regression analysis [12].

Y = α + β1X1 + β2X2 + γX1X2 + e (4.2)

It is interpreted from equation 4.2 that for every unit of change in the mod-
erator design variable X2 the value of β1 is expected to change by β3 units.

Product Regression coefficient γ provides the knowledge on combined influ-
ence of the design variable and the moderator design variable on the performance
variable Y

4.2 Interaction Effects Using Information The-

ory

4.2.1 Preliminaries

4.2.1.1 Joint Probability Density Function

Probability density function (PDF) can be described as density of probability
of random variable at each point in sample space. PDF for discrete random
variables X1 . . . Xn is termed as joint PDF. The Joint PDF maps each possible
combination of attribute values into probability of its occurrences. Considering
the collection of independent mutually exclusive attributes, A = a1, a2, . . . an and
B = b1, b2, . . . bn. The Joint PDF can be written as follows,
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4.2 Interaction Effects Using Information Theory

PA,B(X) = P [(A,B) ∈ X], X ⊆ R2 (4.3)

4.2.1.2 Entropy

In the words of Statistics, Shannon entropy is said to be the amount of uncertainty
associated with the random variable. This work employs entropy in order to
reduce the uncertainty about the knowledge on performance, in order to achieve
optimal solutions. For the random variable A, the Shannon entropy is given by,

H(A) ≡ −Σa∈AP (a)log2P (a) (4.4)

H(A) describes the amount of uncertainty about A which means higher the
entropy level indicates that the knowledge is less reliable.

4.2.2 Mutual Information

Application of multiple regression techniques to determine the interaction effects
is always based on the assumption that the relationship between the parameters.
Alternatively, Information Theory is applied as it is purely a data driven approach
without the need for any assumption about the kind of relationship between the
parameters (15).

This quantification approach for the probabilistic interactions is based on how
well one can approximate the joint probability distribution without admitting
that there are interactions described as in (15). The calculation of information
quantities for analysing the dependencies between variables are related to the
estimation of Shannon entropy, which is then reduced to estimate marginal and
joint probability distributions (15). This work proceeds with estimating two-way
interaction information known as Mutual Information.

Considering the performance variable F and the design variable X , the joint
probability distribution can be observed as, PFX(F,X) . Then the uncertainty
about F with the knowledge of X is estimated as follows,

H(F,X) ≡ −
NF
∑

i=1

NX
∑

j=1

P (fi, xj)log2
P (fi, xj)

P (fi)P (xj)
= H(F,X) − H(X) (4.5)

whereas,
P (fi, xj), is the joint PDF by observing both the performance and design at

the same time.
From the above equation, the two-way interaction or mutual information is ob-
tained as follows,

I(F ; X) = H(F ) − H(F | X) (4.6)

H(F | X), is the conditional entropy which is a measure of what X does not
say about F . This can also be explained as remaining uncertainty about the
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performance after X is known. Hence, I(F ; X) is also interpreted as information
gain i.e. the knowledge achieved about the influence of the particular design
variable (X) on the performance. I(F ; X) = 0, indicates that both the design
and performance variables are independent and there is no interaction between
them.
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Chapter 5

Setting up the Strategy

Parameters

As discussed earlier, defining a suitable strategy always plays a crucial role in
design optimisation to achieve the global optimum. This results in increased per-
formance of the design. With the expert knowledge about existing designs from
previous optimisations, the primary efforts of this work centred on setting up the
strategy parameters before initialising the actual optimisation. These parameters
greatly determine whether the algorithm will find an optimum or near optimum
solution in an efficient manner by means of low number of fitness evaluations.
However, choosing the correct parameters is s challenging task as it varies with
the problem at hand. Instead parameter tuning, this work mainly focusses on
defining the initial search points and the search direction. This is done with
the motive of defining the common framework suitable for different optimisation
problems by considering the computational costs and the small population size
also in mind. This section describes the different models for defining initial strat-
egy of the optimisation for initialising the optimisation using already existing
designs and performance measurements.

In CMA-ES, the covariance matrix primarily defining strategy for the search,
the knowledge incorporation efforts are made to define the components of the
initial covariance matrix. This is done with the motive of achieving the a better
optimum than using the existing standard initialisation process.

Considering the covariance matrix C ∈ Rn×n which has the form (refer section
2.1.2) of

C = QD2QT (5.1)

Whereas QQT = RRT rotation matrix represents the eigenvectors. D2, is
the diagonal matrix represents the eigenvalues. With the standard initialisation
process, the initial covariance matrix has the form of

C = D2 = I (5.2)

Thus the focus is centred towards replacing the initial covariance matrix (iden-
tity matrix) either only with the eigenvalues or with the full rank covariance
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5.1 Estimation of the Eigenvalues Using Pearson Correlation

Coefficient

matrix by means of additionally initialising the eigenvectors i.e. with eigenval-
ues and eigenvectors. The linear and non-linear interaction effects are applied to
estimate the eigenvalues and the rotation matrix is applied to estimate the eigen-
vectors. Based on the estimation of the components of the covariance matrix, the
attempts are categorized as follows,

* Estimation of the eigenvalues with,

- Pearson correlation coefficient

- Mutual information

* Estimation of the eigenvectors with,

- Multiple linear regression analysis

5.1 Estimation of the Eigenvalues Using Pear-

son Correlation Coefficient

Pearson product moment correlation coefficient (PMCC) quantifies the linear de-
pendency between two variables X and F . This provides the measure of how well
the future outcomes are predicted by model. In the context of the design opti-
misation, the estimation of this coefficient can be seen as efforts to quantify the
linear relationship between the design parameter and the performance. While ap-
plying it to bivariate normal distribution, the correlation coefficient characterises
the joint distribution as long as the marginal means and variances are known.
However, the correlation coefficient is highly informative about the degree of lin-
ear dependence between two random quantities, regardless of whether their joint
distribution is normal. There exist several suggestions for the interpretation of
the correlation coefficient. The following interpretation suggested by Cohen is
widely accepted. However, such criteria are in some ways arbitrary and should
not be observed too strictly. This is because the interpretation of a correlation
coefficient depends on the context and purposes. A correlation of 0.9 may be
very low if one is verifying a physical law using high-quality instruments, but
may be regarded as very high in the social sciences where there may be a greater
contribution from complicating factors.

The correlation coefficient is estimated as the ratio of the sample covariance
between each of the design variable Xi and the corresponding performance vari-
able F their sample standard deviations. With N being the problem dimension
or number of parameters, PMCC is given by,

r =
ΣN

i=1(xi − x)(fi − f)
√

ΣN
i=1(xi − x)2

√

ΣN
i=1(fi − f)2

, i = 1 . . . N (5.3)

Where x and f are the expected design parameter values and performance
numbers respectively. The correlation coefficient estimated from samples is indi-
cated by r, while the population based estimation is denoted as ρ. The values
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of the correlation coefficient ranges between r = [−1, 1]. The maximum value
of r = 1 indicating that given a design parameter the performance number can
perfectly be predicted using a linear model, with all data points lying on a line
for which F increases as X increases. The minimum value of r = −1 implies that
all data points lie on a line for which F decreases as X increases and 0 implies
that there is no linear relationship between the variables.

The estimated linear dependence between design and performance variables
is incorporated into covariance matrix as eigenvalues so that the knowledge can
be applied to initialise the search process. i.e the correlation coefficients replaces
the identity matrix. This is denoted as the correlation matrix Cr

5.2 Estimation of the Eigenvalues Using Mutual

Information

As an alternative approach the mutual information is applied to estimate the
eigenvalues of the covariance matrix. This provides the measure of non-linear
relationship between the design parameter and the performance. The mutual
information quantifies how much information a design variable provides in order
to reduce the uncertainty about the performance. Hence it can be termed as two-
way interaction effect. Initially the data is grouped into ten bins and from that the
marginal and discrete joint probability distribution are estimated. Then mutual
information is estimated by calculating the relevant frequencies. Based on the
marginal and joint probability distribution the mutual information is calculated
by modifying the equation 4.2 as follows,

I(X; F ) =
∑

x∈Rx,f∈Rf

p(x, f)log2
p(x, f)

p(x)p(f)
(5.4)

Where, x and f relate to the discrete instances of the design and performance
numbers. The mutual information estimated is applied to replace the identity
matrix which is denoted by Cmi. The following figure 5.1 explains the estimation
of mutual information as well correlation coefficient from the existing data set.

5.3 Estimation of Eigenvectors Using Multiple

Regression

Attempts to incorporate additional knowledge of the design into the algorithm
led to the estimation of the eigenvectors using multiple regression techniques so
that the search process can be initialised with the full rank covariance matrix.
This helps in defining the search with the direction also. Estimation of eigen-
vectors is done as follows. Initially, as described in equation 4.2, the product
regression coefficient γ is estimated from the design and the corresponding per-
formance variables. The rotation angle is calculated using the product regression
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Figure 5.1: Figure explaining the estimation of correlation coefficient and the
mutual information from the paired sets of design and performance variables

Figure 5.2: Figure explaining the estimation of the eigenvalues. Ellipsoids on the
left indicates the geometrical interpretation of the initial covariance matrix
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5.3 Estimation of Eigenvectors Using Multiple Regression

coefficients is used to estimate the complete rotation matrix for N-dimensional
space. The figure 5.3 depicts the steps for the estimation of rotation matrix.

When discussing rotations, there exists two modes of rotation. One is to ro-
tate the axes and the other one rotates the object related to the fixed axis. The
efforts proceeds with initially estimating the two-dimensional rotation matrix and
then rotating the object in N dimensions. This rotation in N dimensional space
is realised by multiplying all the two-dimensional matrices. The rotation in two-
dimensional space has the following matrix form which rotates the plane around
the origin by an angle of θ and X axis is rotated towards the Y axis.

R(θ) =

(

cosθ −sinθ

sinθ cosθ

)

(5.5)

In order to estimate the rotation in N-dimensional space, the rotation matrix
for each plane in N-dimensional space is estimated as follows,

R(αij) =





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 cos(αij) 0 −sin(αij) 0 0
0 0 0 1 0 0 0
0 0 sin(αij) 0 cos(αij) 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





















(5.6)

Hence the n-dimensional rotation is achieved by multiplying all the rotation
matrices,

R =
∏

R(αij) (5.7)

The properties of rotation matrices are,

det(R) = 1; RT = R−1; RTR = I (5.8)

In order to have an effective and fair comparison of the results the covariance
matrix is normalised such determinant of the initial covariance matrix is constant.
This is given by the following equation,

Cnorm = C · det(C)(−1/Ci) = 1 (5.9)

This enables keeping the volume of the distribution constant irrespective of the
elements of the initial covariance matrix.
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5.3 Estimation of Eigenvectors Using Multiple Regression

Y=1β i X iβ j X jij X i X je

αij=atan 1 /ij

Rαij=[
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 cosαij 0 −sinα ij 0 0
0 0 0 1 0 0 0
0 0 sinαij 0 cosαij 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

]
where ,
X i , design variable
ij , product regression coefficients
αij , angle for each product term
Rαij , rotationmatrix
i , j ∈N , No.of Parameters

Estimation of prodcut term :

Estimation of rotation angle :

N−dimensional rotation :
R= R αij 

first=1 ;
index=N1 ;
for i=1 : N−1

for j= i1 : N
ang=atan 1. /gamma index ;
R1=eye N ;
R1i ,i =cos ang ;
R1i , j =−sin ang  ;
R1 j ,i =sin ang ;
R1 j , j =cos ang ;

end
if first=1 ; R=R1 ; first=0 ;
else

R=R∗R1;
end
index=index1 ;

end

Figure 5.3: Steps in estimation of rotation matrix. Pseudo code given on the
right calculates the rotation matrix.
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Figure 5.4: Figure explaining the estimation of full rank covariance matrix, ellip-
soids indicate the geometrical interpretation of initial covariance matrix
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Chapter 6

Knowledge Incorporation for 2D

Blade Design Optimization

In order to investigate and proof the theoretical concepts discussed in chapter
5, the developed algorithms for the estimation of the initial covariance matrix in
CMA-ES have been applied for the optimization of the stator blade design from
the supersonic compressor cascade (17). The Shape of the design is represented
by the B-Spline curve with 38 control points as shown in figure 6.2. Simula-
tion model using Navier stokes 2D solver described as in (18) is applied for the
experiments. As the motive is to derive a common framework for the shape opti-
mization, the results are compared on the basis of behaviour of the incorporated
knowledge with the fitness values and the algorithmic aspects. Thus this chapter
describes the representation of the blade profile for encoding into the algorithm,
the experimental setup and the results of the experiments.

6.1 Representation of the Design

The 2D profile of the chosen blade is represented by a B-Spline curve of 23 spline
control points. Each control point is represented by its X and Y coordinate. As
these control points represents the parameter vectors, there exists 46 parameters.
By neglecting the two control points at the end, as they reflect the starting points
to obtain a closed curve, totally 38 parameters to be optimised. Figure 6.2 is an
example of the resulting geometry adapted in detail with control points and the
construction of spline curve at the leading as well trailing edges.

In order to achieve the precise representation of the design, the profile of the
design has to be represented adequately as it determines the optimum of designs
along with the strategy by influencing the evolution path. Olhofer (19) describes
the following as the main constraints that have to be fulfilled,

* Completeness

The encoding of the design must assure maximal degrees of freedom
to represent the profile in order to avoid unnecessary constraints on the
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phenotype space. Representation with adequate degrees of freedom en-
ables optimal representation of the design.

* Causality

Causality implies that small steps on the genotype space lead to
small steps on the phenotype space. This must be taken care of as it is
important for the adaptation of strategy parameter in CMA-ES.

* Compactness

It plays crucial role especially in population based algorithms due to
high dimensional search spaces. The representation should be in such
a way that it has to minimise the dimensionality of the search space so
that the calculation time can be minimised.

The expert knowledge about the problem and possible designs of the blade
helps greatly while devising the efficient representation of the design. So that
the chosen model satisfies the strong demand for causality and balances between
high degree of freedom for the structure generation and a low dimensionality of
the genotype space. The upper and lower sides of the profile represented by five
points fixing two fourth order polynomials.

6.2 Objective Function

The quality function applied for the optimisation of the 2D blade is given by 6.1.
This description is based on (19).

f(x) = η1ω + η2.f2(α2) + η3.f3(d1) + f4(d2) (6.1)

It can be seen that the quality of the design is described by four objectives. The
first one is based on pressure loss ω which is a measure of energy loss which must
find the minimum value of that. The second term measures the deviation of the
averaged angle of the gas stream at the end of the blade α2 from the specified value
α̃, which is the target of the optimisation. f3 and f4 represents the geometrical
constraints considered. For the sake of stability and manufacturing purposes
d1 > dmin, d2 > dmax are set. Whereas dmin and dmax are the minimum and
maximum given values of diameters respectively.

The non-linear functions fi are introduced to include the given constraints
concerning outlet angle and geometry into the fitness function. As long as the
corresponding values are in the given tolerance range or larger than the minimal
value the function is equal to zero.

In equation 6.1,ηi are the weights of the different objectives which are essen-
tial to normalise the range of possible values for the different terms. Hence they
allow prioritising certain criteria. Factor for the outlet angle is set to η2 = 10, η3

and η4, the factors for the geometric constraints are set to 107. While consider-
ing the range of values of the angle and the thickness during optimisation, the
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relationship between different terms can be estimated. The maximum difference
between outlet angle and the design value was α = 2.5o. The maximum difference
between the stipulated and the measured minimal thickness at the thickest part
and thinnest part were maximal 1% during the optimisation. Therefore the rela-
tion between the terms in the order given in equation 6.1 with the following initial
setup of weights. n1 = 1, n2 = 100, n3 = 30, n4 = 30. During the optimisation
due to low influence of pressure loss and the high influence of the constraints, the
shape is modified to an allowed shape in the first step.
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Representaion of Blade Profile

 

 

Blade Surface

Spline Curve with control points

Figure 6.1: Representation of the initial 2D blade profile (blue) and its B-Spline
representation (red) with 23 controls points. Each of the control point is defined
by its x and y coordinates in 2D plane.

6.3 Experimental Setup

The initialisation models are implemented in C++ to incorporate the developed
algorithm into the existing 2D Blade simulation code. The algorithm uses the
Shark Library (20) for representing the genomes and performing genetic operators
as well as for the selection method. PVM (21) is used to parallelize and acceler-
ate the evaluation of individuals. Navier Stokes 2D solver with a low Reynolds
number k − ǫ is used for flow simulations. As discussed in chapter 5, knowledge
is incorporated by means of four different covariance models for optimisation and
the results are compared with the standard initialisation. They are given as fol-
lows,

Initialisation of Eigenvalues with,

* correlation matrix

* mutual information matrix

Initialisation with full rank covariance matrix with,
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6.3 Experimental Setup

Figure 6.2: Representation of the trailing edge (left) and the leading edge (right)
of the Blade profile

* correlation and regression coefficient

* mutual information and regression coefficient

The knowledge about the design is estimated for 70 generations and the opti-
misation is initialised from that point. The objective parameters are encoded into
the parent population and the covariance matrix defines the strategy with the help
of incorporated knowledge (Figure 6.3). Each experiment has been performed 10
times with different initialisation of the random number. The median of these
runs is given in the following figures representing the results of the optimisation
run.

35

Chapter5/Chapter5Figs/EPS/blade_TL.eps


6.3 Experimental Setup

0 50 100 150 200 250 300
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

Generations

F
itn

es
s 

V
al

ue
s

 

 

Re−Initialised with the design 
and knowledge 

Base Design Optimization

Initalisation Point 

Interaction Effects are 
calculcated from the

 history of 70 Iteration 
steps.

Figure 6.3: Experimental setup showing the extraction of knowledge from existing
data and the initialisation with the extracted knowledge.

6.3.1 Initialisation with Eigenvalues

Initialisation is done by with replacing the initial covariance matrix (identity
matrix) with correlation Cr as well as mutual information matrix Cmi. As dis-
cussed earlier both the matrices are only with the eigenvalues. Figure (6.4) and
(6.5) represents the initialised covariance matrix using correlation and mutual
information as Eigenvalues respectively. It can be noticed from figure (6.4) that
correlation matrix has the presence of high values. i.e. provides information on
the existence of high level of interaction between the design and the performance
variables compared to mutual information. The correlation and mutual informa-
tion matrices represents linear and non-linear dependence of the design parameter
over the performance parameter respectively. (Refer Chapter (4)).

36

Chapter5/Chapter5Figs/figinit.eps


6.3 Experimental Setup

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Initialised with Correlation

0

0.5

1

1.5

2

2.5

3

3.5

Figure 6.4: Initialisation of covariance matrix using correlation as eigenvalues.
The size of the matrix represents the dimension of the search space e.g. the
number of parameters considered for optimisation.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Initialised with Mutual Info

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 6.5: Initialisation of covariance matrix using mutual information as eigen-
values. The size of the matrix represents the dimension of the search space e.g.
the number of parameters considered for optimisation.
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Figure (6.6) shows the median fitness curves of the experiments conducted for
10 runs. The curve labelled baseline indicates the existing design optimization.
Standard initialisation represents the experiment in which the covariance ma-
trix is initialised as identity matrix which is a general procedure with CMA-ES.
Initially the algorithm takes 10-15 generations to adapt the global step size. It
can be noticed from Figure (6.14) that the effect of the covariance matrix comes
into play after 10-15 generations. Hence, the initialisation with correlation shows
good convergence behaviour of the fitness and it is almost similar to the base-
line optimisation procedure. This performance is as good as the existing best
but with better performing shape than the existing design. The initialisation
with correlation matrix gives the advantage of around 60-70 generations by sav-
ing the computational time of 12 hours for the chosen 2D Blade optimisation
problem. The good convergence with correlation can be explained as the effect
of high value of interaction effects present in the correlation matrix. Refer (6.4).
Initialisation utilising the mutual information which represents the non-linear
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Figure 6.6: Comparison of the median fitness values for the initialisation with
eigenvalues. The x-axis represents the generation and the y-axis represents the
fitness values in logarithmic scale.

interaction effects follows the standard initialisation and it does not show any
significant improvement of the performance.
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6.3.2 Initialisation with Full Rank Covariance Matrix

Figure 6.7 and 6.8 represents the initial covariance matrix using correlation and
mutual information as eigenvalues respectively. It can be noticed that figure
(6.7) has high values present in the matrix along the diagonal as well as the
non-diagonal elements. when compared to diagonal elements the values of the
non-diagonal elements in both the matrices are low.
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Figure 6.7: Initialisation of full rank using Correlation-Rotation matrix. Eigenval-
ues represent the correlation and eigenvectors represent the regression coefficient.
The size of the matrix represents the dimension of the search space. e.g. number
of parameters considered for optimisation.

The same setup extended for initialising with full rank covariance matrix (figure
6.9). It can be noticed that initially the algorithm takes 10-15 generations to
adapt the global step size and then the effect of the covariance matrix comes
into the play (figure 6.14). Hence here also initialisation with correlation shows
good convergence values of the fitness and it is almost similar to the baseline
optimisation procedure. But it is not showing good convergence than the baseline.
Mutual information is converging better than the standard initialisation. Effect of
the rotation didn’t make considerable impact when compared to the initialisation
with eigenvalues (Figure 6.9).

It can be seen clearly from the plots (6.9) the effect of the initialised covariance
matrix lasts up to around 75 generations after that the direction of the search is
changing.

Comparison of variances: The figures 6.10 and 6.11 represent the variances
of fitness values over 10 runs for initialisation with eigenvalues. Statistical sig-
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Figure 6.8: Initialisation of full rank using Mutual information - Rotation matrix.
Eigenvalues represent the correlation and eigenvectors represent the regression
coefficient. The size of the matrix represents the dimension of the search space.
e.g. number of parameters considered for optimisation.
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Figure 6.9: Comparison of the fitness values for the initialisation with full rank
covariance matrix. x-axis represents the generation and the y-axis represents
logarithmic values of median fitness values over 10 runs.
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nificance of the correlation with the standard initialisation can be observed from
figure 6.10. When compared with the mutual information, variance of the fitness
values are also low. Statistical significance of the run initialised with correlation
as eigenvalues resulted in faster convergence of the algorithm.

0 10 20 30 40 50 60 70 80
1.5

1.52

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68

1.7

Generations

qu
an

til
eF

itn
es

s 
V

al
ue

s 
ov

er
 1

0 
ru

ns

variances for of Initialisation with Correlation

 

 

Figure 6.10: Comparison of the variance in fitness values of the initialisation using
correlation as eigenvalues. Compared initialisation using correlation as eigenvalue
(red) with standard initialisation (black): lower and upper dotted lines indicate
25% and 75% of the fitness values respectively. Solid line represents the median
values.

Similarly, the initialisation using full rank covariance matrix using correlation
as eigenvalues (Figure 6.12) shows high significance when compared with mutual
information (Figure 6.13). Interestingly, in some of the runs mutual information
showed good convergence similar to baseline optimisation run (lower dotted lines
in Figure 6.13). There exists some chances of good convergence for the mutual
information with rotation. In order to obtain the common procedure it will
be preferable to test the mutual information-rotation model with another test
problem.
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Figure 6.11: Comparison of the variance in fitness values of initialisation us-
ing mutual information as eigenvalues. Compared initialisation using mutual
information as eigenvalue (brown) with standard initialisation (black): lower and
upper dotted lines indicate 25% and 75% of the fitness values respectively. Solid
line represents the median values.
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Figure 6.12: Comparison of the variance in fitness values of the full rank covari-
ance matrix initialised with rotation-correlation matrix. Compared initialisation
using correlation with rotation (red) with standard initialisation(black): lower
and upper dotted lines indicate 25% and 75% of the fitness values respectively.
Solid line represents the median values.
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Figure 6.13: Comparison of the variance in fitness values of the full rank
covariance matrix initialised with rotation-mutual information matrix. Com-
pared initialisation using correlation with rotation (red) with standard initiali-
sation(black): lower and upper dotted lines indicate 25% and 75% of the fitness
values respectively. Solid line represents the median values.

6.4 Analysis of Step size Adaptation

The figures 6.14 and 6.15 visualizes the progress of global step size over the gen-
erations. Optimisation has been initialised with σ = 0.0001 for each optimisation
run. It takes around 15 steps to adapt the strategy after that longer the steps
leads to the faster convergence. It can be understood that the initialisation with
correlation matrix as eigenvalues shows the faster adaptation of the strategy. This
leads to better converging behaviour than all other initialised models.
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Figure 6.14: Comparison of the global step sizes for the covariance matrix ini-
tialised with eigenvalues.
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Figure 6.15: Comparison of the global step sizes for the initialisation with full
rank covariance matrix.
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Chapter 7

Conclusions

In this thesis different models for incorporating the knowledge to initialise the
search process are analysed. Knowledge is estimated by means of quantifying
the interaction effects. i.e.Detection of linear as well as non-linear interaction
effects between the design and the performance parameters. More precisely, inves-
tigated different techniques for developing a common framework for estimation
and initialisation of the covariance matrix using pre-knowledge in order to find
the better shape of the given geometry with reduced computational time.

To incorporate the knowledge, two models of initialising the optimisation are
applied. Firstly initialising search only with the eigenvalues is done. Second
approach is based on initialising the search process by defining the full rank
covariance matrix adding eigenvectors by means of regression coefficients to the
covariance matrix. Correlation and mutual information are applied as eigenvalues
to the covariance matrix representing linear and non-linear interaction effects
respectively. Then both of them combined with eigenvectors to form the full
rank covariance matrix.

In order to validate the applicability of the developed framework , it has been
applied to the 2D Gas Turbine Blade with fluid dynamic simulation. The results
are analysed on the basis of convergence speed of the algorithm, adaptation of
the strategy. On the performance basis, initialisation done with the correlation as
eigenvalues shows the good convergence speed and it is almost same as the conver-
gence speed of existing best design but with the knowledge incorporated. This
saves around 60 generations approximately, around 12 hours of computational
time for this 2D Blade optimization. On the other hand, covariance matrix ini-
tialised using the mutual information eigenvalues did not show good convergence
speed except some runs. This can be attempted with another complex problem
to derive a common framework. Also the initialisation with full rank covariance
matrix did not make any considerable impact on the search. It is preferred to
initialise the search only with eigenvalues. Self adaptation of the strategy is also
analysed.
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In this search still there exists many interesting aspects to be studied in the
future. They can be :

* Analysing the influence of global step size along with the incorporated
knowledge.

* Generally CMA-ES takes around 10 initial generations to adapt the strat-
egy. After that only the incorporated knowledge comes into effect. How
to get the good convergence from the initialised point?
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Appendix A

Nomenclature

This section provides the list of abbreviations and frequently used mathematical
symbols.

Abbreviations :

EA Evolutionary Algorithms

EP Evolutionary Programming

ES Evolution Strategy

GA Genetic Algorithm

CMA Covariance Matrix Adaptation

CPs Control Points

MI Mutual Information
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Mathematical Annotations :

A, a common notation for scalars or sets

a common notation for vectors

A common notation for matrices

α angle

λ size of the offspring population

µ size of the parent population

g ∈ N0 generation counter

σ standard deviation, global stepsize

σ2 variance

σg stepsize at generation g

mg mean value of the distribution generation g

f : Rn −→ R objective function, fitness function to be minimised

C ∈ Rn×n
covariance matrix

Cg covariance matrix at generation g

I ∈ Rn×n
identity matrix, unity matrix

Rij Rotation matrix

n ∈ N search space dimension

N(0, I) multivariate normal distribution with zero mean and unity matrix

N(m,C) multivariate normal distribution with mean and covariance matrix

x
(g+1)
k k-th offspring/individual from generation g+1

r pearson correlation coefficient

Cmi covariance matrix initalised with mutual information as eigenvalues

Cr covariance matrix initalised with correlation as eigenvalues

cov covariance
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