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1 Introduction

Electricity is considered to the driving force from the start of the 20th Century.
With increase in average energy consumption and decrease in sources of energy it
becomes inevitable to reduce the losses in energy transmission. The electrical energy
is practically transmitted over long distances using strands of wires. These wires are
continuously subjected to climate changes. These allow the wires to develop cracks
in them and thereby increase the loss in transmission. Currently these high power
lines are monitored for integrity by using helicopters that run through the length of

the wire and check for cracks. This is a costly method.

1.1 Motivation

The motivation behind my thesis is to reduce the cost of maintenance and thereby
reduce the transmission energy losses. This is achieved practically using piezoelectric
transducers which send packets of waves, that travel long distances and can be used
to detect the cracks based on reflections. Fig. [Tl shows the comparison between the
responses from a laser measurement for the same specimen with and without crack.
The region shows the reflected components of the wave from the crack during wave
propagation. The region B shows the reflected components from the cracks due to
reflection of the wave at the end of the specimens. Thus we can clearly see a method

can be obtained to predict the cracks present in the system.

1.2 Previous Work

Meitzler considered the propagation of elastic pulses in wires having a circular cross-
section ] He attributed pulse distortion to the propagation of several modes. His
experimental and theoretical results suggest that coupling between the various modes
of propagation were responsible for the observed pulse distortion. Rizzo and Lanza
di Scalea examined the wave propagation problem in seven-wire cables at the level

of the individual wires |. Using wavelet transforms they identified the vibration
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Figure 1.1: Comparison of Specimens with and without crack

modes which propagate with minimal losses. Such modes are really useful for long-
range inspection of the wires. Furthermore, they found that since the dispersion
curves are sensitive to the load level, the elastic waves could be used for continuous
load monitoring. Haag, Beadle, Sprenger and Gaul proposed an energy model and
a finite element model for modelling wave propagation [7]. They found out that
the Finite element model requires more time compared to the energy based model
but had the advantage of detecting the sub-surface defects. The main problem in
the finite element method was the transducer ringing. Another problem that was
identified when using the finite element model was the reflections occurring due to

the presence of artificial boundaries.

1.3 Present Work

The goal of this master thesis is to clearly to make a finite element model of the wave
propagation in the time domain. The first problem was to design the piezoelectric
transducer in the finite element model and then use it for generating the waves and
then find the suitable piezoelectric transducer for practical applications. During the
finite element modelling, the reflections occurring in the artificial boundary was elim-
inated by using the non-reflecting boundary conditions or the absorbing boundary

conditions. A new method for generating this boundary condition was also formu-
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lated. The advantages of this new method being that it just used the finite element
model as it is to predict the damping values for the wave absorption. This means
that the user does not need to know the equations that govern the waves to find
the values of the damping co-efficient. Thus this new method developed is not only
useful for this current problem but can be extended to any problem where there is
a wave propagation occurring with the only requirement being the knowledge of the

cross-section in which the wave is propagating.



2 Fundamentals of Waves in Elastic
Solids

2.1 The Wave Equation in Tensor Notations

In this section we can derive the wave equation in three dimensions from the basic
principles [1]. Let u(x,t) denote the displacement of particles. From the continuum
theory, we can express deformation of the medium with the help of gradients of
displacement vector. Assuming the linear theory, we end up with a linear small-

strain tensor €, with the components

1
€ij = 5 (uij +uj) (2.1)

It is also noted that the strain tensor is symmetric and hence €;; = €j;. According
to the principle of balance of linear momentum, ‘The instantaneous rate of change of
the linear momentum of a body is equal to the resultant external forces acting on the
body at the particular instant of time’. This can be described using the linearized

theory as

/ tdA + / pfdV = / pitdV (2.2)
S 14 \%

where t is the surface traction in the direction of the normal to the surface, f is the
body force per unit mass, S is the surface that is subjected to the traction, V is the
volume of the body and p is the density of the material. With the help of Cauchy
Stress formula, we can have a relation between the stress tensor o;; and the traction

forces as

ti = 041y (2.3)
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where o; is the stress component in the z; direction on the surface with unit normal
n;. By substituting the Eqn. [Z3]into Eqn. we have in index notations

S \% \%

By using Gauss theorem, we can transfer the surface integral into volume integral,

hence rewriting Eqn. 2.4] we have

/ ojij + pfi — pu;dV = 0. (2.5)
\%

Since this is true for any part of V, we have
jij + pfi = pu (2.6)

This is called as Cauchy’s first law of motion.
The famous Hooke’s law for relating the stresses and strains with the help Lame’s

Constant for a homogeneous, isotropic, linearly elastic body is given by
0ji = AegkOji + 2H€j; (2.7)

Substituting the Hooke’s law (Eqn.[2.7)and the strain tensor (Eqn. 21))in the Eqn.

2.6l we have the wave equation as below with changing the indices

pg g5+ (A + p)uggi + pfi = pui (2.8)

The Eqn. 2.8 represents the equation of motion of particles in an elastic continuum for
an isotropic and homogeneous body. This forms our basis for further developments

in this area.

2.2 Lamb Waves in Plates

Lamb waves have the property of travelling over long distances and can determine
qualitatively and quantitatively the amount of damage occurring in the structure.
These types of waves occur in plates. Here in this section, we can see about their
history, the governing equations and try to visualize these waves using finite element
method.
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2.2.1 Mathematical Expression of Lamb Waves

The waves in a thin isotropic plate can be represented using a cartesian tensor nota-

tion in the form of

B g+ (N ) wigi+pe fi = p et (2.9)
where

u; is the displacement in the x; direction

fi is the body force in the x; direction

p is the density of the plate

1 is the shear modulus of the plate

A= —% where A is the Lamé constant and v is the Poisson’s Ratio

Based on Helmholtz decomposition, we can decompose Eqn.[2.9linto two uncoupled

parts under the plane strain condition as

2 2 1 2
0 o%¢ 0 o%¢ —2—¢ is the governing equation for longitudinal modes and
(9x1 (9x3 ci ot?
2 2
1
0 Q’Z) 2 Q’Z) —2—¢ is the governing equation for transverse modes
Bxl 31'3 et ot?
(2.10)
where
¢ = [A; sin(pxs) + Ag cos(pzs)] - expli(kx) — wt)] (2.11a)
1 = [Bysin(qxs) + By cos(qxs)] - expli(kxy — wt)] (2.11b)
2 2
2 W 2 2 W 2 2
= — k% = _k = 2.11c
r=z 7=z - (2.11c)

A1, As, By and By are four constants determined by the boundary condtions. k,

w and Ayave are the wavenumber, circular frequency and wavelength of the wave
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respectively. ¢, and er are the velocities of longitudinal and transverse/shear modes

defined by the following equations

B E(l1-v) 2p(1 —v) .
= \/p(l Tl —20) \/p(l — ) (2.12a)

FE v
o — /m _ \E (2.12h)

where E is the Young’s Modulus of the medium.

Lamb waves are actually superposition of longitudinal and transverse/shear modes.
An infinte number of modes exist simultaneously, superimposing on each other be-
tween the upper and lower surface of the plate, finally leading to well behaved guided
waves.

As a result of plane strain, the displacements in the wave propagation direction

(z1) and normal direction (x3) can be described as

_ _0
Ug = 0 us = 8$3 axl (2.13)

Lo o

Ul =
8$1 63:3

From the displacement, we get the stresses as

8u3 8u1 32¢ 82¢ 82¢
— (=2 4+ == = — 2.14
731 M(ﬁxl 8.%'3) M(leﬁxg 0z? 31‘% ) ( 2)
o _A(8u1+8u3)+2 Bug _)\(82¢+82¢)+ (82¢_ 821/1 ) (2 14b)
BN 0r 0wy M oxs T 022 T 02 T 023 T Omiozs’

For a plate with free upper and lower surfaces, by applying boundary conditions at

both surfaces as follows

u(z,t) = ug(x,t) Displacement boundary condtion (2.15a)

ti = 04N traction (2]_5b)

031 = 033 = 0 at xr3 = :|:d/2 =+h (2156)
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Figure 2.2: Symmetric and Antisymmetric Lamb Waves

where d is the plate thickness and h is the half thickness. For the plate coordinates
see the Fig. 2]
When we apply these boundary conditions to the Eqn. 2213 and Eqn. B.14], we
obtain the description of Lamb waves in an isotropic and homogeneous plate as
tan(gh) Ak qpp

— 2.16
tan(ph)  (Ak2 + Ap? + 2up?)(k? — ¢?) ( )

Substituting Eqn. 2I1d and Eqn. 2212 into Eqn. .16l also taking into considera-
tion that tan can be divided into since and cosine which have symmetric and anti-

symmetric properties, we can seperate Eqn. 2.16] into two parts as in a symmetric
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and antisymmetric part modes as

tan(qh 42

tZEE;hg =— E _22)2 for symmetric modes (2.17a)
" h k2 — 2)2

an(gh) = —( ) for anti-symmetric modes (2.17b)

tan(ph) 4k2qp

2.2.2 Visualization of Lamb Waves

To view the Lamb waves, we used a frequency of 50 kHz. We created a time vector
having 5 periods to act as the input. The displacement vector at each of the time
point (10 points per period) was calculated using the equations and the input was
given as a function boundary condition for the transient analysis. Eqn. 217 can be
visualized to produce the symmetric and antisymmetric waves as shown in figure 2.2
The finite element modelling of generation of a lamb wave - the symmetric wave
is modelled and is plotted with the help of vectors in Fig. 23l This plot is done
using ANSYS. The antisymmetric lamb wave is plotted in Fig. 2.4l Comparing to
the Fig.[2.2] we find that the symmetric and antisymmetric modes occur as expected
in the finite element modelling. For the finite element modelling, the mesh sizes
were controlled such that the mesh size of the length is 10 times smaller than the
wavelength. Also absorbing boundary conditions were implemented with the help of
a damping element. The modelling is detailed in the later chapters. Here the reader

is just shown that lamb waves can be modelled with the help of finite elements.

2.3 Waves in Cylinders

This section deals with the various waves that are possible in a cylinder. These waves
are similar to the Lamb waves in plates and have very high wave speeds. For example
the longitudinal wave has a speed of 6300m/s in aluminium which suits our purpose

perfectly.

2.3.1 Mathematical Basics

Here we can speak briefly about the mathematical basics behind the waves in cylin-
ders. We use the cylindrical coordinates over the entire part of this section as it is
easy to derive the wave equations. A solid, cylindrical rod in cylindrical coordinates

is considered. The radius of the rod is a. The rod and coordinate system are shown
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Figure 2.5: Rod with the Coordinate System

in Fig.
The motion of any homogenous, isotropic, linear elastic body is governed by the

so called Lamé - Navier-equation given by Eqn. 218l
pV2u+ (A + p)VV - u+ pf = pit (2.18)

By neglecting the body forces,we can decouple Equation 2.I8 using Helmholtz de-
composition we get Eqn. 219

u=Vo+Vx (2.19)

which can be written in scalar notations as

_ 00  10v. e
= o T 06 0z (220)

109 v, O

YW= T o T or (221)
L0010, 100
Y= 5, + r or (ripo) - r 00 (2.22)

With this substitution, the Lamé-Navier equation is decoupled into a scalar wave

equation and a vector wave equation,

2g- LOO Gy 10%
V=g VUV g (2:23)

This assumption for the displacements is complete and it covers all possible solutions
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of Eqn. I8 The strains are given by the following equations

ou, 10ug u,
Epp = g = ——— + —
o or 9= 00 r
- Ou,
= 9z
1. 10u,  Oug g

=0=5G% T )

- 1(8uz . Gur)
"2 or 0z

1 0Oug 10u,
=35 Trag)

€0z
Now by Hooke’s Law we have

Oij = )\A(SU + 2,&627'

13

(2.24a)

(2.24b)

(2.24¢)

(2.24d)

(2.24e)

(2.25)

By using Eqn. 2.25] and Eqn. 2.24] we have the expression for the stresses given by

the following equations

ou, up 1 Oug  Ou, ou,

UM:)\((% + r +;W+ az)+2'u(9r

_ (%4_&4_1%_’_82&)4_ (__|___)
700 = or T r 00 0z H r r 00

ou, u, 10u ou ou,
o= NGt T g v ) T,
(Quo _ o | 10ur,
Ire = H or r r 00
10u, Oug

(2.26a)

(2.26b)

(2.26¢)

(2.26d)

(2.26¢)

(2.26f)
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For free surfaces, the stresses in the surface plane disappear, which also holds for
the cylindrical surface of the investigated rod. The boundary conditions are thus
described by Eqn. 2.27]

Orr = Opg = 07y =0 here r—a (2.27)

In order to find a solution to the scalar and vector wave equations given by
Eqn223] the following general form is assumed for the scalar potential ¢ and the

components of vector potential ¢ as

¢ = f(r)Ou(0)e D (2.28a)
1/}7" = hr (T)er(a)ei(ngwt) (228b)
o = ho(r)Og(0)e’ €= (2.28¢)
b = h.(r)0,(0)e ¢ (2.284)

The first two factors are independent of time. They describe the potential as a
function of the location on a certain cross-section of the rod. An axial propagation
of the potentials is achieved by the thrid factor. On substituting Eqn. in the
wave equation given by Eqn. 223 for ¢ we have

" 1 . 1 ” w2
L

Rearranging the terms, it leads to Eqn. [2.30]

" ’ 2 @ll
o f / 2 W 9 ¢ 2
Foor f Oy
Since the solutions should be continuous functions, with continuous derivatives, n
can only be zero or an integer. The two sides of Eqn. 230 containing the separated
variables can only be equal to each other, if they are equal to the same constant.
This constant is denoted by n2. A solution of the ©, of Eqn. 230 is

Oy = Asinnf + Bcosnb,n € N (2.31)
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The same procedure yields similar expressions for O,,0y and ©,.Considering only
flexural, torsional and longitudinal modes, either sin- or cos- terms can be neglected.

The general form of the potentials assumed in Eqn. 2.28] can be reduced to

¢ = f(r) cos nhe& = (2.32a)
¥y = hy(r) sin nfe’ &+ (2.32b)
Vg = hg(r) cos nfe’ &+ (2.32¢)
¥, = h(r) sin nfe' &=t (2.32d)

The r dependence of the potentials is established from the Eqn. 2301 Rearranging

the same we have

d?f 1d 2
f _f(a2 _ n_2)f —0 (2.33)

dr? " rdr r
where

o= g2 (2.34)
. Eqn. 2333 is Bessel’s Equation of order n. It is solved by

f(r) = Adn(ar) (2.35)

where J,, is a Bessel function of the first kind having order n. Solving for the remaining
components is even more complicated, due to more complicated differential equations.
The interested reader is referred to GRAFF ﬁ] The results are

h:(r) = BsJn(Br) (2.36a)

he(r) = B1Jp—1(Br) + BaJnt1(Br) (2.36b)

he(r) = B1Jn—1(Br) — BaJns1(B7) (2.36¢)
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with

8= W_Q _ 52 (2.37)

Inserting these results in the assumptions for displacements Eqn.[2.20to Eqn. 2.22]

we have

Uy = [7‘/ + —nzpz + &y ] cosnb expi(gz wt) (2.38a)
r
ug = [— —nf + &Y, — ¢;] sin né expi(gz wi) (2.38b)
r
Uy = [—éf, — zp; —(n+ 1)—¢T] cos nd expi(gz wt) (2.38¢)
r

And accordingly the stresses in the surface become

Y.

- 7) + £4,)] cos nfe’(E2 =) (2.39a)

o = [~Ma? +€)f + 2u(f" + = (v

2n ’ f

oo ZM[T(f ntl

) — (20, — B2.) — E(——y — )] sinnfe’©> =41 (2.39b)

r

n+1

ore = p[—26f - %(1/1; + — B+ &)y) — ”7%] cos nfe'¢*=1) (2.39¢)

By using the boundary conditions as defined in the Eqn. 227 and substituting r—a

leads to a general frequency equation given by

laij| =0 (2.40)

A2 + €2)(aa)?

2ua? + (aa)” = n?}Jy(aa) + O‘a‘]r/z((m) (2.41a)

allz{

a1z = {n® — (Ba)*}Ju(Ba) — BaJ,(Ba) (2.41D)

a13 = 2n{BaJ, (Ba) — J.(Ba)} (2.41c)
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ag = n{aal, (aa) — Jy(aa)} (2.41d)
az = —n{Pa,(Ba) = Ju(Ba)} (2.41e)
asy = —{2n% — (Ba)?}J,(Ba) + 2Ba,(Ba) (2.41f)
az1 = —aad, (o) (2.41g)
asy = —%mj;(aa) (2.41h)
ass = nJy,(Ba) (2.411)

This determinant specifies the frequency equation for all possible modes. To address
particular mode families, n is varied. Thus we obtain the various modes and their

frequencies of propagation in the cylindrical medium.

2.3.2 Longitudinal, Torsional and Flexural Modes in Cylinders

The waves that propagate in the cylinder are in one of these three types namely
torsional, flexural and longitudinal. This part deals briefly the mathematics behind
these modes and their wavefronts. This section uses the waveguide FE method [13]

for generation of the wavefronts.

Longitudinal Waves

These types of waves are axially symmetric and have displacement components in
the radial and axial directions. [1]. The first longitudinal mode is given by putting

n=0 in the equation 241l The elements of the determinant become

ap; = + (ca)? Y Jo(aa) + aady(aa) (2.42a)

ayy = —(Ba)*Jo(Ba) — BaJy(Ba) (2.42b)
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ans = (Ba)?Jo(Ba) + 2Bady(Ba) (2.42¢)
az = —aady(oa) (2.42d)
3y = —%Bal}é(aa) (2.42¢)
()3 = Q) = (gy = Qg = 0 (2.42f)

and hence the general frequency equation reduces to

[a,“ a,”] s = 0 (2.43)
a3; dgg

This Eqn. 2243 tends to zero in two ways, either the value of the determinant is zero

which corresponds to longitudinal modes or the value al23 tends to zero. Computing

the determinant of the 2x2 matrix, we have the "Pochhamer Frequency Equation"’,

which Pochhammer discovered in the year 1876, which is the frequency equation of
the first longitudinal mode. It is given by Eqn. 2.44]

27&(52+£2)J1(aa)J1(ﬁa)—(52—52)J0(aa)J1(Ba)—4§2a5J1(aa)Jo(5a) =0 (2.44)

For n=0, we have from the Eqn.[2.38bl as ug = 0. Also we have from Eqn. [2.32b] and
Eqn. 2.32d]| the terms v, and v, tend to zero. ie.

wz:wr:O

. The remaining displacements u, and w, can thus be described in terms of ¢ and 1y
using Eqn. 232alEqn. 2:32d Eqn. 235 andEqn. 2.36d as

¢ = Ady(ar)elExt) (2.45a)

Py = —BaJi(Br)e &=l (2.45b)
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Finally the displacements can be written as

Uy = BQ{—BiaJl(m) + i€Jy(Br)}el &t (2.46a)
2
A (eam
us = By{-i€Jo(ar) — BJo(Br)}e' 7 (2.46b)
2
where
A B =€ Ji(Ba)

By a( 262 Jiaa

(2.46¢)
It is to be noted that the displacement and stress fields of the longitudinal mode are
rotationally symmetric. This phenomenon of the longitudinal waves is fully exploited
when we use Finite element methods (FEM), we use the symmetry property and
reduce the calculation time. The concept of rotational symmetry for a longitudinal
wave follows directly from the point that the displacements are independent on 6
coordinate. The Eqn. is difficult to solve numerically and hence we use the
waveguide method dﬂ] to view the displacements in the wavefront. This is shown
in the last part of this section. It is also noted that the longitudinal waves that
are propagating in a cylinder are similar to the symmetric and anti-symmetric lamb

waves that propagate in a plate. The Section gives in detail the lamb waves.

Torsional Waves

The torsional waves involve a circumferential displacement only which is independent
of 6. ﬂ] It means that we assume the displacement ug exists. Such a displacement

field is obtained only when 1, # 0 is assumed. Hence we have the following

¥, = BaJy(Br)el &t (2.47a)

ug = BJy(Br)el&=t) (2.47b)

It is to be noted that we have replaced —fSBs that results from differentiating Jo 57
by B in Eqn. 247bl The frequency for the torsional modes may be obtained by using
the boundary condition .9 = 0 and noting from Eqn. 2.39D] it is merely

8u9

TE(T) =0, r=a (2.48)
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This is equivalent of doing a/23 = 0. Thus we have the torsional waves of the form

Bady(Ba) = 2J1(Ba) (2.49)

as the frequency equation for torsional waves. This frequency equation will also result
if Eqn. 248] is solved directly. Some of the roots of the torsional wave frequency

equation are
Boa =0 Bra = 5.136 Boa = 8.417 B3a = 11.62...

. We also have a frequency-wave number relation as

wa

(Ba)* = (—)* — (€a)? (2.50)

cr

For the solution fa = 0 we examine the displacements u, = u, = Oandug = ug(r, 2)

and find the only non trivial motion equation as

Pug  10uy wup 0Oup 1 0uy

St et ez 2o (251)
Considering a solution of the form ug = U (r)e&*=“t) gives

AT o
for 8 = 0, the resulting solution is

U= é + Br (2.53)
The singular behaviour at » = 0 requires A = 0. Thus for § = 0, we have a
displacement field given by,

ug = Bre'& ! (2.54)
where £ = 2. This denotes the lowest mode of propagation of torsional waves. It

cT

represents the exceptional case when strength of materials and elasticity yield the
same results. This mode has a non dispersive propagation. As mentioned previously,
it has the same frequency spectrum has the same shape as for the SH waves in a
plate. Again, this mode is also plotted using the waveguide ], even though the

equations are quite easy to solve.
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Flexural Waves

The flexural waves require all the components of displacements. Hence the case
n—1 corresponds to the lowest order family of flexural modes. The displacement
and frequency equations are more complicated than those for the longitudinal and
torsional modes. Pao and Mindlin [9] have investigated the lowest branches of

flexural modes, the resulting Pochhammer frequency equation is

T @) P B(11TG + f2TaTs + 3T + faTa+ f5) =0 (2.55a)
where

fi=2(8"-¢&) (2.55b)

fa=23°(56% + %) (2.55¢)

fa =B 108" - 25'€? 4 2578 4 ¢ — 4! (2.55d)

fr=2B82(23%6* — B* — 9&?) (2.55¢)

fs = B*(—B* +85% — 287> + 8¢* — &) (2.55f)
where

a=aa B = Ba £=¢a 0= ? Te = aJo(z)/J1(2) (2.56)

T

We also plot the flexural waves in the following part.

2.3.3 Visualization of Wavefronts of Longitudinal, Torsional and
Flexural Modes

As we can see, the wave number frequency relations for the longitudinal, torsional
and flexural modes are very much complicated. To view the wavefronts.ie, the dis-
placement regime that propagates in a direction, by which we can determine the type
of wave, we use waveguide finite element method. This method has been designed by

Mace et al [13]. It uses commercially available software packages to develop a single
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Figure 2.6: Finite Element Modelling of wave guide

section of the waveguide and then performs certain methods using the matrices and
then get the waves that propagate in the cross section in the chosen direction. Here,
a brief detail of the method and its implementation for our current problem is given.
For other complex examples and numerical considerations, the reader is referred to
the paper ]

We use ANSYS® and MATLAB® to do the modelling and post processing re-
spectively. For a cylinder, the cross section in which the wave propagates is circular
in shape. It is noted that, we can see only longitudinal waves, in one-quarter of
the model, a flexural and longitudinal wave in the half of the cross section and two
flexural waves, a torsional wave and a longitudinal wave in the complete circular
cross section. We model one section of the model as shown in Fig. and Fig. 2.7
in ANSYS® and import the stiffness and mass matrix into MATLAB® using SDT

toolbox. The conventional equations of motion become
(K 4 iwC — w*M)u = f (2.57)

where K is the stiffness matrix, C is the damping matrix ,M is the mass matrix,f is
the vector of nodal forces and u is the vector of nodal degrees of freedom (DOF’s). We
now introduce a dynamic stiffness matrix H = K + iwC — w?M and the nodal forces
and the DOF’s are decomposed into sets associated with the right(R), interior(I) and
left(L) nodes. We use a FE model with no interior nodes for ease of calculation, but

now we can generally see how to tackle the interior nodes if modelled. For the case
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Figure 2.7: Finite Element Model of single section of the wave guide (Oblique View)

where there are no external forces on interior nodes, the equation of motion can be

partioned as

H;; H;p, Hig]| [u 0
H;r Hpr, Hpr| |up| = [fr (2.58)
Hrr Hgr Hgr] |ur fr

From the Eqn. 258] it follows that the interior degrees of freedom as
uy = ﬁ;ll(ﬁ[LuL + ﬁjRuR) (259)
These interior degrees of freedom can therefore be eliminated from Eqn. 58] as
H H f
LL Lr| (ur| _ 1L (2.60)
Hrr Hgr| |ur fr

where
Hy,=Hy, - H 0 Hyp Hip=Hrr-H H ' Hip
Hpr = Hpr — ﬁmﬂﬁlﬂm Hpr = Hpgr - ﬁRIﬂﬁlﬁm

Due to the symmetry of stiffness, mass and damping matrix, the dynamic stiffness
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matrix is also symmetric. Hence we have the following relations true
H], =Hy,Hgp = Hgrr,H] z = Hpy,

where the superscript T' indicates the transpose. Eqn. forms the basis for the
analysis of wave motion in a waveguide.

Suppose that no external forces are applied to the structure, and that the waveguide
is divided into a number of similar sections. From continuity of displacements and

equilibrium of forces at the cross-section between sections s and (s+1) it follows that

WD s ) g (2.61)

We introduce a transfer matrix (T) that relates the nodal displacements and forces

in cross-sections s and (s + 1). This matrix is defined such that

(s+1) (s)
ur, ur,
= 2.62
[f£s+1)] [fés)] ( )
From Eqn. 260 Eqn. 261 and Eqn. 2262, it follows that

-1 -1
_HLRHLL HLR

T =
~Hp, +HrpH ;H, —HgrH

(2.63)

The transfer matrix T depends only on the dynamic stiffness of one section of the
waveguide. When a free wave propagates along the waveguide, the displacements

and forces at successive cross-sections are such that

(s+1) s
up uy,
=\ 2.64
[f£s+1)] [fi] (2.64)

Thus free wave propagation is described by the eigen problem

— A [“L] (2.65)

fr

S

fr

T

The 2n eigen values \;(j=1,2,,....,2n) are related to the phase change over the length of
the cross section A and the eigenvectors ¢; indicate the shape of the motion over the
cross-section. Here n is the number of nodal DOF’s on each side of the cross-section.

The eigenvector can be partitione into nx 1 vectors associated with the nodal DOF’s
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and nodal forces, i.e,

¢j = {ZZ;} (2.66)

From the first row of the Eqn. 2.65] we have

fr = Hrr + AHrg)ur (2.67)
and hence
¢f = (Hrr + A\jHLgr)d] (2.68)

If \; is an eigenvalue, so is 1/A;. This follows by substituting Eqn. 267l in the second
row of Eqn. [Z63] leads to after calculations

1
(HLL+HRR+)\HLR+ XHRL)uL =0 (269)

The result follows by taking the transpose of this equation and noting the symmetric

properties of the dynamic stiffness matrices. Therefore the eigenvalues of T are
defined such that

<1 (2.70)

Re{fflur} = Re{ivffury <0 if |[N|=1 (2.71)

The eigen solutions therefore come in two sets whose eigen values are (), gb;r) and
1/X;, ¢ and which represent n positive-going and n negative-going wave types re-
spectively. Eqn. 271 that either the amplitude of the wave decreases in the direction
of propagation or that, if the amplitude remains constant, there is a time average
power transmission in the direction of propagation. The jth eigenvalue can be written

as
. !
Aj = e hid = g A TR A (2.72)

where the wave number can be complex. k; = k:; — tpt; may be complex and where
; and k:; are real and equal to the attenuation and phase change per unit length

that is associated with the jth wave type.
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Figure 2.8: Wavefront of Longitudinal Waves

The Eqn. 2.72] is used in calculating the wavenumber k which is in turn used to
determine the type of the wave that is propagating in the cross-section. Below is a
list that gives the types of wave that occur and their direction of propagation in the

medium based on the wavenumbers.
Wave propagation to left side of the cross-section K <0 and uw=20
Wave propagates to the right side of the cross-sectionk’ >0 and =0
Evanescent waves in the left side of the cross-section ¥ <0 and p <0
Evanescent waves in the right side of the cross-section £ >0 and p <0
Exponential waves in the left sidek’ <0 and p >0
Exponential waves in the right sidek’ >0 and >0
Decaying waves k = 0
Waves formed due to numerical considerations k A > 7

Thus these are the wave types that are generated. Now we need to calculate
the displacement and the stress fields of the waves. We also need to find which

propagating wave corresponds to which mode of transmission. We use the Eqn. 2.66]
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to calculate the nodal DOFs and nodal forces. The partition of the eigenvectors gives
the nodal forces and nodal DOFs on the left hand side of the model. Using the
transformation matrix T we find out the nodal DOFs in the right hand side. It is
given as ugp = Auy. Thus the displacements can be calculated. To distinguish the
type of the waves, it is easy to use the displacements we have found out and assign the
type accordingly. The total number of waves generated using the method is equal
to the number of DOFs. The finite element model uses a circular cross-section of
radius 2e-4 m and frequency of operation is 240 khz. So, since all the wavefronts are
vectors, they have an amplitude and a direction of propagation. The flexural waves
alone travel in radial and also in the z direction. We can see figures one by one.
Fig. shows the longitudinal waves in a cylinder, this figure shows the direction of
the particles and Fig. shows the amplitude of these waves. It is in the order of -5
to 5 e-8 m. Fig.2ZI0Ishows the direction of motion of the particles in a torsional wave.
Fig. 2111 shows the amplitude of the torsional wave in the radial direction, it is in
the range of -8 to 8 e-12. So eventhough it has red regions in its figure, acutally it is
just denotes higher displacements in those regions compared to others, but generally
its displacement value is too low compared to the other modes. There are two types
of flexural modes occuring in the cross-section and both are presented here to enable
better understanding. Fig. and Fig. represent the directions of the two
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flexural waves. Fig. 213l and Fig. 2.16] represents the displacement amplitude of the
flexural waves in the z direction. Fig. 2214 and Fig. 217 represent the amplitudes of

displacement in the radial direction of the cylinder.



3 Modelling of Piezoelectric

Transducer

The longitudinal waves in a cylinder and the lamb waves in a plate can be generated
using a variety of contact and non contact methods. Of all the possible methods, the
piezoelectric transducer based contact generation works well for our problem and is
also cost effective. In this chapter, we can concentrate on modelling the piezoelectric

transducer as an actuator for generating the longitudinal waves in the cylinder.

3.1 Piezoelectric Material

In the year 1880, Jaques and Pierre Curie, described the direct piezoelectric effect
where a surface charge is generated as a result of mechanically straining the piezo-
electric material. This is used for piezoelectric sensors, such as force and acceleration
sensors. The inverse piezoelectric effect involves a change of geometry of the piezo-
electric material as a result of applied electric field. Here we use this actuator effect
of the piezoelectric material to generate the longitudinal waves.

The commonly available piezoelectric ceramic is PZT (lead - zirconate - titanate).
PZT is a ferroelectric, polycrystalline material which showas a 100 larger inverse
piezo electric effect than a monocrystalline quartz (Si0O2) material. The direct and
inverse piezoelectric effects are based on an asymmetry of the crystalline elementary
cell. This lack of symmetry is responsible for piezoelectric properties in 20 of the 32
crystalline categories. Pyro-electric materials, a sub group of piezoelectric materials,
show a temperature dependent spontaneous polarization under uniform heating. A
ferri-electric material is a pyro-electric material, whose polarization direction can be
changed using an applied external electric field. The elementary cells of PZT mixture
have a "Perowskit’-structure.(Fig B.1)). The zirconium(Zr4*)or titanium(7**+)— ion
is body-centered, the lead- ions(Pb**)are located at the edges of the elementary cells
and the oxygen-ions are placed face-centred. Above the Curie-temperature T, PZT
has a cubic lattice-structure,with the Zr*+ or T** ion placed at the centre of the cell.

This configuration does not exhibit any piezoelectric properties. Below T, depending

33
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Figure 3.1: Perowskit-lattice of PZT ceramics
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Figure 3.2: Domain Orientation at polarization of PZT

on the mixture ratio of zirconium and titanium, tetragonal or rhomboidal distorted
mesh effects arise, whereby the Zr#+ /T'i** — ions are no longer body-centred.

Each molecule has a polarization, ie, one end is more negatively charged and the
other end is positively charged, and is called a dipole. This is a result of the atoms
that make up the molecule and the way the molecules are shaped. The polar axis is
an imaginary line that runs through the centre of both charges on the molecule. In a
mono crystal the polar axes of all the dipoles lie in one direction. In a poly crystal,
there are different regions within the material that have different polar axis. This
can be seen in the figure (Fig[B.2).

PZT is a poly-crystalline material in which crystallites (d~ 1....10p m) are ran-
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Figure 3.3: Bipolar Hysteresis of PZT

domly placed. These crystallites consist of a regular alignment of elementary-cells.
Every elementary-cell of a grain affects the others; for this reason domains of uniform
polarity arise for T' < T¢. A single grain can posses one or more uniformly polarized
domains. In the unimproved state, the polarization directions (Fig [B.2), whereby
the polar axes are mostly oriented parallel to the electric field. After removing the
electric field, a residual polarization of the material remains. This effect can be used
to polarize PZT.

The strain-electric field correlation - a bipolar hysteresis - is plotted. An increase of
the electric field yields from 0 to B. The slope of the curve decreases due to saturation
(A) of the flip over process. The maximal field strength at B is limited by the
electrical puncture resistance of the material. For PZT, the ultimate active strain is
about 0.12%. A certain deformation remains after removal of the electric field due to
remnant polarization(C). Applying a negative field leads to a state of no elongation of
the ceramics (D)(coercive field strength). A further increase in the negative electric
field leads to a contraction of the ceramic. It reaches a minimum when most of
the dipoles have changed their polarity. Further increase of the negative electric
field leads to an elongation of the material. The maximal stretch of the ceramic is
found at F (electrical puncture of the material). From F to G the same behaviour
as B to E is found. It is depicted in Fig. B3] Normally PZT-actuators are actuated
unipolar and not bipolar. In this case, only a simple hysteresis is obtained as shown in
Fig.B4l Further non linear effects are relaxation (creeping, drift) and electrostriction.
Application of a constant electric field can lead to relaxation phenomena. After a

rapid elongation, ceramics creep to an asymptotic value in about 100s. This effect
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Figure 3.4: Unipolar Hysteresis of PZT

stems for a delayed flip-over process and a growth of some domains.

3.2 Material Law of Piezoelectric Ceramics

Most properties of materials are directional. In Cartesian coordinate system, depicted
in the Fig. B3] the polarization direction is aligned parallel to the 3-axis. The 1- and
2- axes indicate the lateral directions; the coordinates 4 to 6 describe the rotation
around the axes. PZT-ceramics are isotropic in the 1,2 -plane. PZT cermaics can be

used as actuators in three different modes.
33-mode (elongation parallel to the applied electric field)
31-mode (stretch across the electric field )

15-mode(electric field perpendicular to the polarization direction, shear-strain

in the transverse plane)

Piezo-stacks are composed of many ceramic plates glued together. They are electri-
cally driven in parallel and are actuated in the 33-mode. The 31-effect is used for
piezoceramic plate actuators which are fixed on a base structure or imbedded in a
multilayer composite. Due to the isotropic behaviour in the 1,2 -directions in the
PZT-plate, and electric field in the 3-direction induces an equal elongation in both
cross directions. Fig indicates the main 3 piezo actuator schemes.

In our problem, we will mainly use the 33-mode of actuation of the piezoelectric
ceramic as it produces the longitudinal wave. An overview of the different piezo

actuators is given in the figure below. We model the problem of the wire strands
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15 - mode

Figure 3.5: Different Modes of PZT

plate actuator disc actuator

® ©
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Figure 3.6: Different Shapes of piezo actuators

with two different shapes of piezo actuator. We use the disc-actuator and model it at
the end of the wire or we use a plate-actuator and use it on the top and bottom of the
wire. The stresses, strains, electric field and electric displacements in a piezoelectric
material can be fully described in the linear range by a single set of electromechanical
equations. Using a modified notation from the IEEE Standard 176-1987, the following
two pairs of equations are equivalent statements which describe the electromechanical

behaviour of a PZT element.

€ij = Sgklakl + dkijEk (3.1)

Dj = Q0K + g?kEk (32)
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and
Uij = CiEjklfkl — eki]-Ek (3.3)
Di = ejpers + €5, Ex (3.4)

where ¢;; is the strain tensor, oy, is the stress tensor, siE;.kl is the compliance tensor,
dii; and e; are piezoelectric constants, Ej is the electric field, D; is the dielectric
displacement,€?, is the permittivity and c;j; is the elasticity tensor. The superscripts
FE and o indicate that the values of the constants are obtained at constant electric
field and constant electric stress, respectively. Eqn. [B1] states that the strain in the
piezoelectric material is proportional to both the applied stress (equivalent to the
inverse of Hooke’s law) and the applied electric field (the inverse piezoelectric effect).
Eqn. states that the electric displacement is proportional to both the applied
stress (piezoelectric effect) and the applied piezoelectric field (dielectric effect). Eqn.
B3l and Eqn. B4l are physically equivalent to Eqn. [BIl and Eqn. B2l However,
the permittivity in Eqn. 4] is measured at constant strain, and in Eqn. it is
measured at constant stress.

By arranging stress and strain components in vectors and assuming that the piezo-
electric material is electrically and mechanically isotropic in the 1-2 plane (with the
3 axis parallel to the polarization axis), one obtains the constitutive equations in

matrix notation.

el

€1 sEosEsE 0 0 0 0 dsi] [on
€99 5% Sﬁ 5% 0 0 0 0 ds1| |09
€33 5% S% 53E3 0 0 O 0 0 ds3| |o33
€23 0 0 0 s 0 0 0 dis 0] |02
es|=10 0 0 0 sE 0 ds 0 0] |owg (3.5)
€12 0 0 0 0 0 s& 0 0 0]]|on
Dy 0 0 0 0 ds 0 € 0 0] |E
Dy 0 0 0 ds 0 0 0 & 0] |E
| Ds | d3i d3i dsz 0 0 0 0 0 &) |FEs]
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or equivalently

(o] [ & ¢ 0 0 0 0 0 —es] [en
099 cg cﬁ cg 0 0 0 0 0 —e31| | €29
o33 E B B 0 0 0 0 0 —es| |ess
23 0 0 0 c& 0 0 0 —e5 0 | |exs
o3sl=10 0 0 0 & 0 —es 0 0 | |es (3.6)
19 0 0 0 0 0 c& 0 0 0 ||eo
Dy 0 0 0 0 e5 0 & 0 0 E
Dy 0 0 0 e5 0 0 0 & 0 ||FE
D3| lest e ez 0 0 0 0 0 &, | [Es]

For special geometries, the constitutive law can be further simplified. Thus, for

piezoelectric plates which are then in the 3-direction, the following may be assumed:
033 = 023 =031 =0

(plane stress) and

(electric field is applied in the 3 direction). Under this assumptions, Eqn. and
Eqn. for thin piezo plates reduce to

1
€11 = k2 dsi| |o11
1
| |5 & 0 da1| |02 (3.7)
€12 0 0 —1+§12 0 012
D3 dzi1  d31 0 €3] [E3
and
E Y 0
—€
o11 1—,%2 1—42, 3L €1
12 E
o 0 —e €
22 — | 1=pdy 14, 31 2 (38)
E
g €
12 0 0 T 0 12
Ds es31 €31 0 €§3 Es

respectively, where E is the Young’s modulus and p19 is Poisson’s ratio for the piezo-

electric material. For the case of piezoelectric beams (the plate is now also thin in
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the 2-direction so that o99 = 012 = 0), Equations B.7 and [B.§ reduce to
1 i . -
€11 = Lou + d31 3 D3 = d31011 + €33F3 (3.9)
or equivalently
011 = Feyp — 631E3 Dg = e31€11 + €§3E3 (3.10)

The governing equations for a 1-dimensional piezo rod which stretches in the 3-

direction are
1 ~ ~ - E
€33 = 033 + da3 B D3 = ds3033 + €33E3 (3.11)
or equivalently
033 = E€33 = 633E3 Dg = €33€33 + €§3E3 (3.12)

This completes the material law of the piezoelectrics.

3.3 Advantages and Disadvantages of Using Piezoelectric

Transducers for Generation of Longitudinal waves

PZT materials are excellent in production of lamb waves and longitudinal waves.
They are suitable for integration into host structure as an insitu generator. They
have neglectable mass/volume. Their other advantages include excellent mechanical
strength,wide frequency responses, low power consumption, acoustic impedences and
low cost.

The disadvantages of using a PZT generator is that, it gernerates multiple modes.
It is to be noted that the longitudinal mode alone is required for the NDT, but other
modes like flexural, torsional also get generated. This can be avoided by suitable
design. Since multiple modes are generated, sophisticated signal processing is also
required. Also under large strains/voltages or under high temperature, they show
some non-linear behaviour. They also have small driving force/displacement, brittle-

ness, low fatigue life etc are other problems using them.
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3.4 Modelling and Discretization of a Piezo Actuator

41

In this section, we can discuss the so called Euler-Bernoulli beam with piezo actuator.

This concept is designed for a beam but can be extended to plates and shells as we

can see in the later chapters. We use a linear piezoelectric mathematical model, the

non linear effects like hysteresis are neglected.

The effect of piezoelectric actuators on composite beam structures may be de-

scribed by a simplified model( ﬁ]) based on substitute forces and moments, so called

equivalent actuator loads. Consider a host beam (index b) with attached piezoelec-

tric actuators (index a) depicted in Fig. B.7l The configuration is symmetric and the

piezo actuators operate in 31 — mode, see Fig. B.8]

Identical driving voltage for both piezo actuators leads to a longitudinal(in-plane)

effect. Oppostie sign of the driving voltages for the upper and lower piezos results in
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a bending moment effect. Note the sign convention: a positive bending moment M
leads to tensile stress (¢ > 0) on the lower side of the beam (z>0).

Consider now the Euler-Bernoulli beam model depicted in Fig. B . The piezo ac-
tuators contribute to the total stiffness of the structure. Because the Euler-Bernoulli
hypothesis is valid for the total composite consisting of active piezo layers and passive
host structure, the strain varies linearly inside the piezos. The following relations for

kinematics and material law are employed

beam ep = kz, op = Epep (3.13)

piezo actuator €q = k2, 0o = Eq(eq — A) (3.14)

It is to be noted that the in-plane strain is continuous but the stress is discontinuous
at the interface between host beam and actuators. The moment equilibrium about
z=0 is considered in order to determine the equivalent actuator moments. For this
purpose, the stresses are integrated in thickness direction. Due to the symmetry of

stresses for pure bending, it is sufficient to consider the lower half of the beam

th/2 tatty/2
/ opzdz + / oqzdz = M (3.15)
0 t/2

Note that without external moment loads the moment balance is M=0 Substituting
of Eqn. B.I3 and Eqgn. B.14 yields

ty /2 tattp/2

Eykz2dz + / Eu(kz* — Az)dz =0 (3.16)

0 tp/2

The result of the analytical integration of Eqn. B.16]l may be solved for the curvature

k. After some transformations, we obtain

12 1+p
C tp 46+ 12p + 8p2

(3.17)

3.4.1 Coupled Electro - Mechanical Formulation

The kinematics of a composite beam structure according to Fig. Blmay be expressed

in terms of bending and in-plane displacements

Y +hk=0 Wy —p =0 (3.18)
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From the above two equations, we can conclude that

Wyge +k =0 (3.19)
Also

€0 = Uy (3.20)

The distribution in the thickness direction z of the total in-plane strain €(z) consists

of two contributions, namely bending and in-plane strain
e=kz+eo (3.21)

The corresponding equations of dynamic equilibrium are

Qal‘ — MW, Dz = 0 M7$ _Q =0 (3223')
imply

M 0 —pw,e +p, =0 (3.22b)

Nal‘ — Uyt +p$ =0 (322C)

where the mass per unit length has been introduced according to
n
Y= Z prbi(2r — 2p—1) (3.23)
k=1

The material law of the base/host structure (suffix b) corresponds to Hooke’s law.
For the piezo actuator or sensor layers (suffix p), the electromechanical coupling
is considered in accordance with linear piezoelectricity which has been introduced

earlier

gy = Ebz’:‘ (3.248,)

op = Ey(c — d3, E) (3.24b)
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D = EE + ds0, (3.24c)

In the case of actuators and sensors operating in 31-mode, the electric field is the

derivative of the electric potential in thickness direction
E=-U, (3.25)

Corresponding to the procedure of the classical laminated plate theory, the local
stresses of all n material layers are integrated in thickness direction, and the total in

-plane force N and the bending moment M are obtained

2k (i)
N = / 2)dz = Aeg + Bk + Z Ai / U,.dz (3.26a)
i=1 Zk(i)—1
Zk(3)
M= / z)zdz = Beg + Dk + Z A / U,, zdz (3.26b)
=1 ZE(i)—1

The summation in the last terms in the Eqn.[3.26/has to be carried out for all n,, piezo
layers. Furthermore, the following abbreviations have been introduced in accordance

with classical laminated plate theory.

Membrane / in-plane stiffness A= Z b Ex(zi — zk—1) [N] (3.27a)

k=1
. . - 1 o
Coupling stiffness B = Z bkEkz(zk Zi_1) [Nm] (3.27b)
. : - L. s 3 2
Bending Stiffness D = Z bkEkg(Zk —2p_1) [Nm?| (3.27¢)
k=1
Piezo coupling factor Ak = b Eydsy [N/V] (3.27d)

The equilibrium of the structure may be formulated in terms of the principle of virtual
work, i.e., the sum of the contributions to the virtual work by the mechanical and

electrical systems has to be zero

SA = 6 Amech + 6Ag = 0 (3.28)
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The virtual mechanical work is written by applying the displacement method,i.e the

virtual displacements du, dw, and dp are employed

L L
5Amech = _/ 5u:uu7tt dr — / (5’LU,LL’LU7tt dx
0 0
L —_
+ / Ou(N,y +pz)dx + du(N — N)|p
0

L
+/0 Sw(M ,zp +p.)dz + 6w(Q — Q)| + dp(M — M)|g

(3.29)

where the suffix B represents boundary terms. Integration by parts of the integrals

invloving duN,, and dwM,,, yields

L L
5Amech = _/ 5u:uu7tt dr — / (5’LU,LL’LU7tt dx
0 0
L L ~
— / O,y Ndx + / 0ypydx — ulN|p
0 0

L L
+ / oW, pp Mdx + / Swp.ds + dwQ|p — dpM |p
0 0

(3.30)

Substitution of the material laws and the kinematics gives the virutal mechanical

work
L L
— 0 Amech = / duptl,g dr + / ouptl,gy dz
0 0

L L 'I’Lp Zk(z)
-+ / ou, x(Au,y —Bw,zy )dx + / Oy Z i / U,, dzdx

Zk(i)—1
L L np Zk (i)
— / 0W, gy (Btyy —Dw,py )dx — / oW,z Z i / U,, zdzdx
0 0 i=1 ZE(i)—1

L L
— / oupydr — / dwp.dz + SuN|g = swQ|p + 6pM|p
0 0

(3.31)

The virtual electrical work is formulated for each piezoelectric layer i. There are no

electric charge source terms. Boundary conditions will be left out here and considered
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after the discretization step in the following parts. Furthermore, no electric inertia
termas are considered. The reasons for this are the fact that the speed of electro-
magnetic wave propagation in the piezo material is much faster than the elastic wave
propagation in the structure. This means that the characteristic time scale of the
piezo effect is far beyond the time scales of the elastic deformation of the beam which
we are interested in. For this reason, the electrical work may be treated in quasi-state

manner.
8Aq = / SEDAV;
1%

_ / (=6U,. ) (& — By Ei)(=U, 7 Vi + / (=30, ))dsyi Es(te — 2,0 )V
\% Vi

(3.32)

where V; denotes the volume of the i-th piezo layer. Note that different virtual
properties are employed for the mechanical (u,dw,de) and the electrical (§F,6U)
contributions to the virtual work. For this reason, the independant derivation of the

mechanical and electrical terms is possible.

3.4.2 Finite Element Discretization of the Formulation

The total beam structure is subdivided into a number of elements of length [ with
end nodes A and B, see Fig.8. For the in-plane(longitudinal) displacements u linear

3rd

interpolations are employed whereas Hermite polynomials of order are used for

the out-of-plane (bending) displacements w.

UA
wA
U:H:[d)l 0 0 ¢ 0 0] ]ea

= OV 3.33
0 ¢3 ¢4 0 o5 ¢6| |uB o (3.53)

w

¥B |
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A length | B
T

Figure 3.9: Finite element of a single piezo layer

The vector v represents the mechanical nodal unknowns. The interpolations are

.%'2 3 .%'2 .%'3

X x
pr=1-7 ¢3=1-35+25 d5=35 23

z? 2 28

; P = —— +

b2 = [ E

% py=2x—2

(3.34)

For the structural mechanics part, the displacement and strain distributions in thick-
ness direction are obtained from the Euler-Bernoulli kinematics Eqn. B.2T] and the
mechanical displacement unknowns need only be defined on the centre line of the
composite beam. For the integration in thickness direction the analytical rules of
the classical laminated plate theory Eqn. are employed. The equations of piezo-
electricity have to be dealt with differently because the field distribution in thickness
direction is unknown and not given by any kinematics assumption. For this rea-
son, the thickness direction has to be discretized. The interpolations for the electric
potentials (voltage) U are chosen quadratic in order to obtain a linear electric field
according to Eqn. Fig. B9l depicts the finite element for one piezo layer. The

resulting representation of electrical potential is

-
Uib
Ui .

Ui= b W e Yo e ] || =0 (3.35)

U;
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where 1; is the vector of electric nodal unknowns of a single piezo layer element. The

interpolations are in £, ¢ -direction

Ya=(CC=Q01—-8/2 h=(=0&2 Ye=(1-¢)(1=9
Pa=(1-C6 = (C+OM-9/2  p=(CC+)E/2 (3.36)

The local coordinates are defined as

x ‘= 22 — (2u(i) + 2k(i)—1)
! Zh(i) — Zh(i)—1

¢ = (3.37)

The finite element interpolations given above are substituted to build the element

virtual work terms in matrix formulation. Neglecting the boundary terms, the virtual

mechanical work for an element of length 1 is

l l
— 0Amech = / vl po g do + / SvIDTEDvdx
0 0

np l 2k (i) l
+)° / svIDT ), GU,, dzdx — / vl pedz
i=1 70 Zh(i)—1 0
(3.38)
where
9y 0 A -B 1 .
D= E = G = p. = 7| (3.39)
0 O =B D —z D

Substitution of the interpolations for u, w and U yields
l l
— 0 Afech = 097 / ¢" peda y + / #TDTED¢da
0 0

+)° / #"DT ), / G, dzdaiy; — / ¢" peda]
i Zk(i)—1 0
(3.40)

Thus from the above equation, we can see

"'p
0 A e = 097 [mvv{htt +KypoV + Z Kyy,ill; — p] (3.41)
i=1
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where the element mass matrix m,, , the element stiffness matrix k,,, the electro-
mechanical coupling matrix for the i-th piezo layer k., ; as well as the element load

vector p have been introduced. Analytical integration yields the element mass matrix

Lo o L+ o0 0
0 131 1172 0 9l _ 1312
35 210 70 120
0 1172 B 0 1312 B
_ 210 105 420 140
My, = 4 |, . (3.42)
8 0 0 3 0 0
0 9l 1312 0 131 12
70 420 35 210
0 — 1312 13 0 — 1172 3
L 120 140 210 105
and the element stiffness matrix
I A .
12D 6D 12D 6D
- R - S Uty - S -2
_B 6D 4D B 6D 2D
_ ] 12 I 1 12 1
kyy = i B A B (3.43)
-7 T 71 0 -7
12D 6D 12D 6D
0 E Tz 0 3 Tz
B 6D 2D _B _6D 4D
| 7 12 ] 1 12 T

In the mass matrix, the in-plane and the out-of-plane degrees of freedom are decou-
pled. The term of the stiffness matrix involving the stiffness B represents the coupling
of in-plane and out-of-plane deformations according to the classical laminated plate

theory. The electro-mechanical coupling matrix of the i-th element piezo layer reads

1 1 1 1
3z 2 0 0 =5 g
_G a0 G & 03 C3
l [ [ l l [
-C¢ 0 -Cy; 0 —-C3 O
kvv,i = )\z 1 1 1 1 (344)
-3 —3 0 0 2 2
G _G & _C O3 _Cs
1 l l l 1 1
0 G 0 Oy 0 O3
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The constants

(Zk() + Zr(i)—1) _ (Zk(i) — Zk(i)—1)

G = 2 3

Cy— 2(2 () _?)Zk(i)l)

. (Zr() + 2k)=1)  (Zr() = 2k(i)—-1)
ST 2 - 3

(3.45)

are obtained by analytical integration of the interpolations in the thickness direction
of the piezo layer. Finally, the element load vector for linearly interpolated line loads

is

s l )
3 0 5 0
0 o 0 351 |pea
2 2
0w 0w | P (3.46)
p Lo L 9 '
6 3 PzB
0 2% 0o 2| |ps
l2 l2
0 -5 0 —5]

Omitting boundary terms, the electrical virtual work of a piezo layer element may

be written as
SAE = (5 —d3,E)b; / / 6U,, U,z dzdz—N; / / oU,, GTdzDvdz (3.47)
Zk(i)—1 0 Jzp)-1

Substitution of the finite element interpolations of the mechanical and electrical un-

knowns yields

Zk(3) T 2k (i) T T R
d = 5u / / vz (Ei — d31 )bi,z dzdxi; — / / G dzDdxv
Zk(i)—1 Zk(i)—1

= 5u [ wu,il — kw Zv]

(3.48)

The electromechanical coupling matrix k., ; has been given previously in Eqn. [3.44
As a result of the global conservation of work and globally conservative exchange
of energy between the mechanical and the electrical systems, the electro-mechanical

coupling terms of the Eqn. 3.41] and Eqn. B.48] are "symmetric", i.e. ky, ,does ap-
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pear as negative transpose in Eqn. B48l This means that the electro-mechanical
contribution to the structural energy is in turn removed from the electric system and
global conservation is preserved for the finite element discretization. The matrix of

electrostatics is

4 7 -16 -8 2 1
7 14 -8 —-16 1 2
ks — 18(5 —d4E)bl |-16 -8 32 16 -16 -8 (3.49)
(2k(i) — 2k(i)-1) | -8 —16 16 32 -8 —16
2 1 -16 -8 14 7
1 2 -8 —-16 7 14 |

The matrix is singular which means that appropriate boundary conditions have to
be introduced for the electric field of the piezo layers (in order to suppress electri
"rigid body motion"). In the case of piezo actuators, the potential of nodes e and f
is set to zero and the potential of nodes a and b is set to the prescribed voltage U.
For this purpose, the rows and columns of the coupling and electrostatics matrices
corresponding to nodes e and f are eliminated. The prescribed voltages of nodes a
and b appear as piezo load vectors for structural dynamics and electrostatics on the
right hand side of the linear system of equations. Only nodal voltages U,. and U,y at
the centre nodes ¢ and d remain unknown. For piezo layers employed as actuators,

the reduced matrix and load vector of electrostatics are obtained

c — d2, E;)b; 16 8
PP e 150,111 (3.50)
zr@) — 2r(i)-1) | 8 16
2 d2. Eb; 1
b, A~ diiEbi -
3(2k() — Zr(i)—1) |1

. The corresponding reduced electro-mechanical coupling matrix and piezo load vec-

tor for structural dynamics read

(0 0| [ 1]
1 1

T 1 0

1 0 C

Kuia =NCa | by.0X; f (3.52)

1 1

T 71 0

0 1 o)
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The elements of the actuator load vector b,; demonstrate the effects of a piezo
actuator layer: it generates both an in-plane force Ny = \;U; as well as a bending
moment Ma = C;\;U;. Note that the moment arm C; according to Eqn. of
actuator layers that are symmetric to the neutral axis (z=0) is zero, resulting in-plane
force. The element matrices derived above are assembled according to the topology of
the composite beam discretization. The total system matrices of structural dynamics

and electrostatics have the following dimensions.

M., (ny X ny) Mass matrix

K,, (ny X ny) Stiffness matrix

K,. (ny X ny) Electro-mechanical coupling matrix

K. (ny, X ny) Electrostatics matrix

P (ny x 1) Mechanical load vector

b, (ny X ng) Actuator load vector of structural dynamics
b, (ny X ng) Actuator load vector of elastostatics

The dimensions n,,n,andn, represent the number of system displacement and
voltage unknowns and the number of independant piezo actuator layers, respectively.

The total electro mechanical system reads

Mvv 0 v,tt + KUU Kvu v o bv
0 0| |oy KT, Kyl |u| |bu

where v and u are the vectors of mechanical and electrical nodal unknowns of the

P
0

U+ (3.53)

system and U the vector of prescribed actuator voltages.

Thus we have the finite element model of the combined piezo- beam structure. It
is directly extended to the 3-D case where, the nodal dof’s point to the three dof’s
in a single node. Using the Eqn. B53], we can start the modelling of our problem in
the next chapter.



4 Modelling of Wave Propagation

Once we have the basics of modelling a piezo and the physics behind the waves that
are generated in the cylinder, we can look to model the wave propagation in the
cylinder using piezoelectric transducers. A simple method for the use of piezoelectric
transducers for the generation of waves is given by Nienwenhui.et.al [15]. We will
use their methods for generating waves. Our model consists of strands of wires and
a cross-section is like in Fig. @11

For a structural health monitoring, we need to generate the longitudinal waves,
with the help of piezo that travel over long distances. Once these waves are generated,
a piezoelectric sensor is placed and the waves are monitored at a considerable distance
from the generation point. In case any defect is present in the line, then there is
reflection in the waves and the amplitude comes down. By monitoring this, we can

predict the defects in the structure.

4.1 Finite Element Modelling of Guided Wave
Propagation in 3D (Type 1)

Before starting the modelling, we must remember two important points

1. a fine FEM mesh featuring atleast 8-12 nodes per wavelength is a prerequisite

to deliver good spatial precision. ( [18])

Strand of wire

consisting of 7 steel
wires of diameter 3.5 mm
and 26 Aluminum

wires of diameter 4 mm

Figure 4.1: Cross-section of the wire strand
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2. The time step for dynamic calculation should be less than the ratio of minimum
distance of any two adjoining nodes to the maximum wave velocity (in our case
the velocity of the longitudinal wave) ( ])

We also choose the longitudinal wave for detection of damage because of the fol-

lowing reasons
e Lower attenuation compared to other modes
e Faster wave propagation velocity

e Lower dispersion in the low frequency region, thereby helping in signal inter-

pretation

We propose a setup with a circular piezo operating in the 33-mode. We use
ANSYS® to model the proposed experimental setup. We use the property of sym-
metry to generate the longitudinal wave and import the model into MATLAB® to
couple the electrical degrees of freedom as discussed below. The Fig. shows the
left view of the model as modelled in ANSYS®. The Fig. E3] shows the front view
of the model and Fig. 4] shows the three-dimensional view of the model. The chal-
lenge in this modelling was to match the nodes in the circular faces as we had three
different cross-sections. The challenge was successfully solved by meshing with area
elements and then extruding for solid elements. The left end of the model had the
piezo element and then the brass element and at last we had the cylinder made up
of aluminium.

The material properties for alumnium cylinder that were used are

Young’s Modulus E 70.75 GPa
Poisson’s Ratio v 0.3375

p 2700 X4

r

2 mm

Density
Radius

The material properties of the PZT material (PIC151) can be given in the form
of matrices directly referring to the equations in the previous chapter (Eqn. B3],

Eqn. B4 and Eqn. B.6]). The stress compliance matrix cg w1 18 given by
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T T[]

\

XTT 1A 7/
A

Figure 4.2: Left View of Typel Model

Figure 4.3: Front View of Typel Model
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(cf e 0 0 0] [10.76 6.312 6.385 0
cfi ¢ 0 0 0 10.76 6.385 0
{ E] B s 0 0 0] 1010 1004 0
C = B =
ck 0 0 1.962
cﬂ Q

The piezoelectric matrix at constant strain e;;; can be written in matrix form as

0 0 em [0 0 —214]
0 0 eam 0 0 -214
8 6?5 0 610 0
610 0 0
€15 0 0_ - -

Similarly the permittivity €, can be written as

&0 0 1936
e“l=o0 & o= 1936
0 0 &, 2109

The density of the PIC151 material is given as p = 7760% .The piezo was circular
in shape with a diameter of 5 mm and thickness of 2 mm . The aluminium culinder
had a radius of 2 mm and was modelled for a length of 0.2 m. The brass connector was
6 mm in diameter and modelled for a thickness of 1 mm.The piezo electric material
was attached to a brass piece for easy attachment to the aluminium cylinder. The
brass piece was also modelled for better results. The material property of the brass

material is as follows

Young’s Modulus E 97 GPa
Poisson’s Ratio v 031
Density p 8490 X4
Radius r 6 mm
Thickness t  1lmm

o O O O

o O O O O
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Figure 4.4: 3D View of Typel Model

4.1.1 Reduction of Electrical Degrees of Freedom

As we can see, the modelled piezo has many electrical degrees of freedom. For our
problem where we use the piezo as an actuator, we can reduce the internal electrical
degrees of freedom using the technique below and have only the structural degrees
of freedom and the known external electrical dof’s. It follows directly from |[3].
Rewriting the Eqn. B53lwith u denoting structural degrees of freedom and ¢ denoting

the electrical dof’s, we have

P B = -1 “

where f represents the external forces and q represents the external electrical
charges. The mass matrix Mg contains the initial inertia of the structure only,
as quasi-stationarity is assumed for the piezoelectric patches. The structural stiffness
matrix is given by the submatrix K5 whereas the matrix Kgg couples piezoelectric
and structural dynamics. Still now, we have not considered any electrodes for the
FE patches. To do so, we partition the electrical potential degrees of freedom ¢ in
the piezoelectric patch into degrees of freedom on the potential electrode ¢, on the
grounded electrode ¢y and in the interior patch as ¢; respectively. The latter are not

situated in any electrode. Thus the equations of motion in the partitioned form are
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given as
My 0 0 O] | @ Ks Ks Ko Kyl [u f
0 00 0| |¢ n K! Ki Kip Kigl| |¢ _ |G (4.2)
0 0 0 0| |¢p Kgs Kgi Kpp Kpg| |[¢p ap
0 0 0 0| |dg K, Kii Kg, K| |0 dg

Since the use of the electric potential as a field variable leads to an indeterminacy
regarding shifted values, the grounded potential degrees of freedom are set to zero,
such that the fourth coloumn in the mass and stiffness matrices may be deleted.
Furthermore, the internal potential degrees of freedom ¢; can be determined by exact

static condensation from Eqn. It is given as
¢ = —K;'Kju — K;'Kipo,, (4.3)

since the internal electrical charges qi—¢ vanish .These two steps finally yield the

system of equations
Mg O] |G| [Gss Gsp| | U _ f (4.4)
0 0] [¢p] [Gsp Gpp| |Pp dp

Grss - Kss - KsiKEIKg
Gy = Ky, — KK 'K,
Gpp = Ki, — KK 'K,

with

(4.5)

With no present electrical charges ,ie q, = 0 for our problem, we can remove the
second line of the Eqn. [£4] and condense the external potential dependent term to

the right hand side as a force term and hence the reduced equation looks as

] (1] 0] o] = [~ G ®

Thus by using the Eqn. 6], we successfully reduce the electrical potential degress
of freedom and thus reduce the calculation time. After this, we give an input voltage

of 20V and carry on with the simulation and we get the results as below. It is clearly
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Figure 4.5: Absolute Value of Displacement in z direction for Typel Model

noted that there is some reflection from end of the rod. We cannot model the rod
to be of infinite length and so we restrict the length of the rod that gives rise to
reflections. As we can see in Fig. L3, a plot of the absolute value of displacement
of the travelling wave in z-direction, we see that after the initial excitation due to
piezoelectrics, there is no real decrease in the amplitude of the wave, this clearly
indicates that the wave has encountered some reflections at the end of the cylinder
length. In a real-time scenario, since the length of the wires are very long, no such
reflections occur. We cannot also really model the entire length of the wires as this
will take too much of a computation time. Hence we need to look out for boundaries
that act as a medium to let these incoming waves to get out or in other words absorb

these incoming waves.

4.2 Finite Element Modelling of Wave propagation in 3D
(Type 2)

The previous type which we modelled could not be used for all the rods together due
to the size of the piezo element. This piezo element could not be attached to all the
rods to detect the defect. To counter attack this, we thought of another type of setup

where we have a piezo plate actuator to be put in place instead of the disc actuator
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Figure 4.6: Front View of Type2 Model

Figure 4.7: Left View of Type2 Model

used in the previous modelling. As we can see from the Fig. B8, we can find that
the plate actuator can be used to produce the in-plane strain and in turn produce
the longitudinal wave in the cylinder. We used the property of symmetry to reduce
the computation time. Fig. shows the front view of the type 2 model, Fig. A1
shows the left side view of the model and Fig. shows the three dimensional view
of the model as modelled in ANSYS. We can clearly see that the size of piezoelectric
actuator is small compared to the cylinder and hence can be placed easily on the
wire. There is only a line contact being developed between the cylinder and piezo
but that is enough to generate the longitudinal waves.

After reducing the electrical degrees of freedom, we can now plot the absolute value
of displacement in the direction of the wave propagation. Fig. shows the absolute
value of displacement and we can clearly see that there are lot of reflections occuring
at the end of the cylinder length. So we require an absorbing boundary condition to

model the real-time scenario.
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Figure 4.8: 3D View of Type2 Model
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Figure 4.9: Absolute value of Displacement in z direction for Type2 model



5 Absorbing Boundary Conditions

As we have seen in the previous chapter, that we require an absorbing or non-reflecting
boundary conditions to reduce the model size and account for proper results as in real
life terms. The literature has many models for absorbing boundary conditions.Lysmer
and Kuhlmeyer B] were probably the first ones to propose a non-reflecting bpundary
conditions for elastic waves. They introduced damping at the plane of the finite
boundary and by choosing appropriate damping constants, they minimize the re-
flected wave energy.Their method does not prove effective for complex problems ]
Engquist and Majda [5] found exact non-local boundary conditions and approximated
them using local boundary conditions. Givoli and Keller [6] devised a finite artificial
circular boundary for a time-harmonic two-dimensional elastodynamics in infinite
domains as a global boundary condition. Also the widely cited "Perfectly matched
layer" approach by Berenger [4], which uses Finite difference time difference methods
are also available for devising a non-reflecting boundary condition. Keys dﬂ] pro-
poses a method by decomposing the wave into incoming and outgoing components.
The component that characterizes the outgoing wave fiels is then used to design the
absorbing boundary conditions using differential operators. They have a simple phys-
ical interpretation, that they absorb the plane waves according to the direction of
propagation, thus allowing the direction of propagation as a criteria for designing the
absorbing boundary conditions. Higdon [§] developed absorbing boundary conditions
in the stratified media for acoustic and elastic waves. He also uses the FTDT method.
Liu ] devices a new method by gradually damping the artificial boundary, where
a strip of slowly the amplitude of the wave is decreased to zero thereby resulting in
an infinite wave propagation mechanism. This method is proved to be more efficient
than the infinite elements method as in the latter case where a sudden change in the
damping values form spurious reflections are generated.

The gradually damping method is also discussed only for a two dimensional case.
For a three dimensional case, similar to our problem, there are no computationally
effective methods in the finite element domain so far used in literature. So we set out

to find a new method for developing an absorbing boundary condition at the artificial
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boundary so as to make the cylinder a waveguide of infinite length. We start with
a one dimensional case to develop our conditions and then extend it over the two
dimensional domain to check its possibility of expansion and then apply it to our
application.

Another fact that we exploited was that, since our application demands the mod-
elling of propagation of one mode (longitudinal mode in cylinder or symmetrical mode
in plate), we decided to restrict the absorbing boundary conditions to just absorb
the waves that are produced and not for all the waves that can possibly occur. So
the word of caution in using the boundary conditions is that, it is applicable just to
one type of waves. But it also has the flexibility to be extended to any type of wave

that propagates in the cross-section.

5.1 Fundamentals for Absorbing Boundary Conditions

Any artificial boundary that is designed on the way of a wave propagation, the
boundary leads to reflections. These reflections obscure the results and hence the
objective stands unachieved. We can derive an absorbing boundary condition, ie,
essentially a non-reflecting boundary condition that tries to absorb the waves. This
artificaial boundary condition when applied to the boundary makes an impression
that the waves pass through the boundary without getting reflected. There is lot
of literature available on this subject. RG.Keys MT proposes a method in which
he decomposes the wave equation into incoming and outgoing waves and derive an
absorbing boundary condition according to their direction of propagation. This par-
ticular decomposition leads to local absorbing boundary conditions obtained directly
from the outgoing component of the wave field.

The simple physical interpretation of the boundary conditions of using the direction
of wave propagation as a criterion for the design of absorbing boundary conditions
makes the problem a much simpler one to solve. Let a be a vector with unit length
such that a.a = 1, then

0 ,a0) [0 a0l Ou,a 8 ad aalu .
Or cot]’ YT 02 T Coudt  coudt 2 o '

or

9 , a0l [0 ad _Pu_ 10% (5.2)
Or cot]| | 0x cot u_BwQ c? Ot? '
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The scalar wave operator in the above equation is decomposed into the inner product
of two vector operators. This is arbitary and not unique since the unit vector a
was chosen arbitrarily. We consider a plane wave travelling in the direction a with a
velocity ¢ has the form of displacement as u(x.a/ct). When the first factor in Eqn.

is applied to the plane wave, then we have

{%+%%}u:au/—au/:0 (5.3)
Thus, we have the first vector operator to be used as the identifier for the waves
that travel in the direction a. Similarly, the second factor gives the waves that
travel in the direction —a. Thus the corresponding vector operator can be used in
designing the absorbing boundary conditions for the given wave equation. We can
also use these operators for designing absorbing boundary conditions in more than one
direction. For example, let us assume there are two outgoing plane waves travelling
in directions a; and as, where both are unit vectors, we can see how to derive the
absorbing boundary conditions to absorb plane waves travelling in any of these two

directions. Let

n; =ap

and

ny = (a; +ai)/|a; + ag

n, is the unit vector in the direction a; + as

(5.4)

Let B be the differential operator
0 1 0

It is to be noted that B(u) is a scalar function and is therefore compatible with the
scalar wave equation. B is referred to as the absorbing boundary operator for the
absorption directions a; and as . The necessary condition for perfect absorption
is that the incident wave must satisfy the boundary condition. A reflected wave is
created whenever a plane wave strikes the boundary. Thus the total wave field inside
the medium is a sum of incident and reflected waves. Thus if the incident wave does
not produce any reflections at the boundary it must satisfy the condition B(u) = 0.

If all the absorption directions are oriented in the outgoing direction and if the above
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condition is satisfied, then the reflected wave must satisfy the above condition or it
must be zero. Since all the absorption directions are outgoing, the reflected wave
is an incoming wave, it is impossible for the reflected wave to satisfy the boundary
condition. Therefore, no reflected wave is created by the incident plane wave, and
the incident plane wave is absorbed without reflection.

Thus we can conclude that if an incident plane wave satisfies the absorbing bound-

ary condition, then it will be absorbed without reflection.

5.2 Implementation of the Absorbing Boundary
Conditions

In this section, we will discuss how to implement the above derived basic conditions

in one dimension. Then we will test the conditions for one dimension and then extend

it to two and three dimensions. We will use the waveguide finite element method

discussed before Sec. 2.3.3] to extend the basic equations in three dimensions.

5.2.1 One-dimensional Implementation

Consider the scalar boundary operator given by B(u) to be applied to the direction

where the wave propagates. In one dimension, let us consider the direction to be 1.

So we have
0 10 ou 10u
Blu)=< —+—— =—+-F75=
() {8x+03t}u 8x+08t 0
From the basic relation we knowo = Fe = E%
z
ou o
Th h — ==
us we have % - B
but = —
ut o "
1 1
Hence the expression for B(u) becomes B(u) = Fﬂ +-u=0
c

(5.6)

From the above equation, we can find the damping coefficient ,by assuming a simple
dash pot model, required to absorb the waves that propagate. Thus from the above
equation we can get to
EA
F=——uq (5.7)

C
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1D wave propagation

Figure 5.1: One dimensional rod model

For a simple dash pot model, the damping coefficient is given by

D=" (5.8)

u

Thus the damping coefficient for wave absorption can be given as

substituting we have

D=—\EpA

(5.9)

Now we create a one dimensional model using FEM and check the above derived
conditions. If the above derived conditions hold good, and the waves get absorbed by
using the derived damping coefficient, then we can conclude that absorbing boundary
condition works perfectly in one dimension. So as seen in Fig. 5.1l we have a one
dimensional waveguide. We apply the damping to the right most end of the rod and
create a wave by exciting the left node of the rod. Then we plot the results of the
displacement over the length at two different points in a transient analysis and view
the results in Fig. This clearly shows that our absorbing boundary condition
is working as there are no reflections occurring over time and the entire wave gets

absorbed.

5.3 Extension to Two Dimensions - Lamb Waves

We saw that the absorbing boundary conditions work well for a rod. Now we would
like to extend the same formulas into the two dimensions so that we can verify the
usability of the conditions before further extending it in three dimensions. Another

reason for checking the boundary conditions in two dimensions is that we have readily
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Figure 5.2: Plot of displacements at middle and right end of the rod

the displacement and stress equations and hence the implementation is much quicker

and easier.
From Eqn. 213 we have the displacement components of the lamb wave given as

L W
Oory  Oxg

’LLZZO

)
Ors  Ox

(5.10)

Rewriting the above equation with constants and terms involving only time as we

require a differentiation over time to get to the velocity of the wave, we have

ur = fn(¢, )
ug = 0
ug = fn(¢, )

(5.11)
Similarly from Eqn. 2-1Tal and Eqn. 2.11Dl we have
[A1 sin(pzs) + Ag cos(pzs)] expli(kx; — wt)]

¢ =
1 = [By sin(qxs) + By cos(qxs)] expli(kzy — wt)]
(5.12)
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Again rewriting the above equation just showing the time terms we have

¢ = Aexpli(kx; — wt)]
¢ = Bexpli(kr1 — wt)]
(5.13)

So we get to the velocity equation of the lamb waves from Eqn. 511 and Eqn. 513l

. Ou
YT
_ Ofn(¢,¥)

ot

= —l*xwW*xu

(5.14)

Thus we have the @ term of the damping equation. Now we require the force term
to be used in the same equation for the calculation of the damping co-efficient. This
can also be easily done by using the stress equations. We assume that we use linear
shape functions for the Finite element modelling and hence distribute the stresses

onto the nodes. Thus we have the nodal forces given as
f = o x element length (5.15)

With the equation for force and velocity found, we can directly compute the damping

coefficient for each node. This is given by

f

X W kU

D=-— (5.16)

Thus we get the damping coefficient at each node. We implement the same for a
symmetric lamb wave and an anti symmetric lamb wave and the results are shown in
the Fig. 23] and Fig. 2.4l Thus we prove that the absorbing boundary conditions can
be extended to two dimensions. This boundary condition can hence be extended to
the third dimension thereby solving our problem of having multiple reflections at the
end of the cylinder so that the design of a solution is not possible. In the next section,
we will deal as how to implement the boundary conditions in three dimensions and

also tackle the challenges involved therein.
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5.4 Implementation of the Absorbing Boundary Condition

in Three Dimensions

Having established the basic equations for a longitudinal wave in cylinder, it is quite
easy to take the same and implement the boundary conditions. But a look through
the equations, we find that they are very hard to be solved numerically, leave alone
analytically getting to the end. They have a lot of complex functions involved and
hence solving those and getting to an absorbing boundary condition is really a tough
task. Hence we need to find other ways of getting to the damping coefficient for each

node. A close look at the damping equation is given here

D="= (5.17)

u

So we really require the velocity of the travelling wave and the Force that the wave
excerts on the node. We use the alternative technique of using the waveguide finite
element method ] to find the displacements and hence the velocities and stresses
and hence the force term. As we have discussed in the Sec. [2.3.3] we get to the dis-
placements and forces of the waves that travel through a cross section. The Eqn.
gives the displacements and forces of the waves travelling in various directions in the
cross-section. Based on the direction required for us, we take the corresponding values

and compute the damping value using the following equation.

D= . (5.18)

7k W kU

Thus, we obtain the individual nodal damping factors. We use SDT toolbox in MAT-
LAB for computing the Damping matrix and solving the equations for the Harmonic
analysis of wave absorption. Below we present the results for the absorbing boundary
conditions implementation. Having done the implementation of the absorbing bound-
ary conditions, we can now decide upon selecting the right frequency for the piezo

actuator so that we can measure the wave propagation taking place in the material.
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With the newly developed absorbing boundary conditions in our hand, we are now
ready to go directly to our problem of designing the piezoelectric transducers. This
chapter will discuss in detail how to apply the absorbing boundary conditions to the
cylinders and how to analyse the results from the simulations. We will be mainly con-
centrating on designing the operating frequency of the piezo as the dimensions of the
piezo availble to us is already defined. We can, after designing the frequency of oper-
ation and verifying it with measurement, use this method to change the dimensions

of the actuator and verify whether it can suit our needs.

6.1 Piezoelectric Transducer Type |

We will now design the piezoelectric transducers having a circular cross-section and
classified as disc transducers. For the process of designing the displacements produced
by such an actuator, we apply the non-reflecting boundary conditions for the model
described in section L]l As shown there, we construct the model using ANSYS® and
export the Mass and stiffness matrices along with the node, elements and material
properties into MATLAB® with the help of Structural Dynamics Toolbox (SDT)
available in MATLAB®. As discussed before, for this application of checking the
structural health, we will use the longitudinal waves as they propagate faster in
the cylinders and also propagate long distances. So we need to apply the boundary
conditions for a propagating longitudinal wave in the right end of the model as we can
see that the peizoelectric transducers are in the left end of the cylinders. We also can
use the symmetric property of the longitudinal wave in modelling the wave. This helps
for us to reduce the calculation time and get better results as we can see below. The
Fig.[6Iwas modelled for finding the propagating modes occuring in this cross-section.
As discussed earlier, only a longitudinal wave can propagate in this cross-section.
The boundary condition is directly applied from this cross-section and applied to the
cylinder ends. Since the displacement from the longitudinal waves is an exponential

function, when viewing in a frequency domain, the negative phase angle change over

70



6 Design of Piezoelectric Transducers 71

aRmmas

Figure 6.1: Finite Element Model of section of waveguide

the length of propagation will show a wave propagation in the structure. This will
be the first step to be checked while applying the absorbing boundary conditions.
A plot of the phase angle of the travelling wave over the length of propagation will
give a clear idea as whether there is a wave propagation occuring. Fig. shows
the phase angle of the travelling wave at 50kHz and we clearly see that there is a
continuous negative phase angle throughout the wave changing with distance. This
clearly proves that the wave is travelling in the cylinder. This plot is plotted at 50kHz
frequency with a 20V input to the piezoelectric transducer. Comparing the same to
the phase angle of the propagating wave without using absorbing boundary conditions
shown in Fig. [6.3] we can clearly say that due to the reflections, the phase angle of
the travelling wave is almost same over change in length signifying no change in the
displacement. Thus we find that the absorbing boundary conditions are working in
the real-time scenario. Now we have determined that the wave is travelling in the
cylinder, we must plot the absolute value of the displacement of the wave in the wave
propagation direction. Fig. shows the plot of absolute value of displacement for
3D model type 1. This graph is plotted at x=0.001 m , y= 0.001 m and z= 0 to 0.2
m. It is plotted at a frequency of 50 kHz, and has 100 nodes along the z-axis. As
we can see the displacements are in the expected range of 10 nanometers. This now
proves that the way of modelling is working. So now we can see how the piezoelectric
transducer changes the displacement values.

We create a frequency vector from 50Khz to 500kHz and check for the maximum
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Figure 6.4: Absolute value of displacement for 3D model typel using ABC’s

value of displacement in the same line as described above. We plot the absolute
value of displacement and absolute value of displacement in +z direction (u3) value of
displacement. We clearly see that the piezoelectric transducer produces the maximum
value of displacement at a frequency 370 kHz. So, when we use a piezoelectric
transducer of type 1, we need to use a frequency of 370 kHz, so that we can have

maximum displacement in the cylinder. Thus the cracks can be detected clearly.

6.2 Piezoelectric Transducer Type Il

After having found suitable frequncy of operation for the circular piezoelectric trans-
ducer, we can now find a similar operation frequency for the type 2 model. We first
check the phase angle and find that there is a wave propagation occuring. We now
plot the absolute value of the displacement along the direction of wave propagation.
To check our boundary conditions, we use a new technique where we compare the
displacement plot by changing the lengths of the cylinder. The behaviour of the
curve is expected to be similar even when changng the length of the cylinder as the
absorbing boundary conditions should absorb all the waves coming in its direction.
Fig. shows the absolute value of displacement over frequency for type2 model.

We clearly see the displacement is in the range of nanometers and also the change in



6 Design of Piezoelectric Transducers 74

x10"

u3
091 abs(u) 1

0.8

0.7 1

0.6 1

051 1

0.4

Displacement [m]

031 1

L AN

0
50 100 150 200 250 300 350 400 450
Frequency [kHz]

Figure 6.5: Absolute displacement over Frequency for Typel Model

geometry does not considerably change the values of the solution. Thus we are quite
sure that the absorbing boundary conditions are working perfectly.

Now we create a frequency vector from 50kHz to 500kHz and find the maximum
value of displacement occurs at a frequency of 240 kHz. Another proof of the mod-
elling is that, we can clearly see that eventhough there is a change in the length of
the cylinder, the maximum displacement always occurs at a frequency of 240 kHz.

Thus we can say that whenever the block type of piezoelectric transducer is used,
it is best to use it in the frequency range of 240kHz and we can identify the cracks
easily. Another important point to note in mind is that all these values hold good only
for the geometry of the pieozoelectric transducer we have specified in the previous
chapters. This geometry was not optimized as this was the standard piezo material
as supplied for use. There is also a possibility to alter this geometry and find the best
possible geometry. As we can clearly see from the results, the type 1 piezoelectric

transducer is performing better than the type 2 piezoelectric transducer.
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7 Conclusion

A brief introduction to the mathematics behind wave propagation was explained.
The long distant travelling waves in plate like structures namely the lamb waves and
the elastic waves in the cylinders was introduced. Using the waveguide based finite
element method, the propagation of lamb waves in plate like structures and elastic
waves in cylindrical structures was modelled and plotted. This gave a clear idea as
how wave propagation is occurring in these type of structures.

The piezoelectric material, its material properties, the coupled electro-mechanical
formulations were discussed and then the piezoelectric transducer was successfully
modelled using the finite element method. Various geometries of the piezoelectric
actuator was also considered and they were used in modelling the generation of lon-
gitudinal waves in cylinders. They resulted in reflections at the artificial boundaries
of the cylinder and hence the results were not correct.

To tackle this problem, a new type of absorbing boundary condition was developed
that made use of the waveguide based finite element method, this greatly reduced the
computation time and also made the results meaningful. This generalized method
was tested in one- dimension, extended to two- dimension and then was applied to
three- dimensional problem. This condition proved really effective in designing the
piezoelectric transducer.

When a circular piezoelectric transducer is used, it is attached to the end of the
cylinder and its operation frequency could be set at 370 kHz when the displacement
occuring in the structure is maximum. Similarly when a piezoelectric transducer
similar to a block is used, the structure and the piezoelectric transducer have only a
line contact. In this case, the frequency of operation of piezoelectric transducer can
be set at 240 kHz. Also, the block model produced a much higher displacement level
compared to the circular piezoelectric transducer.

With the absorbing boundary conditions now being designed, it would be nice to
compare them with physical measurements and ascertain the credibility of the condi-
tions and their equivalence to the physical behaviour. At the time of writing, various

methods are under investigation to measure the displacements in the cylindrical rods.
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Again it is to be noted that since the cylindrical rod cannot be physically tested in lab
conditions for infinite distances, we might make use of packet signals that are sent in
discrete packets and measurements are made on the system before the reflection from
the end of the rod affects the measurement. From a structural maintenance point
of view, a measurement procedure is to be developed to measure the displacements.
This measurement procedure can be utilized in determining the worthiness of the
absorbing boundary condition.

Another interesting direction would be to model the contact between the cylindrical
rods. There is a friction coupled energy based analysis of contacts between rods, but
with the help of absorbing boundary conditions, we can make a finite element based
model for contact analysis. Since the contact geometry is quite complex, the simple
step would be to model two rods with one acting as an active rod and the other
a passive rod and to examine the wave propagation in the contact area. When we
use the piezoelectric transducers of type 2 as discussed in the previous chapters, we
might be using both the rods as active rods. Since the piezoelectric transducers can
be attached only to the outer surface of the multiple wire system, it would be exciting
to model contacts and find the displacements in the innermost wires. Also it would
be interesting to model the reflections in the innermost wire due to the cracks present
in them. The use of absorbing boundary conditions becomes inevitable when such

complicated modelling is done.
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