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1 IntrodutionEletriity is onsidered to the driving fore from the start of the 20th Century.With inrease in average energy onsumption and derease in soures of energy itbeomes inevitable to redue the losses in energy transmission. The eletrial energyis pratially transmitted over long distanes using strands of wires. These wires areontinuously subjeted to limate hanges. These allow the wires to develop raksin them and thereby inrease the loss in transmission. Currently these high powerlines are monitored for integrity by using heliopters that run through the length ofthe wire and hek for raks. This is a ostly method.1.1 MotivationThe motivation behind my thesis is to redue the ost of maintenane and therebyredue the transmission energy losses. This is ahieved pratially using piezoeletritransduers whih send pakets of waves, that travel long distanes and an be usedto detet the raks based on re�etions. Fig. 1.1 shows the omparison between theresponses from a laser measurement for the same speimen with and without rak.The region shows the re�eted omponents of the wave from the rak during wavepropagation. The region B shows the re�eted omponents from the raks due tore�etion of the wave at the end of the speimens. Thus we an learly see a methodan be obtained to predit the raks present in the system.1.2 Previous WorkMeitzler onsidered the propagation of elasti pulses in wires having a irular ross-setion [14℄. He attributed pulse distortion to the propagation of several modes. Hisexperimental and theoretial results suggest that oupling between the various modesof propagation were responsible for the observed pulse distortion. Rizzo and Lanzadi Salea examined the wave propagation problem in seven-wire ables at the levelof the individual wires [16℄. Using wavelet transforms they identi�ed the vibration1
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PSfrag replaements Figure 1.1: Comparison of Speimens with and without rakmodes whih propagate with minimal losses. Suh modes are really useful for long-range inspetion of the wires. Furthermore, they found that sine the dispersionurves are sensitive to the load level, the elasti waves ould be used for ontinuousload monitoring. Haag, Beadle, Sprenger and Gaul proposed an energy model anda �nite element model for modelling wave propagation [7℄. They found out thatthe Finite element model requires more time ompared to the energy based modelbut had the advantage of deteting the sub-surfae defets. The main problem inthe �nite element method was the transduer ringing. Another problem that wasidenti�ed when using the �nite element model was the re�etions ourring due tothe presene of arti�ial boundaries.1.3 Present WorkThe goal of this master thesis is to learly to make a �nite element model of the wavepropagation in the time domain. The �rst problem was to design the piezoeletritransduer in the �nite element model and then use it for generating the waves andthen �nd the suitable piezoeletri transduer for pratial appliations. During the�nite element modelling, the re�etions ourring in the arti�ial boundary was elim-inated by using the non-re�eting boundary onditions or the absorbing boundaryonditions. A new method for generating this boundary ondition was also formu-



1 Introdution 3lated. The advantages of this new method being that it just used the �nite elementmodel as it is to predit the damping values for the wave absorption. This meansthat the user does not need to know the equations that govern the waves to �ndthe values of the damping o-e�ient. Thus this new method developed is not onlyuseful for this urrent problem but an be extended to any problem where there isa wave propagation ourring with the only requirement being the knowledge of theross-setion in whih the wave is propagating.



2 Fundamentals of Waves in ElastiSolids2.1 The Wave Equation in Tensor NotationsIn this setion we an derive the wave equation in three dimensions from the basipriniples [1℄. Let u(x, t) denote the displaement of partiles. From the ontinuumtheory, we an express deformation of the medium with the help of gradients ofdisplaement vetor. Assuming the linear theory, we end up with a linear small-strain tensor ǫ, with the omponents
ǫij =

1

2
(ui,j + uj,i) (2.1)It is also noted that the strain tensor is symmetri and hene ǫij = ǫji. Aordingto the priniple of balane of linear momentum, `The instantaneous rate of hange ofthe linear momentum of a body is equal to the resultant external fores ating on thebody at the partiular instant of time'. This an be desribed using the linearizedtheory as

∫

S
tdA+

∫

V
ρfdV =

∫

V
ρüdV (2.2)where t is the surfae tration in the diretion of the normal to the surfae, f is thebody fore per unit mass, S is the surfae that is subjeted to the tration, V is thevolume of the body and ρ is the density of the material. With the help of CauhyStress formula, we an have a relation between the stress tensor σji and the trationfores as

ti = σjinj (2.3)
4



2 Fundamentals of Waves in Elasti Solids 5where σji is the stress omponent in the xi diretion on the surfae with unit normal
nj . By substituting the Eqn. 2.3 into Eqn. 2.2 we have in index notations

∫

S
σjinjdA+

∫

V
ρfidV =

∫

V
ρüidV (2.4)By using Gauss theorem, we an transfer the surfae integral into volume integral,hene rewriting Eqn. 2.4 we have

∫

V
σji,j + ρfi − ρüidV = 0. (2.5)Sine this is true for any part of V, we have

σji,j + ρfi = ρüi (2.6)This is alled as Cauhy's �rst law of motion.The famous Hooke's law for relating the stresses and strains with the help Lame'sConstant for a homogeneous, isotropi, linearly elasti body is given by
σji = λǫkkδji + 2µǫji (2.7)Substituting the Hooke's law (Eqn. 2.7)and the strain tensor (Eqn. 2.1)in the Eqn.2.6 we have the wave equation as below with hanging the indies
µui,jj + (λ+ µ)uj,ji + ρfi = ρüi (2.8)The Eqn. 2.8 represents the equation of motion of partiles in an elasti ontinuum foran isotropi and homogeneous body. This forms our basis for further developmentsin this area.2.2 Lamb Waves in PlatesLamb waves have the property of travelling over long distanes and an determinequalitatively and quantitatively the amount of damage ourring in the struture.These types of waves our in plates. Here in this setion, we an see about theirhistory, the governing equations and try to visualize these waves using �nite elementmethod.



2 Fundamentals of Waves in Elasti Solids 62.2.1 Mathematial Expression of Lamb WavesThe waves in a thin isotropi plate an be represented using a artesian tensor nota-tion in the form of
µ · ui,jj + (λ+ µ) · ui,ji + ρ · fi = ρ · üi (2.9)where
ui is the displaement in the xi diretion
fi is the body fore in the xi diretion
ρ is the density of the plate
µ is the shear modulus of the plate
λ = 2·µ·ν

1−2ν where λ is the Lamé onstant and ν is the Poisson's RatioBased on Helmholtz deomposition, we an deompose Eqn. 2.9 into two unoupledparts under the plane strain ondition as
∂2φ

∂x21
+
∂2φ

∂x23
=

1

c2L ∂2φ∂t2 is the governing equation for longitudinal modes and
∂2ψ

∂x21
+
∂2ψ

∂x23
=

1

c2T ∂2ψ∂t2 is the governing equation for transverse modes (2.10)where
φ = [A1 sin(px3) +A2 cos(px3)] · exp[i(kx1 − ωt)] (2.11a)
ψ = [B1 sin(qx3) +B2 cos(qx3)] · exp[i(kx1 − ωt)] (2.11b)
p2 =

ω2

c2L − k2, q2 =
ω2

c2T − k2 k =
2π

λwave (2.11)
A1, A2, B1 and B2 are four onstants determined by the boundary ondtions. k,

ω and λwave are the wavenumber, irular frequeny and wavelength of the wave



2 Fundamentals of Waves in Elasti Solids 7respetively. cL and cT are the veloities of longitudinal and transverse/shear modesde�ned by the following equations
cL =

√

E(1− ν)

ρ(1 + ν)(1− 2ν)
=

√

2µ(1− ν)

ρ(1− 2ν)
(2.12a)

cT =

√

E

2ρ(1 + ν)
=

√

ν

ρ
(2.12b)where E is the Young's Modulus of the medium.Lamb waves are atually superposition of longitudinal and transverse/shear modes.An in�nte number of modes exist simultaneously, superimposing on eah other be-tween the upper and lower surfae of the plate, �nally leading to well behaved guidedwaves.As a result of plane strain, the displaements in the wave propagation diretion

(x1) and normal diretion (x3) an be desribed as
u1 =

∂φ

∂x1
+
∂ψ

∂x3
u2 = 0 u3 =

∂φ

∂x3
−
∂ψ

∂x1
(2.13)From the displaement, we get the stresses as

σ31 = µ(
∂u3
∂x1

+
∂u1
∂x3

) = µ(
∂2φ

∂x1∂x3
−
∂2ψ

∂x21
+
∂2ψ

∂x23
) (2.14a)

σ33 = λ(
∂u1
∂x1

+
∂u3
∂x3

) + 2µ
∂u3
∂x3

= λ(
∂2φ

∂x21
+
∂2φ

∂x23
) + 2µ(

∂2φ

∂x23
−

∂2ψ

∂x1∂x3
) (2.14b)For a plate with free upper and lower surfaes, by applying boundary onditions atboth surfaes as follows

u(x, t) = u0(x, t) Displaement boundary ondtion (2.15a)
ti = σjini tration (2.15b)
σ31 = σ33 = 0 at x3 = ±d/2 = ±h (2.15)
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ModePSfrag replaements Figure 2.2: Symmetri and Antisymmetri Lamb Waveswhere d is the plate thikness and h is the half thikness. For the plate oordinatessee the Fig. 2.1When we apply these boundary onditions to the Eqn. 2.13 and Eqn. 2.14, weobtain the desription of Lamb waves in an isotropi and homogeneous plate as

tan(qh)

tan(ph)
=

4k2qpµ

(λk2 + λp2 + 2µp2)(k2 − q2)
(2.16)Substituting Eqn. 2.11 and Eqn. 2.12 into Eqn. 2.16 also taking into onsidera-tion that tan an be divided into sine and osine whih have symmetri and anti-symmetri properties, we an seperate Eqn. 2.16 into two parts as in a symmetri
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2 Fundamentals of Waves in Elasti Solids 11and antisymmetri part modes as
tan(qh)

tan(ph)
= −

4k2qp

(k2 − q2)2
for symmetri modes (2.17a)

tan(qh)

tan(ph)
= −

(k2 − q2)2

4k2qp
for anti-symmetri modes (2.17b)2.2.2 Visualization of Lamb WavesTo view the Lamb waves, we used a frequeny of 50 kHz. We reated a time vetorhaving 5 periods to at as the input. The displaement vetor at eah of the timepoint (10 points per period) was alulated using the equations and the input wasgiven as a funtion boundary ondition for the transient analysis. Eqn. 2.17 an bevisualized to produe the symmetri and antisymmetri waves as shown in �gure 2.2.The �nite element modelling of generation of a lamb wave - the symmetri waveis modelled and is plotted with the help of vetors in Fig. 2.3. This plot is doneusing ANSYS. The antisymmetri lamb wave is plotted in Fig. 2.4. Comparing tothe Fig. 2.2, we �nd that the symmetri and antisymmetri modes our as expetedin the �nite element modelling. For the �nite element modelling, the mesh sizeswere ontrolled suh that the mesh size of the length is 10 times smaller than thewavelength. Also absorbing boundary onditions were implemented with the help ofa damping element. The modelling is detailed in the later hapters. Here the readeris just shown that lamb waves an be modelled with the help of �nite elements.2.3 Waves in CylindersThis setion deals with the various waves that are possible in a ylinder. These wavesare similar to the Lamb waves in plates and have very high wave speeds. For examplethe longitudinal wave has a speed of 6300m/s in aluminium whih suits our purposeperfetly.2.3.1 Mathematial BasisHere we an speak brie�y about the mathematial basis behind the waves in ylin-ders. We use the ylindrial oordinates over the entire part of this setion as it iseasy to derive the wave equations. A solid, ylindrial rod in ylindrial oordinatesis onsidered. The radius of the rod is a. The rod and oordinate system are shown
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PSfrag replaementsFigure 2.5: Rod with the Coordinate Systemin Fig. 2.5.The motion of any homogenous, isotropi, linear elasti body is governed by theso alled Lamé - Navier-equation given by Eqn. 2.18
µ∇2u+ (λ+ µ)∇∇ · u+ ρf = ρü (2.18)By negleting the body fores,we an deouple Equation 2.18 using Helmholtz de-omposition we get Eqn. 2.19
u = ∇φ+∇× ψ (2.19)whih an be written in salar notations as
ur =

∂φ

∂r
+

1

r

∂ψz

∂θ
−
∂ψθ

∂z
(2.20)

uθ =
1

r

∂φ

∂θ
+
∂ψr

∂z
−
∂ψz

∂r
(2.21)

uz =
∂φ

∂z
+

1

r

∂

∂r
(rψθ)−

1

r

∂ψr

∂θ
(2.22)With this substitution, the Lamé-Navier equation is deoupled into a salar waveequation and a vetor wave equation,

∇2φ =
1

c2L

∂2φ

∂t2
∇2ψ =

1

c2T

∂2ψ

∂t2
(2.23)This assumption for the displaements is omplete and it overs all possible solutions



2 Fundamentals of Waves in Elasti Solids 13of Eqn. 2.18. The strains are given by the following equations
εrr =

∂ur
∂r

, εθθ =
1

r

∂uθ
∂θ

+
ur
r

(2.24a)
εzz =

∂uz
∂z

(2.24b)
εrθ =

1

2
(
1

r

∂ur
∂θ

+
∂uθ
∂r

−
uθ
r
) (2.24)

εrz =
1

2
(
∂uz
∂r

+
∂ur
∂z

) (2.24d)
εθz =

1

2
(
∂uθ
∂z

+
1

r

∂uz
∂θ

) (2.24e)Now by Hooke's Law we have
σij = λ∆δij + 2µεij (2.25)By using Eqn. 2.25 and Eqn. 2.24 we have the expression for the stresses given bythe following equations
σrr = λ(

∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

) + 2µ
∂ur
∂r

(2.26a)
σθθ = λ(

∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

) + 2µ(
ur
r

+
1

r

∂uθ
∂θ

) (2.26b)
σzz = λ(

∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

+
∂uZ
∂z

) + 2µ
∂uz
∂z

(2.26)
σrθ = µ(

∂uθ
∂r

−
uθ
r

+
1

r

∂ur
∂θ

) (2.26d)
σθz = µ(

1

r

∂uz
∂θ

+
∂uθ
∂z

) (2.26e)
σzr = µ(

∂ur
∂z

+
∂uz
∂r

) (2.26f)



2 Fundamentals of Waves in Elasti Solids 14For free surfaes, the stresses in the surfae plane disappear, whih also holds forthe ylindrial surfae of the investigated rod. The boundary onditions are thusdesribed by Eqn. 2.27
σrr = σrθ = σrz = 0 here r=a (2.27)In order to �nd a solution to the salar and vetor wave equations given byEqn.2.23, the following general form is assumed for the salar potential φ and theomponents of vetor potential ψ as
φ = f(r)Θφ(θ)e

i(ξz−ωt) (2.28a)
ψr = hr(r)Θr(θ)e

i(ξz−ωt) (2.28b)
ψθ = hθ(r)Θθ(θ)e

i(ξz−ωt) (2.28)
ψz = hz(r)Θz(θ)e

i(ξz−ωt) (2.28d)The �rst two fators are independent of time. They desribe the potential as afuntion of the loation on a ertain ross-setion of the rod. An axial propagationof the potentials is ahieved by the thrid fator. On substituting Eqn. 2.28a in thewave equation given by Eqn. 2.23 for φ we have
f

′′

Θφ +
1

r
f

′

Θφ +
1

r2
fΘ

′′

φ − ξ2fΘφ = −
ω2

c2L
fΘφ (2.29)Rearranging the terms, it leads to Eqn. 2.30

r2
f

′′

f
+ r

f
′

f
− (ξ2 −

ω2

c2L
)r2 = −

Θ
′′

φ

Θφ
= n2 (2.30)Sine the solutions should be ontinuous funtions, with ontinuous derivatives, nan only be zero or an integer. The two sides of Eqn. 2.30 ontaining the separatedvariables an only be equal to eah other, if they are equal to the same onstant.This onstant is denoted by n2. A solution of the Θφ of Eqn. 2.30 is

Θφ = A sinnθ +B cosnθ, n ∈ N (2.31)



2 Fundamentals of Waves in Elasti Solids 15The same proedure yields similar expressions for Θr,Θθ and Θz.Considering only�exural, torsional and longitudinal modes, either sin- or os- terms an be negleted.The general form of the potentials assumed in Eqn. 2.28 an be redued to
φ = f(r) cosnθei(ξz−ωt) (2.32a)
ψr = hr(r) sinnθe

i(ξz−ωt) (2.32b)
ψθ = hθ(r) cosnθe

i(ξz−ωt) (2.32)
ψz = hz(r) sin nθe

i(ξz−ωt) (2.32d)The r dependene of the potentials is established from the Eqn. 2.30. Rearrangingthe same we have
d2f

dr2
+

1

r

df

dr
(α2 −

n2

r2
)f = 0 (2.33)where

α2 =
ω2

c2L
− ξ2 (2.34). Eqn. 2.33 is Bessel's Equation of order n. It is solved by

f(r) = AJn(αr) (2.35)where Jn is a Bessel funtion of the �rst kind having order n. Solving for the remainingomponents is even more ompliated, due to more ompliated di�erential equations.The interested reader is referred to GRAFF [9℄. The results are
hz(r) = B3Jn(βr) (2.36a)
hr(r) = B1Jn−1(βr) +B2Jn+1(βr) (2.36b)
hθ(r) = B1Jn−1(βr)−B2Jn+1(βr) (2.36)
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β =

ω2

c2T
− ξ2 (2.37). Inserting these results in the assumptions for displaements Eqn. 2.20 to Eqn. 2.22,we have

ur = [f
′

+
n

r
ψz + ξψr] cosnθ exp

i(ξz−ωt) (2.38a)
uθ = [−

n

r
f + ξψr − ψ

′

z] sin nθ exp
i(ξz−ωt) (2.38b)

uz = [−ξf
′

− ψ
′

r − (n+ 1)
ψr

r
] cosnθ expi(ξz−ωt) (2.38)And aordingly the stresses in the surfae beome

σrr = [−λ(α2 + ξ2)f + 2µ(f
′′

+
n

r
(ψ

′

z −
ψz

r
) + ξψ

′

r)] cosnθe
i(ξz−ωt) (2.39a)

σrθ = µ[
2n

r
(f

′

−
f

r
)− (2ψ

′′

z − β2ψz)− ξ(
n+ 1

r
ψr − ψ

′

r)] sin nθe
i(ξz−ωt) (2.39b)

σrz = µ[−2ξf
′

−
n

r
(ψ

′

r + (
n+ 1

r
− β2 + ξ2)ψr)−

nξ

r
ψz] cosnθe

i(ξz−ωt) (2.39)By using the boundary onditions as de�ned in the Eqn. 2.27, and substituting r=aleads to a general frequeny equation given by
|aij | = 0 (2.40)where
a11 = {

λ(α2 + ξ2)(αa)2

2µα2
+ (αa)2 − n2}Jn(αa) + αaJ

′

n(αa) (2.41a)
a12 = {n2 − (βa)2}Jn(βa)− βaJ

′

n(βa) (2.41b)
a13 = 2n{βaJ

′

n(βa)− Jn(βa)} (2.41)
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a21 = n{αaJ

′

n(αa)− Jn(αa)} (2.41d)
a22 = −n{βaJ

′

n(βa) = Jn(βa)} (2.41e)
a23 = −{2n2 − (βa)2}Jn(βa) + 2βaJ

′

n(βa) (2.41f)
a31 = −αaJ

′

n(αa) (2.41g)
a32 = −

β2 − ξ2

2ξ2
βaJ

′

n(αa) (2.41h)
a33 = nJn(βa) (2.41i)This determinant spei�es the frequeny equation for all possible modes. To addresspartiular mode families, n is varied. Thus we obtain the various modes and theirfrequenies of propagation in the ylindrial medium.2.3.2 Longitudinal, Torsional and Flexural Modes in CylindersThe waves that propagate in the ylinder are in one of these three types namelytorsional, �exural and longitudinal. This part deals brie�y the mathematis behindthese modes and their wavefronts. This setion uses the waveguide FE method [13℄for generation of the wavefronts.Longitudinal WavesThese types of waves are axially symmetri and have displaement omponents inthe radial and axial diretions. [1℄. The �rst longitudinal mode is given by puttingn=0 in the equation 2.41. The elements of the determinant beome
a
′

11 = {
λ(α2 + ξ2)(αa)2

2µα2
+ (αa)2}J0(αa) + αaJ

′

0(αa) (2.42a)
a
′

12 = −(βa)2J0(βa)− βaJ
′

0(βa) (2.42b)
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a
′

23 = (βa)2J0(βa) + 2βaJ
′

0(βa) (2.42)
a
′

31 = −αaJ
′

0(αa) (2.42d)
a
′

32 = −
β2 − ξ2

2ξ2
βaJ

′

0(αa) (2.42e)
a
′

13 = a
′

21 = a
′

22 = a
′

33 = 0 (2.42f)and hene the general frequeny equation redues to
[

a
′

11 a
′

12

a
′

31 a
′

32

]

a
′

23 = 0 (2.43)This Eqn. 2.43 tends to zero in two ways, either the value of the determinant is zerowhih orresponds to longitudinal modes or the value a′

23 tends to zero. Computingthe determinant of the 2x2 matrix, we have the '"Pohhamer Frequeny Equation"',whih Pohhammer disovered in the year 1876, whih is the frequeny equation ofthe �rst longitudinal mode. It is given by Eqn. 2.44
2α

a
(β2+ξ2)J1(αa)J1(βa)−(β2−ξ2)J0(αa)J1(βa)−4ξ2αβJ1(αa)J0(βa) = 0 (2.44)For n=0, we have from the Eqn. 2.38b as uθ = 0. Also we have from Eqn. 2.32b andEqn. 2.32d the terms ψr and ψz tend to zero. ie.

ψz = ψr = 0. The remaining displaements uz and ur an thus be desribed in terms of φ and ψθusing Eqn. 2.32a,Eqn. 2.32,Eqn. 2.35 andEqn. 2.36 as
φ = AJ0(αr)e

i(ξz−ωt) (2.45a)
ψθ = −B2J1(βr)e

i(ξz−ωt) (2.45b)
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ur = B2{−

A

B2
αJ1(αr) + iξJ1(βr)}e

i(ξz−ωt) (2.46a)
uz = B2{

A

B2
iξJ0(αr)− βJ0(βr)}e

i(ξz−ωt) (2.46b)where
A

B2
= −

β

α
(
β2 − ξ2

2ξ2
J1(βa)

J1αa
) (2.46)It is to be noted that the displaement and stress �elds of the longitudinal mode arerotationally symmetri. This phenomenon of the longitudinal waves is fully exploitedwhen we use Finite element methods (FEM), we use the symmetry property andredue the alulation time. The onept of rotational symmetry for a longitudinalwave follows diretly from the point that the displaements are independent on θoordinate. The Eqn. 2.46 is di�ult to solve numerially and hene we use thewaveguide method [13℄ to view the displaements in the wavefront. This is shownin the last part of this setion. It is also noted that the longitudinal waves thatare propagating in a ylinder are similar to the symmetri and anti-symmetri lambwaves that propagate in a plate. The Setion 2.2 gives in detail the lamb waves.Torsional WavesThe torsional waves involve a irumferential displaement only whih is independentof θ. [1℄. It means that we assume the displaement uθ exists. Suh a displaement�eld is obtained only when ψz 6= 0 is assumed. Hene we have the following

ψz = B3J0(βr)e
i(ξz−ωt) (2.47a)

uθ = BJ1(βr)e
i(ξz−ωt) (2.47b)It is to be noted that we have replaed −βB3 that results from di�erentiating J0βrby B in Eqn. 2.47b. The frequeny for the torsional modes may be obtained by usingthe boundary ondition σrθ = 0 and noting from Eqn. 2.39b it is merely

r
∂

∂r
(
uθ
r
) = 0, r = a (2.48)
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23 = 0. Thus we have the torsional waves of the form
βaJ0(βa) = 2J1(βa) (2.49)as the frequeny equation for torsional waves. This frequeny equation will also resultif Eqn. 2.48 is solved diretly. Some of the roots of the torsional wave frequenyequation are

β0a = 0 β1a = 5.136 β2a = 8.417 β3a = 11.62.... We also have a frequeny-wave number relation as
(βa)2 = (

ωa

cT
)2 − (ξa)2 (2.50)For the solution βa = 0 we examine the displaements ur = uz = 0anduθ = uθ(r, z)and �nd the only non trivial motion equation as

∂2uθ
∂r2

+
1

r

∂uθ
∂r

−
uθ
r2

+
∂2uθ
∂z2

=
1

c2T ∂2uθ∂t2
(2.51)Considering a solution of the form uθ = U(r)ei(ξz−ωt) gives

d2U

dr2
+

1

r

dU

dr
+ (β2 −

1

r2
)U = 0 (2.52)for β = 0, the resulting solution is

U =
A

r
+Br (2.53)The singular behaviour at r = 0 requires A = 0. Thus for β = 0, we have adisplaement �eld given by,

uθ = Brei(ξz−ωt) (2.54)where ξ = ω
cT . This denotes the lowest mode of propagation of torsional waves. Itrepresents the exeptional ase when strength of materials and elastiity yield thesame results. This mode has a non dispersive propagation. As mentioned previously,it has the same frequeny spetrum has the same shape as for the SH waves in aplate. Again, this mode is also plotted using the waveguide [13℄, even though theequations are quite easy to solve.



2 Fundamentals of Waves in Elasti Solids 21Flexural WavesThe �exural waves require all the omponents of displaements. Hene the asen=1 orresponds to the lowest order family of �exural modes. The displaementand frequeny equations are more ompliated than those for the longitudinal andtorsional modes. Pao and Mindlin [9℄ have investigated the lowest branhes of�exural modes, the resulting Pohhammer frequeny equation is
J1(ᾱ)J

2
1 β̄(f1J

2
β + f2JαJβ + f3Jβ + f4Jα + f5) = 0 (2.55a)where

f1 = 2(β̄2 − ξ̄2)2 (2.55b)
f2 = 2β̄2(5ξ̄2 + β̄2) (2.55)
f3 = β̄2 − 10β̄4 − 2β̄4ξ̄2 + 2β̄2ξ̄2 + β̄2ξ̄4 − 4ξ̄4 (2.55d)
f4 = 2β̄2(2β̄2ξ̄2 − β̄2 − 9ξ̄2) (2.55e)
f5 = β̄2(−β̄4 + 8β̄2 − 2β̄2ξ̄2 + 8ξ̄2 − ξ̄4) (2.55f)where
ᾱ = αa β̄ = βa ξ̄ = ξa Ω =

ωa

cT Jx = xJ0(x)/J1(x) (2.56)We also plot the �exural waves in the following part.2.3.3 Visualization of Wavefronts of Longitudinal, Torsional andFlexural ModesAs we an see, the wave number frequeny relations for the longitudinal, torsionaland �exural modes are very muh ompliated. To view the wavefronts.ie, the dis-plaement regime that propagates in a diretion, by whih we an determine the typeof wave, we use waveguide �nite element method. This method has been designed byMae et al [13℄. It uses ommerially available software pakages to develop a single
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PSfrag replaements Figure 2.6: Finite Element Modelling of wave guidesetion of the waveguide and then performs ertain methods using the matries andthen get the waves that propagate in the ross setion in the hosen diretion. Here,a brief detail of the method and its implementation for our urrent problem is given.For other omplex examples and numerial onsiderations, the reader is referred tothe paper [13℄.We use ANSYS® and MATLAB® to do the modelling and post proessing re-spetively. For a ylinder, the ross setion in whih the wave propagates is irularin shape. It is noted that, we an see only longitudinal waves, in one-quarter ofthe model, a �exural and longitudinal wave in the half of the ross setion and two�exural waves, a torsional wave and a longitudinal wave in the omplete irularross setion. We model one setion of the model as shown in Fig. 2.6 and Fig. 2.7,in ANSYS® and import the sti�ness and mass matrix into MATLAB® using SDTtoolbox. The onventional equations of motion beome
(K+ iωC− ω2M)u = f (2.57)where K is the sti�ness matrix, C is the damping matrix ,M is the mass matrix,f isthe vetor of nodal fores and u is the vetor of nodal degrees of freedom (DOF's). Wenow introdue a dynami sti�ness matrix H̃ = K+ iωC−ω2M and the nodal foresand the DOF's are deomposed into sets assoiated with the right(R), interior(I) andleft(L) nodes. We use a FE model with no interior nodes for ease of alulation, butnow we an generally see how to takle the interior nodes if modelled. For the ase
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PSfrag replaementsFigure 2.7: Finite Element Model of single setion of the wave guide (Oblique View)where there are no external fores on interior nodes, the equation of motion an bepartioned as
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0

fL

fR






(2.58)From the Eqn. 2.58, it follows that the interior degrees of freedom as

uI = H̃−1
II (H̃ILuL + H̃IRuR) (2.59)These interior degrees of freedom an therefore be eliminated from Eqn. 2.58 as

[

HLL HLR

HRL HRR

][

uL

uR

]

=

[

fL

fR

] (2.60)where
HLL = H̃LL − H̃LIH̃

−1
II H̃IL HLR = H̃LR − H̃LIH̃

−1
II H̃IR

HRL = H̃RL − H̃RIH̃
−1
II H̃IL HRR = H̃RR − H̃RIH̃

−1
II H̃IRDue to the symmetry of sti�ness, mass and damping matrix, the dynami sti�ness
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HT

LL = HLL,H
T
RR = HRR,H

T
LR = HRLwhere the supersript T indiates the transpose. Eqn. 2.60 forms the basis for theanalysis of wave motion in a waveguide.Suppose that no external fores are applied to the struture, and that the waveguideis divided into a number of similar setions. From ontinuity of displaements andequilibrium of fores at the ross-setion between setions s and (s+1) it follows that

u
(s+1)
L = us

R f
(s+1)
L = −f sR (2.61)We introdue a transfer matrix (T) that relates the nodal displaements and foresin ross-setions s and (s+ 1). This matrix is de�ned suh that

[

u
(s+1)
L

f
(s+1)
L

]

=

[

u
(s)
L

f
(s)
L

] (2.62)From Eqn. 2.60,Eqn. 2.61 and Eqn. 2.62, it follows that
T =

[

−H−1
LRHLL H−1

LR

−HRL +HRRH
−1
LRHLL −HRRH

−1
LR

] (2.63)The transfer matrix T depends only on the dynami sti�ness of one setion of thewaveguide. When a free wave propagates along the waveguide, the displaementsand fores at suessive ross-setions are suh that
[

u
(s+1)
L

f
(s+1)
L

]

= λ

[

us
L

f sL

] (2.64)Thus free wave propagation is desribed by the eigen problem
T

[

us
L

f sL

]

= λ

[

us
L

f sL

] (2.65)The 2n eigen values λj(j=1,2�....,2n) are related to the phase hange over the length ofthe ross setion ∆ and the eigenvetors φj indiate the shape of the motion over theross-setion. Here n is the number of nodal DOF's on eah side of the ross-setion.The eigenvetor an be partitione into n× 1 vetors assoiated with the nodal DOF's
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φj =

{

φuj
φfj

} (2.66)From the �rst row of the Eqn. 2.65 we have
fL = (HLL + λHLR)uL (2.67)and hene
φfj = (HLL + λjHLR)φ

u
j (2.68)If λj is an eigenvalue, so is 1/λj . This follows by substituting Eqn. 2.67 in the seondrow of Eqn. 2.65, leads to after alulations

(HLL +HRR + λHLR +
1

λ
HRL)uL = 0 (2.69)The result follows by taking the transpose of this equation and noting the symmetriproperties of the dynami sti�ness matries. Therefore the eigenvalues of T arede�ned suh that

|λj | ≤ 1 (2.70)
Re{fHL u̇L} = Re{iωfHL uL} < 0 if |λj| = 1 (2.71)The eigen solutions therefore ome in two sets whose eigen values are (λj , φ

+
j ) and

1/λj , φ
−

j and whih represent n positive-going and n negative-going wave types re-spetively. Eqn. 2.71 that either the amplitude of the wave dereases in the diretionof propagation or that, if the amplitude remains onstant, there is a time averagepower transmission in the diretion of propagation. The jth eigenvalue an be writtenas
λj = e−ikj∆ = e−µj∆e−ik

′

j∆ (2.72)where the wave number an be omplex. kj = k
′

j − iµj may be omplex and where
µj and k

′

j are real and equal to the attenuation and phase hange per unit lengththat is assoiated with the jth wave type.
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PSfrag replaements Figure 2.8: Wavefront of Longitudinal WavesThe Eqn. 2.72 is used in alulating the wavenumber k whih is in turn used todetermine the type of the wave that is propagating in the ross-setion. Below is alist that gives the types of wave that our and their diretion of propagation in themedium based on the wavenumbers.Wave propagation to left side of the ross-setion k′

< 0 and µ = 0Wave propagates to the right side of the ross-setionk′

> 0 and µ = 0Evanesent waves in the left side of the ross-setion k′

< 0 and µ < 0Evanesent waves in the right side of the ross-setion k′

> 0 and µ < 0Exponential waves in the left sidek′

< 0 and µ > 0Exponential waves in the right sidek′

> 0 and µ > 0Deaying waves k′

= 0Waves formed due to numerial onsiderations k′

∗∆ > πThus these are the wave types that are generated. Now we need to alulatethe displaement and the stress �elds of the waves. We also need to �nd whihpropagating wave orresponds to whih mode of transmission. We use the Eqn. 2.66
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PSfrag replaements Figure 2.9: Wavefront of Longitudinal Waves

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X [m]

Y
 [m

]

PSfrag replaements Figure 2.10: Wavefront of Torsional Waves
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PSfrag replaements Figure 2.11: Wavefront of Torsional waves
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Flexural waves in a cylinder cross section

PSfrag replaements Figure 2.12: Wavefront of Flexural waves
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PSfrag replaements Figure 2.13: Wavefront of Flexural waves

PSfrag replaements Figure 2.14: Wavefront of Flexural waves in u(r)



2 Fundamentals of Waves in Elasti Solids 30

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X [m]

Y
 [m

]

Flexural waves (2) in a cylinder cross section

PSfrag replaements Figure 2.15: Wavefront of Flexural waves

PSfrag replaements Figure 2.16: Wavefront of Flexural waves(2) in u(z)
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PSfrag replaements Figure 2.17: Wavefront of Flexural waves(2) in u(r)to alulate the nodal DOFs and nodal fores. The partition of the eigenvetors givesthe nodal fores and nodal DOFs on the left hand side of the model. Using thetransformation matrix T we �nd out the nodal DOFs in the right hand side. It isgiven as uR = λuL. Thus the displaements an be alulated. To distinguish thetype of the waves, it is easy to use the displaements we have found out and assign thetype aordingly. The total number of waves generated using the method is equalto the number of DOFs. The �nite element model uses a irular ross-setion ofradius 2e-4 m and frequeny of operation is 240 khz. So, sine all the wavefronts arevetors, they have an amplitude and a diretion of propagation. The �exural wavesalone travel in radial and also in the z diretion. We an see �gures one by one.Fig. 2.8 shows the longitudinal waves in a ylinder, this �gure shows the diretion ofthe partiles and Fig. 2.9 shows the amplitude of these waves. It is in the order of -5to 5 e-8 m. Fig. 2.10 shows the diretion of motion of the partiles in a torsional wave.Fig. 2.11 shows the amplitude of the torsional wave in the radial diretion, it is inthe range of -8 to 8 e-12. So eventhough it has red regions in its �gure, autally it isjust denotes higher displaements in those regions ompared to others, but generallyits displaement value is too low ompared to the other modes. There are two typesof �exural modes ouring in the ross-setion and both are presented here to enablebetter understanding. Fig. 2.12 and Fig. 2.15 represent the diretions of the two



2 Fundamentals of Waves in Elasti Solids 32�exural waves. Fig. 2.13 and Fig. 2.16 represents the displaement amplitude of the�exural waves in the z diretion. Fig. 2.14 and Fig. 2.17 represent the amplitudes ofdisplaement in the radial diretion of the ylinder.



3 Modelling of PiezoeletriTransduerThe longitudinal waves in a ylinder and the lamb waves in a plate an be generatedusing a variety of ontat and non ontat methods. Of all the possible methods, thepiezoeletri transduer based ontat generation works well for our problem and isalso ost e�etive. In this hapter, we an onentrate on modelling the piezoeletritransduer as an atuator for generating the longitudinal waves in the ylinder.3.1 Piezoeletri MaterialIn the year 1880, Jaques and Pierre Curie, desribed the diret piezoeletri e�etwhere a surfae harge is generated as a result of mehanially straining the piezo-eletri material. This is used for piezoeletri sensors, suh as fore and aelerationsensors. The inverse piezoeletri e�et involves a hange of geometry of the piezo-eletri material as a result of applied eletri �eld. Here we use this atuator e�etof the piezoeletri material to generate the longitudinal waves.The ommonly available piezoeletri erami is PZT (lead - zironate - titanate).PZT is a ferroeletri, polyrystalline material whih showas a 100 larger inversepiezo eletri e�et than a monorystalline quartz (SiO2) material. The diret andinverse piezoeletri e�ets are based on an asymmetry of the rystalline elementaryell. This lak of symmetry is responsible for piezoeletri properties in 20 of the 32rystalline ategories. Pyro-eletri materials, a sub group of piezoeletri materials,show a temperature dependent spontaneous polarization under uniform heating. Aferri-eletri material is a pyro-eletri material, whose polarization diretion an behanged using an applied external eletri �eld. The elementary ells of PZT mixturehave a 'Perowskit'-struture.(Fig 3.1). The zironium(Zr4+)or titanium(T i4+)− ionis body-entered, the lead- ions(Pb2+)are loated at the edges of the elementary ellsand the oxygen-ions are plaed fae-entred. Above the Curie-temperature TC , PZThas a ubi lattie-struture,with the Zr4+ or T i4+ ion plaed at the entre of the ell.This on�guration does not exhibit any piezoeletri properties. Below TC , depending33
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PSfrag replaementsFigure 3.1: Perowskit-lattie of PZT eramis
unpolarized PZT polarized PZT

grain boundary

domain boundary

polarization directionPSfrag replaements Figure 3.2: Domain Orientation at polarization of PZTon the mixture ratio of zironium and titanium, tetragonal or rhomboidal distortedmesh e�ets arise, whereby the Zr4+/T i4+− ions are no longer body-entred.Eah moleule has a polarization, ie, one end is more negatively harged and theother end is positively harged, and is alled a dipole. This is a result of the atomsthat make up the moleule and the way the moleules are shaped. The polar axis isan imaginary line that runs through the entre of both harges on the moleule. In amono rystal the polar axes of all the dipoles lie in one diretion. In a poly rystal,there are di�erent regions within the material that have di�erent polar axis. Thisan be seen in the �gure (Fig 3.2).PZT is a poly-rystalline material in whih rystallites (d≈ 1....10µ m) are ran-
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PSfrag replaements Figure 3.3: Bipolar Hysteresis of PZTdomly plaed. These rystallites onsist of a regular alignment of elementary-ells.Every elementary-ell of a grain a�ets the others; for this reason domains of uniformpolarity arise for T < TC . A single grain an posses one or more uniformly polarizeddomains. In the unimproved state, the polarization diretions (Fig 3.2), wherebythe polar axes are mostly oriented parallel to the eletri �eld. After removing theeletri �eld, a residual polarization of the material remains. This e�et an be usedto polarize PZT.The strain-eletri �eld orrelation - a bipolar hysteresis - is plotted. An inrease ofthe eletri �eld yields from 0 to B. The slope of the urve dereases due to saturation(A) of the �ip over proess. The maximal �eld strength at B is limited by theeletrial punture resistane of the material. For PZT, the ultimate ative strain isabout 0.12%. A ertain deformation remains after removal of the eletri �eld due toremnant polarization(C). Applying a negative �eld leads to a state of no elongation ofthe eramis (D)(oerive �eld strength). A further inrease in the negative eletri�eld leads to a ontration of the erami. It reahes a minimum when most ofthe dipoles have hanged their polarity. Further inrease of the negative eletri�eld leads to an elongation of the material. The maximal streth of the erami isfound at F (eletrial punture of the material). From F to G the same behaviouras B to E is found. It is depited in Fig. 3.3 Normally PZT-atuators are atuatedunipolar and not bipolar. In this ase, only a simple hysteresis is obtained as shown inFig. 3.4. Further non linear e�ets are relaxation (reeping, drift) and eletrostrition.Appliation of a onstant eletri �eld an lead to relaxation phenomena. After arapid elongation, eramis reep to an asymptoti value in about 100s. This e�et
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PSfrag replaements Figure 3.4: Unipolar Hysteresis of PZTstems for a delayed �ip-over proess and a growth of some domains.3.2 Material Law of Piezoeletri CeramisMost properties of materials are diretional. In Cartesian oordinate system, depitedin the Fig. 3.5, the polarization diretion is aligned parallel to the 3-axis. The 1- and2- axes indiate the lateral diretions; the oordinates 4 to 6 desribe the rotationaround the axes. PZT-eramis are isotropi in the 1,2 -plane. PZT ermais an beused as atuators in three di�erent modes.33-mode (elongation parallel to the applied eletri �eld)31-mode (streth aross the eletri �eld )15-mode(eletri �eld perpendiular to the polarization diretion, shear-strainin the transverse plane)Piezo-staks are omposed of many erami plates glued together. They are eletri-ally driven in parallel and are atuated in the 33-mode. The 31-e�et is used forpiezoerami plate atuators whih are �xed on a base struture or imbedded in amultilayer omposite. Due to the isotropi behaviour in the 1,2 -diretions in thePZT-plate, and eletri �eld in the 3-diretion indues an equal elongation in bothross diretions. Fig 3.6 indiates the main 3 piezo atuator shemes.In our problem, we will mainly use the 33-mode of atuation of the piezoeletrierami as it produes the longitudinal wave. An overview of the di�erent piezoatuators is given in the �gure below. We model the problem of the wire strands
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PSfrag replaements Figure 3.5: Di�erent Modes of PZT
plate actuator

stack actuator

disc actuatorPSfrag replaements Figure 3.6: Di�erent Shapes of piezo atuatorswith two di�erent shapes of piezo atuator. We use the dis-atuator and model it atthe end of the wire or we use a plate-atuator and use it on the top and bottom of thewire. The stresses, strains, eletri �eld and eletri displaements in a piezoeletrimaterial an be fully desribed in the linear range by a single set of eletromehanialequations. Using a modi�ed notation from the IEEE Standard 176-1987, the followingtwo pairs of equations are equivalent statements whih desribe the eletromehanialbehaviour of a PZT element.
ǫij = sẼijklσkl + dkijẼk (3.1)
D̃j = djklσkl + ǫ̃σjkẼk (3.2)
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σij = cẼijklǫkl − ekijẼk (3.3)
D̃i = eiklǫkl + ǫ̃ǫikẼk (3.4)where ǫij is the strain tensor, σkl is the stress tensor, sẼijkl is the ompliane tensor,

dkij and eikl are piezoeletri onstants, Ẽk is the eletri �eld, D̃j is the dieletridisplaement,ǫ̃σik is the permittivity and cijkl is the elastiity tensor. The supersripts
Ẽ and σ indiate that the values of the onstants are obtained at onstant eletri�eld and onstant eletri stress, respetively. Eqn. 3.1 states that the strain in thepiezoeletri material is proportional to both the applied stress (equivalent to theinverse of Hooke's law) and the applied eletri �eld (the inverse piezoeletri e�et).Eqn. 3.2 states that the eletri displaement is proportional to both the appliedstress (piezoeletri e�et) and the applied piezoeletri �eld (dieletri e�et). Eqn.3.3 and Eqn. 3.4 are physially equivalent to Eqn. 3.1 and Eqn. 3.2. However,the permittivity in Eqn. 3.4 is measured at onstant strain, and in Eqn. 3.2 it ismeasured at onstant stress.By arranging stress and strain omponents in vetors and assuming that the piezo-eletri material is eletrially and mehanially isotropi in the 1-2 plane (with the3 axis parallel to the polarization axis), one obtains the onstitutive equations inmatrix notation.
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sẼ11 sẼ12 sẼ13 0 0 0 0 0 d31

sẼ12 sẼ11 sẼ13 0 0 0 0 0 d31

sẼ13 sẼ13 sẼ33 0 0 0 0 0 d33

0 0 0 sẼ44 0 0 0 d15 0

0 0 0 0 sẼ44 0 d15 0 0

0 0 0 0 0 sẼ66 0 0 0
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(3.5)
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cẼ11 cẼ12 cẼ13 0 0 0 0 0 −e31

cẼ12 cẼ11 cẼ13 0 0 0 0 0 −e31

cẼ13 cẼ13 cẼ33 0 0 0 0 0 −e33

0 0 0 cẼ44 0 0 0 −e15 0

0 0 0 0 cẼ44 0 −e15 0 0

0 0 0 0 0 cẼ66 0 0 0

0 0 0 0 e15 0 ǫ̃ǫ11 0 0

0 0 0 e15 0 0 0 ǫ̃ǫ11 0

e31 e31 e33 0 0 0 0 0 ǫ̃ǫ33
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(3.6)
For speial geometries, the onstitutive law an be further simpli�ed. Thus, forpiezoeletri plates whih are then in the 3-diretion, the following may be assumed:

σ33 = σ23 = σ31 = 0(plane stress) and
Ẽ1 = Ẽ2 = 0(eletri �eld is applied in the 3 diretion). Under this assumptions, Eqn. 3.5 andEqn. 3.6 for thin piezo plates redue to
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(3.7)and












σ11

σ22

σ12

D̃3













=













E
1−µ2

12

µ12E
1−µ2

12
0 −e31

µ12E
1−µ2

12

E
1−µ2

12
0 −e31

0 0 E
1+µ12

0

e31 e31 0 ǫ̃ǫ33

























ǫ11

ǫ22

ǫ12

Ẽ3













(3.8)respetively, where E is the Young's modulus and µ12 is Poisson's ratio for the piezo-eletri material. For the ase of piezoeletri beams (the plate is now also thin in



3 Modelling of Piezoeletri Transduer 40the 2-diretion so that σ22 = σ12 = 0), Equations 3.7 and 3.8 redue to
ǫ11 =

1

E
σ11 + d31Ẽ3 D̃3 = d31σ11 + ǫ̃σ33Ẽ3 (3.9)or equivalently

σ11 = Eǫ11 − e31Ẽ3 D̃3 = e31ǫ11 + ǫ̃ǫ33Ẽ3 (3.10)The governing equations for a 1-dimensional piezo rod whih strethes in the 3-diretion are
ǫ33 =

1

E
σ33 + d33Ẽ3 D̃3 = d33σ33 + ǫ̃σ33Ẽ3 (3.11)or equivalently

σ33 = Eǫ33 = e33Ẽ3 D̃3 = e33ǫ33 + ǫ̃ǫ33Ẽ3 (3.12)This ompletes the material law of the piezoeletris.3.3 Advantages and Disadvantages of Using PiezoeletriTransduers for Generation of Longitudinal wavesPZT materials are exellent in prodution of lamb waves and longitudinal waves.They are suitable for integration into host struture as an insitu generator. Theyhave negletable mass/volume. Their other advantages inlude exellent mehanialstrength,wide frequeny responses, low power onsumption, aousti impedenes andlow ost.The disadvantages of using a PZT generator is that, it gernerates multiple modes.It is to be noted that the longitudinal mode alone is required for the NDT, but othermodes like �exural, torsional also get generated. This an be avoided by suitabledesign. Sine multiple modes are generated, sophistiated signal proessing is alsorequired. Also under large strains/voltages or under high temperature, they showsome non-linear behaviour. They also have small driving fore/displaement, brittle-ness, low fatigue life et are other problems using them.
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PSfrag replaementsFigure 3.7: Euler-Bernoulli beam with piezo atuators (symmetri on�guration)
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BendingPSfrag replaementsFigure 3.8: In-plane strain and bending e�et of symmetri atuator arrangement3.4 Modelling and Disretization of a Piezo AtuatorIn this setion, we an disuss the so alled Euler-Bernoulli beam with piezo atuator.This onept is designed for a beam but an be extended to plates and shells as wean see in the later hapters. We use a linear piezoeletri mathematial model, thenon linear e�ets like hysteresis are negleted.The e�et of piezoeletri atuators on omposite beam strutures may be de-sribed by a simpli�ed model( [2℄) based on substitute fores and moments, so alledequivalent atuator loads. Consider a host beam (index b) with attahed piezoele-tri atuators (index a) depited in Fig. 3.7. The on�guration is symmetri and thepiezo atuators operate in 31−mode, see Fig. 3.8Idential driving voltage for both piezo atuators leads to a longitudinal(in-plane)e�et. Oppostie sign of the driving voltages for the upper and lower piezos results in



3 Modelling of Piezoeletri Transduer 42a bending moment e�et. Note the sign onvention: a positive bending moment Mleads to tensile stress (σ > 0) on the lower side of the beam (z>0).Consider now the Euler-Bernoulli beam model depited in Fig. 3.7 . The piezo a-tuators ontribute to the total sti�ness of the struture. Beause the Euler-Bernoullihypothesis is valid for the total omposite onsisting of ative piezo layers and passivehost struture, the strain varies linearly inside the piezos. The following relations forkinematis and material law are employedbeam εb = kz, σb = Ebεb (3.13)piezo atuator εa = kz, σa = Ea(εa − Λ) (3.14)It is to be noted that the in-plane strain is ontinuous but the stress is disontinuousat the interfae between host beam and atuators. The moment equilibrium aboutz=0 is onsidered in order to determine the equivalent atuator moments. For thispurpose, the stresses are integrated in thikness diretion. Due to the symmetry ofstresses for pure bending, it is su�ient to onsider the lower half of the beam
∫ tb/2

0
σbzdz +

∫ ta+tb/2

tb/2
σazdz =M (3.15)Note that without external moment loads the moment balane is M=0 Substitutingof Eqn. 3.13 and Eqn. 3.14 yields

∫ tb/2

0
Ebkz

2dz +

∫ ta+tb/2

tb/2
Ea(kz

2 − Λz)dz = 0 (3.16)The result of the analytial integration of Eqn. 3.16 may be solved for the urvaturek. After some transformations, we obtain
k =

12

tb

1 + ρ

ψ + 6 + 12ρ + 8ρ2
Λ (3.17)3.4.1 Coupled Eletro - Mehanial FormulationThe kinematis of a omposite beam struture aording to Fig. 3.7 may be expressedin terms of bending and in-plane displaements

ϕ,x +k = 0 w,x −ϕ = 0 (3.18)



3 Modelling of Piezoeletri Transduer 43From the above two equations, we an onlude that
w,xx +k = 0 (3.19)Also
ε0 = u,x (3.20)The distribution in the thikness diretion z of the total in-plane strain ε(z) onsistsof two ontributions, namely bending and in-plane strain
ε = kz + ε0 (3.21)The orresponding equations of dynami equilibrium are
Q,x−µw,tt +pz = 0 M,x −Q = 0 (3.22a)imply
M,xx−µw,tt +pz = 0 (3.22b)
N,x−µu,tt+px = 0 (3.22)where the mass per unit length has been introdued aording to
µ =

n
∑

k=1

ρkbk(zk − zk−1) (3.23)The material law of the base/host struture (su�x b) orresponds to Hooke's law.For the piezo atuator or sensor layers (su�x p), the eletromehanial ouplingis onsidered in aordane with linear piezoeletriity whih has been introduedearlier
σb = Ebε (3.24a)
σp = Ep(ε− d31Ẽ) (3.24b)
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D̃ = ε̃Ẽ + d31σp (3.24)In the ase of atuators and sensors operating in 31-mode, the eletri �eld is thederivative of the eletri potential in thikness diretion
Ẽ = −U,z (3.25)Corresponding to the proedure of the lassial laminated plate theory, the loalstresses of all n material layers are integrated in thikness diretion, and the total in-plane fore N and the bending moment M are obtained
N =

∫ zn

z0

b(z)σ(z)dz = Aε0 +Bk +

np
∑

i=1

λi

∫ zk(i)

zk(i)−1

U,z dz (3.26a)
M =

∫ zn

z0

b(z)σ(z)zdz = Bε0 +Dk +

np
∑

i=1

λi

∫ zk(i)

zk(i)−1

U,z zdz (3.26b)The summation in the last terms in the Eqn. 3.26 has to be arried out for all np piezolayers. Furthermore, the following abbreviations have been introdued in aordanewith lassial laminated plate theory.Membrane / in-plane sti�ness A =

n
∑

k=1

bkEk(zk − zk−1) [N℄ (3.27a)Coupling sti�ness B =
n
∑

k=1

bkEk
1

2
(z2k − z2k−1) [Nm℄ (3.27b)Bending Sti�ness D =

n
∑

k=1

bkEk
1

3
(z3k − z3k−1) [Nm2℄ (3.27)Piezo oupling fator λk = bkEkd31,k [N/V℄ (3.27d)The equilibrium of the struture may be formulated in terms of the priniple of virtualwork, i.e., the sum of the ontributions to the virtual work by the mehanial andeletrial systems has to be zero

δA = δAmeh + δAel = 0 (3.28)



3 Modelling of Piezoeletri Transduer 45The virtual mehanial work is written by applying the displaement method,i.e thevirtual displaements δu, δw, and δϕ are employed
δAmeh = −

∫ L

0
δuµu,tt dx−

∫ L

0
δwµw,tt dx

+

∫ L

0
δu(N,x +px)dx+ δu(N − N̄)|B

+

∫ L

0
δw(M,xx +pz)dx+ δw(Q̄ −Q)|B + δϕ(M − M̄)|B (3.29)where the su�x B represents boundary terms. Integration by parts of the integralsinvloving δuN,x and δwM,xx yields

δAmeh = −

∫ L

0
δuµu,tt dx−

∫ L

0
δwµw,tt dx

−

∫ L

0
δu,xNdx+

∫ L

0
δypxdx− δuN̄ |B

+

∫ L

0
δw,xxMdx+

∫ L

0
δwpzds+ δwQ̄|B − δϕM̄ |B (3.30)Substitution of the material laws and the kinematis gives the virutal mehanialwork

− δAmeh =

∫ L

0
δuµu,tt dx+

∫ L

0
δuµu,tt dx

+

∫ L

0
δu, x(Au,x −Bw,xx )dx+

∫ L

0
δu,x

np
∑

i=1

λi

∫ zk(i)

zk(i)−1

U,z dzdx

−

∫ L

0
δw,xx (Bu,x−Dw,xx )dx−

∫ L

0
δw,xx

np
∑

i=1

λi

∫ zk(i)

zk(i)−1

U,z zdzdx

−

∫ L

0
δupxdx−

∫ L

0
δwpzdx+ δuN̄ |B = δwQ̄|B + δϕM̄ |B (3.31)The virtual eletrial work is formulated for eah piezoeletri layer i. There are noeletri harge soure terms. Boundary onditions will be left out here and onsidered



3 Modelling of Piezoeletri Transduer 46after the disretization step in the following parts. Furthermore, no eletri inertiatermas are onsidered. The reasons for this are the fat that the speed of eletro-magneti wave propagation in the piezo material is muh faster than the elasti wavepropagation in the struture. This means that the harateristi time sale of thepiezo e�et is far beyond the time sales of the elasti deformation of the beam whihwe are interested in. For this reason, the eletrial work may be treated in quasi-statemanner.
δAel = ∫

V
δẼD̃dVi

=

∫

V
(−δU,z )(ε̃i−d

2
31Ei)(−U,Z )dVt+

∫

Vi

(−δU,z ))d31,iEi(u,x −zw,xx )dVi(3.32)where Vi denotes the volume of the i-th piezo layer. Note that di�erent virtualproperties are employed for the mehanial (δu, δw, δε) and the eletrial (δẼ, δU)ontributions to the virtual work. For this reason, the independant derivation of themehanial and eletrial terms is possible.3.4.2 Finite Element Disretization of the FormulationThe total beam struture is subdivided into a number of elements of length l withend nodes A and B, see Fig.8. For the in-plane(longitudinal) displaements u linearinterpolations are employed whereas Hermite polynomials of 3rd order are used forthe out-of-plane (bending) displaements w.
v =

[

u

w

]

=

[

φ1 0 0 φ2 0 0

0 φ3 φ4 0 φ5 φ6
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= φv̂ (3.33)
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MBPSfrag replaements Figure 3.9: Finite element of a single piezo layerThe vetor v̂ represents the mehanial nodal unknowns. The interpolations are
φ1 = 1−

x

l
φ3 = 1− 3

x2

l2
+ 2

x3

l3
φ5 = 3

x2

l2
− 2

x3

l3

φ2 =
x

l
φ4 = x− 2

x2

l
φ6 = −

x2

l
+
x3

l2 (3.34)For the strutural mehanis part, the displaement and strain distributions in thik-ness diretion are obtained from the Euler-Bernoulli kinematis Eqn. 3.21 and themehanial displaement unknowns need only be de�ned on the entre line of theomposite beam. For the integration in thikness diretion the analytial rules ofthe lassial laminated plate theory Eqn. 3.27 are employed. The equations of piezo-eletriity have to be dealt with di�erently beause the �eld distribution in thiknessdiretion is unknown and not given by any kinematis assumption. For this rea-son, the thikness diretion has to be disretized. The interpolations for the eletripotentials (voltage) U are hosen quadrati in order to obtain a linear eletri �eldaording to Eqn. 3.25. Fig. 3.9. depits the �nite element for one piezo layer. Theresulting representation of eletrial potential is
Ui =

[

ψa ψb ψc ψd ψe ψf

]
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= ψûi (3.35)



3 Modelling of Piezoeletri Transduer 48where ûi is the vetor of eletri nodal unknowns of a single piezo layer element. Theinterpolations are in ξ, ζ -diretion
ψa = (ζ2 − ζ)(1− ξ)/2 ψb = (ζ2 − ζ)ξ/2 ψc = (1− ζ2)(1 = ξ)

ψd = (1− ζ2)ξ ψe = (ζ2 + ζ)(1− ξ)/2 ψf = (ζ2 + ζ)ξ/2 (3.36)The loal oordinates are de�ned as
ξ =

x

l
ζ =

2z − (zk(i) + zk(i)−1)

zk(i) − zk(i)−1
(3.37)The �nite element interpolations given above are substituted to build the elementvirtual work terms in matrix formulation. Negleting the boundary terms, the virtualmehanial work for an element of length l is

− δAmeh =

∫ l

0
δvTµv,tt dx+

∫ l

0
δvTDTEDvdx

+

np
∑

i=1

∫ l

0
δvTDTλi

∫ zk(i)

zk(i)−1

GU,z dzdx−

∫ l

0
δvTpedx (3.38)where

D =

[

∂x 0

0 ∂xx

]

E =

[

A −B

= B D

]

G =

[

1

−z

]

Pe =

[

px

pz

] (3.39)Substitution of the interpolations for u, w and U yields
− δAEmeh = δv̂T [

∫ l

0
φTµφdxv̂,tt +

∫ l

0
φTDTEDφdxv̂

+

np
∑

i=1

∫ l

0
φTDTλi

∫ zk(i)

zk(i)−1

Gψ,zdzdxûi −

∫ l

0
φTpedx] (3.40)Thus from the above equation, we an see

−δAEmeh = δv̂T

[

mvvv̂,tt +kvvv̂ +

np
∑

i=1

kvu,iûi − p

] (3.41)



3 Modelling of Piezoeletri Transduer 49where the element mass matrix mvv , the element sti�ness matrix kvv , the eletro-mehanial oupling matrix for the i-th piezo layer kvu,i as well as the element loadvetor p have been introdued. Analytial integration yields the element mass matrix
mvv = µ
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(3.42)
and the element sti�ness matrix

kvv =























A
l 0 −B

l −A
l 0 B

l

0 12D
l3

6D
l2

0 −12D
l3

6D
l2

−B
l

6D
l2

4D
l

B
l −6D

l2
2D
l

−A
l 0 B

l
A
l 0 −B

l

0 −12D
l3

−6D
l2

0 12D
l3

−6D
l2

B
l

6D
l2

2D
l −B

l −6D
l2

4D
l























(3.43)
In the mass matrix, the in-plane and the out-of-plane degrees of freedom are deou-pled. The term of the sti�ness matrix involving the sti�ness B represents the ouplingof in-plane and out-of-plane deformations aording to the lassial laminated platetheory. The eletro-mehanial oupling matrix of the i-th element piezo layer reads

kvv,i = λi























1
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1
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2
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l
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l −C3

l
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−C1 0 −C2 0 −C3 0

−1
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1
2
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l
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l −C2

l
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0 C1 0 C2 0 C3























(3.44)
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C1 =

(zk(i) + zk(i)−1)

2
−

(zk(i) − zk(i)−1)

3

C2 =
2(zk(i) − zk(i)−1)

3

C3 = −
(zk(i) + zk(i)−1)

2
−

(zk(i) − zk(i)−1)

3 (3.45)are obtained by analytial integration of the interpolations in the thikness diretionof the piezo layer. Finally, the element load vetor for linearly interpolated line loadsis
p =























l
3 0 l

6 0

0 7l
20 0 3l

20

0 l2

20 0 l2

30
l
6 0 l

3 0

0 3l
20 0 7l

20

0 − l2

30 0 − l2

20
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pxB
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(3.46)
Omitting boundary terms, the eletrial virtual work of a piezo layer element maybe written as
δAE

el = (ε̃i−d
2
31Ei)bi

∫ l

0

∫ zk(i)

zk(i)−1

δU,z U,Z dzdx−λi

∫ l

0

∫ zk(i)

zk(i)−1

δU,z G
TdzDvdx (3.47)Substitution of the �nite element interpolations of the mehanial and eletrial un-knowns yields

δAE
el = δûT

i

[

∫ l

0

∫ zk(i)

zk(i)−1

,Tz (ε̃i − d231Ei)bi,z dzdxûi −

∫ l

0
λi

∫ zk(i)

zk(i)−1

,Tz GTdzDdxv̂

]

= δûT
i

[

kuu,iûi − kT
vu,iv̂

] (3.48)The eletromehanial oupling matrix kvu,i has been given previously in Eqn. 3.44.As a result of the global onservation of work and globally onservative exhangeof energy between the mehanial and the eletrial systems, the eletro-mehanialoupling terms of the Eqn. 3.41 and Eqn. 3.48 are "symmetri", i.e. kvu,i,does ap-



3 Modelling of Piezoeletri Transduer 51pear as negative transpose in Eqn. 3.48. This means that the eletro-mehanialontribution to the strutural energy is in turn removed from the eletri system andglobal onservation is preserved for the �nite element disretization. The matrix ofeletrostatis is
kuu,i =

(ε̂− d231Ei)bil

18(zk(i) − zk(i)−1)























14 7 −16 −8 2 1

7 14 −8 −16 1 2

−16 −8 32 16 −16 −8

−8 −16 16 32 −8 −16

2 1 −16 −8 14 7

1 2 −8 −16 7 14























(3.49)
The matrix is singular whih means that appropriate boundary onditions have tobe introdued for the eletri �eld of the piezo layers (in order to suppress eletri"rigid body motion"). In the ase of piezo atuators, the potential of nodes e and fis set to zero and the potential of nodes a and b is set to the presribed voltage Ū .For this purpose, the rows and olumns of the oupling and eletrostatis matriesorresponding to nodes e and f are eliminated. The presribed voltages of nodes aand b appear as piezo load vetors for strutural dynamis and eletrostatis on theright hand side of the linear system of equations. Only nodal voltages Uic and Uid atthe entre nodes  and d remain unknown. For piezo layers employed as atuators,the redued matrix and load vetor of eletrostatis are obtained

kuv,i,A =
(ε̂− d231Ei)bil

9(zk(i) − zk(i)−1)

[

16 8

8 16

] (3.50)
bu,i =

4(ε̂− d231Ei)bil

3(zk(i) − zk(i)−1)

[

1

1

] (3.51). The orresponding redued eletro-mehanial oupling matrix and piezo load ve-tor for strutural dynamis read
kvu,i,A = λiC2
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3 Modelling of Piezoeletri Transduer 52The elements of the atuator load vetor bv,i demonstrate the e�ets of a piezoatuator layer: it generates both an in-plane fore NΛ = λiŪi as well as a bendingmoment M∆ = C1λiŪi. Note that the moment arm C1 aording to Eqn. 3.45 ofatuator layers that are symmetri to the neutral axis (z=0) is zero, resulting in-planefore. The element matries derived above are assembled aording to the topology ofthe omposite beam disretization. The total system matries of strutural dynamisand eletrostatis have the following dimensions.
Mvv (nv × nv) Mass matrix
Kvv (nv × nv) Sti�ness matrix
Kvu (nv × nu) Eletro-mehanial oupling matrix
Kuu (nu × nu) Eletrostatis matrix
P (nv × 1) Mehanial load vetor
bv (nv × na) Atuator load vetor of strutural dynamis
bu (nu × na) Atuator load vetor of elastostatisThe dimensions nv, nuandna represent the number of system displaement andvoltage unknowns and the number of independant piezo atuator layers, respetively.The total eletro mehanial system reads
[

Mvv 0

0 0

] [

v̄,tt

ū,tt

]

+

[

Kvv Kvu

−KT
vu Kuu

][

v̄

ū

]

=

[

bv

bu

]

Ū+

[

P

0

] (3.53)where v̄ and ū are the vetors of mehanial and eletrial nodal unknowns of thesystem and Ū the vetor of presribed atuator voltages.Thus we have the �nite element model of the ombined piezo- beam struture. Itis diretly extended to the 3-D ase where, the nodal dof's point to the three dof'sin a single node. Using the Eqn. 3.53, we an start the modelling of our problem inthe next hapter.



4 Modelling of Wave PropagationOne we have the basis of modelling a piezo and the physis behind the waves thatare generated in the ylinder, we an look to model the wave propagation in theylinder using piezoeletri transduers. A simple method for the use of piezoeletritransduers for the generation of waves is given by Nienwenhui.et.al [15℄. We willuse their methods for generating waves. Our model onsists of strands of wires anda ross-setion is like in Fig. 4.1.For a strutural health monitoring, we need to generate the longitudinal waves,with the help of piezo that travel over long distanes. One these waves are generated,a piezoeletri sensor is plaed and the waves are monitored at a onsiderable distanefrom the generation point. In ase any defet is present in the line, then there isre�etion in the waves and the amplitude omes down. By monitoring this, we anpredit the defets in the struture.4.1 Finite Element Modelling of Guided WavePropagation in 3D (Type 1)Before starting the modelling, we must remember two important points1. a �ne FEM mesh featuring atleast 8-12 nodes per wavelength is a prerequisiteto deliver good spatial preision. ( [18℄)
Strand of wire
consisting of 7 steel
wires of diameter 3.5 mm
and 26 Aluminum
wires of diameter 4 mmPSfrag replaements Figure 4.1: Cross-setion of the wire strand

53



4 Modelling of Wave Propagation 542. The time step for dynami alulation should be less than the ratio of minimumdistane of any two adjoining nodes to the maximum wave veloity (in our asethe veloity of the longitudinal wave) ( [17℄)We also hoose the longitudinal wave for detetion of damage beause of the fol-lowing reasons� Lower attenuation ompared to other modes� Faster wave propagation veloity� Lower dispersion in the low frequeny region, thereby helping in signal inter-pretationWe propose a setup with a irular piezo operating in the 33-mode. We useANSYS® to model the proposed experimental setup. We use the property of sym-metry to generate the longitudinal wave and import the model into MATLAB® toouple the eletrial degrees of freedom as disussed below. The Fig. 4.2 shows theleft view of the model as modelled in ANSYS®. The Fig. 4.3 shows the front viewof the model and Fig. 4.4 shows the three-dimensional view of the model. The hal-lenge in this modelling was to math the nodes in the irular faes as we had threedi�erent ross-setions. The hallenge was suessfully solved by meshing with areaelements and then extruding for solid elements. The left end of the model had thepiezo element and then the brass element and at last we had the ylinder made upof aluminium.The material properties for alumnium ylinder that were used areYoung's Modulus E 70.75 GPaPoisson's Ratio ν 0.3375Density ρ 2700 kg
m3Radius r 2 mmThe material properties of the PZT material (PIC151) an be given in the formof matries diretly referring to the equations in the previous hapter (Eqn. 3.3 ,Eqn. 3.4 and Eqn. 3.6). The stress ompliane matrix cẼijkl is given by
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PSfrag replaements Figure 4.2: Left View of Type1 Model
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PSfrag replaements Figure 4.3: Front View of Type1 Model
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cẼ44 0

cẼ66
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The piezoeletri matrix at onstant strain eikl an be written in matrix form as
[

e
]T
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0 0 e31

0 0 e31

0 0 e33

0 0 0

0 e15 0

e15 0 0























= 10−12 ∗

















0 0 −214

0 0 −214

0 0 423

0 610 0

610 0 0















Similarly the permittivity ǫ̃ǫik an be written as
[

ǫ̃ǫ
]

=







ǫ̃ǫ11 0 0

0 ǫ̃ǫ11 0

0 0 ǫ̃ǫ33






=







1936

1936

2109





The density of the PIC151 material is given as ρ = 7760 kg
m3 .The piezo was irularin shape with a diameter of 5 mm and thikness of 2 mm . The aluminium ulinderhad a radius of 2 mm and was modelled for a length of 0.2 m. The brass onnetor was6 mm in diameter and modelled for a thikness of 1 mm.The piezo eletri materialwas attahed to a brass piee for easy attahment to the aluminium ylinder. Thebrass piee was also modelled for better results. The material property of the brassmaterial is as followsYoung's Modulus E 97 GPaPoisson's Ratio ν 0.31Density ρ 8490 kg

m3Radius r 6 mmThikness t 1mm
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PSfrag replaements Figure 4.4: 3D View of Type1 Model4.1.1 Redution of Eletrial Degrees of FreedomAs we an see, the modelled piezo has many eletrial degrees of freedom. For ourproblem where we use the piezo as an atuator, we an redue the internal eletrialdegrees of freedom using the tehnique below and have only the strutural degreesof freedom and the known external eletrial dof's. It follows diretly from [3℄.Rewriting the Eqn. 3.53 with u denoting strutural degrees of freedom and φ denotingthe eletrial dof's, we have
[

Mss 0

0 0

][

ü

φ̈

][

Kss Ksφ
Ksφ Kφφ

][

u

φ

]

=

[

f

q

] (4.1)where f represents the external fores and q represents the external eletrialharges. The mass matrix Mss ontains the initial inertia of the struture only,as quasi-stationarity is assumed for the piezoeletri pathes. The strutural sti�nessmatrix is given by the submatrix Kss whereas the matrix Ksφ ouples piezoeletriand strutural dynamis. Still now, we have not onsidered any eletrodes for theFE pathes. To do so, we partition the eletrial potential degrees of freedom φ inthe piezoeletri path into degrees of freedom on the potential eletrode φp, on thegrounded eletrode φg and in the interior path as φi respetively. The latter are notsituated in any eletrode. Thus the equations of motion in the partitioned form are
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(4.2)Sine the use of the eletri potential as a �eld variable leads to an indeterminayregarding shifted values, the grounded potential degrees of freedom are set to zero,suh that the fourth oloumn in the mass and sti�ness matries may be deleted.Furthermore, the internal potential degrees of freedom φi an be determined by exatstati ondensation from Eqn. 4.2. It is given as
φi = −K−1ii KTsiu−K−1ii Kipφp (4.3)sine the internal eletrial harges qi=0 vanish .These two steps �nally yield thesystem of equations
[

Mss 0

0 0

][

ü

φ̈p] [

Gss Gsp
Gsp Gpp][ u

φp] =

[

f

qp] (4.4)with
Gss = Kss −KsiK−1ii KTsi
Gsp = Ksp −KsiK−1ii Kip
Gpp = KTip −KsiK−1ii Kip (4.5)With no present eletrial harges ,ie qp = 0 for our problem, we an remove theseond line of the Eqn. 4.4 and ondense the external potential dependent term tothe right hand side as a fore term and hene the redued equation looks as
[

Mss] [ü]+ [

Gss] [u] = [

f −Gspφp] (4.6)Thus by using the Eqn. 4.6, we suessfully redue the eletrial potential degressof freedom and thus redue the alulation time. After this, we give an input voltageof 20V and arry on with the simulation and we get the results as below. It is learly



4 Modelling of Wave Propagation 59

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−9

Number of nodes in +z axis

D
is

pl
ac

em
en

t [
m

]

Absolute value of Displacement without ABC

PSfrag replaementsFigure 4.5: Absolute Value of Displaement in z diretion for Type1 Modelnoted that there is some re�etion from end of the rod. We annot model the rodto be of in�nite length and so we restrit the length of the rod that gives rise tore�etions. As we an see in Fig. 4.5, a plot of the absolute value of displaementof the travelling wave in z-diretion, we see that after the initial exitation due topiezoeletris, there is no real derease in the amplitude of the wave, this learlyindiates that the wave has enountered some re�etions at the end of the ylinderlength. In a real-time senario, sine the length of the wires are very long, no suhre�etions our. We annot also really model the entire length of the wires as thiswill take too muh of a omputation time. Hene we need to look out for boundariesthat at as a medium to let these inoming waves to get out or in other words absorbthese inoming waves.4.2 Finite Element Modelling of Wave propagation in 3D(Type 2)The previous type whih we modelled ould not be used for all the rods together dueto the size of the piezo element. This piezo element ould not be attahed to all therods to detet the defet. To ounter attak this, we thought of another type of setupwhere we have a piezo plate atuator to be put in plae instead of the dis atuator
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PSfrag replaements Figure 4.6: Front View of Type2 Model
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PSfrag replaementsFigure 4.7: Left View of Type2 Modelused in the previous modelling. As we an see from the Fig. 3.8, we an �nd thatthe plate atuator an be used to produe the in-plane strain and in turn produethe longitudinal wave in the ylinder. We used the property of symmetry to reduethe omputation time. Fig. 4.6 shows the front view of the type 2 model, Fig. 4.7shows the left side view of the model and Fig. 4.8 shows the three dimensional viewof the model as modelled in ANSYS. We an learly see that the size of piezoeletriatuator is small ompared to the ylinder and hene an be plaed easily on thewire. There is only a line ontat being developed between the ylinder and piezobut that is enough to generate the longitudinal waves.After reduing the eletrial degrees of freedom, we an now plot the absolute valueof displaement in the diretion of the wave propagation. Fig. 4.9 shows the absolutevalue of displaement and we an learly see that there are lot of re�etions ouringat the end of the ylinder length. So we require an absorbing boundary ondition tomodel the real-time senario.
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PSfrag replaementsFigure 4.8: 3D View of Type2 Model

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6
x 10

-10

Number of nodes in +z axis

D
is

p
la

c
e
m

e
n
t 
[m

]

PSfrag replaementsFigure 4.9: Absolute value of Displaement in z diretion for Type2 model



5 Absorbing Boundary ConditionsAs we have seen in the previous hapter, that we require an absorbing or non-re�etingboundary onditions to redue the model size and aount for proper results as in reallife terms. The literature has many models for absorbing boundary onditions.Lysmerand Kuhlmeyer [12℄ were probably the �rst ones to propose a non-re�eting bpundaryonditions for elasti waves. They introdued damping at the plane of the �niteboundary and by hoosing appropriate damping onstants, they minimize the re-�eted wave energy.Their method does not prove e�etive for omplex problems [11℄.Engquist and Majda [5℄ found exat non-loal boundary onditions and approximatedthem using loal boundary onditions. Givoli and Keller [6℄ devised a �nite arti�ialirular boundary for a time-harmoni two-dimensional elastodynamis in in�nitedomains as a global boundary ondition. Also the widely ited "Perfetly mathedlayer" approah by Berenger [4℄, whih uses Finite di�erene time di�erene methodsare also available for devising a non-re�eting boundary ondition. Keys [10℄ pro-poses a method by deomposing the wave into inoming and outgoing omponents.The omponent that haraterizes the outgoing wave �els is then used to design theabsorbing boundary onditions using di�erential operators. They have a simple phys-ial interpretation, that they absorb the plane waves aording to the diretion ofpropagation, thus allowing the diretion of propagation as a riteria for designing theabsorbing boundary onditions. Higdon [8℄ developed absorbing boundary onditionsin the strati�ed media for aousti and elasti waves. He also uses the FTDT method.Liu [11℄ devies a new method by gradually damping the arti�ial boundary, wherea strip of slowly the amplitude of the wave is dereased to zero thereby resulting inan in�nite wave propagation mehanism. This method is proved to be more e�ientthan the in�nite elements method as in the latter ase where a sudden hange in thedamping values form spurious re�etions are generated.The gradually damping method is also disussed only for a two dimensional ase.For a three dimensional ase, similar to our problem, there are no omputationallye�etive methods in the �nite element domain so far used in literature. So we set outto �nd a new method for developing an absorbing boundary ondition at the arti�ial62



5 Absorbing Boundary Conditions 63boundary so as to make the ylinder a waveguide of in�nite length. We start witha one dimensional ase to develop our onditions and then extend it over the twodimensional domain to hek its possibility of expansion and then apply it to ourappliation.Another fat that we exploited was that, sine our appliation demands the mod-elling of propagation of one mode (longitudinal mode in ylinder or symmetrial modein plate), we deided to restrit the absorbing boundary onditions to just absorbthe waves that are produed and not for all the waves that an possibly our. Sothe word of aution in using the boundary onditions is that, it is appliable just toone type of waves. But it also has the �exibility to be extended to any type of wavethat propagates in the ross-setion.5.1 Fundamentals for Absorbing Boundary ConditionsAny arti�ial boundary that is designed on the way of a wave propagation, theboundary leads to re�etions. These re�etions obsure the results and hene theobjetive stands unahieved. We an derive an absorbing boundary ondition, ie,essentially a non-re�eting boundary ondition that tries to absorb the waves. Thisarti�aial boundary ondition when applied to the boundary makes an impressionthat the waves pass through the boundary without getting re�eted. There is lotof literature available on this subjet. RG.Keys [10℄ proposes a method in whihhe deomposes the wave equation into inoming and outgoing waves and derive anabsorbing boundary ondition aording to their diretion of propagation. This par-tiular deomposition leads to loal absorbing boundary onditions obtained diretlyfrom the outgoing omponent of the wave �eld.The simple physial interpretation of the boundary onditions of using the diretionof wave propagation as a riterion for the design of absorbing boundary onditionsmakes the problem a muh simpler one to solve. Let a be a vetor with unit lengthsuh that a.a = 1, then
{
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5 Absorbing Boundary Conditions 64The salar wave operator in the above equation is deomposed into the inner produtof two vetor operators. This is arbitary and not unique sine the unit vetor awas hosen arbitrarily. We onsider a plane wave travelling in the diretion a with aveloity c has the form of displaement as u(x.a/ct). When the �rst fator in Eqn. 5.2is applied to the plane wave, then we have
{

∂

∂x
+

a

c

∂

∂t

}

u = au
′

− au
′

= 0 (5.3)Thus, we have the �rst vetor operator to be used as the identi�er for the wavesthat travel in the diretion a. Similarly, the seond fator gives the waves thattravel in the diretion −a. Thus the orresponding vetor operator an be used indesigning the absorbing boundary onditions for the given wave equation. We analso use these operators for designing absorbing boundary onditions in more than onediretion. For example, let us assume there are two outgoing plane waves travellingin diretions a1 and a2, where both are unit vetors, we an see how to derive theabsorbing boundary onditions to absorb plane waves travelling in any of these twodiretions. Let
n1 = a1and
n2 = (a1 + a1)/|a1 + a2|

n2 is the unit vetor in the diretion a1 + a2 (5.4)Let B be the di�erential operator
B(u) = n2.

{

∂

∂x
+

1

c
n1

∂

∂t

}

u (5.5)It is to be noted that B(u) is a salar funtion and is therefore ompatible with thesalar wave equation. B is referred to as the absorbing boundary operator for theabsorption diretions a1 and a2 . The neessary ondition for perfet absorptionis that the inident wave must satisfy the boundary ondition. A re�eted wave isreated whenever a plane wave strikes the boundary. Thus the total wave �eld insidethe medium is a sum of inident and re�eted waves. Thus if the inident wave doesnot produe any re�etions at the boundary it must satisfy the ondition B(u) = 0.If all the absorption diretions are oriented in the outgoing diretion and if the above



5 Absorbing Boundary Conditions 65ondition is satis�ed, then the re�eted wave must satisfy the above ondition or itmust be zero. Sine all the absorption diretions are outgoing, the re�eted waveis an inoming wave, it is impossible for the re�eted wave to satisfy the boundaryondition. Therefore, no re�eted wave is reated by the inident plane wave, andthe inident plane wave is absorbed without re�etion.Thus we an onlude that if an inident plane wave satis�es the absorbing bound-ary ondition, then it will be absorbed without re�etion.5.2 Implementation of the Absorbing BoundaryConditionsIn this setion, we will disuss how to implement the above derived basi onditionsin one dimension. Then we will test the onditions for one dimension and then extendit to two and three dimensions. We will use the waveguide �nite element methoddisussed before Se. 2.3.3 to extend the basi equations in three dimensions.5.2.1 One-dimensional ImplementationConsider the salar boundary operator given by B(u) to be applied to the diretionwhere the wave propagates. In one dimension, let us onsider the diretion to be 1.So we have
B(u) =

{

∂

∂x
+

1

c

∂

∂t

}

u =
∂u

∂x
+

1

c

∂u

∂t
= 0From the basi relation we knowσ = Eǫ = E

∂u

∂xThus we have ∂u

∂x
=
σ

Ebut σ =
F

AHene the expression for B(u) beomes B(u) = F.
1

EA
+

1

c
u̇ = 0 (5.6)From the above equation, we an �nd the damping oe�ient ,by assuming a simpledash pot model, required to absorb the waves that propagate. Thus from the aboveequation we an get to

F = −
EA

c
u̇ (5.7)
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ZPSfrag replaements Figure 5.1: One dimensional rod modelFor a simple dash pot model, the damping oe�ient is given by
D =

F

u̇
(5.8)Thus the damping oe�ient for wave absorption an be given as

D = −
EA

cbut c =

√

E

ρsubstituting we have
D = −

√

Eρ.A (5.9)Now we reate a one dimensional model using FEM and hek the above derivedonditions. If the above derived onditions hold good, and the waves get absorbed byusing the derived damping oe�ient, then we an onlude that absorbing boundaryondition works perfetly in one dimension. So as seen in Fig. 5.1 we have a onedimensional waveguide. We apply the damping to the right most end of the rod andreate a wave by exiting the left node of the rod. Then we plot the results of thedisplaement over the length at two di�erent points in a transient analysis and viewthe results in Fig. 5.2. This learly shows that our absorbing boundary onditionis working as there are no re�etions ourring over time and the entire wave getsabsorbed.5.3 Extension to Two Dimensions - Lamb WavesWe saw that the absorbing boundary onditions work well for a rod. Now we wouldlike to extend the same formulas into the two dimensions so that we an verify theusability of the onditions before further extending it in three dimensions. Anotherreason for heking the boundary onditions in two dimensions is that we have readily
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u_middlePSfrag replaementsFigure 5.2: Plot of displaements at middle and right end of the rodthe displaement and stress equations and hene the implementation is muh quikerand easier.From Eqn. 2.13 we have the displaement omponents of the lamb wave given as

u1 =
∂φ

∂x1
+
∂ψ

∂x3

u2 = 0

u3 =
∂φ

∂x3
−
∂ψ

∂x1 (5.10)Rewriting the above equation with onstants and terms involving only time as werequire a di�erentiation over time to get to the veloity of the wave, we have
u1 = fn(φ,ψ)

u2 = 0

u3 = fn(φ,ψ) (5.11)Similarly from Eqn. 2.11a and Eqn. 2.11b we have
φ = [A1 sin(px3) +A2 cos(px3)] exp[i(kx1 − ωt)]

ψ = [B1 sin(qx3) +B2 cos(qx3)] exp[i(kx1 − ωt)] (5.12)



5 Absorbing Boundary Conditions 68Again rewriting the above equation just showing the time terms we have
φ = A exp[i(kx1 − ωt)]

φ = B exp[i(kx1 − ωt)] (5.13)So we get to the veloity equation of the lamb waves from Eqn. 5.11 and Eqn. 5.13
u̇ =

∂u

∂t

=
∂fn(φ,ψ)

∂t

= −i ∗ ω ∗ u (5.14)Thus we have the u̇ term of the damping equation. Now we require the fore termto be used in the same equation for the alulation of the damping o-e�ient. Thisan also be easily done by using the stress equations. We assume that we use linearshape funtions for the Finite element modelling and hene distribute the stressesonto the nodes. Thus we have the nodal fores given as
f = σ ∗ element length (5.15)With the equation for fore and veloity found, we an diretly ompute the dampingoe�ient for eah node. This is given byD = −

f

i ∗ ω ∗ u
(5.16)Thus we get the damping oe�ient at eah node. We implement the same for asymmetri lamb wave and an anti symmetri lamb wave and the results are shown inthe Fig. 2.3 and Fig. 2.4. Thus we prove that the absorbing boundary onditions anbe extended to two dimensions. This boundary ondition an hene be extended tothe third dimension thereby solving our problem of having multiple re�etions at theend of the ylinder so that the design of a solution is not possible. In the next setion,we will deal as how to implement the boundary onditions in three dimensions andalso takle the hallenges involved therein.



5 Absorbing Boundary Conditions 695.4 Implementation of the Absorbing Boundary Conditionin Three DimensionsHaving established the basi equations for a longitudinal wave in ylinder, it is quiteeasy to take the same and implement the boundary onditions. But a look throughthe equations, we �nd that they are very hard to be solved numerially, leave aloneanalytially getting to the end. They have a lot of omplex funtions involved andhene solving those and getting to an absorbing boundary ondition is really a toughtask. Hene we need to �nd other ways of getting to the damping oe�ient for eahnode. A lose look at the damping equation is given here
D =

F

u̇
(5.17)So we really require the veloity of the travelling wave and the Fore that the waveexerts on the node. We use the alternative tehnique of using the waveguide �niteelement method [13℄ to �nd the displaements and hene the veloities and stressesand hene the fore term. As we have disussed in the Se. 2.3.3, we get to the dis-plaements and fores of the waves that travel through a ross setion. The Eqn. 2.66gives the displaements and fores of the waves travelling in various diretions in theross-setion. Based on the diretion required for us, we take the orresponding valuesand ompute the damping value using the following equation.

D = −
F

i ∗ ω ∗ u
(5.18)Thus, we obtain the individual nodal damping fators. We use SDT toolbox in MAT-LAB for omputing the Damping matrix and solving the equations for the Harmonianalysis of wave absorption. Below we present the results for the absorbing boundaryonditions implementation. Having done the implementation of the absorbing bound-ary onditions, we an now deide upon seleting the right frequeny for the piezoatuator so that we an measure the wave propagation taking plae in the material.



6 Design of Piezoeletri TransduersWith the newly developed absorbing boundary onditions in our hand, we are nowready to go diretly to our problem of designing the piezoeletri transduers. Thishapter will disuss in detail how to apply the absorbing boundary onditions to theylinders and how to analyse the results from the simulations. We will be mainly on-entrating on designing the operating frequeny of the piezo as the dimensions of thepiezo availble to us is already de�ned. We an, after designing the frequeny of oper-ation and verifying it with measurement, use this method to hange the dimensionsof the atuator and verify whether it an suit our needs.6.1 Piezoeletri Transduer Type IWe will now design the piezoeletri transduers having a irular ross-setion andlassi�ed as dis transduers. For the proess of designing the displaements produedby suh an atuator, we apply the non-re�eting boundary onditions for the modeldesribed in setion 4.1. As shown there, we onstrut the model using ANSYS® andexport the Mass and sti�ness matries along with the node, elements and materialproperties into MATLAB® with the help of Strutural Dynamis Toolbox (SDT)available in MATLAB®. As disussed before, for this appliation of heking thestrutural health, we will use the longitudinal waves as they propagate faster inthe ylinders and also propagate long distanes. So we need to apply the boundaryonditions for a propagating longitudinal wave in the right end of the model as we ansee that the peizoeletri transduers are in the left end of the ylinders. We also anuse the symmetri property of the longitudinal wave in modelling the wave. This helpsfor us to redue the alulation time and get better results as we an see below. TheFig. 6.1 was modelled for �nding the propagating modes ouring in this ross-setion.As disussed earlier, only a longitudinal wave an propagate in this ross-setion.The boundary ondition is diretly applied from this ross-setion and applied to theylinder ends. Sine the displaement from the longitudinal waves is an exponentialfuntion, when viewing in a frequeny domain, the negative phase angle hange over70
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PSfrag replaements Figure 6.1: Finite Element Model of setion of waveguidethe length of propagation will show a wave propagation in the struture. This willbe the �rst step to be heked while applying the absorbing boundary onditions.A plot of the phase angle of the travelling wave over the length of propagation willgive a lear idea as whether there is a wave propagation ouring. Fig. 6.2 showsthe phase angle of the travelling wave at 50kHz and we learly see that there is aontinuous negative phase angle throughout the wave hanging with distane. Thislearly proves that the wave is travelling in the ylinder. This plot is plotted at 50kHzfrequeny with a 20V input to the piezoeletri transduer. Comparing the same tothe phase angle of the propagating wave without using absorbing boundary onditionsshown in Fig. 6.3, we an learly say that due to the re�etions, the phase angle ofthe travelling wave is almost same over hange in length signifying no hange in thedisplaement. Thus we �nd that the absorbing boundary onditions are working inthe real-time senario. Now we have determined that the wave is travelling in theylinder, we must plot the absolute value of the displaement of the wave in the wavepropagation diretion. Fig. 6.4 shows the plot of absolute value of displaement for3D model type 1. This graph is plotted at x=0.001 m , y= 0.001 m and z= 0 to 0.2m. It is plotted at a frequeny of 50 kHz, and has 100 nodes along the z-axis. Aswe an see the displaements are in the expeted range of 10 nanometers. This nowproves that the way of modelling is working. So now we an see how the piezoeletritransduer hanges the displaement values.We reate a frequeny vetor from 50Khz to 500kHz and hek for the maximum
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PSfrag replaements Figure 6.2: Phase angle of Travelling wave with ABC's
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PSfrag replaements Figure 6.3: Phase angle of Travelling wave without ABC's
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PSfrag replaementsFigure 6.4: Absolute value of displaement for 3D model type1 using ABC'svalue of displaement in the same line as desribed above. We plot the absolutevalue of displaement and absolute value of displaement in +z diretion (u3) value ofdisplaement. We learly see that the piezoeletri transduer produes the maximumvalue of displaement at a frequeny 370 kHz. So, when we use a piezoeletritransduer of type 1, we need to use a frequeny of 370 kHz, so that we an havemaximum displaement in the ylinder. Thus the raks an be deteted learly.6.2 Piezoeletri Transduer Type IIAfter having found suitable frequny of operation for the irular piezoeletri trans-duer, we an now �nd a similar operation frequeny for the type 2 model. We �rsthek the phase angle and �nd that there is a wave propagation ouring. We nowplot the absolute value of the displaement along the diretion of wave propagation.To hek our boundary onditions, we use a new tehnique where we ompare thedisplaement plot by hanging the lengths of the ylinder. The behaviour of theurve is expeted to be similar even when hangng the length of the ylinder as theabsorbing boundary onditions should absorb all the waves oming in its diretion.Fig. 6.6 shows the absolute value of displaement over frequeny for type2 model.We learly see the displaement is in the range of nanometers and also the hange in
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PSfrag replaements Figure 6.5: Absolute displaement over Frequeny for Type1 Modelgeometry does not onsiderably hange the values of the solution. Thus we are quitesure that the absorbing boundary onditions are working perfetly.Now we reate a frequeny vetor from 50kHz to 500kHz and �nd the maximumvalue of displaement ours at a frequeny of 240 kHz. Another proof of the mod-elling is that, we an learly see that eventhough there is a hange in the length ofthe ylinder, the maximum displaement always ours at a frequeny of 240 kHz.Thus we an say that whenever the blok type of piezoeletri transduer is used,it is best to use it in the frequeny range of 240kHz and we an identify the rakseasily. Another important point to note in mind is that all these values hold good onlyfor the geometry of the pieozoeletri transduer we have spei�ed in the previoushapters. This geometry was not optimized as this was the standard piezo materialas supplied for use. There is also a possibility to alter this geometry and �nd the bestpossible geometry. As we an learly see from the results, the type 1 piezoeletritransduer is performing better than the type 2 piezoeletri transduer.
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PSfrag replaements Figure 6.6: Absolute displaement over Frequeny for Type2 Model
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PSfrag replaements Figure 6.7: Absolute displaement over Frequeny for Type2 Model



7 ConlusionA brief introdution to the mathematis behind wave propagation was explained.The long distant travelling waves in plate like strutures namely the lamb waves andthe elasti waves in the ylinders was introdued. Using the waveguide based �niteelement method, the propagation of lamb waves in plate like strutures and elastiwaves in ylindrial strutures was modelled and plotted. This gave a lear idea ashow wave propagation is ourring in these type of strutures.The piezoeletri material, its material properties, the oupled eletro-mehanialformulations were disussed and then the piezoeletri transduer was suessfullymodelled using the �nite element method. Various geometries of the piezoeletriatuator was also onsidered and they were used in modelling the generation of lon-gitudinal waves in ylinders. They resulted in re�etions at the arti�ial boundariesof the ylinder and hene the results were not orret.To takle this problem, a new type of absorbing boundary ondition was developedthat made use of the waveguide based �nite element method, this greatly redued theomputation time and also made the results meaningful. This generalized methodwas tested in one- dimension, extended to two- dimension and then was applied tothree- dimensional problem. This ondition proved really e�etive in designing thepiezoeletri transduer.When a irular piezoeletri transduer is used, it is attahed to the end of theylinder and its operation frequeny ould be set at 370 kHz when the displaementouring in the struture is maximum. Similarly when a piezoeletri transduersimilar to a blok is used, the struture and the piezoeletri transduer have only aline ontat. In this ase, the frequeny of operation of piezoeletri transduer anbe set at 240 kHz. Also, the blok model produed a muh higher displaement levelompared to the irular piezoeletri transduer.With the absorbing boundary onditions now being designed, it would be nie toompare them with physial measurements and asertain the redibility of the ondi-tions and their equivalene to the physial behaviour. At the time of writing, variousmethods are under investigation to measure the displaements in the ylindrial rods.76



7 Conlusion 77Again it is to be noted that sine the ylindrial rod annot be physially tested in labonditions for in�nite distanes, we might make use of paket signals that are sent indisrete pakets and measurements are made on the system before the re�etion fromthe end of the rod a�ets the measurement. From a strutural maintenane pointof view, a measurement proedure is to be developed to measure the displaements.This measurement proedure an be utilized in determining the worthiness of theabsorbing boundary ondition.Another interesting diretion would be to model the ontat between the ylindrialrods. There is a frition oupled energy based analysis of ontats between rods, butwith the help of absorbing boundary onditions, we an make a �nite element basedmodel for ontat analysis. Sine the ontat geometry is quite omplex, the simplestep would be to model two rods with one ating as an ative rod and the othera passive rod and to examine the wave propagation in the ontat area. When weuse the piezoeletri transduers of type 2 as disussed in the previous hapters, wemight be using both the rods as ative rods. Sine the piezoeletri transduers anbe attahed only to the outer surfae of the multiple wire system, it would be exitingto model ontats and �nd the displaements in the innermost wires. Also it wouldbe interesting to model the re�etions in the innermost wire due to the raks presentin them. The use of absorbing boundary onditions beomes inevitable when suhompliated modelling is done.
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