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1 Introdu
tionEle
tri
ity is 
onsidered to the driving for
e from the start of the 20th Century.With in
rease in average energy 
onsumption and de
rease in sour
es of energy itbe
omes inevitable to redu
e the losses in energy transmission. The ele
tri
al energyis pra
ti
ally transmitted over long distan
es using strands of wires. These wires are
ontinuously subje
ted to 
limate 
hanges. These allow the wires to develop 
ra
ksin them and thereby in
rease the loss in transmission. Currently these high powerlines are monitored for integrity by using heli
opters that run through the length ofthe wire and 
he
k for 
ra
ks. This is a 
ostly method.1.1 MotivationThe motivation behind my thesis is to redu
e the 
ost of maintenan
e and therebyredu
e the transmission energy losses. This is a
hieved pra
ti
ally using piezoele
tri
transdu
ers whi
h send pa
kets of waves, that travel long distan
es and 
an be usedto dete
t the 
ra
ks based on re�e
tions. Fig. 1.1 shows the 
omparison between theresponses from a laser measurement for the same spe
imen with and without 
ra
k.The region shows the re�e
ted 
omponents of the wave from the 
ra
k during wavepropagation. The region B shows the re�e
ted 
omponents from the 
ra
ks due tore�e
tion of the wave at the end of the spe
imens. Thus we 
an 
learly see a method
an be obtained to predi
t the 
ra
ks present in the system.1.2 Previous WorkMeitzler 
onsidered the propagation of elasti
 pulses in wires having a 
ir
ular 
ross-se
tion [14℄. He attributed pulse distortion to the propagation of several modes. Hisexperimental and theoreti
al results suggest that 
oupling between the various modesof propagation were responsible for the observed pulse distortion. Rizzo and Lanzadi S
alea examined the wave propagation problem in seven-wire 
ables at the levelof the individual wires [16℄. Using wavelet transforms they identi�ed the vibration1
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PSfrag repla
ements Figure 1.1: Comparison of Spe
imens with and without 
ra
kmodes whi
h propagate with minimal losses. Su
h modes are really useful for long-range inspe
tion of the wires. Furthermore, they found that sin
e the dispersion
urves are sensitive to the load level, the elasti
 waves 
ould be used for 
ontinuousload monitoring. Haag, Beadle, Sprenger and Gaul proposed an energy model anda �nite element model for modelling wave propagation [7℄. They found out thatthe Finite element model requires more time 
ompared to the energy based modelbut had the advantage of dete
ting the sub-surfa
e defe
ts. The main problem inthe �nite element method was the transdu
er ringing. Another problem that wasidenti�ed when using the �nite element model was the re�e
tions o

urring due tothe presen
e of arti�
ial boundaries.1.3 Present WorkThe goal of this master thesis is to 
learly to make a �nite element model of the wavepropagation in the time domain. The �rst problem was to design the piezoele
tri
transdu
er in the �nite element model and then use it for generating the waves andthen �nd the suitable piezoele
tri
 transdu
er for pra
ti
al appli
ations. During the�nite element modelling, the re�e
tions o

urring in the arti�
ial boundary was elim-inated by using the non-re�e
ting boundary 
onditions or the absorbing boundary
onditions. A new method for generating this boundary 
ondition was also formu-



1 Introdu
tion 3lated. The advantages of this new method being that it just used the �nite elementmodel as it is to predi
t the damping values for the wave absorption. This meansthat the user does not need to know the equations that govern the waves to �ndthe values of the damping 
o-e�
ient. Thus this new method developed is not onlyuseful for this 
urrent problem but 
an be extended to any problem where there isa wave propagation o

urring with the only requirement being the knowledge of the
ross-se
tion in whi
h the wave is propagating.



2 Fundamentals of Waves in Elasti
Solids2.1 The Wave Equation in Tensor NotationsIn this se
tion we 
an derive the wave equation in three dimensions from the basi
prin
iples [1℄. Let u(x, t) denote the displa
ement of parti
les. From the 
ontinuumtheory, we 
an express deformation of the medium with the help of gradients ofdispla
ement ve
tor. Assuming the linear theory, we end up with a linear small-strain tensor ǫ, with the 
omponents
ǫij =

1

2
(ui,j + uj,i) (2.1)It is also noted that the strain tensor is symmetri
 and hen
e ǫij = ǫji. A

ordingto the prin
iple of balan
e of linear momentum, `The instantaneous rate of 
hange ofthe linear momentum of a body is equal to the resultant external for
es a
ting on thebody at the parti
ular instant of time'. This 
an be des
ribed using the linearizedtheory as

∫

S
tdA+

∫

V
ρfdV =

∫

V
ρüdV (2.2)where t is the surfa
e tra
tion in the dire
tion of the normal to the surfa
e, f is thebody for
e per unit mass, S is the surfa
e that is subje
ted to the tra
tion, V is thevolume of the body and ρ is the density of the material. With the help of Cau
hyStress formula, we 
an have a relation between the stress tensor σji and the tra
tionfor
es as

ti = σjinj (2.3)
4



2 Fundamentals of Waves in Elasti
 Solids 5where σji is the stress 
omponent in the xi dire
tion on the surfa
e with unit normal
nj . By substituting the Eqn. 2.3 into Eqn. 2.2 we have in index notations

∫

S
σjinjdA+

∫

V
ρfidV =

∫

V
ρüidV (2.4)By using Gauss theorem, we 
an transfer the surfa
e integral into volume integral,hen
e rewriting Eqn. 2.4 we have

∫

V
σji,j + ρfi − ρüidV = 0. (2.5)Sin
e this is true for any part of V, we have

σji,j + ρfi = ρüi (2.6)This is 
alled as Cau
hy's �rst law of motion.The famous Hooke's law for relating the stresses and strains with the help Lame'sConstant for a homogeneous, isotropi
, linearly elasti
 body is given by
σji = λǫkkδji + 2µǫji (2.7)Substituting the Hooke's law (Eqn. 2.7)and the strain tensor (Eqn. 2.1)in the Eqn.2.6 we have the wave equation as below with 
hanging the indi
es
µui,jj + (λ+ µ)uj,ji + ρfi = ρüi (2.8)The Eqn. 2.8 represents the equation of motion of parti
les in an elasti
 
ontinuum foran isotropi
 and homogeneous body. This forms our basis for further developmentsin this area.2.2 Lamb Waves in PlatesLamb waves have the property of travelling over long distan
es and 
an determinequalitatively and quantitatively the amount of damage o

urring in the stru
ture.These types of waves o

ur in plates. Here in this se
tion, we 
an see about theirhistory, the governing equations and try to visualize these waves using �nite elementmethod.



2 Fundamentals of Waves in Elasti
 Solids 62.2.1 Mathemati
al Expression of Lamb WavesThe waves in a thin isotropi
 plate 
an be represented using a 
artesian tensor nota-tion in the form of
µ · ui,jj + (λ+ µ) · ui,ji + ρ · fi = ρ · üi (2.9)where
ui is the displa
ement in the xi dire
tion
fi is the body for
e in the xi dire
tion
ρ is the density of the plate
µ is the shear modulus of the plate
λ = 2·µ·ν

1−2ν where λ is the Lamé 
onstant and ν is the Poisson's RatioBased on Helmholtz de
omposition, we 
an de
ompose Eqn. 2.9 into two un
oupledparts under the plane strain 
ondition as
∂2φ

∂x21
+
∂2φ

∂x23
=

1

c2L ∂2φ∂t2 is the governing equation for longitudinal modes and
∂2ψ

∂x21
+
∂2ψ

∂x23
=

1

c2T ∂2ψ∂t2 is the governing equation for transverse modes (2.10)where
φ = [A1 sin(px3) +A2 cos(px3)] · exp[i(kx1 − ωt)] (2.11a)
ψ = [B1 sin(qx3) +B2 cos(qx3)] · exp[i(kx1 − ωt)] (2.11b)
p2 =

ω2

c2L − k2, q2 =
ω2

c2T − k2 k =
2π

λwave (2.11
)
A1, A2, B1 and B2 are four 
onstants determined by the boundary 
ondtions. k,

ω and λwave are the wavenumber, 
ir
ular frequen
y and wavelength of the wave
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 Solids 7respe
tively. cL and cT are the velo
ities of longitudinal and transverse/shear modesde�ned by the following equations
cL =

√

E(1− ν)

ρ(1 + ν)(1− 2ν)
=

√

2µ(1− ν)

ρ(1− 2ν)
(2.12a)

cT =

√

E

2ρ(1 + ν)
=

√

ν

ρ
(2.12b)where E is the Young's Modulus of the medium.Lamb waves are a
tually superposition of longitudinal and transverse/shear modes.An in�nte number of modes exist simultaneously, superimposing on ea
h other be-tween the upper and lower surfa
e of the plate, �nally leading to well behaved guidedwaves.As a result of plane strain, the displa
ements in the wave propagation dire
tion

(x1) and normal dire
tion (x3) 
an be des
ribed as
u1 =

∂φ

∂x1
+
∂ψ

∂x3
u2 = 0 u3 =

∂φ

∂x3
−
∂ψ

∂x1
(2.13)From the displa
ement, we get the stresses as

σ31 = µ(
∂u3
∂x1

+
∂u1
∂x3

) = µ(
∂2φ

∂x1∂x3
−
∂2ψ

∂x21
+
∂2ψ

∂x23
) (2.14a)

σ33 = λ(
∂u1
∂x1

+
∂u3
∂x3

) + 2µ
∂u3
∂x3

= λ(
∂2φ

∂x21
+
∂2φ

∂x23
) + 2µ(

∂2φ

∂x23
−

∂2ψ

∂x1∂x3
) (2.14b)For a plate with free upper and lower surfa
es, by applying boundary 
onditions atboth surfa
es as follows

u(x, t) = u0(x, t) Displa
ement boundary 
ondtion (2.15a)
ti = σjini tra
tion (2.15b)
σ31 = σ33 = 0 at x3 = ±d/2 = ±h (2.15
)
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ements Figure 2.2: Symmetri
 and Antisymmetri
 Lamb Waveswhere d is the plate thi
kness and h is the half thi
kness. For the plate 
oordinatessee the Fig. 2.1When we apply these boundary 
onditions to the Eqn. 2.13 and Eqn. 2.14, weobtain the des
ription of Lamb waves in an isotropi
 and homogeneous plate as

tan(qh)

tan(ph)
=

4k2qpµ

(λk2 + λp2 + 2µp2)(k2 − q2)
(2.16)Substituting Eqn. 2.11
 and Eqn. 2.12 into Eqn. 2.16 also taking into 
onsidera-tion that tan 
an be divided into sin
e and 
osine whi
h have symmetri
 and anti-symmetri
 properties, we 
an seperate Eqn. 2.16 into two parts as in a symmetri
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 Solids 11and antisymmetri
 part modes as
tan(qh)

tan(ph)
= −

4k2qp

(k2 − q2)2
for symmetri
 modes (2.17a)

tan(qh)

tan(ph)
= −

(k2 − q2)2

4k2qp
for anti-symmetri
 modes (2.17b)2.2.2 Visualization of Lamb WavesTo view the Lamb waves, we used a frequen
y of 50 kHz. We 
reated a time ve
torhaving 5 periods to a
t as the input. The displa
ement ve
tor at ea
h of the timepoint (10 points per period) was 
al
ulated using the equations and the input wasgiven as a fun
tion boundary 
ondition for the transient analysis. Eqn. 2.17 
an bevisualized to produ
e the symmetri
 and antisymmetri
 waves as shown in �gure 2.2.The �nite element modelling of generation of a lamb wave - the symmetri
 waveis modelled and is plotted with the help of ve
tors in Fig. 2.3. This plot is doneusing ANSYS. The antisymmetri
 lamb wave is plotted in Fig. 2.4. Comparing tothe Fig. 2.2, we �nd that the symmetri
 and antisymmetri
 modes o

ur as expe
tedin the �nite element modelling. For the �nite element modelling, the mesh sizeswere 
ontrolled su
h that the mesh size of the length is 10 times smaller than thewavelength. Also absorbing boundary 
onditions were implemented with the help ofa damping element. The modelling is detailed in the later 
hapters. Here the readeris just shown that lamb waves 
an be modelled with the help of �nite elements.2.3 Waves in CylindersThis se
tion deals with the various waves that are possible in a 
ylinder. These wavesare similar to the Lamb waves in plates and have very high wave speeds. For examplethe longitudinal wave has a speed of 6300m/s in aluminium whi
h suits our purposeperfe
tly.2.3.1 Mathemati
al Basi
sHere we 
an speak brie�y about the mathemati
al basi
s behind the waves in 
ylin-ders. We use the 
ylindri
al 
oordinates over the entire part of this se
tion as it iseasy to derive the wave equations. A solid, 
ylindri
al rod in 
ylindri
al 
oordinatesis 
onsidered. The radius of the rod is a. The rod and 
oordinate system are shown
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PSfrag repla
ementsFigure 2.5: Rod with the Coordinate Systemin Fig. 2.5.The motion of any homogenous, isotropi
, linear elasti
 body is governed by theso 
alled Lamé - Navier-equation given by Eqn. 2.18
µ∇2u+ (λ+ µ)∇∇ · u+ ρf = ρü (2.18)By negle
ting the body for
es,we 
an de
ouple Equation 2.18 using Helmholtz de-
omposition we get Eqn. 2.19
u = ∇φ+∇× ψ (2.19)whi
h 
an be written in s
alar notations as
ur =

∂φ

∂r
+

1

r

∂ψz

∂θ
−
∂ψθ

∂z
(2.20)

uθ =
1

r

∂φ

∂θ
+
∂ψr

∂z
−
∂ψz

∂r
(2.21)

uz =
∂φ

∂z
+

1

r

∂

∂r
(rψθ)−

1

r

∂ψr

∂θ
(2.22)With this substitution, the Lamé-Navier equation is de
oupled into a s
alar waveequation and a ve
tor wave equation,

∇2φ =
1

c2L

∂2φ

∂t2
∇2ψ =

1

c2T

∂2ψ

∂t2
(2.23)This assumption for the displa
ements is 
omplete and it 
overs all possible solutions
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 Solids 13of Eqn. 2.18. The strains are given by the following equations
εrr =

∂ur
∂r

, εθθ =
1

r

∂uθ
∂θ

+
ur
r

(2.24a)
εzz =

∂uz
∂z

(2.24b)
εrθ =

1

2
(
1

r

∂ur
∂θ

+
∂uθ
∂r

−
uθ
r
) (2.24
)

εrz =
1

2
(
∂uz
∂r

+
∂ur
∂z

) (2.24d)
εθz =

1

2
(
∂uθ
∂z

+
1

r

∂uz
∂θ

) (2.24e)Now by Hooke's Law we have
σij = λ∆δij + 2µεij (2.25)By using Eqn. 2.25 and Eqn. 2.24 we have the expression for the stresses given bythe following equations
σrr = λ(

∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

) + 2µ
∂ur
∂r

(2.26a)
σθθ = λ(

∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

) + 2µ(
ur
r

+
1

r

∂uθ
∂θ

) (2.26b)
σzz = λ(

∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

+
∂uZ
∂z

) + 2µ
∂uz
∂z

(2.26
)
σrθ = µ(

∂uθ
∂r

−
uθ
r

+
1

r

∂ur
∂θ

) (2.26d)
σθz = µ(

1

r

∂uz
∂θ

+
∂uθ
∂z

) (2.26e)
σzr = µ(

∂ur
∂z

+
∂uz
∂r

) (2.26f)
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 Solids 14For free surfa
es, the stresses in the surfa
e plane disappear, whi
h also holds forthe 
ylindri
al surfa
e of the investigated rod. The boundary 
onditions are thusdes
ribed by Eqn. 2.27
σrr = σrθ = σrz = 0 here r=a (2.27)In order to �nd a solution to the s
alar and ve
tor wave equations given byEqn.2.23, the following general form is assumed for the s
alar potential φ and the
omponents of ve
tor potential ψ as
φ = f(r)Θφ(θ)e

i(ξz−ωt) (2.28a)
ψr = hr(r)Θr(θ)e

i(ξz−ωt) (2.28b)
ψθ = hθ(r)Θθ(θ)e

i(ξz−ωt) (2.28
)
ψz = hz(r)Θz(θ)e

i(ξz−ωt) (2.28d)The �rst two fa
tors are independent of time. They des
ribe the potential as afun
tion of the lo
ation on a 
ertain 
ross-se
tion of the rod. An axial propagationof the potentials is a
hieved by the thrid fa
tor. On substituting Eqn. 2.28a in thewave equation given by Eqn. 2.23 for φ we have
f

′′

Θφ +
1

r
f

′

Θφ +
1

r2
fΘ

′′

φ − ξ2fΘφ = −
ω2

c2L
fΘφ (2.29)Rearranging the terms, it leads to Eqn. 2.30

r2
f

′′

f
+ r

f
′

f
− (ξ2 −

ω2

c2L
)r2 = −

Θ
′′

φ

Θφ
= n2 (2.30)Sin
e the solutions should be 
ontinuous fun
tions, with 
ontinuous derivatives, n
an only be zero or an integer. The two sides of Eqn. 2.30 
ontaining the separatedvariables 
an only be equal to ea
h other, if they are equal to the same 
onstant.This 
onstant is denoted by n2. A solution of the Θφ of Eqn. 2.30 is

Θφ = A sinnθ +B cosnθ, n ∈ N (2.31)
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 Solids 15The same pro
edure yields similar expressions for Θr,Θθ and Θz.Considering only�exural, torsional and longitudinal modes, either sin- or 
os- terms 
an be negle
ted.The general form of the potentials assumed in Eqn. 2.28 
an be redu
ed to
φ = f(r) cosnθei(ξz−ωt) (2.32a)
ψr = hr(r) sinnθe

i(ξz−ωt) (2.32b)
ψθ = hθ(r) cosnθe

i(ξz−ωt) (2.32
)
ψz = hz(r) sin nθe

i(ξz−ωt) (2.32d)The r dependen
e of the potentials is established from the Eqn. 2.30. Rearrangingthe same we have
d2f

dr2
+

1

r

df

dr
(α2 −

n2

r2
)f = 0 (2.33)where

α2 =
ω2

c2L
− ξ2 (2.34). Eqn. 2.33 is Bessel's Equation of order n. It is solved by

f(r) = AJn(αr) (2.35)where Jn is a Bessel fun
tion of the �rst kind having order n. Solving for the remaining
omponents is even more 
ompli
ated, due to more 
ompli
ated di�erential equations.The interested reader is referred to GRAFF [9℄. The results are
hz(r) = B3Jn(βr) (2.36a)
hr(r) = B1Jn−1(βr) +B2Jn+1(βr) (2.36b)
hθ(r) = B1Jn−1(βr)−B2Jn+1(βr) (2.36
)
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β =

ω2

c2T
− ξ2 (2.37). Inserting these results in the assumptions for displa
ements Eqn. 2.20 to Eqn. 2.22,we have

ur = [f
′

+
n

r
ψz + ξψr] cosnθ exp

i(ξz−ωt) (2.38a)
uθ = [−

n

r
f + ξψr − ψ

′

z] sin nθ exp
i(ξz−ωt) (2.38b)

uz = [−ξf
′

− ψ
′

r − (n+ 1)
ψr

r
] cosnθ expi(ξz−ωt) (2.38
)And a

ordingly the stresses in the surfa
e be
ome

σrr = [−λ(α2 + ξ2)f + 2µ(f
′′

+
n

r
(ψ

′

z −
ψz

r
) + ξψ

′

r)] cosnθe
i(ξz−ωt) (2.39a)

σrθ = µ[
2n

r
(f

′

−
f

r
)− (2ψ

′′

z − β2ψz)− ξ(
n+ 1

r
ψr − ψ

′

r)] sin nθe
i(ξz−ωt) (2.39b)

σrz = µ[−2ξf
′

−
n

r
(ψ

′

r + (
n+ 1

r
− β2 + ξ2)ψr)−

nξ

r
ψz] cosnθe

i(ξz−ωt) (2.39
)By using the boundary 
onditions as de�ned in the Eqn. 2.27, and substituting r=aleads to a general frequen
y equation given by
|aij | = 0 (2.40)where
a11 = {

λ(α2 + ξ2)(αa)2

2µα2
+ (αa)2 − n2}Jn(αa) + αaJ

′

n(αa) (2.41a)
a12 = {n2 − (βa)2}Jn(βa)− βaJ

′

n(βa) (2.41b)
a13 = 2n{βaJ

′

n(βa)− Jn(βa)} (2.41
)
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a21 = n{αaJ

′

n(αa)− Jn(αa)} (2.41d)
a22 = −n{βaJ

′

n(βa) = Jn(βa)} (2.41e)
a23 = −{2n2 − (βa)2}Jn(βa) + 2βaJ

′

n(βa) (2.41f)
a31 = −αaJ

′

n(αa) (2.41g)
a32 = −

β2 − ξ2

2ξ2
βaJ

′

n(αa) (2.41h)
a33 = nJn(βa) (2.41i)This determinant spe
i�es the frequen
y equation for all possible modes. To addressparti
ular mode families, n is varied. Thus we obtain the various modes and theirfrequen
ies of propagation in the 
ylindri
al medium.2.3.2 Longitudinal, Torsional and Flexural Modes in CylindersThe waves that propagate in the 
ylinder are in one of these three types namelytorsional, �exural and longitudinal. This part deals brie�y the mathemati
s behindthese modes and their wavefronts. This se
tion uses the waveguide FE method [13℄for generation of the wavefronts.Longitudinal WavesThese types of waves are axially symmetri
 and have displa
ement 
omponents inthe radial and axial dire
tions. [1℄. The �rst longitudinal mode is given by puttingn=0 in the equation 2.41. The elements of the determinant be
ome
a
′

11 = {
λ(α2 + ξ2)(αa)2

2µα2
+ (αa)2}J0(αa) + αaJ

′

0(αa) (2.42a)
a
′

12 = −(βa)2J0(βa)− βaJ
′

0(βa) (2.42b)
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a
′

23 = (βa)2J0(βa) + 2βaJ
′

0(βa) (2.42
)
a
′

31 = −αaJ
′

0(αa) (2.42d)
a
′

32 = −
β2 − ξ2

2ξ2
βaJ

′

0(αa) (2.42e)
a
′

13 = a
′

21 = a
′

22 = a
′

33 = 0 (2.42f)and hen
e the general frequen
y equation redu
es to
[

a
′

11 a
′

12

a
′

31 a
′

32

]

a
′

23 = 0 (2.43)This Eqn. 2.43 tends to zero in two ways, either the value of the determinant is zerowhi
h 
orresponds to longitudinal modes or the value a′

23 tends to zero. Computingthe determinant of the 2x2 matrix, we have the '"Po
hhamer Frequen
y Equation"',whi
h Po
hhammer dis
overed in the year 1876, whi
h is the frequen
y equation ofthe �rst longitudinal mode. It is given by Eqn. 2.44
2α

a
(β2+ξ2)J1(αa)J1(βa)−(β2−ξ2)J0(αa)J1(βa)−4ξ2αβJ1(αa)J0(βa) = 0 (2.44)For n=0, we have from the Eqn. 2.38b as uθ = 0. Also we have from Eqn. 2.32b andEqn. 2.32d the terms ψr and ψz tend to zero. ie.

ψz = ψr = 0. The remaining displa
ements uz and ur 
an thus be des
ribed in terms of φ and ψθusing Eqn. 2.32a,Eqn. 2.32
,Eqn. 2.35 andEqn. 2.36
 as
φ = AJ0(αr)e

i(ξz−ωt) (2.45a)
ψθ = −B2J1(βr)e

i(ξz−ωt) (2.45b)
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ements 
an be written as
ur = B2{−

A

B2
αJ1(αr) + iξJ1(βr)}e

i(ξz−ωt) (2.46a)
uz = B2{

A

B2
iξJ0(αr)− βJ0(βr)}e

i(ξz−ωt) (2.46b)where
A

B2
= −

β

α
(
β2 − ξ2

2ξ2
J1(βa)

J1αa
) (2.46
)It is to be noted that the displa
ement and stress �elds of the longitudinal mode arerotationally symmetri
. This phenomenon of the longitudinal waves is fully exploitedwhen we use Finite element methods (FEM), we use the symmetry property andredu
e the 
al
ulation time. The 
on
ept of rotational symmetry for a longitudinalwave follows dire
tly from the point that the displa
ements are independent on θ
oordinate. The Eqn. 2.46 is di�
ult to solve numeri
ally and hen
e we use thewaveguide method [13℄ to view the displa
ements in the wavefront. This is shownin the last part of this se
tion. It is also noted that the longitudinal waves thatare propagating in a 
ylinder are similar to the symmetri
 and anti-symmetri
 lambwaves that propagate in a plate. The Se
tion 2.2 gives in detail the lamb waves.Torsional WavesThe torsional waves involve a 
ir
umferential displa
ement only whi
h is independentof θ. [1℄. It means that we assume the displa
ement uθ exists. Su
h a displa
ement�eld is obtained only when ψz 6= 0 is assumed. Hen
e we have the following

ψz = B3J0(βr)e
i(ξz−ωt) (2.47a)

uθ = BJ1(βr)e
i(ξz−ωt) (2.47b)It is to be noted that we have repla
ed −βB3 that results from di�erentiating J0βrby B in Eqn. 2.47b. The frequen
y for the torsional modes may be obtained by usingthe boundary 
ondition σrθ = 0 and noting from Eqn. 2.39b it is merely

r
∂

∂r
(
uθ
r
) = 0, r = a (2.48)
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23 = 0. Thus we have the torsional waves of the form
βaJ0(βa) = 2J1(βa) (2.49)as the frequen
y equation for torsional waves. This frequen
y equation will also resultif Eqn. 2.48 is solved dire
tly. Some of the roots of the torsional wave frequen
yequation are

β0a = 0 β1a = 5.136 β2a = 8.417 β3a = 11.62.... We also have a frequen
y-wave number relation as
(βa)2 = (

ωa

cT
)2 − (ξa)2 (2.50)For the solution βa = 0 we examine the displa
ements ur = uz = 0anduθ = uθ(r, z)and �nd the only non trivial motion equation as

∂2uθ
∂r2

+
1

r

∂uθ
∂r

−
uθ
r2

+
∂2uθ
∂z2

=
1

c2T ∂2uθ∂t2
(2.51)Considering a solution of the form uθ = U(r)ei(ξz−ωt) gives

d2U

dr2
+

1

r

dU

dr
+ (β2 −

1

r2
)U = 0 (2.52)for β = 0, the resulting solution is

U =
A

r
+Br (2.53)The singular behaviour at r = 0 requires A = 0. Thus for β = 0, we have adispla
ement �eld given by,

uθ = Brei(ξz−ωt) (2.54)where ξ = ω
cT . This denotes the lowest mode of propagation of torsional waves. Itrepresents the ex
eptional 
ase when strength of materials and elasti
ity yield thesame results. This mode has a non dispersive propagation. As mentioned previously,it has the same frequen
y spe
trum has the same shape as for the SH waves in aplate. Again, this mode is also plotted using the waveguide [13℄, even though theequations are quite easy to solve.
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omponents of displa
ements. Hen
e the 
asen=1 
orresponds to the lowest order family of �exural modes. The displa
ementand frequen
y equations are more 
ompli
ated than those for the longitudinal andtorsional modes. Pao and Mindlin [9℄ have investigated the lowest bran
hes of�exural modes, the resulting Po
hhammer frequen
y equation is
J1(ᾱ)J

2
1 β̄(f1J

2
β + f2JαJβ + f3Jβ + f4Jα + f5) = 0 (2.55a)where

f1 = 2(β̄2 − ξ̄2)2 (2.55b)
f2 = 2β̄2(5ξ̄2 + β̄2) (2.55
)
f3 = β̄2 − 10β̄4 − 2β̄4ξ̄2 + 2β̄2ξ̄2 + β̄2ξ̄4 − 4ξ̄4 (2.55d)
f4 = 2β̄2(2β̄2ξ̄2 − β̄2 − 9ξ̄2) (2.55e)
f5 = β̄2(−β̄4 + 8β̄2 − 2β̄2ξ̄2 + 8ξ̄2 − ξ̄4) (2.55f)where
ᾱ = αa β̄ = βa ξ̄ = ξa Ω =

ωa

cT Jx = xJ0(x)/J1(x) (2.56)We also plot the �exural waves in the following part.2.3.3 Visualization of Wavefronts of Longitudinal, Torsional andFlexural ModesAs we 
an see, the wave number frequen
y relations for the longitudinal, torsionaland �exural modes are very mu
h 
ompli
ated. To view the wavefronts.ie, the dis-pla
ement regime that propagates in a dire
tion, by whi
h we 
an determine the typeof wave, we use waveguide �nite element method. This method has been designed byMa
e et al [13℄. It uses 
ommer
ially available software pa
kages to develop a single
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X
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PSfrag repla
ements Figure 2.6: Finite Element Modelling of wave guidese
tion of the waveguide and then performs 
ertain methods using the matri
es andthen get the waves that propagate in the 
ross se
tion in the 
hosen dire
tion. Here,a brief detail of the method and its implementation for our 
urrent problem is given.For other 
omplex examples and numeri
al 
onsiderations, the reader is referred tothe paper [13℄.We use ANSYS® and MATLAB® to do the modelling and post pro
essing re-spe
tively. For a 
ylinder, the 
ross se
tion in whi
h the wave propagates is 
ir
ularin shape. It is noted that, we 
an see only longitudinal waves, in one-quarter ofthe model, a �exural and longitudinal wave in the half of the 
ross se
tion and two�exural waves, a torsional wave and a longitudinal wave in the 
omplete 
ir
ular
ross se
tion. We model one se
tion of the model as shown in Fig. 2.6 and Fig. 2.7,in ANSYS® and import the sti�ness and mass matrix into MATLAB® using SDTtoolbox. The 
onventional equations of motion be
ome
(K+ iωC− ω2M)u = f (2.57)where K is the sti�ness matrix, C is the damping matrix ,M is the mass matrix,f isthe ve
tor of nodal for
es and u is the ve
tor of nodal degrees of freedom (DOF's). Wenow introdu
e a dynami
 sti�ness matrix H̃ = K+ iωC−ω2M and the nodal for
esand the DOF's are de
omposed into sets asso
iated with the right(R), interior(I) andleft(L) nodes. We use a FE model with no interior nodes for ease of 
al
ulation, butnow we 
an generally see how to ta
kle the interior nodes if modelled. For the 
ase
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PSfrag repla
ementsFigure 2.7: Finite Element Model of single se
tion of the wave guide (Oblique View)where there are no external for
es on interior nodes, the equation of motion 
an bepartioned as






H̃II H̃IL H̃IR

H̃LI H̃LL H̃LR

H̃RI H̃RL H̃RR













uI

uL

uR






=







0

fL

fR






(2.58)From the Eqn. 2.58, it follows that the interior degrees of freedom as

uI = H̃−1
II (H̃ILuL + H̃IRuR) (2.59)These interior degrees of freedom 
an therefore be eliminated from Eqn. 2.58 as

[

HLL HLR

HRL HRR

][

uL

uR

]

=

[

fL

fR

] (2.60)where
HLL = H̃LL − H̃LIH̃

−1
II H̃IL HLR = H̃LR − H̃LIH̃

−1
II H̃IR

HRL = H̃RL − H̃RIH̃
−1
II H̃IL HRR = H̃RR − H̃RIH̃

−1
II H̃IRDue to the symmetry of sti�ness, mass and damping matrix, the dynami
 sti�ness
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. Hen
e we have the following relations true
HT

LL = HLL,H
T
RR = HRR,H

T
LR = HRLwhere the supers
ript T indi
ates the transpose. Eqn. 2.60 forms the basis for theanalysis of wave motion in a waveguide.Suppose that no external for
es are applied to the stru
ture, and that the waveguideis divided into a number of similar se
tions. From 
ontinuity of displa
ements andequilibrium of for
es at the 
ross-se
tion between se
tions s and (s+1) it follows that

u
(s+1)
L = us

R f
(s+1)
L = −f sR (2.61)We introdu
e a transfer matrix (T) that relates the nodal displa
ements and for
esin 
ross-se
tions s and (s+ 1). This matrix is de�ned su
h that

[

u
(s+1)
L

f
(s+1)
L

]

=

[

u
(s)
L

f
(s)
L

] (2.62)From Eqn. 2.60,Eqn. 2.61 and Eqn. 2.62, it follows that
T =

[

−H−1
LRHLL H−1

LR

−HRL +HRRH
−1
LRHLL −HRRH

−1
LR

] (2.63)The transfer matrix T depends only on the dynami
 sti�ness of one se
tion of thewaveguide. When a free wave propagates along the waveguide, the displa
ementsand for
es at su

essive 
ross-se
tions are su
h that
[

u
(s+1)
L

f
(s+1)
L

]

= λ

[

us
L

f sL

] (2.64)Thus free wave propagation is des
ribed by the eigen problem
T

[

us
L

f sL

]

= λ

[

us
L

f sL

] (2.65)The 2n eigen values λj(j=1,2�....,2n) are related to the phase 
hange over the length ofthe 
ross se
tion ∆ and the eigenve
tors φj indi
ate the shape of the motion over the
ross-se
tion. Here n is the number of nodal DOF's on ea
h side of the 
ross-se
tion.The eigenve
tor 
an be partitione into n× 1 ve
tors asso
iated with the nodal DOF's
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es, i.e,
φj =

{

φuj
φfj

} (2.66)From the �rst row of the Eqn. 2.65 we have
fL = (HLL + λHLR)uL (2.67)and hen
e
φfj = (HLL + λjHLR)φ

u
j (2.68)If λj is an eigenvalue, so is 1/λj . This follows by substituting Eqn. 2.67 in the se
ondrow of Eqn. 2.65, leads to after 
al
ulations

(HLL +HRR + λHLR +
1

λ
HRL)uL = 0 (2.69)The result follows by taking the transpose of this equation and noting the symmetri
properties of the dynami
 sti�ness matri
es. Therefore the eigenvalues of T arede�ned su
h that

|λj | ≤ 1 (2.70)
Re{fHL u̇L} = Re{iωfHL uL} < 0 if |λj| = 1 (2.71)The eigen solutions therefore 
ome in two sets whose eigen values are (λj , φ

+
j ) and

1/λj , φ
−

j and whi
h represent n positive-going and n negative-going wave types re-spe
tively. Eqn. 2.71 that either the amplitude of the wave de
reases in the dire
tionof propagation or that, if the amplitude remains 
onstant, there is a time averagepower transmission in the dire
tion of propagation. The jth eigenvalue 
an be writtenas
λj = e−ikj∆ = e−µj∆e−ik

′

j∆ (2.72)where the wave number 
an be 
omplex. kj = k
′

j − iµj may be 
omplex and where
µj and k

′

j are real and equal to the attenuation and phase 
hange per unit lengththat is asso
iated with the jth wave type.
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PSfrag repla
ements Figure 2.8: Wavefront of Longitudinal WavesThe Eqn. 2.72 is used in 
al
ulating the wavenumber k whi
h is in turn used todetermine the type of the wave that is propagating in the 
ross-se
tion. Below is alist that gives the types of wave that o

ur and their dire
tion of propagation in themedium based on the wavenumbers.Wave propagation to left side of the 
ross-se
tion k′

< 0 and µ = 0Wave propagates to the right side of the 
ross-se
tionk′

> 0 and µ = 0Evanes
ent waves in the left side of the 
ross-se
tion k′

< 0 and µ < 0Evanes
ent waves in the right side of the 
ross-se
tion k′

> 0 and µ < 0Exponential waves in the left sidek′

< 0 and µ > 0Exponential waves in the right sidek′

> 0 and µ > 0De
aying waves k′

= 0Waves formed due to numeri
al 
onsiderations k′

∗∆ > πThus these are the wave types that are generated. Now we need to 
al
ulatethe displa
ement and the stress �elds of the waves. We also need to �nd whi
hpropagating wave 
orresponds to whi
h mode of transmission. We use the Eqn. 2.66
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PSfrag repla
ements Figure 2.9: Wavefront of Longitudinal Waves
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ements Figure 2.10: Wavefront of Torsional Waves
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PSfrag repla
ements Figure 2.11: Wavefront of Torsional waves
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Flexural waves in a cylinder cross section

PSfrag repla
ements Figure 2.12: Wavefront of Flexural waves



2 Fundamentals of Waves in Elasti
 Solids 29

PSfrag repla
ements Figure 2.13: Wavefront of Flexural waves

PSfrag repla
ements Figure 2.14: Wavefront of Flexural waves in u(r)
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ements Figure 2.15: Wavefront of Flexural waves

PSfrag repla
ements Figure 2.16: Wavefront of Flexural waves(2) in u(z)
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PSfrag repla
ements Figure 2.17: Wavefront of Flexural waves(2) in u(r)to 
al
ulate the nodal DOFs and nodal for
es. The partition of the eigenve
tors givesthe nodal for
es and nodal DOFs on the left hand side of the model. Using thetransformation matrix T we �nd out the nodal DOFs in the right hand side. It isgiven as uR = λuL. Thus the displa
ements 
an be 
al
ulated. To distinguish thetype of the waves, it is easy to use the displa
ements we have found out and assign thetype a

ordingly. The total number of waves generated using the method is equalto the number of DOFs. The �nite element model uses a 
ir
ular 
ross-se
tion ofradius 2e-4 m and frequen
y of operation is 240 khz. So, sin
e all the wavefronts areve
tors, they have an amplitude and a dire
tion of propagation. The �exural wavesalone travel in radial and also in the z dire
tion. We 
an see �gures one by one.Fig. 2.8 shows the longitudinal waves in a 
ylinder, this �gure shows the dire
tion ofthe parti
les and Fig. 2.9 shows the amplitude of these waves. It is in the order of -5to 5 e-8 m. Fig. 2.10 shows the dire
tion of motion of the parti
les in a torsional wave.Fig. 2.11 shows the amplitude of the torsional wave in the radial dire
tion, it is inthe range of -8 to 8 e-12. So eventhough it has red regions in its �gure, a
utally it isjust denotes higher displa
ements in those regions 
ompared to others, but generallyits displa
ement value is too low 
ompared to the other modes. There are two typesof �exural modes o

uring in the 
ross-se
tion and both are presented here to enablebetter understanding. Fig. 2.12 and Fig. 2.15 represent the dire
tions of the two
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ement amplitude of the�exural waves in the z dire
tion. Fig. 2.14 and Fig. 2.17 represent the amplitudes ofdispla
ement in the radial dire
tion of the 
ylinder.



3 Modelling of Piezoele
tri
Transdu
erThe longitudinal waves in a 
ylinder and the lamb waves in a plate 
an be generatedusing a variety of 
onta
t and non 
onta
t methods. Of all the possible methods, thepiezoele
tri
 transdu
er based 
onta
t generation works well for our problem and isalso 
ost e�e
tive. In this 
hapter, we 
an 
on
entrate on modelling the piezoele
tri
transdu
er as an a
tuator for generating the longitudinal waves in the 
ylinder.3.1 Piezoele
tri
 MaterialIn the year 1880, Jaques and Pierre Curie, des
ribed the dire
t piezoele
tri
 e�e
twhere a surfa
e 
harge is generated as a result of me
hani
ally straining the piezo-ele
tri
 material. This is used for piezoele
tri
 sensors, su
h as for
e and a

elerationsensors. The inverse piezoele
tri
 e�e
t involves a 
hange of geometry of the piezo-ele
tri
 material as a result of applied ele
tri
 �eld. Here we use this a
tuator e�e
tof the piezoele
tri
 material to generate the longitudinal waves.The 
ommonly available piezoele
tri
 
erami
 is PZT (lead - zir
onate - titanate).PZT is a ferroele
tri
, poly
rystalline material whi
h showas a 100 larger inversepiezo ele
tri
 e�e
t than a mono
rystalline quartz (SiO2) material. The dire
t andinverse piezoele
tri
 e�e
ts are based on an asymmetry of the 
rystalline elementary
ell. This la
k of symmetry is responsible for piezoele
tri
 properties in 20 of the 32
rystalline 
ategories. Pyro-ele
tri
 materials, a sub group of piezoele
tri
 materials,show a temperature dependent spontaneous polarization under uniform heating. Aferri-ele
tri
 material is a pyro-ele
tri
 material, whose polarization dire
tion 
an be
hanged using an applied external ele
tri
 �eld. The elementary 
ells of PZT mixturehave a 'Perowskit'-stru
ture.(Fig 3.1). The zir
onium(Zr4+)or titanium(T i4+)− ionis body-
entered, the lead- ions(Pb2+)are lo
ated at the edges of the elementary 
ellsand the oxygen-ions are pla
ed fa
e-
entred. Above the Curie-temperature TC , PZThas a 
ubi
 latti
e-stru
ture,with the Zr4+ or T i4+ ion pla
ed at the 
entre of the 
ell.This 
on�guration does not exhibit any piezoele
tri
 properties. Below TC , depending33
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PSfrag repla
ementsFigure 3.1: Perowskit-latti
e of PZT 
erami
s
unpolarized PZT polarized PZT

grain boundary

domain boundary

polarization directionPSfrag repla
ements Figure 3.2: Domain Orientation at polarization of PZTon the mixture ratio of zir
onium and titanium, tetragonal or rhomboidal distortedmesh e�e
ts arise, whereby the Zr4+/T i4+− ions are no longer body-
entred.Ea
h mole
ule has a polarization, ie, one end is more negatively 
harged and theother end is positively 
harged, and is 
alled a dipole. This is a result of the atomsthat make up the mole
ule and the way the mole
ules are shaped. The polar axis isan imaginary line that runs through the 
entre of both 
harges on the mole
ule. In amono 
rystal the polar axes of all the dipoles lie in one dire
tion. In a poly 
rystal,there are di�erent regions within the material that have di�erent polar axis. This
an be seen in the �gure (Fig 3.2).PZT is a poly-
rystalline material in whi
h 
rystallites (d≈ 1....10µ m) are ran-
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PSfrag repla
ements Figure 3.3: Bipolar Hysteresis of PZTdomly pla
ed. These 
rystallites 
onsist of a regular alignment of elementary-
ells.Every elementary-
ell of a grain a�e
ts the others; for this reason domains of uniformpolarity arise for T < TC . A single grain 
an posses one or more uniformly polarizeddomains. In the unimproved state, the polarization dire
tions (Fig 3.2), wherebythe polar axes are mostly oriented parallel to the ele
tri
 �eld. After removing theele
tri
 �eld, a residual polarization of the material remains. This e�e
t 
an be usedto polarize PZT.The strain-ele
tri
 �eld 
orrelation - a bipolar hysteresis - is plotted. An in
rease ofthe ele
tri
 �eld yields from 0 to B. The slope of the 
urve de
reases due to saturation(A) of the �ip over pro
ess. The maximal �eld strength at B is limited by theele
tri
al pun
ture resistan
e of the material. For PZT, the ultimate a
tive strain isabout 0.12%. A 
ertain deformation remains after removal of the ele
tri
 �eld due toremnant polarization(C). Applying a negative �eld leads to a state of no elongation ofthe 
erami
s (D)(
oer
ive �eld strength). A further in
rease in the negative ele
tri
�eld leads to a 
ontra
tion of the 
erami
. It rea
hes a minimum when most ofthe dipoles have 
hanged their polarity. Further in
rease of the negative ele
tri
�eld leads to an elongation of the material. The maximal stret
h of the 
erami
 isfound at F (ele
tri
al pun
ture of the material). From F to G the same behaviouras B to E is found. It is depi
ted in Fig. 3.3 Normally PZT-a
tuators are a
tuatedunipolar and not bipolar. In this 
ase, only a simple hysteresis is obtained as shown inFig. 3.4. Further non linear e�e
ts are relaxation (
reeping, drift) and ele
trostri
tion.Appli
ation of a 
onstant ele
tri
 �eld 
an lead to relaxation phenomena. After arapid elongation, 
erami
s 
reep to an asymptoti
 value in about 100s. This e�e
t
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PSfrag repla
ements Figure 3.4: Unipolar Hysteresis of PZTstems for a delayed �ip-over pro
ess and a growth of some domains.3.2 Material Law of Piezoele
tri
 Cerami
sMost properties of materials are dire
tional. In Cartesian 
oordinate system, depi
tedin the Fig. 3.5, the polarization dire
tion is aligned parallel to the 3-axis. The 1- and2- axes indi
ate the lateral dire
tions; the 
oordinates 4 to 6 des
ribe the rotationaround the axes. PZT-
erami
s are isotropi
 in the 1,2 -plane. PZT 
ermai
s 
an beused as a
tuators in three di�erent modes.33-mode (elongation parallel to the applied ele
tri
 �eld)31-mode (stret
h a
ross the ele
tri
 �eld )15-mode(ele
tri
 �eld perpendi
ular to the polarization dire
tion, shear-strainin the transverse plane)Piezo-sta
ks are 
omposed of many 
erami
 plates glued together. They are ele
tri-
ally driven in parallel and are a
tuated in the 33-mode. The 31-e�e
t is used forpiezo
erami
 plate a
tuators whi
h are �xed on a base stru
ture or imbedded in amultilayer 
omposite. Due to the isotropi
 behaviour in the 1,2 -dire
tions in thePZT-plate, and ele
tri
 �eld in the 3-dire
tion indu
es an equal elongation in both
ross dire
tions. Fig 3.6 indi
ates the main 3 piezo a
tuator s
hemes.In our problem, we will mainly use the 33-mode of a
tuation of the piezoele
tri

erami
 as it produ
es the longitudinal wave. An overview of the di�erent piezoa
tuators is given in the �gure below. We model the problem of the wire strands
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PSfrag repla
ements Figure 3.5: Di�erent Modes of PZT
plate actuator

stack actuator

disc actuatorPSfrag repla
ements Figure 3.6: Di�erent Shapes of piezo a
tuatorswith two di�erent shapes of piezo a
tuator. We use the dis
-a
tuator and model it atthe end of the wire or we use a plate-a
tuator and use it on the top and bottom of thewire. The stresses, strains, ele
tri
 �eld and ele
tri
 displa
ements in a piezoele
tri
material 
an be fully des
ribed in the linear range by a single set of ele
trome
hani
alequations. Using a modi�ed notation from the IEEE Standard 176-1987, the followingtwo pairs of equations are equivalent statements whi
h des
ribe the ele
trome
hani
albehaviour of a PZT element.
ǫij = sẼijklσkl + dkijẼk (3.1)
D̃j = djklσkl + ǫ̃σjkẼk (3.2)
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σij = cẼijklǫkl − ekijẼk (3.3)
D̃i = eiklǫkl + ǫ̃ǫikẼk (3.4)where ǫij is the strain tensor, σkl is the stress tensor, sẼijkl is the 
omplian
e tensor,

dkij and eikl are piezoele
tri
 
onstants, Ẽk is the ele
tri
 �eld, D̃j is the diele
tri
displa
ement,ǫ̃σik is the permittivity and cijkl is the elasti
ity tensor. The supers
ripts
Ẽ and σ indi
ate that the values of the 
onstants are obtained at 
onstant ele
tri
�eld and 
onstant ele
tri
 stress, respe
tively. Eqn. 3.1 states that the strain in thepiezoele
tri
 material is proportional to both the applied stress (equivalent to theinverse of Hooke's law) and the applied ele
tri
 �eld (the inverse piezoele
tri
 e�e
t).Eqn. 3.2 states that the ele
tri
 displa
ement is proportional to both the appliedstress (piezoele
tri
 e�e
t) and the applied piezoele
tri
 �eld (diele
tri
 e�e
t). Eqn.3.3 and Eqn. 3.4 are physi
ally equivalent to Eqn. 3.1 and Eqn. 3.2. However,the permittivity in Eqn. 3.4 is measured at 
onstant strain, and in Eqn. 3.2 it ismeasured at 
onstant stress.By arranging stress and strain 
omponents in ve
tors and assuming that the piezo-ele
tri
 material is ele
tri
ally and me
hani
ally isotropi
 in the 1-2 plane (with the3 axis parallel to the polarization axis), one obtains the 
onstitutive equations inmatrix notation.
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(3.6)
For spe
ial geometries, the 
onstitutive law 
an be further simpli�ed. Thus, forpiezoele
tri
 plates whi
h are then in the 3-dire
tion, the following may be assumed:

σ33 = σ23 = σ31 = 0(plane stress) and
Ẽ1 = Ẽ2 = 0(ele
tri
 �eld is applied in the 3 dire
tion). Under this assumptions, Eqn. 3.5 andEqn. 3.6 for thin piezo plates redu
e to
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(3.8)respe
tively, where E is the Young's modulus and µ12 is Poisson's ratio for the piezo-ele
tri
 material. For the 
ase of piezoele
tri
 beams (the plate is now also thin in
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tion so that σ22 = σ12 = 0), Equations 3.7 and 3.8 redu
e to
ǫ11 =

1

E
σ11 + d31Ẽ3 D̃3 = d31σ11 + ǫ̃σ33Ẽ3 (3.9)or equivalently

σ11 = Eǫ11 − e31Ẽ3 D̃3 = e31ǫ11 + ǫ̃ǫ33Ẽ3 (3.10)The governing equations for a 1-dimensional piezo rod whi
h stret
hes in the 3-dire
tion are
ǫ33 =

1

E
σ33 + d33Ẽ3 D̃3 = d33σ33 + ǫ̃σ33Ẽ3 (3.11)or equivalently

σ33 = Eǫ33 = e33Ẽ3 D̃3 = e33ǫ33 + ǫ̃ǫ33Ẽ3 (3.12)This 
ompletes the material law of the piezoele
tri
s.3.3 Advantages and Disadvantages of Using Piezoele
tri
Transdu
ers for Generation of Longitudinal wavesPZT materials are ex
ellent in produ
tion of lamb waves and longitudinal waves.They are suitable for integration into host stru
ture as an insitu generator. Theyhave negle
table mass/volume. Their other advantages in
lude ex
ellent me
hani
alstrength,wide frequen
y responses, low power 
onsumption, a
ousti
 impeden
es andlow 
ost.The disadvantages of using a PZT generator is that, it gernerates multiple modes.It is to be noted that the longitudinal mode alone is required for the NDT, but othermodes like �exural, torsional also get generated. This 
an be avoided by suitabledesign. Sin
e multiple modes are generated, sophisti
ated signal pro
essing is alsorequired. Also under large strains/voltages or under high temperature, they showsome non-linear behaviour. They also have small driving for
e/displa
ement, brittle-ness, low fatigue life et
 are other problems using them.
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PSfrag repla
ementsFigure 3.7: Euler-Bernoulli beam with piezo a
tuators (symmetri
 
on�guration)
In - plane strain

BendingPSfrag repla
ementsFigure 3.8: In-plane strain and bending e�e
t of symmetri
 a
tuator arrangement3.4 Modelling and Dis
retization of a Piezo A
tuatorIn this se
tion, we 
an dis
uss the so 
alled Euler-Bernoulli beam with piezo a
tuator.This 
on
ept is designed for a beam but 
an be extended to plates and shells as we
an see in the later 
hapters. We use a linear piezoele
tri
 mathemati
al model, thenon linear e�e
ts like hysteresis are negle
ted.The e�e
t of piezoele
tri
 a
tuators on 
omposite beam stru
tures may be de-s
ribed by a simpli�ed model( [2℄) based on substitute for
es and moments, so 
alledequivalent a
tuator loads. Consider a host beam (index b) with atta
hed piezoele
-tri
 a
tuators (index a) depi
ted in Fig. 3.7. The 
on�guration is symmetri
 and thepiezo a
tuators operate in 31−mode, see Fig. 3.8Identi
al driving voltage for both piezo a
tuators leads to a longitudinal(in-plane)e�e
t. Oppostie sign of the driving voltages for the upper and lower piezos results in
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t. Note the sign 
onvention: a positive bending moment Mleads to tensile stress (σ > 0) on the lower side of the beam (z>0).Consider now the Euler-Bernoulli beam model depi
ted in Fig. 3.7 . The piezo a
-tuators 
ontribute to the total sti�ness of the stru
ture. Be
ause the Euler-Bernoullihypothesis is valid for the total 
omposite 
onsisting of a
tive piezo layers and passivehost stru
ture, the strain varies linearly inside the piezos. The following relations forkinemati
s and material law are employedbeam εb = kz, σb = Ebεb (3.13)piezo a
tuator εa = kz, σa = Ea(εa − Λ) (3.14)It is to be noted that the in-plane strain is 
ontinuous but the stress is dis
ontinuousat the interfa
e between host beam and a
tuators. The moment equilibrium aboutz=0 is 
onsidered in order to determine the equivalent a
tuator moments. For thispurpose, the stresses are integrated in thi
kness dire
tion. Due to the symmetry ofstresses for pure bending, it is su�
ient to 
onsider the lower half of the beam
∫ tb/2

0
σbzdz +

∫ ta+tb/2

tb/2
σazdz =M (3.15)Note that without external moment loads the moment balan
e is M=0 Substitutingof Eqn. 3.13 and Eqn. 3.14 yields

∫ tb/2

0
Ebkz

2dz +

∫ ta+tb/2

tb/2
Ea(kz

2 − Λz)dz = 0 (3.16)The result of the analyti
al integration of Eqn. 3.16 may be solved for the 
urvaturek. After some transformations, we obtain
k =

12

tb

1 + ρ

ψ + 6 + 12ρ + 8ρ2
Λ (3.17)3.4.1 Coupled Ele
tro - Me
hani
al FormulationThe kinemati
s of a 
omposite beam stru
ture a

ording to Fig. 3.7 may be expressedin terms of bending and in-plane displa
ements

ϕ,x +k = 0 w,x −ϕ = 0 (3.18)
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an 
on
lude that
w,xx +k = 0 (3.19)Also
ε0 = u,x (3.20)The distribution in the thi
kness dire
tion z of the total in-plane strain ε(z) 
onsistsof two 
ontributions, namely bending and in-plane strain
ε = kz + ε0 (3.21)The 
orresponding equations of dynami
 equilibrium are
Q,x−µw,tt +pz = 0 M,x −Q = 0 (3.22a)imply
M,xx−µw,tt +pz = 0 (3.22b)
N,x−µu,tt+px = 0 (3.22
)where the mass per unit length has been introdu
ed a

ording to
µ =

n
∑

k=1

ρkbk(zk − zk−1) (3.23)The material law of the base/host stru
ture (su�x b) 
orresponds to Hooke's law.For the piezo a
tuator or sensor layers (su�x p), the ele
trome
hani
al 
ouplingis 
onsidered in a

ordan
e with linear piezoele
tri
ity whi
h has been introdu
edearlier
σb = Ebε (3.24a)
σp = Ep(ε− d31Ẽ) (3.24b)
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D̃ = ε̃Ẽ + d31σp (3.24
)In the 
ase of a
tuators and sensors operating in 31-mode, the ele
tri
 �eld is thederivative of the ele
tri
 potential in thi
kness dire
tion
Ẽ = −U,z (3.25)Corresponding to the pro
edure of the 
lassi
al laminated plate theory, the lo
alstresses of all n material layers are integrated in thi
kness dire
tion, and the total in-plane for
e N and the bending moment M are obtained
N =

∫ zn

z0

b(z)σ(z)dz = Aε0 +Bk +

np
∑

i=1

λi

∫ zk(i)

zk(i)−1

U,z dz (3.26a)
M =

∫ zn

z0

b(z)σ(z)zdz = Bε0 +Dk +

np
∑

i=1

λi

∫ zk(i)

zk(i)−1

U,z zdz (3.26b)The summation in the last terms in the Eqn. 3.26 has to be 
arried out for all np piezolayers. Furthermore, the following abbreviations have been introdu
ed in a

ordan
ewith 
lassi
al laminated plate theory.Membrane / in-plane sti�ness A =

n
∑

k=1

bkEk(zk − zk−1) [N℄ (3.27a)Coupling sti�ness B =
n
∑

k=1

bkEk
1

2
(z2k − z2k−1) [Nm℄ (3.27b)Bending Sti�ness D =

n
∑

k=1

bkEk
1

3
(z3k − z3k−1) [Nm2℄ (3.27
)Piezo 
oupling fa
tor λk = bkEkd31,k [N/V℄ (3.27d)The equilibrium of the stru
ture may be formulated in terms of the prin
iple of virtualwork, i.e., the sum of the 
ontributions to the virtual work by the me
hani
al andele
tri
al systems has to be zero

δA = δAme
h + δAel = 0 (3.28)
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hani
al work is written by applying the displa
ement method,i.e thevirtual displa
ements δu, δw, and δϕ are employed
δAme
h = −

∫ L

0
δuµu,tt dx−

∫ L

0
δwµw,tt dx

+

∫ L

0
δu(N,x +px)dx+ δu(N − N̄)|B

+

∫ L

0
δw(M,xx +pz)dx+ δw(Q̄ −Q)|B + δϕ(M − M̄)|B (3.29)where the su�x B represents boundary terms. Integration by parts of the integralsinvloving δuN,x and δwM,xx yields

δAme
h = −

∫ L

0
δuµu,tt dx−

∫ L

0
δwµw,tt dx

−

∫ L

0
δu,xNdx+

∫ L

0
δypxdx− δuN̄ |B

+

∫ L

0
δw,xxMdx+

∫ L

0
δwpzds+ δwQ̄|B − δϕM̄ |B (3.30)Substitution of the material laws and the kinemati
s gives the virutal me
hani
alwork

− δAme
h =

∫ L

0
δuµu,tt dx+

∫ L

0
δuµu,tt dx

+

∫ L

0
δu, x(Au,x −Bw,xx )dx+

∫ L

0
δu,x

np
∑

i=1

λi

∫ zk(i)

zk(i)−1

U,z dzdx

−

∫ L

0
δw,xx (Bu,x−Dw,xx )dx−

∫ L

0
δw,xx

np
∑

i=1

λi

∫ zk(i)

zk(i)−1

U,z zdzdx

−

∫ L

0
δupxdx−

∫ L

0
δwpzdx+ δuN̄ |B = δwQ̄|B + δϕM̄ |B (3.31)The virtual ele
tri
al work is formulated for ea
h piezoele
tri
 layer i. There are noele
tri
 
harge sour
e terms. Boundary 
onditions will be left out here and 
onsidered
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retization step in the following parts. Furthermore, no ele
tri
 inertiatermas are 
onsidered. The reasons for this are the fa
t that the speed of ele
tro-magneti
 wave propagation in the piezo material is mu
h faster than the elasti
 wavepropagation in the stru
ture. This means that the 
hara
teristi
 time s
ale of thepiezo e�e
t is far beyond the time s
ales of the elasti
 deformation of the beam whi
hwe are interested in. For this reason, the ele
tri
al work may be treated in quasi-statemanner.
δAel = ∫

V
δẼD̃dVi

=

∫

V
(−δU,z )(ε̃i−d

2
31Ei)(−U,Z )dVt+

∫

Vi

(−δU,z ))d31,iEi(u,x −zw,xx )dVi(3.32)where Vi denotes the volume of the i-th piezo layer. Note that di�erent virtualproperties are employed for the me
hani
al (δu, δw, δε) and the ele
tri
al (δẼ, δU)
ontributions to the virtual work. For this reason, the independant derivation of theme
hani
al and ele
tri
al terms is possible.3.4.2 Finite Element Dis
retization of the FormulationThe total beam stru
ture is subdivided into a number of elements of length l withend nodes A and B, see Fig.8. For the in-plane(longitudinal) displa
ements u linearinterpolations are employed whereas Hermite polynomials of 3rd order are used forthe out-of-plane (bending) displa
ements w.
v =

[

u

w

]

=

[

φ1 0 0 φ2 0 0

0 φ3 φ4 0 φ5 φ6

]
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

uA

wA

ϕA

uB

wB

ϕB
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= φv̂ (3.33)
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ua ub

wa wb

A Blength l
MA

MBPSfrag repla
ements Figure 3.9: Finite element of a single piezo layerThe ve
tor v̂ represents the me
hani
al nodal unknowns. The interpolations are
φ1 = 1−

x

l
φ3 = 1− 3

x2

l2
+ 2

x3

l3
φ5 = 3

x2

l2
− 2

x3

l3

φ2 =
x

l
φ4 = x− 2

x2

l
φ6 = −

x2

l
+
x3

l2 (3.34)For the stru
tural me
hani
s part, the displa
ement and strain distributions in thi
k-ness dire
tion are obtained from the Euler-Bernoulli kinemati
s Eqn. 3.21 and theme
hani
al displa
ement unknowns need only be de�ned on the 
entre line of the
omposite beam. For the integration in thi
kness dire
tion the analyti
al rules ofthe 
lassi
al laminated plate theory Eqn. 3.27 are employed. The equations of piezo-ele
tri
ity have to be dealt with di�erently be
ause the �eld distribution in thi
knessdire
tion is unknown and not given by any kinemati
s assumption. For this rea-son, the thi
kness dire
tion has to be dis
retized. The interpolations for the ele
tri
potentials (voltage) U are 
hosen quadrati
 in order to obtain a linear ele
tri
 �elda

ording to Eqn. 3.25. Fig. 3.9. depi
ts the �nite element for one piezo layer. Theresulting representation of ele
tri
al potential is
Ui =

[

ψa ψb ψc ψd ψe ψf

]


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















Uia

Uib

Uic

Uid

Uie

Uif
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




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
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

= ψûi (3.35)
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tri
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er 48where ûi is the ve
tor of ele
tri
 nodal unknowns of a single piezo layer element. Theinterpolations are in ξ, ζ -dire
tion
ψa = (ζ2 − ζ)(1− ξ)/2 ψb = (ζ2 − ζ)ξ/2 ψc = (1− ζ2)(1 = ξ)

ψd = (1− ζ2)ξ ψe = (ζ2 + ζ)(1− ξ)/2 ψf = (ζ2 + ζ)ξ/2 (3.36)The lo
al 
oordinates are de�ned as
ξ =

x

l
ζ =

2z − (zk(i) + zk(i)−1)

zk(i) − zk(i)−1
(3.37)The �nite element interpolations given above are substituted to build the elementvirtual work terms in matrix formulation. Negle
ting the boundary terms, the virtualme
hani
al work for an element of length l is

− δAme
h =

∫ l

0
δvTµv,tt dx+

∫ l

0
δvTDTEDvdx

+

np
∑

i=1

∫ l

0
δvTDTλi

∫ zk(i)

zk(i)−1

GU,z dzdx−

∫ l

0
δvTpedx (3.38)where

D =

[

∂x 0

0 ∂xx

]

E =

[

A −B

= B D

]

G =

[

1

−z

]

Pe =

[

px

pz

] (3.39)Substitution of the interpolations for u, w and U yields
− δAEme
h = δv̂T [

∫ l

0
φTµφdxv̂,tt +

∫ l

0
φTDTEDφdxv̂

+

np
∑

i=1

∫ l

0
φTDTλi

∫ zk(i)

zk(i)−1

Gψ,zdzdxûi −

∫ l

0
φTpedx] (3.40)Thus from the above equation, we 
an see

−δAEme
h = δv̂T

[

mvvv̂,tt +kvvv̂ +

np
∑

i=1

kvu,iûi − p

] (3.41)
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tri
 Transdu
er 49where the element mass matrix mvv , the element sti�ness matrix kvv , the ele
tro-me
hani
al 
oupling matrix for the i-th piezo layer kvu,i as well as the element loadve
tor p have been introdu
ed. Analyti
al integration yields the element mass matrix
mvv = µ























l
3 0 0 l

6 0 0

0 13l
35

11l2

210 0 9l
70 −13l2

420

0 11l2

210
l3

105 0 13l2

420 − l3

140
l
6 0 0 l

3 0 0

0 9l
70

13l2

420 0 13l
35 −11l2

210

0 −13l2

420 − l3

140 0 −11l2

210
l3

105























(3.42)
and the element sti�ness matrix

kvv =























A
l 0 −B

l −A
l 0 B

l

0 12D
l3

6D
l2

0 −12D
l3

6D
l2

−B
l

6D
l2

4D
l

B
l −6D

l2
2D
l

−A
l 0 B

l
A
l 0 −B

l

0 −12D
l3

−6D
l2

0 12D
l3

−6D
l2

B
l

6D
l2

2D
l −B

l −6D
l2

4D
l


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















(3.43)
In the mass matrix, the in-plane and the out-of-plane degrees of freedom are de
ou-pled. The term of the sti�ness matrix involving the sti�ness B represents the 
ouplingof in-plane and out-of-plane deformations a

ording to the 
lassi
al laminated platetheory. The ele
tro-me
hani
al 
oupling matrix of the i-th element piezo layer reads

kvv,i = λi























1
2

1
2 0 0 −1

2 −1
2

−C1
l

C1
l −C2

l
C2
l −C3

l
C3
l

−C1 0 −C2 0 −C3 0

−1
2 −1

2 0 0 1
2

1
2

C1
l −C1

l
C2
l −C2

l
C3
l −C3

l

0 C1 0 C2 0 C3


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







(3.44)
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er 50The 
onstants
C1 =

(zk(i) + zk(i)−1)

2
−

(zk(i) − zk(i)−1)

3

C2 =
2(zk(i) − zk(i)−1)

3

C3 = −
(zk(i) + zk(i)−1)

2
−

(zk(i) − zk(i)−1)

3 (3.45)are obtained by analyti
al integration of the interpolations in the thi
kness dire
tionof the piezo layer. Finally, the element load ve
tor for linearly interpolated line loadsis
p =























l
3 0 l

6 0

0 7l
20 0 3l

20

0 l2

20 0 l2

30
l
6 0 l

3 0

0 3l
20 0 7l

20

0 − l2

30 0 − l2

20


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pzA
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pzB
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(3.46)
Omitting boundary terms, the ele
tri
al virtual work of a piezo layer element maybe written as
δAE

el = (ε̃i−d
2
31Ei)bi

∫ l

0

∫ zk(i)

zk(i)−1

δU,z U,Z dzdx−λi

∫ l

0

∫ zk(i)

zk(i)−1

δU,z G
TdzDvdx (3.47)Substitution of the �nite element interpolations of the me
hani
al and ele
tri
al un-knowns yields

δAE
el = δûT

i

[

∫ l

0

∫ zk(i)

zk(i)−1

,Tz (ε̃i − d231Ei)bi,z dzdxûi −

∫ l

0
λi

∫ zk(i)

zk(i)−1

,Tz GTdzDdxv̂

]

= δûT
i

[

kuu,iûi − kT
vu,iv̂

] (3.48)The ele
trome
hani
al 
oupling matrix kvu,i has been given previously in Eqn. 3.44.As a result of the global 
onservation of work and globally 
onservative ex
hangeof energy between the me
hani
al and the ele
tri
al systems, the ele
tro-me
hani
al
oupling terms of the Eqn. 3.41 and Eqn. 3.48 are "symmetri
", i.e. kvu,i,does ap-
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tri
 Transdu
er 51pear as negative transpose in Eqn. 3.48. This means that the ele
tro-me
hani
al
ontribution to the stru
tural energy is in turn removed from the ele
tri
 system andglobal 
onservation is preserved for the �nite element dis
retization. The matrix ofele
trostati
s is
kuu,i =

(ε̂− d231Ei)bil

18(zk(i) − zk(i)−1)























14 7 −16 −8 2 1

7 14 −8 −16 1 2

−16 −8 32 16 −16 −8

−8 −16 16 32 −8 −16

2 1 −16 −8 14 7

1 2 −8 −16 7 14
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















(3.49)
The matrix is singular whi
h means that appropriate boundary 
onditions have tobe introdu
ed for the ele
tri
 �eld of the piezo layers (in order to suppress ele
tri"rigid body motion"). In the 
ase of piezo a
tuators, the potential of nodes e and fis set to zero and the potential of nodes a and b is set to the pres
ribed voltage Ū .For this purpose, the rows and 
olumns of the 
oupling and ele
trostati
s matri
es
orresponding to nodes e and f are eliminated. The pres
ribed voltages of nodes aand b appear as piezo load ve
tors for stru
tural dynami
s and ele
trostati
s on theright hand side of the linear system of equations. Only nodal voltages Uic and Uid atthe 
entre nodes 
 and d remain unknown. For piezo layers employed as a
tuators,the redu
ed matrix and load ve
tor of ele
trostati
s are obtained

kuv,i,A =
(ε̂− d231Ei)bil

9(zk(i) − zk(i)−1)

[

16 8

8 16

] (3.50)
bu,i =

4(ε̂− d231Ei)bil

3(zk(i) − zk(i)−1)

[

1

1

] (3.51). The 
orresponding redu
ed ele
tro-me
hani
al 
oupling matrix and piezo load ve
-tor for stru
tural dynami
s read
kvu,i,A = λiC2




















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0 0
1
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
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tri
 Transdu
er 52The elements of the a
tuator load ve
tor bv,i demonstrate the e�e
ts of a piezoa
tuator layer: it generates both an in-plane for
e NΛ = λiŪi as well as a bendingmoment M∆ = C1λiŪi. Note that the moment arm C1 a

ording to Eqn. 3.45 ofa
tuator layers that are symmetri
 to the neutral axis (z=0) is zero, resulting in-planefor
e. The element matri
es derived above are assembled a

ording to the topology ofthe 
omposite beam dis
retization. The total system matri
es of stru
tural dynami
sand ele
trostati
s have the following dimensions.
Mvv (nv × nv) Mass matrix
Kvv (nv × nv) Sti�ness matrix
Kvu (nv × nu) Ele
tro-me
hani
al 
oupling matrix
Kuu (nu × nu) Ele
trostati
s matrix
P (nv × 1) Me
hani
al load ve
tor
bv (nv × na) A
tuator load ve
tor of stru
tural dynami
s
bu (nu × na) A
tuator load ve
tor of elastostati
sThe dimensions nv, nuandna represent the number of system displa
ement andvoltage unknowns and the number of independant piezo a
tuator layers, respe
tively.The total ele
tro me
hani
al system reads
[

Mvv 0

0 0

] [

v̄,tt

ū,tt

]

+

[

Kvv Kvu

−KT
vu Kuu

][

v̄

ū

]

=

[

bv

bu

]

Ū+

[

P

0

] (3.53)where v̄ and ū are the ve
tors of me
hani
al and ele
tri
al nodal unknowns of thesystem and Ū the ve
tor of pres
ribed a
tuator voltages.Thus we have the �nite element model of the 
ombined piezo- beam stru
ture. Itis dire
tly extended to the 3-D 
ase where, the nodal dof's point to the three dof'sin a single node. Using the Eqn. 3.53, we 
an start the modelling of our problem inthe next 
hapter.



4 Modelling of Wave PropagationOn
e we have the basi
s of modelling a piezo and the physi
s behind the waves thatare generated in the 
ylinder, we 
an look to model the wave propagation in the
ylinder using piezoele
tri
 transdu
ers. A simple method for the use of piezoele
tri
transdu
ers for the generation of waves is given by Nienwenhui.et.al [15℄. We willuse their methods for generating waves. Our model 
onsists of strands of wires anda 
ross-se
tion is like in Fig. 4.1.For a stru
tural health monitoring, we need to generate the longitudinal waves,with the help of piezo that travel over long distan
es. On
e these waves are generated,a piezoele
tri
 sensor is pla
ed and the waves are monitored at a 
onsiderable distan
efrom the generation point. In 
ase any defe
t is present in the line, then there isre�e
tion in the waves and the amplitude 
omes down. By monitoring this, we 
anpredi
t the defe
ts in the stru
ture.4.1 Finite Element Modelling of Guided WavePropagation in 3D (Type 1)Before starting the modelling, we must remember two important points1. a �ne FEM mesh featuring atleast 8-12 nodes per wavelength is a prerequisiteto deliver good spatial pre
ision. ( [18℄)
Strand of wire
consisting of 7 steel
wires of diameter 3.5 mm
and 26 Aluminum
wires of diameter 4 mmPSfrag repla
ements Figure 4.1: Cross-se
tion of the wire strand

53



4 Modelling of Wave Propagation 542. The time step for dynami
 
al
ulation should be less than the ratio of minimumdistan
e of any two adjoining nodes to the maximum wave velo
ity (in our 
asethe velo
ity of the longitudinal wave) ( [17℄)We also 
hoose the longitudinal wave for dete
tion of damage be
ause of the fol-lowing reasons� Lower attenuation 
ompared to other modes� Faster wave propagation velo
ity� Lower dispersion in the low frequen
y region, thereby helping in signal inter-pretationWe propose a setup with a 
ir
ular piezo operating in the 33-mode. We useANSYS® to model the proposed experimental setup. We use the property of sym-metry to generate the longitudinal wave and import the model into MATLAB® to
ouple the ele
tri
al degrees of freedom as dis
ussed below. The Fig. 4.2 shows theleft view of the model as modelled in ANSYS®. The Fig. 4.3 shows the front viewof the model and Fig. 4.4 shows the three-dimensional view of the model. The 
hal-lenge in this modelling was to mat
h the nodes in the 
ir
ular fa
es as we had threedi�erent 
ross-se
tions. The 
hallenge was su

essfully solved by meshing with areaelements and then extruding for solid elements. The left end of the model had thepiezo element and then the brass element and at last we had the 
ylinder made upof aluminium.The material properties for alumnium 
ylinder that were used areYoung's Modulus E 70.75 GPaPoisson's Ratio ν 0.3375Density ρ 2700 kg
m3Radius r 2 mmThe material properties of the PZT material (PIC151) 
an be given in the formof matri
es dire
tly referring to the equations in the previous 
hapter (Eqn. 3.3 ,Eqn. 3.4 and Eqn. 3.6). The stress 
omplian
e matrix cẼijkl is given by
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X
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Z

PSfrag repla
ements Figure 4.2: Left View of Type1 Model

X

Y

Z

PSfrag repla
ements Figure 4.3: Front View of Type1 Model
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[

cẼ
]

=























cẼ11 cẼ12 cẼ13 0 0 0

cẼ11 cẼ13 0 0 0

cẼ33 0 0 0
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cẼ44 0

cẼ66
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= 1010
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








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


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
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The piezoele
tri
 matrix at 
onstant strain eikl 
an be written in matrix form as
[

e
]T

=























0 0 e31

0 0 e31

0 0 e33

0 0 0

0 e15 0

e15 0 0
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















= 10−12 ∗

















0 0 −214

0 0 −214

0 0 423

0 610 0

610 0 0
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Similarly the permittivity ǫ̃ǫik 
an be written as
[

ǫ̃ǫ
]

=







ǫ̃ǫ11 0 0

0 ǫ̃ǫ11 0

0 0 ǫ̃ǫ33






=







1936

1936

2109





The density of the PIC151 material is given as ρ = 7760 kg
m3 .The piezo was 
ir
ularin shape with a diameter of 5 mm and thi
kness of 2 mm . The aluminium 
ulinderhad a radius of 2 mm and was modelled for a length of 0.2 m. The brass 
onne
tor was6 mm in diameter and modelled for a thi
kness of 1 mm.The piezo ele
tri
 materialwas atta
hed to a brass pie
e for easy atta
hment to the aluminium 
ylinder. Thebrass pie
e was also modelled for better results. The material property of the brassmaterial is as followsYoung's Modulus E 97 GPaPoisson's Ratio ν 0.31Density ρ 8490 kg

m3Radius r 6 mmThi
kness t 1mm
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PSfrag repla
ements Figure 4.4: 3D View of Type1 Model4.1.1 Redu
tion of Ele
tri
al Degrees of FreedomAs we 
an see, the modelled piezo has many ele
tri
al degrees of freedom. For ourproblem where we use the piezo as an a
tuator, we 
an redu
e the internal ele
tri
aldegrees of freedom using the te
hnique below and have only the stru
tural degreesof freedom and the known external ele
tri
al dof's. It follows dire
tly from [3℄.Rewriting the Eqn. 3.53 with u denoting stru
tural degrees of freedom and φ denotingthe ele
tri
al dof's, we have
[

Mss 0

0 0

][

ü

φ̈

][

Kss Ksφ
Ksφ Kφφ

][

u

φ

]

=

[

f

q

] (4.1)where f represents the external for
es and q represents the external ele
tri
al
harges. The mass matrix Mss 
ontains the initial inertia of the stru
ture only,as quasi-stationarity is assumed for the piezoele
tri
 pat
hes. The stru
tural sti�nessmatrix is given by the submatrix Kss whereas the matrix Ksφ 
ouples piezoele
tri
and stru
tural dynami
s. Still now, we have not 
onsidered any ele
trodes for theFE pat
hes. To do so, we partition the ele
tri
al potential degrees of freedom φ inthe piezoele
tri
 pat
h into degrees of freedom on the potential ele
trode φp, on thegrounded ele
trode φg and in the interior pat
h as φi respe
tively. The latter are notsituated in any ele
trode. Thus the equations of motion in the partitioned form are
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
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
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




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






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

+












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


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


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




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(4.2)Sin
e the use of the ele
tri
 potential as a �eld variable leads to an indetermina
yregarding shifted values, the grounded potential degrees of freedom are set to zero,su
h that the fourth 
oloumn in the mass and sti�ness matri
es may be deleted.Furthermore, the internal potential degrees of freedom φi 
an be determined by exa
tstati
 
ondensation from Eqn. 4.2. It is given as
φi = −K−1ii KTsiu−K−1ii Kipφp (4.3)sin
e the internal ele
tri
al 
harges qi=0 vanish .These two steps �nally yield thesystem of equations
[

Mss 0

0 0

][

ü

φ̈p] [

Gss Gsp
Gsp Gpp][ u

φp] =

[

f

qp] (4.4)with
Gss = Kss −KsiK−1ii KTsi
Gsp = Ksp −KsiK−1ii Kip
Gpp = KTip −KsiK−1ii Kip (4.5)With no present ele
tri
al 
harges ,ie qp = 0 for our problem, we 
an remove these
ond line of the Eqn. 4.4 and 
ondense the external potential dependent term tothe right hand side as a for
e term and hen
e the redu
ed equation looks as
[

Mss] [ü]+ [

Gss] [u] = [

f −Gspφp] (4.6)Thus by using the Eqn. 4.6, we su

essfully redu
e the ele
tri
al potential degressof freedom and thus redu
e the 
al
ulation time. After this, we give an input voltageof 20V and 
arry on with the simulation and we get the results as below. It is 
learly
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PSfrag repla
ementsFigure 4.5: Absolute Value of Displa
ement in z dire
tion for Type1 Modelnoted that there is some re�e
tion from end of the rod. We 
annot model the rodto be of in�nite length and so we restri
t the length of the rod that gives rise tore�e
tions. As we 
an see in Fig. 4.5, a plot of the absolute value of displa
ementof the travelling wave in z-dire
tion, we see that after the initial ex
itation due topiezoele
tri
s, there is no real de
rease in the amplitude of the wave, this 
learlyindi
ates that the wave has en
ountered some re�e
tions at the end of the 
ylinderlength. In a real-time s
enario, sin
e the length of the wires are very long, no su
hre�e
tions o

ur. We 
annot also really model the entire length of the wires as thiswill take too mu
h of a 
omputation time. Hen
e we need to look out for boundariesthat a
t as a medium to let these in
oming waves to get out or in other words absorbthese in
oming waves.4.2 Finite Element Modelling of Wave propagation in 3D(Type 2)The previous type whi
h we modelled 
ould not be used for all the rods together dueto the size of the piezo element. This piezo element 
ould not be atta
hed to all therods to dete
t the defe
t. To 
ounter atta
k this, we thought of another type of setupwhere we have a piezo plate a
tuator to be put in pla
e instead of the dis
 a
tuator
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ements Figure 4.6: Front View of Type2 Model
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PSfrag repla
ementsFigure 4.7: Left View of Type2 Modelused in the previous modelling. As we 
an see from the Fig. 3.8, we 
an �nd thatthe plate a
tuator 
an be used to produ
e the in-plane strain and in turn produ
ethe longitudinal wave in the 
ylinder. We used the property of symmetry to redu
ethe 
omputation time. Fig. 4.6 shows the front view of the type 2 model, Fig. 4.7shows the left side view of the model and Fig. 4.8 shows the three dimensional viewof the model as modelled in ANSYS. We 
an 
learly see that the size of piezoele
tri
a
tuator is small 
ompared to the 
ylinder and hen
e 
an be pla
ed easily on thewire. There is only a line 
onta
t being developed between the 
ylinder and piezobut that is enough to generate the longitudinal waves.After redu
ing the ele
tri
al degrees of freedom, we 
an now plot the absolute valueof displa
ement in the dire
tion of the wave propagation. Fig. 4.9 shows the absolutevalue of displa
ement and we 
an 
learly see that there are lot of re�e
tions o

uringat the end of the 
ylinder length. So we require an absorbing boundary 
ondition tomodel the real-time s
enario.
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5 Absorbing Boundary ConditionsAs we have seen in the previous 
hapter, that we require an absorbing or non-re�e
tingboundary 
onditions to redu
e the model size and a

ount for proper results as in reallife terms. The literature has many models for absorbing boundary 
onditions.Lysmerand Kuhlmeyer [12℄ were probably the �rst ones to propose a non-re�e
ting bpundary
onditions for elasti
 waves. They introdu
ed damping at the plane of the �niteboundary and by 
hoosing appropriate damping 
onstants, they minimize the re-�e
ted wave energy.Their method does not prove e�e
tive for 
omplex problems [11℄.Engquist and Majda [5℄ found exa
t non-lo
al boundary 
onditions and approximatedthem using lo
al boundary 
onditions. Givoli and Keller [6℄ devised a �nite arti�
ial
ir
ular boundary for a time-harmoni
 two-dimensional elastodynami
s in in�nitedomains as a global boundary 
ondition. Also the widely 
ited "Perfe
tly mat
hedlayer" approa
h by Berenger [4℄, whi
h uses Finite di�eren
e time di�eren
e methodsare also available for devising a non-re�e
ting boundary 
ondition. Keys [10℄ pro-poses a method by de
omposing the wave into in
oming and outgoing 
omponents.The 
omponent that 
hara
terizes the outgoing wave �els is then used to design theabsorbing boundary 
onditions using di�erential operators. They have a simple phys-i
al interpretation, that they absorb the plane waves a

ording to the dire
tion ofpropagation, thus allowing the dire
tion of propagation as a 
riteria for designing theabsorbing boundary 
onditions. Higdon [8℄ developed absorbing boundary 
onditionsin the strati�ed media for a
ousti
 and elasti
 waves. He also uses the FTDT method.Liu [11℄ devi
es a new method by gradually damping the arti�
ial boundary, wherea strip of slowly the amplitude of the wave is de
reased to zero thereby resulting inan in�nite wave propagation me
hanism. This method is proved to be more e�
ientthan the in�nite elements method as in the latter 
ase where a sudden 
hange in thedamping values form spurious re�e
tions are generated.The gradually damping method is also dis
ussed only for a two dimensional 
ase.For a three dimensional 
ase, similar to our problem, there are no 
omputationallye�e
tive methods in the �nite element domain so far used in literature. So we set outto �nd a new method for developing an absorbing boundary 
ondition at the arti�
ial62



5 Absorbing Boundary Conditions 63boundary so as to make the 
ylinder a waveguide of in�nite length. We start witha one dimensional 
ase to develop our 
onditions and then extend it over the twodimensional domain to 
he
k its possibility of expansion and then apply it to ourappli
ation.Another fa
t that we exploited was that, sin
e our appli
ation demands the mod-elling of propagation of one mode (longitudinal mode in 
ylinder or symmetri
al modein plate), we de
ided to restri
t the absorbing boundary 
onditions to just absorbthe waves that are produ
ed and not for all the waves that 
an possibly o

ur. Sothe word of 
aution in using the boundary 
onditions is that, it is appli
able just toone type of waves. But it also has the �exibility to be extended to any type of wavethat propagates in the 
ross-se
tion.5.1 Fundamentals for Absorbing Boundary ConditionsAny arti�
ial boundary that is designed on the way of a wave propagation, theboundary leads to re�e
tions. These re�e
tions obs
ure the results and hen
e theobje
tive stands una
hieved. We 
an derive an absorbing boundary 
ondition, ie,essentially a non-re�e
ting boundary 
ondition that tries to absorb the waves. Thisarti�
aial boundary 
ondition when applied to the boundary makes an impressionthat the waves pass through the boundary without getting re�e
ted. There is lotof literature available on this subje
t. RG.Keys [10℄ proposes a method in whi
hhe de
omposes the wave equation into in
oming and outgoing waves and derive anabsorbing boundary 
ondition a

ording to their dire
tion of propagation. This par-ti
ular de
omposition leads to lo
al absorbing boundary 
onditions obtained dire
tlyfrom the outgoing 
omponent of the wave �eld.The simple physi
al interpretation of the boundary 
onditions of using the dire
tionof wave propagation as a 
riterion for the design of absorbing boundary 
onditionsmakes the problem a mu
h simpler one to solve. Let a be a ve
tor with unit lengthsu
h that a.a = 1, then
{

∂

∂x
+

a

c

∂

∂t

}

.

{

∂

∂x
−

a

c

∂

∂t

}

u =
∂2u

∂x2
+

a

c

∂2

∂u∂t
−

a

c

∂2

∂u∂t
−

a.a

c2
∂2u

∂t2
(5.1)or

{

∂

∂x
+

a

c

∂

∂t

}

.

{

∂

∂x
−

a

c

∂

∂t

}

u =
∂2u

∂x2
−

1

c2
∂2u

∂t2
(5.2)



5 Absorbing Boundary Conditions 64The s
alar wave operator in the above equation is de
omposed into the inner produ
tof two ve
tor operators. This is arbitary and not unique sin
e the unit ve
tor awas 
hosen arbitrarily. We 
onsider a plane wave travelling in the dire
tion a with avelo
ity c has the form of displa
ement as u(x.a/ct). When the �rst fa
tor in Eqn. 5.2is applied to the plane wave, then we have
{

∂

∂x
+

a

c

∂

∂t

}

u = au
′

− au
′

= 0 (5.3)Thus, we have the �rst ve
tor operator to be used as the identi�er for the wavesthat travel in the dire
tion a. Similarly, the se
ond fa
tor gives the waves thattravel in the dire
tion −a. Thus the 
orresponding ve
tor operator 
an be used indesigning the absorbing boundary 
onditions for the given wave equation. We 
analso use these operators for designing absorbing boundary 
onditions in more than onedire
tion. For example, let us assume there are two outgoing plane waves travellingin dire
tions a1 and a2, where both are unit ve
tors, we 
an see how to derive theabsorbing boundary 
onditions to absorb plane waves travelling in any of these twodire
tions. Let
n1 = a1and
n2 = (a1 + a1)/|a1 + a2|

n2 is the unit ve
tor in the dire
tion a1 + a2 (5.4)Let B be the di�erential operator
B(u) = n2.

{

∂

∂x
+

1

c
n1

∂

∂t

}

u (5.5)It is to be noted that B(u) is a s
alar fun
tion and is therefore 
ompatible with thes
alar wave equation. B is referred to as the absorbing boundary operator for theabsorption dire
tions a1 and a2 . The ne
essary 
ondition for perfe
t absorptionis that the in
ident wave must satisfy the boundary 
ondition. A re�e
ted wave is
reated whenever a plane wave strikes the boundary. Thus the total wave �eld insidethe medium is a sum of in
ident and re�e
ted waves. Thus if the in
ident wave doesnot produ
e any re�e
tions at the boundary it must satisfy the 
ondition B(u) = 0.If all the absorption dire
tions are oriented in the outgoing dire
tion and if the above
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ondition is satis�ed, then the re�e
ted wave must satisfy the above 
ondition or itmust be zero. Sin
e all the absorption dire
tions are outgoing, the re�e
ted waveis an in
oming wave, it is impossible for the re�e
ted wave to satisfy the boundary
ondition. Therefore, no re�e
ted wave is 
reated by the in
ident plane wave, andthe in
ident plane wave is absorbed without re�e
tion.Thus we 
an 
on
lude that if an in
ident plane wave satis�es the absorbing bound-ary 
ondition, then it will be absorbed without re�e
tion.5.2 Implementation of the Absorbing BoundaryConditionsIn this se
tion, we will dis
uss how to implement the above derived basi
 
onditionsin one dimension. Then we will test the 
onditions for one dimension and then extendit to two and three dimensions. We will use the waveguide �nite element methoddis
ussed before Se
. 2.3.3 to extend the basi
 equations in three dimensions.5.2.1 One-dimensional ImplementationConsider the s
alar boundary operator given by B(u) to be applied to the dire
tionwhere the wave propagates. In one dimension, let us 
onsider the dire
tion to be 1.So we have
B(u) =

{

∂

∂x
+

1

c

∂

∂t

}

u =
∂u

∂x
+

1

c

∂u

∂t
= 0From the basi
 relation we knowσ = Eǫ = E

∂u

∂xThus we have ∂u

∂x
=
σ

Ebut σ =
F

AHen
e the expression for B(u) be
omes B(u) = F.
1

EA
+

1

c
u̇ = 0 (5.6)From the above equation, we 
an �nd the damping 
oe�
ient ,by assuming a simpledash pot model, required to absorb the waves that propagate. Thus from the aboveequation we 
an get to

F = −
EA

c
u̇ (5.7)
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X

Y

ZPSfrag repla
ements Figure 5.1: One dimensional rod modelFor a simple dash pot model, the damping 
oe�
ient is given by
D =

F

u̇
(5.8)Thus the damping 
oe�
ient for wave absorption 
an be given as

D = −
EA

cbut c =

√

E

ρsubstituting we have
D = −

√

Eρ.A (5.9)Now we 
reate a one dimensional model using FEM and 
he
k the above derived
onditions. If the above derived 
onditions hold good, and the waves get absorbed byusing the derived damping 
oe�
ient, then we 
an 
on
lude that absorbing boundary
ondition works perfe
tly in one dimension. So as seen in Fig. 5.1 we have a onedimensional waveguide. We apply the damping to the right most end of the rod and
reate a wave by ex
iting the left node of the rod. Then we plot the results of thedispla
ement over the length at two di�erent points in a transient analysis and viewthe results in Fig. 5.2. This 
learly shows that our absorbing boundary 
onditionis working as there are no re�e
tions o

urring over time and the entire wave getsabsorbed.5.3 Extension to Two Dimensions - Lamb WavesWe saw that the absorbing boundary 
onditions work well for a rod. Now we wouldlike to extend the same formulas into the two dimensions so that we 
an verify theusability of the 
onditions before further extending it in three dimensions. Anotherreason for 
he
king the boundary 
onditions in two dimensions is that we have readily
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ementsFigure 5.2: Plot of displa
ements at middle and right end of the rodthe displa
ement and stress equations and hen
e the implementation is mu
h qui
kerand easier.From Eqn. 2.13 we have the displa
ement 
omponents of the lamb wave given as

u1 =
∂φ

∂x1
+
∂ψ

∂x3

u2 = 0

u3 =
∂φ

∂x3
−
∂ψ

∂x1 (5.10)Rewriting the above equation with 
onstants and terms involving only time as werequire a di�erentiation over time to get to the velo
ity of the wave, we have
u1 = fn(φ,ψ)

u2 = 0

u3 = fn(φ,ψ) (5.11)Similarly from Eqn. 2.11a and Eqn. 2.11b we have
φ = [A1 sin(px3) +A2 cos(px3)] exp[i(kx1 − ωt)]

ψ = [B1 sin(qx3) +B2 cos(qx3)] exp[i(kx1 − ωt)] (5.12)



5 Absorbing Boundary Conditions 68Again rewriting the above equation just showing the time terms we have
φ = A exp[i(kx1 − ωt)]

φ = B exp[i(kx1 − ωt)] (5.13)So we get to the velo
ity equation of the lamb waves from Eqn. 5.11 and Eqn. 5.13
u̇ =

∂u

∂t

=
∂fn(φ,ψ)

∂t

= −i ∗ ω ∗ u (5.14)Thus we have the u̇ term of the damping equation. Now we require the for
e termto be used in the same equation for the 
al
ulation of the damping 
o-e�
ient. This
an also be easily done by using the stress equations. We assume that we use linearshape fun
tions for the Finite element modelling and hen
e distribute the stressesonto the nodes. Thus we have the nodal for
es given as
f = σ ∗ element length (5.15)With the equation for for
e and velo
ity found, we 
an dire
tly 
ompute the damping
oe�
ient for ea
h node. This is given byD = −

f

i ∗ ω ∗ u
(5.16)Thus we get the damping 
oe�
ient at ea
h node. We implement the same for asymmetri
 lamb wave and an anti symmetri
 lamb wave and the results are shown inthe Fig. 2.3 and Fig. 2.4. Thus we prove that the absorbing boundary 
onditions 
anbe extended to two dimensions. This boundary 
ondition 
an hen
e be extended tothe third dimension thereby solving our problem of having multiple re�e
tions at theend of the 
ylinder so that the design of a solution is not possible. In the next se
tion,we will deal as how to implement the boundary 
onditions in three dimensions andalso ta
kle the 
hallenges involved therein.



5 Absorbing Boundary Conditions 695.4 Implementation of the Absorbing Boundary Conditionin Three DimensionsHaving established the basi
 equations for a longitudinal wave in 
ylinder, it is quiteeasy to take the same and implement the boundary 
onditions. But a look throughthe equations, we �nd that they are very hard to be solved numeri
ally, leave aloneanalyti
ally getting to the end. They have a lot of 
omplex fun
tions involved andhen
e solving those and getting to an absorbing boundary 
ondition is really a toughtask. Hen
e we need to �nd other ways of getting to the damping 
oe�
ient for ea
hnode. A 
lose look at the damping equation is given here
D =

F

u̇
(5.17)So we really require the velo
ity of the travelling wave and the For
e that the waveex
erts on the node. We use the alternative te
hnique of using the waveguide �niteelement method [13℄ to �nd the displa
ements and hen
e the velo
ities and stressesand hen
e the for
e term. As we have dis
ussed in the Se
. 2.3.3, we get to the dis-pla
ements and for
es of the waves that travel through a 
ross se
tion. The Eqn. 2.66gives the displa
ements and for
es of the waves travelling in various dire
tions in the
ross-se
tion. Based on the dire
tion required for us, we take the 
orresponding valuesand 
ompute the damping value using the following equation.

D = −
F

i ∗ ω ∗ u
(5.18)Thus, we obtain the individual nodal damping fa
tors. We use SDT toolbox in MAT-LAB for 
omputing the Damping matrix and solving the equations for the Harmoni
analysis of wave absorption. Below we present the results for the absorbing boundary
onditions implementation. Having done the implementation of the absorbing bound-ary 
onditions, we 
an now de
ide upon sele
ting the right frequen
y for the piezoa
tuator so that we 
an measure the wave propagation taking pla
e in the material.



6 Design of Piezoele
tri
 Transdu
ersWith the newly developed absorbing boundary 
onditions in our hand, we are nowready to go dire
tly to our problem of designing the piezoele
tri
 transdu
ers. This
hapter will dis
uss in detail how to apply the absorbing boundary 
onditions to the
ylinders and how to analyse the results from the simulations. We will be mainly 
on-
entrating on designing the operating frequen
y of the piezo as the dimensions of thepiezo availble to us is already de�ned. We 
an, after designing the frequen
y of oper-ation and verifying it with measurement, use this method to 
hange the dimensionsof the a
tuator and verify whether it 
an suit our needs.6.1 Piezoele
tri
 Transdu
er Type IWe will now design the piezoele
tri
 transdu
ers having a 
ir
ular 
ross-se
tion and
lassi�ed as dis
 transdu
ers. For the pro
ess of designing the displa
ements produ
edby su
h an a
tuator, we apply the non-re�e
ting boundary 
onditions for the modeldes
ribed in se
tion 4.1. As shown there, we 
onstru
t the model using ANSYS® andexport the Mass and sti�ness matri
es along with the node, elements and materialproperties into MATLAB® with the help of Stru
tural Dynami
s Toolbox (SDT)available in MATLAB®. As dis
ussed before, for this appli
ation of 
he
king thestru
tural health, we will use the longitudinal waves as they propagate faster inthe 
ylinders and also propagate long distan
es. So we need to apply the boundary
onditions for a propagating longitudinal wave in the right end of the model as we 
ansee that the peizoele
tri
 transdu
ers are in the left end of the 
ylinders. We also 
anuse the symmetri
 property of the longitudinal wave in modelling the wave. This helpsfor us to redu
e the 
al
ulation time and get better results as we 
an see below. TheFig. 6.1 was modelled for �nding the propagating modes o

uring in this 
ross-se
tion.As dis
ussed earlier, only a longitudinal wave 
an propagate in this 
ross-se
tion.The boundary 
ondition is dire
tly applied from this 
ross-se
tion and applied to the
ylinder ends. Sin
e the displa
ement from the longitudinal waves is an exponentialfun
tion, when viewing in a frequen
y domain, the negative phase angle 
hange over70
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PSfrag repla
ements Figure 6.1: Finite Element Model of se
tion of waveguidethe length of propagation will show a wave propagation in the stru
ture. This willbe the �rst step to be 
he
ked while applying the absorbing boundary 
onditions.A plot of the phase angle of the travelling wave over the length of propagation willgive a 
lear idea as whether there is a wave propagation o

uring. Fig. 6.2 showsthe phase angle of the travelling wave at 50kHz and we 
learly see that there is a
ontinuous negative phase angle throughout the wave 
hanging with distan
e. This
learly proves that the wave is travelling in the 
ylinder. This plot is plotted at 50kHzfrequen
y with a 20V input to the piezoele
tri
 transdu
er. Comparing the same tothe phase angle of the propagating wave without using absorbing boundary 
onditionsshown in Fig. 6.3, we 
an 
learly say that due to the re�e
tions, the phase angle ofthe travelling wave is almost same over 
hange in length signifying no 
hange in thedispla
ement. Thus we �nd that the absorbing boundary 
onditions are working inthe real-time s
enario. Now we have determined that the wave is travelling in the
ylinder, we must plot the absolute value of the displa
ement of the wave in the wavepropagation dire
tion. Fig. 6.4 shows the plot of absolute value of displa
ement for3D model type 1. This graph is plotted at x=0.001 m , y= 0.001 m and z= 0 to 0.2m. It is plotted at a frequen
y of 50 kHz, and has 100 nodes along the z-axis. Aswe 
an see the displa
ements are in the expe
ted range of 10 nanometers. This nowproves that the way of modelling is working. So now we 
an see how the piezoele
tri
transdu
er 
hanges the displa
ement values.We 
reate a frequen
y ve
tor from 50Khz to 500kHz and 
he
k for the maximum
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PSfrag repla
ementsFigure 6.4: Absolute value of displa
ement for 3D model type1 using ABC'svalue of displa
ement in the same line as des
ribed above. We plot the absolutevalue of displa
ement and absolute value of displa
ement in +z dire
tion (u3) value ofdispla
ement. We 
learly see that the piezoele
tri
 transdu
er produ
es the maximumvalue of displa
ement at a frequen
y 370 kHz. So, when we use a piezoele
tri
transdu
er of type 1, we need to use a frequen
y of 370 kHz, so that we 
an havemaximum displa
ement in the 
ylinder. Thus the 
ra
ks 
an be dete
ted 
learly.6.2 Piezoele
tri
 Transdu
er Type IIAfter having found suitable frequn
y of operation for the 
ir
ular piezoele
tri
 trans-du
er, we 
an now �nd a similar operation frequen
y for the type 2 model. We �rst
he
k the phase angle and �nd that there is a wave propagation o

uring. We nowplot the absolute value of the displa
ement along the dire
tion of wave propagation.To 
he
k our boundary 
onditions, we use a new te
hnique where we 
ompare thedispla
ement plot by 
hanging the lengths of the 
ylinder. The behaviour of the
urve is expe
ted to be similar even when 
hangng the length of the 
ylinder as theabsorbing boundary 
onditions should absorb all the waves 
oming in its dire
tion.Fig. 6.6 shows the absolute value of displa
ement over frequen
y for type2 model.We 
learly see the displa
ement is in the range of nanometers and also the 
hange in
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PSfrag repla
ements Figure 6.5: Absolute displa
ement over Frequen
y for Type1 Modelgeometry does not 
onsiderably 
hange the values of the solution. Thus we are quitesure that the absorbing boundary 
onditions are working perfe
tly.Now we 
reate a frequen
y ve
tor from 50kHz to 500kHz and �nd the maximumvalue of displa
ement o

urs at a frequen
y of 240 kHz. Another proof of the mod-elling is that, we 
an 
learly see that eventhough there is a 
hange in the length ofthe 
ylinder, the maximum displa
ement always o

urs at a frequen
y of 240 kHz.Thus we 
an say that whenever the blo
k type of piezoele
tri
 transdu
er is used,it is best to use it in the frequen
y range of 240kHz and we 
an identify the 
ra
kseasily. Another important point to note in mind is that all these values hold good onlyfor the geometry of the pieozoele
tri
 transdu
er we have spe
i�ed in the previous
hapters. This geometry was not optimized as this was the standard piezo materialas supplied for use. There is also a possibility to alter this geometry and �nd the bestpossible geometry. As we 
an 
learly see from the results, the type 1 piezoele
tri
transdu
er is performing better than the type 2 piezoele
tri
 transdu
er.
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7 Con
lusionA brief introdu
tion to the mathemati
s behind wave propagation was explained.The long distant travelling waves in plate like stru
tures namely the lamb waves andthe elasti
 waves in the 
ylinders was introdu
ed. Using the waveguide based �niteelement method, the propagation of lamb waves in plate like stru
tures and elasti
waves in 
ylindri
al stru
tures was modelled and plotted. This gave a 
lear idea ashow wave propagation is o

urring in these type of stru
tures.The piezoele
tri
 material, its material properties, the 
oupled ele
tro-me
hani
alformulations were dis
ussed and then the piezoele
tri
 transdu
er was su

essfullymodelled using the �nite element method. Various geometries of the piezoele
tri
a
tuator was also 
onsidered and they were used in modelling the generation of lon-gitudinal waves in 
ylinders. They resulted in re�e
tions at the arti�
ial boundariesof the 
ylinder and hen
e the results were not 
orre
t.To ta
kle this problem, a new type of absorbing boundary 
ondition was developedthat made use of the waveguide based �nite element method, this greatly redu
ed the
omputation time and also made the results meaningful. This generalized methodwas tested in one- dimension, extended to two- dimension and then was applied tothree- dimensional problem. This 
ondition proved really e�e
tive in designing thepiezoele
tri
 transdu
er.When a 
ir
ular piezoele
tri
 transdu
er is used, it is atta
hed to the end of the
ylinder and its operation frequen
y 
ould be set at 370 kHz when the displa
emento

uring in the stru
ture is maximum. Similarly when a piezoele
tri
 transdu
ersimilar to a blo
k is used, the stru
ture and the piezoele
tri
 transdu
er have only aline 
onta
t. In this 
ase, the frequen
y of operation of piezoele
tri
 transdu
er 
anbe set at 240 kHz. Also, the blo
k model produ
ed a mu
h higher displa
ement level
ompared to the 
ir
ular piezoele
tri
 transdu
er.With the absorbing boundary 
onditions now being designed, it would be ni
e to
ompare them with physi
al measurements and as
ertain the 
redibility of the 
ondi-tions and their equivalen
e to the physi
al behaviour. At the time of writing, variousmethods are under investigation to measure the displa
ements in the 
ylindri
al rods.76
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lusion 77Again it is to be noted that sin
e the 
ylindri
al rod 
annot be physi
ally tested in lab
onditions for in�nite distan
es, we might make use of pa
ket signals that are sent indis
rete pa
kets and measurements are made on the system before the re�e
tion fromthe end of the rod a�e
ts the measurement. From a stru
tural maintenan
e pointof view, a measurement pro
edure is to be developed to measure the displa
ements.This measurement pro
edure 
an be utilized in determining the worthiness of theabsorbing boundary 
ondition.Another interesting dire
tion would be to model the 
onta
t between the 
ylindri
alrods. There is a fri
tion 
oupled energy based analysis of 
onta
ts between rods, butwith the help of absorbing boundary 
onditions, we 
an make a �nite element basedmodel for 
onta
t analysis. Sin
e the 
onta
t geometry is quite 
omplex, the simplestep would be to model two rods with one a
ting as an a
tive rod and the othera passive rod and to examine the wave propagation in the 
onta
t area. When weuse the piezoele
tri
 transdu
ers of type 2 as dis
ussed in the previous 
hapters, wemight be using both the rods as a
tive rods. Sin
e the piezoele
tri
 transdu
ers 
anbe atta
hed only to the outer surfa
e of the multiple wire system, it would be ex
itingto model 
onta
ts and �nd the displa
ements in the innermost wires. Also it wouldbe interesting to model the re�e
tions in the innermost wire due to the 
ra
ks presentin them. The use of absorbing boundary 
onditions be
omes inevitable when su
h
ompli
ated modelling is done.
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