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1. Introduction to Electro Active Polymers(EAPs)

Fundamental and technological interest in Electro Active Polymers (EAPs), represent-
ing a broad class of organic actuators that exhibit large dimensional changes upon electri-
cal stimulation, has grown tremendously over the past decade. Electro Active polymers
can best be described as soft, flexible materials that are capable of converting electrical
energy to mechanical energy and thus producing a force and/or motion.

EAPs can be broadly classified as electronic or ionic according to their operational
mechanism. Electronic EAPs generally exhibit superior performance relative to ionic
EAPs in terms of actuation strain and are in the focus of this research. The electronic
EAPs, commonly distinguished on the basis of their actuation mechanism as either elec-
trostrictive (ferroelectric polymers) or electrostatic (dielectric elastomers)(Shankar et
al. [22])(Plante and Dubowsky et al. [18]).

Ferroelectric polymers have a non-centro-symmetric structure that exhibits permanent
electric polarization. These materials possess dipoles that can be aligned in an electric
field and maintain their polarization. The induced polarization can be removed by ap-
plying a reverse electric field or by heating above the material’s Curie temperature. They
exhibit nonlinear polarization curves demonstrating pronounced hysteresis. The polymers
exhibiting these properties are limited mainly to poly(vinylidene difluoride)(PVDF), some
PVDF copolymers, certain odd-numbered polyamides such as Nylon 7 and Nylon 11 and
blends thereof [3].

On the other side Dielectric Elastomer actuators does not have any intrinsic electrome-
chanical coupling. They are essentially compliant variable capacitors. They consist of a
thin elastomeric film coated on both sides with compliant electrodes. When an electric
field is applied across the electrodes, the electrostatic attraction between the opposite
charges on opposing electrode and the repulsion of the like charges on each electrode
generate stress on the film causing it to contract in thickness and expand in area. Figure
1 shows the the activation mechanisms of these two main types of Electronic EAPs and
their differences. Most elastomers used are essentially incompressible, so any decrease in
thickness results in a concomitant increase in the planar area. The area expansion can
be readily measured if the films are subjected to tensile prestrain: the non-active areas in
tension surrounding the active area pulls the expanded active area and keeps it flat.

a)

Elrctrodes

DE
e

b)

e

Figure 1: Electronic Electro Active Polymers are divided two two main classes. In Dielec-

tric Elastomers(a) a passive elastomer film is sandwiched between two compliant electrodes.
Electromechanical effect is a result of maxwell stresses that is not an intrinsic material prop-
erty. Ferroelectric Polymers (b) have intrinsic elecromechanical coupling properties and are
able to maintain a permanent electric polarization that can be reversed or switched, in an
external electric field.
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1.1. State of the Art

The constitutive modeling of electro-mechanical materials has been of the interest
of several researchers since 1950’s. Among others Rosato [21] provided a finite strain
electromechanical formulation and appropriate finite element formulation which have been
used in this work.

Finite viscoelastic over-stress response becomes apparent in creep and relaxation tests
as well as in cyclic loading processes. This phenomena has been shown to be important
in the modeling of DEs [20, 26]. Lubliner’s work [12] was one of the first attempts to
develop a large strain viscoelastic model. He split the free energy of a viscoelastic solid
in two parts : the first part describing the rate-independent material behavior and the
second incorporating time-dependent effects. He further assumed a multiplicative decom-
position of the deformation gradient into elastic and inelastic parts. An important point
in developing models of this form is the choice of the evolution equation for the internal
variables. In the theory of linear viscoelasticity, which is only valid for small deforma-
tions and small perturbations away from thermodynamic equilibrium, one can take either
the “over-stress” or the inelastic strain as an internal variable. Due to the fact that the
relationship between these two is linear and additionally all stress and strain measures
coincide for small deformations, the structure of the evolution equation is evident. Simo
[23] and Holzapfel [8] the same “over-stress” approach to develop the model. Our ap-
proach will be similar to what these researchers done and we will extend their formulation
for coupled electro-mechanical materials. However there are other authors who used othe
approaches like multiplicative decomposition of the deformation gradient into elastic and
inelastic parts (see e.g. Reese & Govindjee [6]) or metric based evolution equations
(Miehe & Keck [15]).

1.2. Structure of the Thesis

The aim of this work is to study viscoelastic behavior of Electro Active Polymers and in
particular Dielectric Elastomers in a finite strain context. We present here finite elasticity
and finite viscoelasticity of these materials. The free energy functions that are presented
are motivated by the the experimental results and are consistent with mathematical theory
of material modeling.

In the second chapter, an introduction to continuum electro mechanics is provided.
Here, apart from the standard finite deformation equations, we introduce the electric
field variables and their mapping properties along along with the balance principles of
continuum electromechanics. We then go on to describe a thermodynamically consistent
constitutive theory and proceed to show, how we can solve such coupled boundary value
problems, within in a variational framework.

The third chapter presents material modeling basics in finite electro elasticity. Here,
we will also propose appropriate material model for Dielectric Elastomers. The solution
of the balance equations in combination with the constitutive equations gives us the
electro-mechanical fields within the region under consideration.

In the forth chapter, we will present the viscoelastic material modeling at large strain.
This derivation includes the the typical steps of defining the finite deformation viscoelas-
ticity. We will start with free energy function which is established in the previous chapter
for elasticity and extend it for viscoelastic case. Rate equation as well as numerical treat-
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ment will be covered.

The fifth chapter, presents an alternative compact finite element formulation used
to solve the boundary value problems. This is the formulation that has been used in
obtaining the numerical results that have been presented in the penultimate section of
the thesis.

The sixth chapter reports the numerical results. we presented here several material
point level tests as well as two dimensional and three dimensional boundary value problems
which have been tested to show the reliability of the formulation.
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2. Introduction to Continuum Electromechanics at Finite Strains

In this chapter the continuum-thermodynamics basis for a finite deformation theory
with an extension to electrostatics is established. This derivation includes the typical steps
of defining the finite deformation kinematics based on fundamental geometric mappings,
of introducing stress measures, the basics of electrostatics as well as the global and local
balance laws of continuum electromechanics.

The following description of finite deformation kinematics conceptually relies on the
terminology of modern differential geometry (cf. Marsden & Hughes [13]).

2.1. Geometrical Aspects of Finite Deformation Kinematics

A material body B is mathematically defined as the open set of material points P ,
which can be identified with geometrical points in the three-dimensional Euclidean space
R3 via the one-to-one configuration placement map χ. The motion of a body is the
time-parameterized family of configurations

χt :=

{

B → Bt ∈ R
3 ,

P ∈ B 7→ xt = χt(P ) ∈ Bt .
(1)

This relation therefore describes the configuration of the body B in R
3 at time t. In the

referential description of motion one defines the reference or Lagrangian configuration
as the placement of the body at time t0, i.e. B :=χt0(B), with the reference coordinates
X :=χt0(P ) ∈ B. The current or Eulerian configuration at time t is defined as S :=χt(B),
with the spatial coordinates x :=χt(P ) ∈ S. The motion of the body with respect to the

χt0(P ) χt(P )

X
x

P

B

S

R
3

ϕX(t)B

ϕt(X) := χt ◦χ
−1
t0

(X)

v(x, t)

Figure 2: Identification of the position X ∈ B of a particle P ∈ B in three-dimensional
Euclidian space R

3 through the configuration map χt and description of the motion of a
material point w.r.t the reference configuration via the deformation map ϕt.

reference configuration is then defined by the nonlinear deformation map

ϕ :=

{

B × R+ → S ∈ R
3 ,

(X , t) 7→ x = ϕ(X, t) = ϕt(X) ,
(2)

which maps the material points X ∈ B onto their deformed spatial positions x ∈ S as
shown in Figure 2.
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Tx S
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c

C

t

x

S

ϕt(X)

B

F t := ∇Xϕt(X)

Figure 3: The deformation gradient acting as the linear tangent map, which transforms
the material vector T ∈TXB, tangent to a material curve C at X, onto the associated spatial
vector t∈Tx S, tangent to the material curve c at x.

Mathematically, the deformation gradient F is defined as the Fréchet derivative of the
deformation map, i.e. F t(X) := Gradϕt. Geometrically, the deformation gradient can
be interpreted as the linear tangent map which maps tangents T to material curves, i.e.
elements of the tangent spaces TXB of the manifold B, onto tangents t of the deformed
material curves, i.e. elements of the tangent space Tx S of the manifold S, according to

F t :=

{

TXB → Tx S ,

T 7→ t = F tT ,
(3)

as visualized in Figure 3. Note that, since ϕt is a one-to-one mapping and must prohibit
material interpenetration, the deformation gradient is subject to the following constraints
J := detF > 0. The determinant of the deformation gradient can further directly be
interpreted as another fundamental mapping, the volume map, which relates infinitesimal
reference volume elements dv to their deformed spatial counterparts dV via the relation

J = detF :=

{

R+ → R+ ,

dV 7→ dv = detF dV .
(4)

The co-factor of the deformation gradient cof F is defined as the derivative of the volume
map with respect to F . It can geometrically be interpreted as the area map, which maps
infinitesimal reference area elements onto the associated spatial ones via the relation
n da = JF−TN dA = (cof F )N dA, also known as Nanson’s formula. Moreover, F−T

can thus be identified as the normal map, that maps normals of material surfaces, or,
again from the differential geometry view point, elements of the co-tangent space T ∗

XB,
onto normals of the deformed spatial surfaces, i.e. elements of the co-tangent space T ∗

x S,
according to

F−T :=

{

T ∗

XB → T ∗

x S ,

N 7→ n = F−TN .
(5)

For the specification of coordinate representations one introduces the Cartesian frames
{Ei} for TXB,

{

Ei
}

for T ∗
XB, {ei} for Tx S and {ei} for T ∗

x S. Capital letter indices
i = {A,B,C} are used for Lagrangian and lower case indices i = {a, b, c} for Eulerian
settings.1 The reference and spatial coordinates are thus expressed as X =XAEA and

1Note that these frames will typically coincide, but they have formally been considered here for the
sake of clarity.
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x = xaea. The deformation gradient then admits the representation F = F a
Aea ⊗ EA,

with F a
A=∂ϕa/∂XA. Likewise, the component forms of the mappings (3) and (5) read

ta=F a
AT

A and na=(F−1)
A
aNA.

In order to be able to measure geometric quantities such as the length of vectors,
however, one must additionally introduce metric tensors. In global Cartesian frames the
covariant and contravariant Lagrangian metric tensors admit the reduced representation
G = δABE

A ⊗ EB and G−1 = δABEA ⊗ EB, where δAB and δAB are Kronecker deltas.
Similarly, the covariant and contravariant Eulerian metric tensors reduce to g=δabe

a⊗eb

and g−1 = δabea ⊗ eb, respectively. The metric tensors represent mappings of vectors,
i.e. elements of the tangent spaces, onto normals (co-vectors), i.e. elements of the co-
tangent spaces. For the Lagrangian and the Eulerian manifolds these mappings are defined
by

G :=

{

TXB → T ∗

XB ,

T 7→ N = GT ,
g :=

{

Tx S → T ∗

x S ,

t 7→ n = gt .
(6)

These mappings can also be interpreted as index lowering or raising procedures since
the coordinate representations of (6) read NA =GABT

B = δABT
B and na = gabt

b = δabt
b,

respectively. It is

Commutative diagrams, such as the ones displayed in Figure 4, significantly facilitate
the geometric meaning of the introduced mappings. Based on the definitions of the

F

F−T

TXB
Tx S

T ∗
XB T ∗

x S

C g cG

T
t

N
n

Figure 4: Commutative diagram illustrating the ’push-forward’ and ’pull-back’ of the
covariant reference metric G and spatial metric g.

mappings (3), (5), (6) and their respective inverse mappings, one can introduce additional
deformation measures. The right Cauchy-Green tensor C can in this context be defined
as the ’pull-back’ of the spatial metric

C := ϕ∗(g) = F TgF , or CAB = F a
AgabF

b
B , (7)

in coordinate representation, and can thus be interpreted as the ’representation of the
current metric in the Lagrangian setting’ or ’convected spatial metric’. Similarly, the
inverse right Cauchy-Green tensor C−1 is defined as

C−1 := ϕ∗(g−1) = F−1g−1F−T , or
(

C−1
)AB

=
(

F−1
)A

a
gab

(

F−1
)B

b
. (8)
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Accordingly, via appropriate ’push-forward’ operations, one defines the left Cauchy-Green
tensor bf , often called the Finger tensor, and the inverse left Cauchy-Green tensor c,
respectively, as

bf := ϕ∗

(

G−1
)

= FG−1F T , or bab = F a
AG

ABF b
B , (9)

c =
(

bf
)−1

:= ϕ∗ (G) = F−TGF−1 , or cab =
(

F−1
)A

a
GAB

(

F−1
)B

b
. (10)

The reader is again referred to Figure 4 for a graphical representation of the geometrical
mapping properties of the introduced metric tensors.

2.2. Fundamental Stress Measures

Consider an arbitrary part P ⊂ B cut out of the undeformed body in the reference
configuration and its deformed counterpart Pt⊂S with the respective closed surfaces ∂P
and ∂Pt, as shown in Figure 5. In the current configuration one replaces the mechanical
action of the rest of the body on the cut-out part by the spatial traction field t. According

T

N

dA
X x

P

∂P

F

F−TB

t

n

da

Pt
∂Pt S

Figure 5: The material and spatial traction vectors T (X, t;N)∈TXB and t(x, t;n)∈Tx S
representing the forces per unit area exerted by the cut-off remainder of the body on the
surfaces ∂P and ∂Pt of the cut-out parts in the material and spatial settings, respectively.

to Cauchy’s theorem, t is assumed to be a linear function of the orientation of the cut,
represented by the spatial unit normal n∈T ∗

x S to the surface ∂Pt, or specifically

t(x, t;n) := σ(x, t)n , or ta = σabnb . (11)

Therein σ is the Cauchy stress tensor, which in our considered geometrical framework
can be understood as a contravariant mapping of the form

σ :=

{

T ∗

x S → Tx S ,

n 7→ t = σn .
(12)

Another common spatial stress measure is the Kirchhoff stress tensor, or weighted Cauchy
stress tensor, τ := Jσ, which, due to the scalar nature of J , preserves the geometric
mapping properties of σ.

One can further introduce a scaled spatial traction vector t̃ ∈ Tx S that produces a
resultant force on an element of the reference surface which is equal to the force exerted
by t on an element of the deformed surface, such that t da= t̃ dA. The nominal or first
Piola-Kirchhoff stress tensor P is then defined via the Cauchy-theorem-type relation
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F

F−T

TXB
Tx S

T ∗
XB T ∗

x S

S τ =Jσ
P

T t t̃

N
n

Figure 6: Commutative diagram illustrating the geometric mapping properties of the
introduced stress tensors.

t̃ :=PN , or t̃a=P aANA. Additionally, using Nanson’s formula, one obtains the following
relation between the introduced stress tensors P = JσF−T = τF−T . Note that P is a
two-point (mixed-variant) tensor possessing the geometrical mapping properties

P :=

{

T ∗

XB → Tx S ,

N 7→ t̃ = PN .
(13)

The Lagrangian traction vector T ∈TXB may be defined as the ’pull-back’ of the spatial
traction field t̃ ∈ Tx S, i.e. T = ϕ∗

(

t̃
)

= F−1T as displayed in Figure 5. The second
Piola-Kirchhoff stress tensor S is then defined via the relation T :=SN , or TA=SABNB,
and has the mapping properties

S :=

{

T ∗

XB → TXB ,

N 7→ T = SN .
(14)

The commutative diagram of Figure 6 depicts the geometrical relations between the intro-
duced stress tensors. It is immediately apparent that the following ’pull-back’ operations
on the mixed-variant and spatial stress tensors hold.

S := ϕ∗ (P ) = F−1P , or SAB =
(

F−1
)A

a
P aB , (15)

S := ϕ∗ (τ ) = F−1τF−T , or SAB =
(

F−1
)A

a
τab

(

F−1
)B

b
. (16)

Accordingly, the converse ’push-forward’ relations of the mixed-variant and reference
stress tensors are given by

τ = Jσ := ϕ∗ (P ) = PF T , or τab = P aAF b
A , (17)

τ := ϕ∗ (S) = FSF T , or τab = F a
AS

ABF b
B . (18)

2.3. Maxwell’s Laws for Electrostatics

The aim of this section is to set Maxwell’s equations for the case of electro-quasistatics
in dielectric media. On top constitutive equations will be introduced using an approach
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+ +

+

p p
p ppp

p
pd

d

e
Figure 7: Microscopic (left image) and macroscopic(right image) interpretation of polar-
ization vector in a dielectric media. In the presence of an electric field the charge cloud is
in the atomic level is distorted, and this can be reduced to a simple dipole model. A dipole
is characterized by its dipole moment pd.

similar to continuum mechanics. Furthermore, geometrical transformation of these phys-
ical laws will be addressed in order to have them in both natural Eulerian S and also
Lagrangian B configurations.

2.3.1. Gauss’s Law. Gauss’ law describes the relationship between an electric field
and its generating electric charges. In the field line description, electric field lines begin
only at positive electric charges and end only at negative electric charges. ’Counting’ the
number of field lines in a closed surface, therefore, yields the total charge enclosed by that
surface. More technically, Gauss’ law states that the electric flux through any hypothetical
closed “Gaussian surface” is identical to the total electric charge within the surface.

∮

∂S

e · ds =
qtot
ǫ0

(19)

In equation (19), e stands for the electric field in Eulerian configuration and qtot is the
total electric charge in closed surface ∂S.

In the classical approach to the dielectric material model, a material is made up of
atoms. Each atom consists of a cloud of negative charge (Electrons) bound to and sur-
rounding a positive point charge at its center. In the presence of an electric field the charge
cloud is distorted, Figure (20), and this can be reduced to a simple dipole model. A dipole
is characterized by its dipole moment, a vector quantity shown in Figure (20) as pd. In
general, macroscopic model for the effect of electric field on matter can be motivated by
the microscopic model described here. To characterize electric field matter interaction we
define polarization pd. Polarization can also be result of Dipolar polarization (rotation
and reorientation of randomely aligned permanent polarized molecules) and Ionic polar-
ization(relative displacements between positive and negative ions). However all of them
will result in a macroscopically polarization vector field that is defined in terms of pd.p =

1

∆v

∑pd , pd = q · d (20)

Here, q is the atomic charge, d is distance between charges in microscopic level and p is
macroscopic polarization in the current configuration. In a dielectric media, gradient of
polarization cause a resultant negative charge. This fact is formally shown in Equation
(21) and motivated in Figure (8).
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dx

x

yz

p(x) p(x+ dx)

Figure 8: Polarization gradient result in a volume charge density. This can be seen from
the difference of charges in the opposite sides of volume element shown in the picture.

div[p(x )] = −ρb , σb = p · n (21)

In Equation (21), σb stands for bound charge surface density and ρb is called volume
density of polarization charge or bound charge density.
To apply Gauss’s law, Equation (19), in a dielectric media one must consider both free
charge density and polarization charge density. If we define two parts of qtot as qb and qf ,
the following relation will be obtained.

∮

∂S

e · ds =
qf + qb
ǫ0

(22)

As it can be seen in Equation (22) total charge that enters Maxwell’s equation is given by
ρt = ρf + ρb. Using Divergence theorem in parallel with Equation (21) and localization
theorem Equation (22) can be expressed in differential form.

div[ǫ0e+ p] = ρf (23)

In practice it is inconvenient to take explicit account for polarization, Therefore, the
electric displacement field d is defined and Equation (23) is rewritten in essential form
of Gauss theorem in dielectrics. Furthuremore, we can obtain boundary condition of this
equation using boundary condition of Equation (21).d = ǫ0e+ p

div[d] = ρf , σf = d · n
(24)

Electric displacement d, also known as electric flux density, is the charge per unit area that
would be displaced across a layer of conductor placed across an electric field. This quantity
describes also the density of electric flux passing through a Gaussian surface ∂S in an
electric field. In order to specify the relation betweeen displacement field and electric field
we will need costitutive equation. This equation specify the response of bound charge and
current to the applied fields and is called constitutive relation. Linear relation between
true displacement and electric fiels is a typical experimentally verified constitutive law for
Dielectric Elastomers(Plante & Dubowsky [19]). Here ǫ is dielectric permitivity of
the dielectric media. d = ǫe (25)
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Box 1: Boundary-Value-Problem of Electrostatics.

1. Kinematics e = −∇xφ
e(x) (curl[e] = 0). (26a)

2. Equilibrium equations

div[d(x)] = ρe(x). (26b)

3. Constitutive relation d(x) = d̂(e) = ǫe. (26c)

4. Boundary conditionsd(x) · n = −σe(x,n), on ∂Sd on

φe(x) = φ̄e(x), on ∂Sφ. on (26d)

2.3.2. Faraday’s law of induction. In Electromagnetic physics, a quantitative
relationship between a changing magnetic field and the electric field created by the change,
developed on the basis of experimental observations made in 1831 by the English scientist
Michael Faraday. Years later the Scottish physicist James Clerk Maxwell proposed that
the fundamental effect of changing magnetic flux was the production of an electric field,
not only in a conductor but also in space even in the absence of electric charges. In
other words: A changing magnetic field creates an electric field. This can be shown in the
mathematical language like:

curl[e] = −
∂b
∂t

(27)

Transient simulations under the electro-quasistatic (EQS) assumption are typically per-
formed for the electrodynamic analysis of technical applications which arise from high-
voltage technology or microelectronics if they are operated at low frequencies. The EQS
assumption is applicable if electromagnetic wave propagation effects can be disregarded
and if the electric energy density of the problem is considerably larger than the magnetic
energy density(see e.g. Steinmetz et al. [24]). This is exactly coinciding with the
desired simulation condition of this work. Capacitive as well as resistive material behavior
can be taken into account under EQS assumption.
Under the EQS assumption, derivative of magnetic field is approaching zero and a scalar
electric potential function φe for the irrotational electric field strength can be introduced.
This potential function φe(x) is called electric potential of the point x and is defined as
the elctromotive force i.e. e · dl, from x to an arbitrary reference point x0.

curl[e] = 0 =⇒ e = −∇xφ
e(x) , φe(x) = −

∫ x

x0

e · dl (28)



S.M. Khosrownejad 13

F

F−T

D JdP Jp
E eTXB

T ∗
XB

Tx S

T ∗
x S

Figure 9: Commutative diagram illustrating the geometric mapping relations between
material and spatial electric field variables.

2.3.3. Boundary-Value Problem of Electrostatistics. Using Gauss’s and Fara-
day’s law one can summerize the boundary-value-problem for the electrostatic case in a
given region S ⊂R3 occupied by a dielectric material and surrounded by free space as
in Box(1). Here the boundary ∂S has been decomposed in a portion ∂Sd, where the
free surface charges are placed, and a portion ∂Sφe , where the electric potential can be
assigned.

∂S = ∂Sd ∪ ∂Sφe with ∂Sd ∩ ∂Sφe ∈ ∅ (29)

2.3.4. Geometrical Transformations of Electrical Objects. By using the defi-
nition of electric potential and transformation of line elements in Equation (28), we can
transform the integration on the actual configuration in an integration on the reference
configuration and define the Lagrangian electric field E as follows.

φe(x) = −

∫ x

x0

e · dl = −

∫ X

X0

F−Te · dL = −

∫ X

X0

E · dL (30)

yielding the transormation e = F−TE (31)

As F−T being the normal map, we identify e as a geometric object of the Eulerian
cotangent space T ∗

x S and E as an object of the Lagrangian cotangent space T ∗
XB (cf.

Figure 9).

Within a silmilar approach, using the integral form of equation (24), and surface ele-
ment transformation one can define Lagrangian electric displacement D and polarizationP fields.

qe[∂S] =

∫

∂S

d · ds =

∫

∂B

d · JF−TdS =

∫

∂B

JF−1d · dS =

∫

∂B

D · dS (32)

Same relations hold for polarization field due to the same characteristics of these two
variables. Thus the transformation of elctric displacement and polarization fields reads
as follows. d = J−1FD , p = J−1FP (33)
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This transformation is a typical Piola-transformation and allow us to identify Jd and
Jp as geometric objects of Eulerian tangent space Tx S. In the same way D and P are
objects of Lagrangian tangent space TXB. It is worth pointing out that due to the different
geometrical natures of the electric field, the electric displacement, and the polarization,
we need to modify Equation (24) as follows.p = d− ǫ0g

−1e (34)

2.4. Extended Balance Laws of Continuum Thermodynamics

In this section the balance principles of continuum thermomechanics are briefly re-
viewed and the main focus is placed on their extension to the continuum mechanics of
polarizable matter. This step requires the addition of terms in the thermomechanical
balance laws, as well as the introduction of Maxwell’s equations. Extensive discussions of
the electrodynamics of continua have been presented by Pao & Hutter [17], Hutter
& van de Ven [10], Maugin [14], Eringen and Maugin [5].

For any admissible thermo-electro-mechanical process the following global balance laws
must hold for every part Pt⊂S of the material body, along with the Electrostatic equa-
tions introduced in the section 2.3. These balance equations contain, in addition to the
classical contributions, the electrical body force field ργe(x, t), the electrical body cou-
ple field ρme(x, t) and the electrical energy source field ρre(x, t), which are due to the
field-matter-interactions of the deforming polarizable body and the electric field.2

In the following equations M denotes the mass, L the linear momentum, F the resul-
tant electromechanical force, A0 the angular momentum and M0 the resultant electrome-
chanical moment about the origin, K the kinetic energy, E the internal energy, P the
power due to external electromechanical forces, Q the sum of thermal and electromechani-
cal power, Γ the total rate of entropy production, H the entropy and finally S the entropy
power of the considered part Pt.

Furtheremore, in the bellow formulation, ρ is the mass density per unit volume, ρ0 is
the mass density per unit volume of reference configuration, γ is the total body force due to
electric fields and external actions, m is body couple in actual configuration, e is internal
energy per unit mass, q is the heat flux and r is total energy supply due to electromagnetic
fields and to heat per unit mass. Also, m̂e is dual second order tensors to the electric
body couple, i.e. for a generic vector x, we can write; m̂ex = me×x. It is assumed that
body force, body couple and energy supply can be decomposed into seperate electric and
nonelectric parts. The electric part will be expressed in terms of electrical quantities, and
indicated with the superscript ”e”, the other is supposed to be externally applied and
known from the outset and contradistinguished with a bar. Hence:

ργ = ργe + ργ̄ , ρm = ρme , ρr = ρre + ρr̄ (35)

Furthuremore, relation between material and current configuration parameters are as
follows:

P = JσF−T , Q = JF−1q

2The specific form of electromagnetic source terms depends on the underlying model for field matter
interactions, such as the dipole–dipole, or the dipole–current loop models discussed for example in [10],
[17].
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Γ(X, t) = γ(x, t) ◦ ϕt(x, t) , M(X, t) = m(x, t) ◦ ϕt(x, t)

(36)

With these definitions at hand, one can express the global balance laws of continuum
thermodynamics for polarizable media in the spatial setting in the following form

Balance of mass

d

dt
M = 0 ,

d

dt

∫

Pt

ρ dv = 0 . (37a)

Balance of linear momentum

d

dt
L = F ,

d

dt

∫

Pt

ρv dv =

∫

Pt

[ργ̄ + ργe] dv +

∫

∂Pt

t da . (37b)

Balance of angular momentum

d

dt
A0 = M0 ,

d

dt

∫

Pt

x× ρv dv =

∫

Pt

[x× (ργ̄ + ργe) + ρme] dv +

∫

∂Pt

x× t da . (37c)

Balance of energy (first law of thermodynamics)

d

dt
(K+ E) = P+Q , (37d)

d

dt

∫

Pt

[

1

2
ρv · gv + ρe

]

dv =

∫

Pt

[(ργ̄ + ργe) · gv] dv +

∫

∂Pt

t · gv da

+

∫

Pt

ρr̄ dv −

∫

∂Pt

q · n da+

∫

Pt

ρre dv .

Entropy inequality (second law of thermodynamics)

Γ :=
d

dt
H− S ≥ 0 ,

∫

Pt

ργ dv :=
d

dt

∫

Pt

ρη dv −

(
∫

Pt

ρr̄

θ
dv −

∫

∂Pt

q · n

θ
da

)

≥ 0 . (37e)

By using standard divergence, transport and localization theorems as well as the geo-
metric mappings introduced above, the local balance laws of continuum thermodynamics
for polarizable media in the spatial and material settings are derived as

Balance of mass
ρ̇+ ρ div v = 0 , Jρ(ϕt(X), t) = ρ0(X) . (38a)

Balance of linear momentum

ρv̇ = divσ + ργ̄ + ργe , ρ0V̇ = DivP + ρ0Γ̄+ ρ0Γ
e . (38b)
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Balance of angular momentum

skewσ = ρm̂e , skew
(

PF T
)

= ρ0M̂
e
. (38c)

Balance of energy (first law of thermodynamics)

ρė = σ : gl + ρr̄ − div q + ρre , ρ0ė = gP : Ḟ + ρ0R̄−DivQ+ ρ0R
e . (38d)

Entropy inequality (second law of thermodynamics)

ργ = ρη̇ − ρ
r̄

θ
+

1

θ
div q −

1

θ2
q · grad θ ≥ 0 , (38e)

ρ0γ = ρ0η̇ − ρ0
R̄

θ
+

1

θ
DivQ−

1

θ2
Q ·Grad θ ≥ 0 . (38f)

The balance laws for polarizable continua listed above are general. As mentioned, however,
they require the specification of the electromotive force and couple terms as well as the
electrical energy source term. These terms must be justified based on a particular field-
matter-interactions theory. There are several approaches regarding the specification of
these terms. For a broader discussion of this deep subject the reader is referred to [10].
The model that will be adopted here, mainly because of its intuitiveness, mathematical
simplicity and the resulting ”symmetry” of electric and magnetic effects, is the two-
dipole model in the so-called Chu Formulation, as discussed in detail by Pao & Hutter
[16, 17].

Restricting ourselves to purely electric effects for the present purpose, the field-matter-
interaction source terms of the two-dipole model are given by [10]

ργe = [∇xe(x)]p+ ρfe , ρm̂e = skew[p× e] , ρre = ρe · d
dt
(
p
ρ
) . (39)

2.4.1. Modified Balance Equations Using Maxwell’s Stress Tensor. The
Maxwell stress tensor σM is a second rank tensor used in classical electromagnetism to
represent the interaction between electric/magnetic forces and mechanical momentum. It
is defined such that:

div[σM ] = ργe , skew[σM ] = ρm̂e (40)

With the introduction of Maxwell’s stress tensor, the conservation of linear momentum
can be rewritten as:

ρv̇ = div[σ] + ργ̄ + ργe ⇒ ρv̇ = div[σ] + ργ̄ + div[σM ] (41)

Defining the total stress as σtot = σ+σM we can rewrite conservation of linear momentum
as:

ρv̇ = div[σtot] + ργ̄ (42)

Reminding that γ̄ is just the mechanical internal forces. The total stress tensor has the
advantage of being symmetric, i.e. the balance of angular momentum takes the form:

skew[σtot] = 0 (43)
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For the two-dipole model in the Chu formulation considered here the following form of
the Maxwell stress tensor is formulated

σM = ǫ0e⊗ e+ e⊗ p−
1

2
ǫ0|e|21 = e⊗ d−

1

2
ǫ0|e|21 (44)

It can be shown that this definition is fulfills properties discussed above (see e.g. Rosato
[21]. With this new definition of stress, i.e. σtot = σ + e⊗ d− 1

2
ǫ0|e|21, the total stress

should be considered as total Cauchy stress tensor. Modified balance equations (42) and
(43) are written in the deformed configuration. In an analogous way, we can define a total
first Piola stress.

P tot = P + PM with PM = F−TE ⊗D −
1

2
Jǫ0(C

−1 : E⊗ E)F−T := JσMF−T

(45)

Summerizing, modified balance equations considering total stress instead of mechanical
stress in deformesd and undeformed configuration reads:

ρ0V̇ = div[P tot] + ρ0Γ̄ in B

skew[P totF T ] = 0 in B
(46)

2.5. Fully-Coupled Boundary Value Problems

Putting together both mechanical and electrical balance laws we shall obtain a system
of fully-coupled boundary value problem for elctromechanics. We consider in this work
a formulation of the local constitutive material response based on a set of independent
variables which have a geometric character. For simple future recalling we will use a
description in terms of generalized vectors S and generalized covectors F that is used
by Rosato [21]. Generalized vectors are the those contravariant objects having basis
in the tangent spaces. In the framework discussed here stress and electric displacement
are variable that we can apply Cauchy-type theorem on both of them and they represent
the generalized vectors here. The dual quantities which can be then considered as the
generalized covectors are deformations and electric field.

S′ := [gP tot,−D] , F′ := [F ,E] (47)

Regarding to the boundary conditions, in an electromechanical formulation, the body
may contain a discontinuity surface Γd over which the electro-mechanical field variables
can suffer jumps. Across a surface of discontinuity within the boundary or across the
boundary ∂S, the fields e and d have to satisfy certain continuity conditions. Here, we
do not consider internal surfaces of discontinuity and therefore the continuity conditions
refer only to ∂S. Then the continuity conditions satisfied by the electric field and electric
displacement are

[[e]]× n = 0 and [[d]] · n = σf on ∂S (48)

with σf surface charge density and [[a]] := a+ − a− denotes the jump of a quasntity a

across ∂S. The sides of the surface is identified by the direction of its outward normal.
To complete the formulation of well-posed boundary value problems in finite electrome-
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Σ̄e
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ϕ̄

φ̄e

Figure 10: Visualization of the mechanical and electrical boundary conditions on the sur-
face segments ∂B=∂Bϕ∪∂BT or ∂B=∂Bφe∪∂BΣ of the body in the reference configuration.

chanics, appropriate boundary conditions for balance equations must be specified. One
considers the material body B depicted in Figure (10), whose surface is considered to be
subdivided into the non-overlapping segments ∂Bϕ and ∂BT , such that ∂B=∂Bϕ ∪ ∂BT

and ∂Bϕ ∩∂BT ∈ ∅ from the mechanical viewpoint, and into the segments ∂Bφe and ∂BΣ,
with ∂B=∂Bφe ∪ ∂BΣ and ∂Bφe ∩ ∂BΣ ∈ ∅, in the electric case. There exists of course no
general restrictions on how the mechanical and electrical surface segments might overlap.

The appropriate Dirichlet and Neumann-type mechanical and electrical boundary con-
ditions to be applied to the respective boundary segments are given by

ϕ = ϕ̄ , on ∂Bϕ , P totN = T̄ , on ∂BT , (49)

φe = φ̄e , on Bφe , [[D]] ·N = Σ̄e and [[E]]×N = 0 , on ∂BΣ .

We have thus completed the derivation of the geometrically and physically-nonlinear
problem of (static) electromechanics at finite strains.

The complete set of the associated governing equations is summarized using generalize
dvectors and covectors bellow.

Kinematics: introduce the generalized deformation map U := [ϕ(X, t),−φe(X, t)]T ,
the generalized covector F := [F ,E]T and the generalized gradient operator GGG

F := GGG [U] or [F ,E]T := [∇Xϕ,−∇Xφ
e]T (50a)

Equilibrium Equations: introduce the generalized vector S := [gP ,−D]T , the gener-
alized divergence operator Dv and the generalized body forces B̄ := [ρ0Γ̄, ρ

f ]T

Dv[S] + B̄ = 0 or Div[P ,−D]T + [ρ0Γ̄, ρ
f ]T = [0 , 0]T (50b)

Boundary Conditions: Assemble the Dirichlet boundaries ∂BU := {∂Bϕ, ∂Bφ}, the
Neumann boundaries ∂BT := {∂BT , ∂BΣ} and the generalized normal vector N :=
[N ,N ]T

U = Ū on ∂BU and S ·N = T̄ on ∂BT (50c)
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3. Finite Electro-Elasticity

The ultimate goal of this chapter is to develop appropriate material model for Dielectric
Elastomers. The solution of the balance equations in combination with the constitutive
equations gives us the electro-mechanical fields within the region under consideration.

3.1. Thermodynamically-Consistent Constitutive Theory

A continuum constitutive theory is considered to be thermodynamically-consistent if it
satisfies the fundamental balance equations of continuum mechanics and the laws of ther-
modynamics derived in the previous section at each material point (see also Coleman
& Noll [4]). It is assumed that all thermodynamic properties of the material can be
characterized by a (scalar-valued) thermodynamic potential, such as the specific internal
energy previously introduced in the energy balance (37d). Following the Coleman and
Noll method it is possible to derive general constitutive relations for the dependent field
variables in the form of gradients to the thermodynamic potential, such that thermody-
namic consistency is guaranteed a priori.

3.2. Enthropy Inequality

It is a fact of experience that real physical processes are irreversible. This means that
processes cannot, in general, be traversed back in time. This fact is called the second law
of thermodynamics and its mathematical realization is the entropy production inequality.
It is based on the assumption that there exists a quantity η, called the entropy, which
satisfy the following balance:

d

dt

∫

PS

ρηdv =

∫

PS

ργdv +





∫

∂PS

ρ
r̄

θ
dv −

∫

∂PS

q · n

θ
da



 (51)

Here γ is the rate of enthropy production, η the total entropy of the system contained in
∂S , r̄/θ the enthropy supplied with the heat and (q · n)/θ is the enthropy flux with the
heat flux q ·n over the absolute temperature θ. The second law of thermodynamics states
that the enthropy production γ is always positive because of occurrence of irreversible
processes. Thus for sufficiently smooth fields (51) implies the Clausius-Duhem-Inequality.

ργ = ρη̇ − ρ
r̄

θ
+

1

θ
div[q]−

1

θ2
q · ∇xθ ≥ 0 (52)

The volume specific spatial dissipation is defined as the product of the rate of entropy
production in (52) with the absolute temperature θ, i.e. JD = ργθ ≥ 0, in which D

is defined as dissipation per unit reference volume. Owing to the nature of terms in
(52), it is common practice to additively split the dissipation into the local Dloc and Dcon

parts, JD = JDloc + JDloc. We then require a stricter condition than (52) by demanding
the positiveness of both terms Dloc and Dcon separately. To this end, we introduce the
Clausius-Planck-Inequality (CPI in the following),

JDloc = ρη̇θ − (ρr̄ − div[q]) (53)

and the Fourier inequality (FI).

JDcon = −
1

θ
q · ∇xθ ≥ 0 (54)
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Incorporating the spatial energy balance equation in the CPI we get a formulation of this
inequality in terms of the internal energy in actual configuration.

JDloc = σ : gl + ρη̇θ + ρre − ρė (55)

The FI and CPI could be also written in the reference configuration as follows.

Dcon = −
1

θ
Q · ∇Xθ ≥ 0 (56)

Dloc = gP : Ḟ + ρ0η̇θ + ρ0R
e − ρ0ė ≥ 0 (57)

By choosing the two-dipole model for the description of the electric body force, body
couple and energy supply, it follows that

Dloc = [gP + F−T (E⊗ P)] : Ḟ + E · Ṗ+ ρ0η̇θ − ρ0ė ≥ 0 (58)

By considering the rates appearing in the CPI (58), we can conclude that the internal en-
ergy is a thermodynamical potential (do not directely depend on time) depending primar-
ily on the deformation gradient, the entropy, and the polarization, i.e. e = ê(F ,P, η, . . .).
Since the entropy is not a measurable quantity, the internal energy is replaced usually by
the Helmholtz free energy using a Legendre transformation.

ψ = sup
η
{e− θη} , Ψ = ρ0ψ (59)

Above we defined Helmholtz free energy per unit refernce volume as Ψ. The version of
the CPI in terms of Helmholtz free energy is obtained by inserting the partial Legendre
transformation (59) into (58).

ρ0Dloc = [gP + F−T (E⊗ P)] : Ḟ + E · Ṗ− ρ0ηθ̇ − Ψ̇ ≥ 0 (60)

Implying the functional dependence Ψ = Ψ̂(F ,P, θ, . . .). From now on we will confine
our consideration to isothermal processes (θ̇ = 0). For those processes the constitutive
material response will be thermodynamically consistent if only the CPI (60) with θ̇ = 0
is verified.

Dloc = [gP + F−T (E⊗ P)] : Ḟ + E · Ṗ− Ψ̇ ≥ 0 (61)

We observe that the CPI could be expressed in terms of electromechanical power P

done on the domain under cosideration. The the dissipation D can be seen as the power
subtracted by rate of energy storage Ψ̇.

Dloc = P − Ψ̇ ≥ 0 (62)

We would like to use the last form of the CPI (61) to derive a thermodynamically consis-
tent formulation of the constitutive equations based on the argumentation of Coleman &
Noll. Being consistent with the principle of equipresence, we assume that the constitutive
equations depend upon the same set of variables:

Ψ = Ψ̂(g,F ,P,Q) (63)

with Q set of the histiry variablesemployed for the description of inelastic dissipative be-
haviour. The spatial metric g is needed to compute the deformation measures in different
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configurations. Based on this assumption and putting the time derivative of free energy
function into CPI.

Dloc = [gP + F−T (E⊗ P)− ∂FΨ] : Ḟ + [E− ∂PΨ] · Ṗ− ∂QΨ · Q̇ ≥ 0 (64)

Contending that the thermodynamic restriction should be fulfilled for an arbitrary rate
of the deformation gradient F and of the polarization P we obtain the particular form of
the constitutive equations

gP = ∂F Ψ̂(g,F ,P,Q)− F−T (E⊗ P)

E = ∂PΨ̂(g,F ,P,Q) (65)

accompanied with a reduced form of dissipation.

D
red
loc = M · Q̇ ≥ 0 with M := −∂QΨ̂(g,F ,P,Q) (66)

Here {M} is thermodynamical forces conjugated to the {M} set. We consider in this work
a formulation of the local constitutive material response based on a set of independent
variables which have a geometric character. This is in agreement with the work ofRosato
[21]. To this aim we will choose electric field E as the strain like variable. Thus we need
to transform the Helmholtz free energy function Ψ to the mixed energy-enthalpy function
ψ′ through a partial Legendre transformation.

Ψ′ = inf
P

{Ψ− E · P} (67)

which inserted into

Dloc = P ′ − Ψ̇′ ≥ 0

P ′ = P −
d

dt
(E · P)

(68)

This will lead to the following constitutive equations.

gP = ∂F Ψ̂′(g,F ,E,Q)− F−T (E⊗ P)

P = −∂EΨ̂′(g,F ,E,Q)

M = −∂QΨ̂′(g,F ,E,Q)

(69)

This formulation of mixed energy-enthalpy function at hand gives us constitutive equation
for the normal mechanical stress, however we have already reformulated our balance
equations with maxwell stress and we would prefer to change constitutive equations to
obtain total stress P tot out of it. To this end we define an amended energy balance which
takes into acount the electrostatic energy stored in the free space underlying the domain
under consideration.

ρ0ψ
′

amnd = ρ0ψ
′ + ρ0u

e (70)

with ρ0u
e electrostatic energy stored in the reference configuration derived from the true

expression in the actual configuration.

ρue = −1

2
ǫ0g

−1 : (e⊗ e)
ρ0u

e = Jρue = −1

2
Jǫ0C

−1 : (E⊗E) (71)
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To be able to add electrostatic energy into the stored part of the energy in CPI we should
compensate it by adding its rate to the power P ′. Using new definitions of power and
stored energy the CPI reads

Dloc = P
′

amnd − Ψ̇′
amnd ≥ 0

P
′

amnd = P
′ + ρ0u̇e (72)

We can indeed write the amended electro-mechanical power in terms of the total first
Piola stress tensor P tot = P +PM and of the electric displacement D. The CPI in terms
of the amended quantities then will read

Dloc = P
′

amnd − Ψ̇′
amnd = gP tot : Ḟ − D · Ė− Ψ̇′

amnd ≥ 0 (73)

And finally the constitutive equations in terms of amended mixed energy-enthalpy func-
tion are as follows

gP tot = ∂F Ψ̂′
amnd(g,F ,E,Q)

−D = ∂EΨ̂′
amnd(g,F ,E,Q)

M = −∂QΨ̂′
amnd(g,F ,E,Q)

(74)

The constitutive equation (74) represent the starting point for our successive formulation
which will take into account only the total stresses and the electric displacement. Once
the field equations are solved, the Maxwell stress tensor and the polarization vector can
be determined as post processing by using the proper definition.

In the following sections of this chapter we deal with elastic material and thus we will
not consider the dependency of free energy function on Q. This variable will be used in
the next chapter while formulating viscoelastic behaviour of the material. Moreover, for
the sake of clarity we will not use anymore in the following the subscript “amnd” and the
superscript “tot” and the “prime”.

3.2.1. Principle of Material Objectivity. In addition to the requirement of ther-
modynamic consistency discussed above, the constitutive equations must also satisfy the
requirements of material objectivity and material symmetry. The principle of material
objectivity (PMO), also referred to as principle of material frame-invariance, requires
that the material response be invariant under changes in observer (see e.g. Gurtin [7]).
From the so-called active viewpoint, this requirement is equivalent to the statement that
the energy stored in the system ought to be unaffected by rigid-body motions of the
form rt =Q(t)x + c(t) superimposed onto the current configuration. Here, the proper
orthogonal tensor Q(t)∈SO(3) represents a time-dependent rotation and the vector c(t)
a time-dependent translation. Consequently, the deformation gradient F ∗, which maps
tangents to material curves onto tangents of the deformed and rigidly translated and ro-
tated material curves, takes the form F ∗ =QF . The material electric field E, however,
is unaffected by observer transformations in the current configuration, since it is a La-
grangian field variable. For finite magnetoelasticity in the two-point setting, the amended
free energy-enthalpy function Ψ∗=Ψ̂∗(F ,H) must therefore additionally comply with the
constraint

Ψ̂∗(F ∗,E∗) = Ψ̂∗(QF ,E) !
= Ψ̂∗(F ,E) , ∀ Q ∈ SO(3) . (75)

In order to satisfy the objectivity requirement a priori, one can introduce the reduced
form of the free energy-enthalpy function.

Ψ∗ = Ψ̂∗(C(F ),E) = Ψ̂∗
(

F TgF ,E) . (76)
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With the orthogonality relation QTgQ=g, it then directly follows

Ψ̂∗(C∗(F ∗),E∗) = Ψ̂∗
(

(F ∗)TgF ∗,E) = Ψ̂∗
(

F TQTgQF ,E)
= Ψ̂∗(F TgF ,E) = Ψ̂∗(C(F ),E) . (77)

3.2.2. Material Symmetry. Textured and untextured poly-crystals, single-crystalline
materials, many composites and also materials with imposed directions of polarization or
magnetization exhibit symmetries in their microstructure that must be taken into ac-
count in the construction of constitutive models predicting their response. Furthermore,
for dielectric elastomers, which, as discussed, are essentially consisting of an elastomeric
material, we expect the response and thus the energy-enthalpy function to be independent
of the sign of the electric field, i e.

Ψ̂∗(C,E) !=Ψ̂∗(C,−E) , (78)

which is automatically satisfied if one assumes

Ψ̂∗(C,E) = Ψ̂∗(C,E⊗E) . (79)

The principle of material symmetry states that locally the free energy-enthalpy function
ought to be invariant with respect to rotations Q superimposed onto the open neighbor-
hood NX⊂B of a material point X in the reference configuration, in case these rotations
are elements of the appropriate material symmetry group G⊂SO(3). Or in other words,
a electromechanical experiment involving the considered material should make no distinc-
tion between symmetry-related reference states. For the objective reduced form of the
free energy-enthalpy function this requirement is mathematically expressed as

Ψ̂∗(C∗,E∗) = Ψ̂∗(QCQT ,QE) !
= Ψ̂∗(C,E) , ∀ Q ∈ G ⊂ SO(3) . (80)

Note that for an isotropic material the symmetry group is identical to the set of all
rotations, i.e. G≡SO(3). From the combination of (79) and (80), one thus demands that
the free energy-enthalpy function, in order to satisfy objectivity, material symmetry and
invariance with respect to the sign of the electric field, satisfy the following constraint

Ψ̂∗
(

QCQT ,Q(E⊗E)QT
)

!
= Ψ̂∗(C,E⊗E) , ∀ Q ∈ G . (81)

3.3. Elastic Material Response Formulation

In this chapter we will focus on a non-dissipative electro mechanical response which
implies a path independency of the work done to the material element. This can be
expressed with a potential character of the electromechanical power. Using 73 we will
obtain the following characteristic of P.

∫ t

0

P = Ψ̂(t)− Ψ̂(0) (82)

With Ψ̂(t) mixed energy-enthalpy stored in the system at time t. To this end Ψ̂(t) should
only be a function of generalized covector.

Ψ̂(t) = Ψ(F(t)) , S = ∂FΨ(F) (83)
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In this work we assume an additive split of free enrgy-enthalpy functional into purely
mechanical and electro-mechanical parts

Ψ(F(t)) = Ψmech(F ) + Ψelem(F ,E) (84)

In which Ψ̂mech(F ) is a purely mechanical free energy function and Ψ̂elem(F ,E) is the
electro-mechanical free energy-enthalpy function.

The electro-mechanical stress power per unit of reference volume could be written
alternatively in terms of the second Piola-Kirchhoff stress S and the rate of the Cauchy-
Green tensor C.

P = gP : Ḟ − D · Ė = S :
1

2
Ċ − D · Ė (85)

Thus, we could define the set of constitutive equations in terms of a free energy functions
with dependence on Cauchy-Green tensor ψ = ψ̃(C,E). This will ensure objectivity in
the material response.

S = 2∂CΨ(C,E) , −D = ∂EΨelem(C,E) (86)

Elastomers show a completely decoupled response over any range of volumetric and de-
viatoric deformation. This is achived by by a local multiplicative decomposition of the
deformation gradient into volumetric and dialational parts. One can find this approach
in the works of Lubliner [12] and Simo [23] among others.
Let J = det(F ) to be Jacobian of the deformation gradient. To properly define volumet-
ric and deviatoric response in the nonlinear regime we introduce the following kinematic
split:

F = J1/3F̄ where F̄ = J−1/3F (87)

Since detF̄ = 1, we refer to F̄ as the volume preserving part of the deformation gradient
F . Associated with F and F̄ we defime the corrsponding right Cauchy-Green tensors as:

C = F TgF , C̄ = J−2/3C = F̄
T
gF̄ (88)

Using this decomposition and considering independent volumetric and deviatoric response
of rubber materials one can propose an additive decomposition of the mechanical part of
the free enegy-enthalpy function into volumetric and deviatoric strain energies.

Ψ(F(t)) = Ψmech(C) + Ψelem(C,E) = Ψ∞

vol(J) + Ψ∞

iso(C̄) + Ψelem(C,E) (89)

Here, Ψ∞
vol(J) is a fully convex function describing the stored energy due to volume changes

and Ψ∞
iso(C̄) is a poly convex function giving the elastic energy of the deviatoric defor-

mation. Furthermore, if we assume isotropic material response, we can express the free
energy as a function of invariants of Cauchy-Green tensor. Ψ∞

vol(J) characterizes the de-
pendence on the third invariant of the right Cauchy-Green tensor. Thus Ψ∞

iso(C̄) should
be expressed in tems of the first and second invariants of C̄.

Many of common rubber material models such as Arrunda-Boyce and Neo-Hooke ma-
terials use only the first invariant IC̄ of the deviatoric Cauchy-Green tensor to characterize
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deviatoric part of the response(see Kaliske & Rothert [11]). We will consider this
type of free enegy function in this work.

Ψ(F(t)) = Ψ∞

vol(J) + Ψ∞

iso(IC̄) + Ψelem(C,E) (90)

In our approach, rubber material is considered as being slightly compressible or nearly
incompressible. This assumption is valid for most types of rubber in technical applica-
tions. This way, a volumetric strain energy function and, therefore, a slight volumetric
deformation can be motivated.

Ψ∞

vol(J) =
κ

2

(

J2 − 1

2
− lnJ

)

(91)

Which is for example used by Kaliske & Rothert [11]. κ is the material volumetric
modulus. Due to the poisson’s ratio of rubbers which is near to 0.5, the volumetric
modulus is bigger from material shear modulus by some order of magnitude. Thus,
usually material does not show big volumetric deformations.
Based on an eight-chain representation of the macromolecular network structure and non-
Gaussian behavior of the polymer chains, Arruda & Boyce [1] proposed a constitutive
rubber model. This potential function formulated in the first invariant of C̄ depends
on two material parameters: the shear modulus µ and N which can be interpreted as
measure of the limiting network stretch.

Ψ∞
iso(IC̄) = µ[

1

2
(IC̄ − 3) +

1

20N

(

I2C̄ − 9
)

+
1

1050N2

(

I3C̄ − 27
)

+
1

7000N3

(

I4C̄ − 81
)

+
1

673750N4

(

I5C̄ − 243
)

]
(92)

3.4. Electrical Material Response Formulation

Many experiments suggest that for dielectric elastomers, the true electric displacement
is linear in the true electric field, i.e. d = ǫe, with the permittivity being approximately
independent of the state of deformation (Plante & Dubowsky [19]).
This experimental observations could be interpreted as follows. Each polymer in an
elastomer is a long chain of covalently bonded links. The neighboring links along the chain
can readily rotate relative to each other, so that the chain is flexible. A link also interacts
with links on other chains through weak bonds. Different chains are cross-linked with
covalent bonds to form a three-dimensional network. When each chain contains a large
number of links and when the end-to-end distance of the chain has not reached its fully
stretched length, the extension limit, the local behavior of the links is just like molecules
in a liquid. The elastomer can polarize nearly as freely as in liquids. Furthermore, for
an elastomer with an approximately isotropic dielectric behavior, we surmise that the
polarizability of links is comparable in the directions along the chain and transverse to
the chain(Zhao et.al. [27]).
The free energy of the liquid polymer per unit current volume is d · d/2ǫ and it can be
written as energy per unit reference volume.

Ψelec(d) = dv

dV

d · d
2ǫ

= J
d · d
2ǫ

= J
e · d
2

(93)

By a pull back operation on d and e, we can rewrite above energy function in the following
form.

Ψelec(d) = J
F−TE · J−1FD

2
=
E ·D
2

(94)
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To obtain mixed energy enthalpy the Legendre transformation is used to transform electric
displacement dependent function to electric field dependent function.

Ψelem(E) = infD {ψelec(E)−E ·D} = −
E ·D
2

(95)

Pushing forward 95 and using true form of electrical material law and pulling it back
again will end up with the electromechanical term of the mixed free energy enthalpy.

Ψelem(e) = −
F Te · JF−1d

2
= −J

e · ǫe
2

Ψelem(E) = −Jǫ
F−TE · F−TE

2
= −Jǫ

C−1 : (E⊗E)
2

(96)

This formulation has the energy of underlying space in it, because d composed of both
polarization of the material and the underlying space electric displacement. Furthermore,
this formula shows the dependence of electromechanical energy on right Cauchy-Green
tensor that ensures objectivity.
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4. Finite Electro Visco Elasticity

In this chapter we will present the viscoelastic material modeling at large strain. This
derivation includes the the typical steps of defining the finite deformation viscoelasticity.
We will start with free energy function which is established in the previous chapter for
elasticity and extend it for viscoelastic case. Rate equation as well as numerical treatment
will be covered.

Several formulations of non-linear viscoelastic models have been published in the recent
years. Lubliner [12] as one of the pioneering researches, proposed a model based on the
multiplicative decomposition of the deformation of the deformation gradient into elastic
and viscoelastic component. The resulting model is only limited by choice of linear rate
equations to describe the relaxation of viscoelastic stresses. Simo [23], Govindjee &
Simo [6] and Holzapfel [8] have proposed alternative models in which the evolution
equation of the viscous overstress is defined directly by a linear differential equation
motivated by small strain case. The nonequlibrium overstress mimics the force relaxation
process taking place in linear rheological models. In this work we will use this approach
to tackle the problem of large strain viscoelastic effects in Electroactive Polymers.

4.1. Free Mixed Energy Enthalpy Function for Viscoelasticity

Our discussion will be based on theory of compressible hyperelasticity within the
isothermal regime. As discussed in section (3.3), we postulate a decoupled representation
of the Helmholtz free energy function for the mechanical part. The free energy uses the
multiplicative decomposition of the form represented in equation (87). Adding effect of
internal variables to the free energy function (89) we can modify it as follows.

Ψ(F(t)) = Ψ∞

vol(J) + Ψ∞

iso(C̄) +
∑

α

Υα(C̄,Γα) + Ψelem(C,E) (97)

where Γα(α = 1, ..., m) are a set of (non-measurable) internal variables. Each α is
regarded as a strain tensor analogous to the symmetric strain tensor C̄. The relaxational
behavior is modeled by m > 1 relaxation processes with corresponding relaxation times
τα ∈ (0, inf). Motivated by experimental data we assume a time-dependent change in
the free energy only due to isochoric deformations; hence, the volumetric response is fully
elastic. The first two terms are strain energy functions per unit reference volume and
characterize the volumetric (Ψ∞

vol(J)) and isochoric (Ψ∞
iso(C̄)) elastic response as t→ ∞.

The superscript [·]∞ characterizes functions which represent the hyperelastic behaviour
of very slow processes. Last term is the electromechanical (Ψelem(C,E)) response. This
term is considered to be purely elastic.

4.1.1. Stress Response. One form of the second law of thermodynamics is the
Clausius-Plank inequality, which for isothermal electromechanical process reads:

Dloc = S :
1

2
Ċ − D · Ė− Ψ̇ ≥ 0 (98)

A particularization of (98) to the constitutive model at hand is obtained by time differ-
entiation of (97) using the chain rule, we obtain

Dloc = (S − 2∂CΨ) :
1

2
Ċ − (D+ ∂EΨ) : Ė−

∑

α

∂Γα
Ψ : Γ̇α ≥ 0 (99)



Finite Electro Visco Elasticity 28

This yields the fundamental constitutive hyperelastic equation for the convected stresses
S , D and a remainder inequality for the dissipation:

S = 2∂CΨ(C,E) , −D = ∂EΨelem(C,E), Dloc = −
∑

α

∂Γα
Υα : Γ̇α ≥ 0(100)

Starting from a decoupled free energy enthalpy function leads to an additive split of S
into volumetric and isochoric and electromechanical parts. The electric displacement is
not effected by viscous energy term and will be the same as elastic case.

S = S∞

vol + Siso + Selem with Siso = S∞

iso +
∑

α

Qα (101)

To proceed we need the following derivatives to take the derivatives of the free energy
enthalpy function.

∂C(detC) = (detC)C−T , ∂CC̄ = J−2/3(I−
1

3
C ⊗C−1) (102)

Here, I is the forth order identity tensor. The expression I− 1

3
C−1⊗C can be interpreted as

a forth order projection tensor which furnishes the physically correct deviator in material
description[8]. We define the deviatoric projector P as:

P = I−
1

3
C−1 ⊗C , ∂CC̄ = J−2/3

P
T (103)

Using the derivatives (102), we can obtain the quantities which are defined in (101). First
we derive the electromechanical and volumetric part.

S∞

vol = J
dΨ∞

vol(J)

dJ
C−1, Selem = 2

∂Ψelem(C,E)
∂C

(104)

The electromechanical and volumetric part of the stress is quite straight forward and
will not need further attention. However, we focus on the isochoric part of it. In equation
(101) we have also a nonequilibrium stress which also should be taken into account. As
can be seen the isochoric second Piola-Kirchhoff is:

S∞

iso = J−2/3P : S̄
∞

iso, with S̄
∞

iso = 2
∂Ψ∞

iso(C̄,E)
∂C̄

Qα = J−2/3P : Q̄α, with Q̄α = 2
∂Υα(C̄,E)

∂C̄

(105)

As mentioned before the projector tensor P will ensure that we have a deviatoric tensor
in the material description. In other words:

S∞

iso = J−2/3
P : S̄

∞

iso = J−2/3Dev
[

S̄
∞

iso

]

, Qα = J−2/3
P : Q̄α = J−2/3Dev

[

Q̄α

]

(106)

Using mixed energy enthalpy function defined in previous chapter and equations (100-105)
one obtains following Second Piola-Kirchhoff stresses and lectrical displacement.

S∞

vol := 2∂CΨ
∞
vol = JpC−1

S∞

iso := 2∂CΨ
∞
iso = 2J−2/3P : σI

Selem := 2∂CΨelem =
ǫJ

2
[C−1 : (E⊗E)]C−1 − ǫJ [C−TE⊗C−TE]

−D := ∂EΨelem = −ǫJC−TE (107)
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In which

p := ∂JΨ
∞
vol(J)

σ := ∂I
C̄
Ψ∞

iso(IC̄)
(108)

As we will use a finite element formulation based on a two-point setting i.e. {P ,F },
we should find corresponding stress which is first Piola-Kirchhoff stress P . Using the
definitions given in section (2.2) we will use bellow mapping for mechanical stresses to
obtain appropriate output for the finite element formulation.

P = FS (109)

4.2. Evolution Equation

Motivated by the standard linear solid we define Qα to be variables conjugate to Γα

with constitutive relation Qα = −∂Γα
Υα(C̄,Γα). With that in mind, the local entropy

production is governed by relation

Dloc = −
∑

α

Qα : Γα (110)

Equation (110) as a form of Clausius-Planck inequality is satisfied by specifying a suitable
evolution equation for the internal strains such as:

Γ̇α = V(C̄,Γα) : Qα (111)

Where V(C̄,Γα) is a fourth order positive definite tensor which contains the inverse vis-
cosity. A relaxation process involves a trend to equilibrium in a mechanical systemwhich
is attained in the limit of infinite time. This notion can be recast in mathematical term
by assigning Qα, which is governed by a dissipative evolution equation. Furthermore,
motivated by small strain viscoelasticity combining equation (111) with a linear evolution
equation for internal strain-like varibles will end up with a linear dissipative evolution
equation for Qα. The over-stress should be regarded as a convected stress tensor akin
to the second Piola-Kirchhoff stress. This will perclude restriction to frame invariance.
Moreover, to maintain a materially deviatoric stress tensor we write the dissipative evolu-
tion equation for Q̄α instead ofQα(see e.g. Govindjee & Simo [6]). Thus the simmplest
appropraite dissipative evolution equation reads:

˙̄Qα +
Q̄α

τα
=

d

ds

[

P : 2∂C̄Ψα(C̄)
]

, Q̄α|t=0 = Q̄α|
0 (112)

In (112) Ψα is a function denoting the free energy of the body, which corresponds to the
α-relaxation process with relaxation time τα > 0. Since the phenomenological relaxation
effect is induced by a viscous environment induced by identical polymer chains, it will be
assumed that:

Ψα(C̄) = βαΨ
∞

iso(C̄), (α = 1, ..., m) (113)

Herein βα ∈ (0,∞) is the free energy factor associated with τα > 0. Furthermore if we
use the neutral state as the begining step (t = 0), the value of Q̄α|t=0 which is the viscous

stress at this time (P|t=0 = I → Q0
α = Q̄

0

α) considered to be zero. In other words, equation
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(112) suggeste a dissipative evolution of nondeviatoric overstress Q̄α driven by deviatoric
elastic stress J−2/3

P : 2∂C̄Ψ
∞
iso(C̄) multiplied by a free energy factor βα. Assumption

(113) along with the dissipative evolution equation (112) help us to exclude viscoelastic
part of the free energy function in proceeding formulation. Using the integrating factor
exp(s/τα), one obtains the explicit solution to the evolution equation as:

Q̄
t
α = exp[−t/τα]Q̄

0

α +

∫ t

0+

βαexp[−(t − s)/τα]
d

ds

[

P : 2∂C̄Ψ
∞

iso(C̄)
]

ds (114)

4.3. Time Integration Algorithm

The main goal of this section is to outline an update algorithm for the stress tensor
and the consistent material tangent, which are required for the solution of the balance
laws within an iterative technique. The numerical integration is related to the approach
introduced by Simo [23], which bypasses the need for incremental objectivity.

4.3.1. Algorithmic Update for Stress and Electric Displacement. Consider a
partition

⋃M
n=0

[tn, tn+1] of the time interval [0+, T ] of interest, where 0+ = t0 < tM+1 = T ,
and let us focus attention on a typical time subinterval [tn, tn+1], with ∆t := tn+1−tn ∈ R+

characterizing the associated time increments.

Assume that up to a certain time tn the stresses satisfy equilibrium and that the
stresses Sn, and the strain measures F n,Cn are uniquely specified from the known motion
ϕn(X, tn). To advance the solution to time tn+1 we first make an initial guess for ϕn+1

and update the prescribed loads. Within a classical Newton-Raphson method the new
configuration is iteratively corrected until the balance laws of momentum are satisfied
within a given tolerance of accuracy. To check equilibrium at time tn+l, all relevant strain
measures and the equilibrium stresses have to be computed via previous given relations,
respectively, which is straightforward, since ϕn+1 is regarded as given[8].

In addition to these continuum variables the viscoelastic stress contribution Qn must
be evaluated. To do this we split the convolution integral given in (114) into the form
∫ tn+1

0+
(·)ds =

∫ tn
0+
(·)ds +

∫ tn+1

tn
(·)ds. The internal variable at tn+l is recovered by using

the second-order accurate midpoint rule on the
∫ tn+1

tn
(·)ds term. After some algebraic

manipulations one obtains:

Q̄
n+1

α = exp[−∆t/τα]Q̄
n
α +

∫ tn+1

tn

βαexp[−(tn+1 − s)/τα]
d

ds
(J2/3S̄

∞

iso)ds

= exp[−∆t/τα]Q̄
n
α

+ βαexp[−(tn+1 −
tn+1 + tn

2
)/τα]

(

Jn+12/3S̄
∞,n+1

iso − Jn2/3S̄
∞,n
iso

)

= exp[−∆t/τα]Q̄
n
α

+ βαexp[−∆t/2τα]J
n+12/3S̄

∞,n+1

iso − βαexp[−∆t/2τα]J
n2/3S̄

∞,n
iso

(115)

This can be defined in terms of algorithmic history variables H̄
α
as follows:

Q̄
n+1

α = βαexp[−∆t/2τα]J
n+12/3S̄

∞,n+1

iso + H̄
α,n

with H̄
α,n

= exp[−∆t/τα]Q̄
n
α − βαexp[−∆t/2τα]J

n2/3S̄
∞,n
iso

(116)
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Using a constitutive model which were described in the previous chapter and the FE
method the algorithmic update on the principal values at each Gauss point of a finite
element can be carried out. Summary of numerical update proceedure is reflected in Box
(1).

4.3.2. Consistent Tangent in Material Setting. To obtain the solution of the
non-linear BVP an incremental iterative process of Newton’s type is applied, which solves
a sequence of linearized problems. This strategy requires knowledge of the tangent moduli
which have to be specified within an exact linearization procedure[9]. Consistent linearized
moduli are crucial in preserving the quadratic rate of convergence near the solution point
in Newton methods. Consequently, providing the closed-form moduli is an important task
and is the goal of this section. The generalized moduli is the derivative of generalized stress
with respest to generalized strain. C = ∂FS. As we worked with the material description
parameters here, we should calculate the mapping between the material description of
the moduli C and the two-point description of it C which is needed for the finite element
formulation. To this end we will first introduce the material description C and the two-
point description of the moduli.

C :=

[

C h

hT β

]

=

[

∂F (gP ) ∂E(gP )
∂F (−D) ∂E(−D)

]

, C :=

[

C h

hT β

]

=

[

2∂CS ∂ES
∂C(−D) ∂E(−D)

]

(117)

The desired mapping can be shown to be as following.

C
A B

a b = δabS
BA + gacF

c
C CCADBF d

D gbd

h AB
a = gacF

c
C h

CAB
(118)

Considering different parts of stress tensor in equation (101), one can easily obtain the
same terms for the mechanical part of the moduli:

C
n+1 = 2∂CS

n+1 = [C∞

vol + C
∞

iso +
∑

α

C
α
vis + Celem]|

n+1 (119)

To obtain the moduli the derivative (120) is needed. For the sake of simplicity an abbre-
viation is defined.

∂C(C
−1) = −(C−1 ⊙C−1) with (C−1 ⊙C−1)ABCD =

1

2
(C−1

ACC
−1

DB + C−1

ADC
−1

CB)

(120)

The four component of Cn+1 can be computed using free energy function defined in
previous chapter, stress defined in section (4.1.1) and viscouse stress as a result of evolution
equation (116).

• Volumetric elastic part which is denoted as C∞
vol is computed as:

C
∞,n+1

vol := 2∂CS
n+1

vol

= {J(p+ J
∂p

∂J
)C−1 ⊗C−1 − 2JpC−1 ⊙C−1}|n+1

(121)

In which internal pressure is defined as the derivative of volumetric part of free
energy p = ∂Ψ∞

vol(J)/∂J .
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• Isochoric elastic contribution which is denoted as C∞
iso and can be computed within

some simple tensor calculation steps as:

C∞
iso := 2∂CS

n+1
iso

= {J(p+ J
∂p

∂J
)C−1 ⊗C−1 − 2JpC−1 ⊙C−1}|n+1

(122)

• Viscoelastic part which is denoted as Cα
vis is computed as:

Cvis := 2∂CQ
α,n+1

= {J(p+ J
∂p

∂J
)C−1 ⊗C−1 − 2JpC−1 ⊙C−1}|n+1

(123)

• Volumetric elastic part which is denoted as Celem is computed as:

Celem := 2∂CS
n+1

elem

= {J(p+ J
∂p

∂J
)C−1 ⊗C−1 − 2JpC−1 ⊙C−1}|n+1

(124)
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Box 2: Summary of update algorithm for the second Piola-Kirchhoff stresses
and electrical displacement in material description.

1. Given initial data base at Gauss point.

F n+1 ,En+1 , H̄
α,n

(α = 1, ..., m). (125a)

2. Compute algorithmic strain measures from current deformation gradient F n+1.

Jn+1 = detF n+1 F̄
n+1

= Jn+1−1/3
F n+1

Cn+1 = F T,n+1F n+1 C̄
n+1

= F̄
T,n+1

F̄
n+1 (125b)

3. Update stresses and electrical displacement:

Sn+1 = (S∞

vol + S∞

iso +
∑

α

Qα + Selem)|
n+1. (125c)

with the following terms:

S
∞,n+1

vol =
(

JpC−1
)

|n+1

S
∞,n+1

iso =
(

2J−2/3P : σI
)

|n+1

Qn+1
α = Jn+1−2/3

P
n+1 : {βαexp[−∆t/2τα]J

n+12/3S̄
∞,n+1

iso + H̄
α,n

}

Sn+1

elem =
ǫJ

2
[C−1 : (E⊗E)]C−1 − ǫJ [C−TE⊗C−TE]|n+1

(125d)

−Dn+1 =
(

−ǫJC−TE) |n+1. (125e)

4. Compute current moduli:

5. Compute and save history variables:

H̄
α,n+1

= exp[−∆t/τα]Q̄
n+1

α − βαexp[−∆t/2τα]J
n+12/3S̄

∞,n+1

iso (125f)
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5. Numerical Implementation of Finite Electromechanics

Since analytical solutions for the geometrically- and physically-nonlinear boundary
value problems of finite electromechanics can be derived only for a limited number of
special cases, computational methods must be employed in general. In this section a
finite element model is proposed which allows the computation of approximate numerical
solutions to the variational problem of finite strain electromechanics.

5.1. Electro-Mechanical Boundary Value Problem

The boundary value problem of a coupled electro-mechanical solid is outlined below.
To formulate the variational principle we use compact notation which is introduced before.
It is a coupled two field problem with displacement field u describing the mechanical
response and the electric potential φe characterizing the electrical response.

u :

{

B × [0, t] → R3,
(x, t) 7→ x = ϕ(X, t)

, φe :

{

B × [0, t] → R,
(x, t) 7→ φe(X, t)

. (126)

For a sophisticated illustration of the balance principles in terms of the primary fields we
define a generalized deformation map U

U = [ϕ(X, t),−φe(X, t)]T (127)

As we consider the case of large strains, we need to have the Frechet derivative of the
deformation map as the deformation gradient:

F = ∇Xϕ(X, t) (128)

In order to have the electric field to be curl free, based on the Maxwell’s equation, it is
defined as the gradient of the electric potential:E = −∇Xφ

e(x, t) (129)

The above gradients describing the kinematics can be expressed by defining a generalized
gradient G

F := G [U] , (130)

where F is the generalized co-vector stated in section 2.5. The balance principles of
coupled electro-mechanics are stated as

Div [P ] + ρΓ̄ = 0 and Div [D]− ρ̄e0 = 0 (131)

where P is the first Piola Kichhoff stress, Γ̄ is the body force,D is the electric displacement
and ρ̄e0 is the free volume charge density. Equations in (130) are expressed in a compact
manner by using a generalized divergence operator Dv in terms of generalized vector.

Dv [S] + B̄ = 0 (132)

with B̄ as the generalized body force vector

B̄ =
[

ρΓ̄, ρ̄e0
]T

(133)
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The generalized vector has been stated before shown to have the following relation with
the generalized covector through the mixed energy enthalpy potentioal funtion Ψ(F).

S = ∂FΨ(F;X) (134)

The boundary conditions are stated distinctly for the case of mechanical and electrical
problem as:

ϕ = ϕ̄(X, t) on ∂Bϕ and PN = T̄ (X, t) on ∂BT , (135)

and

φe = φ̄e(x, t) on ∂Bφe and [[D]] ·N = Σ̄e(x, t) on ∂BΣ. (136)

Using a sophisticated mode of presentation one could rewrite the above boundary condi-
tions as

U = Ū(X, t) on ∂BU and S ⋆N = T̄(X, t) on ∂BT (137)

where the generalized vector Ū =
[

ϕ̄, φ̄e
]

prescribes the values on its corresponding
boundary ∂BU = [∂Bϕ, ∂Bφe ]. Analogously, we apply the so called generalized traction
vector T̄ =

[

T̄ , Σ̄e
]

on its respective boundary ∂BT = [∂BT , ∂BΣ].

5.2. Continuus Variational Formulation

Let us assume the existence of an incremental energy functional I(U) for both gener-
alized vectors and loads. This assumption is common in many fields of solid mechanics.
Furthermore, we assume that the loads do not depend on the motion of the body. It means
that the directions of the loads remain parallel and their values unchanged throughout
the deformation process. The total generalized incremental energy functional I(U) of the
system is defined as the difference between the internal energy stored in the body and the
total work done by the external loads in the time interval [tn, tn+1].

I(U) = Iint(U)− Iext(U) (138)

with

Iint(U) =

∫

B

Ψ(G[U];X)dV

Iext(U) =

∫

B

B̄ ⋆ (Û− Ûn)dV +

∫

∂BT

T̄ ⋆ (Û− Ûn)dA.

(139)

in terms of the generalized generalized quantities introduced in section 2.5. Here in 139
Û is defined as U− [X, 0]T . We use the minimization principle to obtain the generalized
displacement fields, satisfying the Dirichlet boundary conditions, corresponding to the
state of equilibrium.

U = Arg {statU∈WI(U)} = Arg

{

inf
ϕ

sup
−φe

I(ϕ,−φe)

}

(140)

with

U ∈ W := {U|U(X, t) on ∂BU} (141)
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As we see above the functional I(U) is to be maximized subject to the electric potential
and minimized with respect to the displacement field leading to a saddle point structure.
The variational of the functional gives the necessary condition

δI(U, δU) =

[

d

dǫ
I(U+ ǫδU)

]

ǫ=0

= 0. (142)

In this way the problem is reduced to an ordinary minimum problem of differential calculus
with respect to the single variable ǫ. The minimum is obtained for ǫ = 0. The arbitrary
generalized displacement vector satisfies the homogeneous boundary conditions i.e. δU =
0 on ∂BU where the generalized displacement takes the prescribed value. With the
above requirements we get the variational resulting in the Euler-Lagrange equations which
implicitly satisfy the Neumann boundary conditions

δI(U, δU) =

∫

B

{

∂FΨ ⋆ G[δU]− B̄ ⋆ δU
}

dv −

∫

∂BT

T̄ ⋆ δU dA = 0. (143)

5.3. Finite Element Discretization

In the standard finite element approach the spatial discretization of the continuum
body B is based on its approximate subdivision into a set of N finite elements Be⊂Bh,
such that

B ≈ Bh =
N

A
e=1

Be , (144)

where the symbol A
N
e=1 denotes the standard finite element assembly operator. One

further defines a reference element Ae with local coordinates θ, as shown in Figure 11.
The variational problem (143) is approximately solved by a finite element method. To
this end, the generalized deformation map and its gradient are discretized within N finite
element domains Be⊂Bh in which the discretized solid Bh is decomposed, such that:

Be⊂Bh

Se⊂Sh

X

X̂(θ)

x

x̂t(θ)

J jt

ϕh
t

F h
t

Ae

θ

Figure 11: Isoparametric mappings between the element parameter space Ae and the
associated finite elements Be⊂Bh and Se⊂Sh in the Lagrangian and Eulerian settings.
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The coordinates of the element in the material setting Xh∈Be and the spatial setting
xh∈Se are then described by the isoparametric Lagrangian and Eulerian parameter maps

X̂ :=

{

Ae → Be ⊂ Bh ,

θ 7→ Xh = X̂(θ)
, x̂t :=

{

Ae → Se ⊂ Sh ,

θ 7→ xh = x̂t(θ)
. (145)

These mappings approximate the material and spatial coordinates on the basis of the
standard expressions

X ≈ Xh = X̂(θ) =

nnpe
∑

α=1

N̂α(θ)Dα = N̂(θ)D , (146a)

x ≈ xh = x̂t(θ) =

nnpe
∑

α=1

N̂α(θ)dα
t = N̂(θ)dt , (146b)

where nnpe, denotes the number of nodes per element, N̂ represents the matrix of shape
functions parameterized in the local coordinates θ ∈Ae of the finite element parameter
space. The vectors D∈Rdim·nnpe and dt ∈Rdim·nnpe, where dim∈{1, 2, 3} are the spatial
dimensions of the considered problem, contain the discrete Lagrangian and Eulerian nodal
positions of element Be at time t, respectively. Based on the introduced approximate
mappings and again referring to Figure 11, the deformation map can be expressed as

ϕh
t (X

h) := x̂t ◦ X̂
−1

= x̂t

(

θ(Xh)
)

. (147)

One may further define the gradients

J := ∂θX̂= ∂θ

[ nnpe
∑

α=1

N̂α(θ)Dα

]

=

nnpe
∑

α=1

Dα ⊗ ∂θN̂
α(θ), with JA

i =
∂X̂A

∂θi
=

nnpe
∑

α=1

N̂α
,i (D

α)A,

jt := ∂θx̂ = ∂θ

[ nnpe
∑

α=1

N̂α(θ)dα
t

]

=

nnpe
∑

α=1

dα
t ⊗ ∂θN̂

α(θ), with jai =
∂x̂a

∂θi
=

nnpe
∑

α=1

N̂α
,i (d

α
t )

a.

Note that, based on the chain rule, the above mappings may be utilized to related deriva-
tives in parameter space to derivatives in the reference and current configurations via

Grad N̂ = J−T∂θN̂ , grad N̂ = j−T
t ∂θN̂ . (148)

With these definitions at hand, the deformation gradient is approximated as

F h
t = Gradϕh

t (X
h) = Grad

[

x̂t
(

θ(Xh)
)]

= ∂θx̂t ∂Xhθ = jtJ
−1 =: B̂dt . (149)

The matrix B̂(Xh) contains the derivatives of the shape functions with respect to the
Lagrangian coordinates Xh.3 Following the isoparametric concept, in which the geometry

3The compact notation matrix relation F h
t =B̂dt is to be interpreted in the sense that

F a
A =

nnpe
∑

α=1

∂N̂α

∂θi
(dα

t )
a(J−1)iA =

nnpe
∑

α=1

(dα
t )

a ∂N̂
α

∂XA
=

nnpe
∑

α=1

(dα
t )

aB̂α
A . (150)
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and the field variables are approximated over the element domain by the same set of shape
functions.

Utilizing again the compact notation concept that was used for the concise representa-
tion of the variational problem, we introduce the element generalized displacement vector
D′e, which contains the element nodal displacements de and the negative electric nodal
potential −φe at the current time tn+1.

D′e = [de,−φe] (151)

After assembling the element quantities in global arrays:

D′ =
N

A
e=1

D′e , N′(X) =
N

A
e=1

N′e(X) , B′(X) =
N

A
e=1

B′e(X) (152)

Note that we have dropped the superscript t. It is henceforth implied that all discrete
variables are evaluated at the current time t, or more accurately at the discrete time tn+1

at the end of the current time interval. The discrete generalized primary variable vector
and discrete generalized deformation gradient are then computed from the relations

U′h = X′ +N′(X)D′ , G[U′h] = I′ +B′(X)D′ (153)

where the arrays X′ and I′ are defined as:

X′ =

[

X

0

]

and I′ =

[

1 0

0 0

]

(154)

Using above approximation in the continous form of the energy functional (138) will
give us the approximated form of the energy functional as follows:

I ′h(D′) =

∫

Bh

Ψ(I′ +B′D′)− B̄′ ⋆N′∆D′dV −

∫

Bh
T′

T̄′ ⋆N′∆D′dA (155)

with ∆D′ := D′ −D′
n. The discrete energy functional has to be stationary with respect

to the global generalized nodal displacement D′. The necessary condition for this can be
obtained by setting the variation of I ′h(D′) to zero.

δI ′h(D′) = I ′h,D′(D′) = 0 (156)

By defining the analogous approximations δUh=N δD and substituting into (156), one
obtains the discrete equivalent of the necessary condition for stationarity in the continuous
setting as

δI ′h =

∫

Bh

B′TS′h −N′TB̄′dV −

∫

∂B′

T′

NT T̄dA = 0 (157)

where the finite element residual vector can been defined as R′ := δI ′h(D′). Equation
(157) represents a nonlinear algebraic system for the determination of the generalized
displacement vector D′ of the coupled electro-mechanical problem. To find the roots
of the nonlinear problem R′ = 0 , an iterative solution procedure must be employed.
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Following a standard Newton-Raphson scheme, one obtains the following update relation
for the nodal degree of freedom vector

D′ ⇐ D′ −
[

I ′h,D′D′(D′)
]−1

I ′h,D′(D′) (158)

The iteration procedure is terminated if the norm of the residual falls below as certain
tolerance, i.e. ‖R′‖<tol. In the preceding expressions we have utilized the definitions of
the finite element tangent matrix

K′ := I ′h,D′D′(D′) =

∫

Bh

B′TC′hB′ dV (159)

where we have assumed dead loads, and the discrete generalized stresses and discrete
coupled moduli

S′h := ∂F′hΨ , C′h := ∂2F′hF′hΨ (160)

It must be emphasized that due to the chosen variational formulation the tangent
matrix K′ is automatically symmetric, and consequently solvers for symmetric linear
systems of equations can be employed in the iterative solution procedure of the nonlinear
problem.
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6. Numerical Results

6.1. Basic Tests

To test the proposed models, we would like to see the response to some simple deforma-
tion and force driven tests at the material point level. To achieve this, we present below,
some basic numerical experiments which are essential to show the desired viscoelastic be-
haviour of the material to some simple deformation processes. The results of these tests
should help us show the behaviour of the material and analyse the results of boundary
value problems presented later in this chapter.

6.1.1. Relaxation Test. Stress relaxation describes how material relieve stress under
constant strain. Because of viscoelasticity, material behaves in a nonlinear fashion. This
nonlinearity can be described by both stress relaxation and a creep tests. In the relaxation
test a stepwise strain is imposed with raising time of t1 and the stress is monitored.
Moreover, It is of interest to see how the response of the model to stepwise one dimensional
deformation is altered by the electric field. To observe this we need to apply a one
dimensional deformation at different electric fields and look at the stress response. So
we apply in parallel an electric field with the same raising time of tφ1 = t1 = 0.5 sec.
Maximum amount of engineering strain is chosen to be ε11 = %10. Results have been
taken at gauss point in the midle of the plain in order to show the material response at
gauss point level.

As shown before, Arrunda-Boyce material[1], is used for elastic material model in this
work. Set of material parameters of electro viscoelastic model which have been used here
are show in Table(1). The elastic and viscoelastic parameters have been used before by
Ask et. al. [2], and the electric permitivity has been set experimentally by Ask et.
al. [25].

Table 1: Material parameters for viscoelastic electroactive polymer based on
isotropic Arrunda-Boyce elastomer model.

Elastic Material Properties:
κ = 3.2× 103 N/mm2 µ = 1.8 N/mm2 N = 2.7

Viscoelastic Material Properties:
β = 1.0 τd =0.4 sec

Electrical Material Properties:
ǫ = 41.6× 10−6 N/mm2

Using above parameters, we plot first Piola stress vs. time for different electric fields
as shown in Figure 12. Exponentially decaying stress which is characteristic behavior of
relaxation tests is reproduced in the results. Electric field tends to shrink the specimen,
therefore the stress will be increased with increasing electric field. The test is done with
different electric fields and this effect can be traced there. As depicted in Figure 12,
relaxation behavior can be seen in all tests and stress is higher for higher electrical fiels.
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Figure 12: a)Test schematic for obtaining viscoelastic material behaviour of the model ,
b)Relaxation test behaviour of material model at Gauss point level , c)Creep test behaviour
of material model at Gauss point level (It is obtained by replacing force boundary condition
instead of displacement in schematic view of the test)
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6.1.2. Creep Test. When a viscoelastic material is subjected to a constant load, it
deforms continuously. The initial strain is roughly predicted by its stress-strain modulus.
The material will continue to deform slowly with time until reaching a certain point. In
the early stage of loading the creep rate decreases rapidly with time. Then it reaches a
fairly steady state stage. This phenomenon of deformation under load with time is called
creep.

To track the creep behaviour of the material, a stepwise one dimensional force is
applied on the specimen. Furtheremore to observe the effect of electric field we need to
apply a one dimensional force at different electric fields and look at the strain response.
So we apply in parallel an electric field with the same raising time of tφ1 = t1 = 0.5 sec.

Results are shown using plot of Cauchy strain vs. time for different electric fields in
Figure 12. The effect of electric field, which is depicted in Figure 12, shows decreas of
strain due to force. This can be interpreted, having in mind shrinking effect of electric field
in Dielectric Elastomers. As it can be seen from the above results viscoelastic behavior
is modeled successfully at large strains in presence of electric field. To further show the
capability of the model we will test it for cyclic loading in the next section.
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Figure 13: a)Test schematic of behaviour of material model at Gauss point level for cyclic
loading, b)Cyclic test behaviour of material model at Gauss point level
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6.1.3. Cyclic Loading. Cyclic loading leads to hysteresis (a phase lag) and thus a
dissipation of mechanical energy in viscoelastic materials. The final test at gauss point
level which is conducted here is cyclic loading. To perform this test we use the same
sample as previous tests and impose a cyclic displacement as depicted in Figure 13.a.
Characteristic time of the loading is equal to the previous cases and thus time period of
one cycle will be T = 4×t1 = 2 sec. Hysteresis curves are shown in Figure 13.b. Shrinking
effect of electric field plays an evident role here. This will increase amount of stress in the
tension phase and decreases it in the compression phase.

6.2. Selected Boundary Value Problems

In this project we have implemented 2D-Quad plain strain and 3D-Hex (Brick) ele-
ments as well as viscoelastic electromechanical material model within FEAP finite element
code. In order to show the reliability and capability of our code, we shall show some two
and three dimensional model problems which have been solved by it in this section.

6.2.1. Non Homogeneous Response Test in 2D. Testing the code in a non
homogeneous example motivates us to consider a boundary value problem of the type
shown in Figure 14. Here, we have a hard metal inclusion with a different material
properties in the same polymeric matrix. Inclusion has different material properties.
Bulk modulus is κ = 100× 106 N/mm2, shear modulus µ = 50× 106 N/mm2 and electric
permitivity ǫ = 4.6× 10−6 N/mm2. Other properties are identical to Table (1).

Loading procedure is as follows. Electric potential on the upper and lower edges of the
speciemen is specifies and track a ramp untill tφ1 = 2 sec. After this stage the potential
is set to be constant. Final shape of the specimen with electric potential contours is
displayed in Figure 15.

Figure 15 shows highly inhomogeneous response in both electrical potential and dis-
placement fields. This is a result of different electric permitivity and elastic properties of
inclusion. In order to show the viscoelastic effect a characteristic length of d is chosen to
be plotted. This length is shown in Figure 14 and depicted in Figure 16 in order to show
the nonlinear large strain and viscoelastic behavior of the material.

l=10 mm

r=3 mmφe(t)

φe(t)

ttφ
1

d

Figure 14: A polymeric specimen with an inclusion exposed to an electric field. This BVP
will activate different modes of deformation due to inhomogeneity in the specimen and thus
it is an appropriate bench problem to show the reliability of the code.
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Due to the electrical loading it is first showing a nonlinear elastic response and after
tφ1 = 2 sec as we maintain the electrical field it behaves like a material under creep. This
example shows a viscoelastoc behaviour just under electrical loading.

Figure 15: Electric potential contours in a deformed specimen. In order to show the
amount of deformation, initial shape have been shown with solid lines.
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Figure 16: Characteristic width of the polymeric specimen with metallic inclusion under
electrical loading. Keeping constant electric field after tφ
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6.2.2. Bi-Material (Finger) Actuator. One of the applications of electroactive
materials is in the field of robotics. Since these materials deform on the application of
electric field, they may be used in making finger actuators. Typically deformations in
such applications are large and this is an area where finite strain modeling is required.
In the example that follows, we model a finger as a composite bar in three dimensions
using 3D Brick element and show how the bar deforms under application of electic fields.
The example shows that finite strain modeling is indeed a requirement from a practical
perspective. Figure 17 shows the boundary value problem definition of Finer actuator.

l=30 mm

t=0.5 mmφe(t)

φe(t)

ttφ
1

EEE
Figure 17: Definition of the boundary value problem. A stepwise electric potential dif-
ference φe(t) is applied between the midle and lower planes of the composite bar and the
displacements at the left end are fixed. Thickness is considered to be z=4 mm.

In Figure 18 the undeformed mesh as well as deformed configuration has been shown
without scaling the deformation. Quite large strains and deformations occurred in the
beam. The lower layer thickness has been changed due to the applied electric field and
the area of the lower one increase. This ends up to the bending of the entire structure.
To obtain this deformation an electric field of 300KV/mm is applied. This is a relatively
big electric voltage to be aplied experimentally. However, to show the capability of the
model we applied this field in our numerical experiment.

Figure 18: Deformed and undeformed configurations of the composite bar at applied
potential differences φe = 300 KV/mm.
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Figure 19: Beam tip deformation; vertical deformation versus time is shown in the left image which

shows a creep behavior. Planar deformation image is shown in the right figure.

Figure 19 depicts beam tip deformation. The vertical deformation versus time shows
a creep type behavior for the beam tip deformation when it is under constant electrical
loading. The planar image of beam tip deformation reveals that first the lower layer tends
to extend in x direction after that bending will happen. After t = 2s which is shown in
the plot the nonlinear elastic part will be finished and the remaining beam tip movement
is due to creep.

6.2.3. Double S-Shape Actuator. The deformation of the polymer film can be
used in many different ways to produce actuation. Another possible configuration is the
bimorph double-S-shaped-actuator. Here, two sheets of electroded polymer films are glued
together and form a double-S-shape. If the external layers are active, the curvature of
the actuator can be accentuated (see Figure 20) and otherwise diminished if the internal
layers are active.

φe(t)

φe(t)

d=60 mm

ttφ
1

Figure 20: Hysteresis behavior of dielectric elastomer double S-shape actuator

In the case of viscoelasticity a hysteresis loop have been reported in several dielectric
elastomer actuators(see e.g. Plante & Dubowsky [20]). In Figure 21 hysteresis curve
of this actuator for the depicted loading is shown. To show the hysterisis we chose length
of the actuatore as the charachteristic length and plted this length versus electrical field
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Figure 21: Hysteresis behavior of dielectric elastomer double S-shape actuator

which plays the role of force here.
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