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1. Introduction

In recent years, a number of industrial applications that make use of magneto-sensitive
materitals have been developed. Magneto-sensitive elastomers find use in controllable
stiffness devices, controllable membranes and applications for active control of structural
components and rapid response interfaces aimed at optimizing the performance of me-
chanical systems. These are a class of solids that consist of rubber matrix filled with
micro- or nano-sized magnetizable particles such as iron. As a result, the mechanical
properties of these materials can be varied by the application of magnetic field. This fact
gives us a wide scope for their exploitation.

It is therefore of great interest to be able to reliably model or predict the properties of
such materials by constitutive equations and present the solutions and analysis of repre-
sentative boundary value problems. Also, since deformations of elastomers are typically
quite large, there is an added need to develop the constitutive theory in a finite strain
contert.

The constitutive modeling of such materials has been the research interest of HUTTER
AND VAN DE VEN [15] and ERINGEN & MAUGIN [13] among others. Additionally finite
element analysis for the numerical implementation of coupled boundary value problems is
required. These aspects have been presented by DORFMANN & OGDEN [10], BRIGAD-
NOV & DORFMANN [3], BUSTAMANTE, DORFMANN & OGDEN [4], STEINMANN [33],
KANKANALA AND TRIANTAFYLLIDIS [19] and KIEFER, ROSATO & MIEHE [21, 22] in
both, small and large strain.

Modeling of materials cannot proceed without experimental results of response be-
havior and experimental observations like pictures of microstructure. Such experimen-
tal work has been presented in JOLLY ET AL.[17], DAvis[6], VARGA FILIPCSEI &
ZRINYT [31, 32].

1.1. Aim and Structure of the Thesis

The aim of this work is to study some aspects of modeling materials in a finite strain
context, which exhibit magneto-mechanical coupling. We present here different types
of free energy functions to model these materials. The free energy functions that are
presented are motivated by the the experimental results and the knowledge of the mi-
crostructure of these materials. We also present an alternative form of the Finite Element
implementation of such coupled magneto-mechanical coupled boundary value problems.

The second chapter gives an overview of the experimental knowledge and the mi-
crostructure of these materials. Here we identify the key features that we aim to capture,
thus forming the motivation of the proposed models stated in Section 5.

In the third chapter, an introduction to continuum magnetomechanics is provided.
Here, apart from the standard finite deformation equations, we introduce the magnetic
field variables and their mapping properties along along with the balance principles of
continuum magnetomechanics. We then go on to describe a thermodynamically consistent
constitutive theory and proceed to show, how we can solve such coupled boundary value
problems, within in a variational framework.

The fourth chapter, presents an alternative compact finite element formulation used
to solve the boundary value problems. This is the formulation that has been used in
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obtaining the numerical results that have been presented in the penultimate section of
the thesis.

The fifth chapter, gives the details of the material models used for the numerical
implementation i.e. the free energy function and the resulting constitutive equations.
These models have been implemented in a finite element framework to obtain the results
reported in the following section.

The sixth chapter reports the numerical results. In order to test the response of the
material models at the material point level, we have described two driver algorithms to
do the same.

The seventh chapter concludes the thesis with an outline of what has been achieved
in the present work and brief outlook for possible further research in the field.
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2. Motivation: Macroscopic Response of MRE

The magneto-sensitive materials described in the previous section may be either isotropic
or anisotropic which depends on the method of preparation. Magnetoelasts are prepared
by dispersing nano or micro sized iron particles in the rubber during the curing process.
This may be done in the presence or absence of a magnetic field. If there is no magnetic
field present, we get isotropic distribution of iron particles in the matrix whereas if there
is a magnetic field present, we have the iron particles aligned along the applied magnetic
field which gives a preferred direction or transverse anisotropy.

Figure 1 is a Scanning Electron Microscope (SEM) picture of iron particles in silicone
M4601 matrix which shows the microstructure of the two types of isotropy.

" MIBERB0%LEs Ho-cured 155UM2200 5
(a) Isotropic or random distribution of (b) Tron particles aligned in a preferred
iron particles in matrix. direction.

Figure 1: SEM pictures of microstructure of MRE- Iron particles in silicone M4601 matrix.
Reference: KALLIO [18]

Figure 2 consequently, is a schematic representation of the microstructures described
above along with possible loading directions for compressions. It also shows that while two
different experiments are required to determine the elastic modulus of isotropic magnetic
elastomers, five would be required for the transversely anisotropic counterpart.

{
/ B

Figure 2: Schematic of microstructures Reference: VARGA, FILIPCSEI & ZRINYI
[2005]

(a) Isotropic (b) Anisotropic

In what follows, an overview of the experimental data available is presented which,
along with the knowledge of microstructure, is used as motivation for the development of
the constitutive models i.e. the free-energy functions presented in the next chapter.
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2.1. Isotropic Magnetorheological Elastomers

Here the iron particles are randomly distributed in the matrix. Experimental results
from JoLLy ET. AL [17] for a double lap shear specimen using a Dynastat ® material
testing system are shown in Figure 3(a). This system applies a fixed oscillatory strain to
the specimen and measures the amplitude and phase of the output from which the shear
modulus may be calculated. Magnetic fields were applied to the test specimen using the
horseshoe shaped electromagnet with poles that efficiently focus magnetic flux across the
elastomer segments in the direction shown in Figure 3.
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Figure 3: Shear test on isotropic specimen. Reference: JOLLY ET AL. [1996].

The results of the experiment show that the shear modulus increases with magnetic
field until it reaches a saturation value. A consistent explanation for this effect may
be given by looking at the microstructure of such materials. Since the iron particles
in the within the matrix have a saturation value of magnetization, the same should be
observed with the shear modulus since the magnetization determines the magnitude of
the interparticle forces of attraction.

Figure 4 shows the stress-strain plot for a sample that contains random distribution
of iron particles within the matrix of the elastomer. It shows that the response is indeed
close to a Neo-Hookean response and motivates us to use a Neo-Hookean type free energy
function to model these kinds of materials. However we must modify the Neo-Hookean
free energy to include the stiffening effect of the magnetic field on the material.

The main features to be accounted for, are summarized below.
e Feature 1: Response in a constant magnetic field should be Neo-Hookean as indi-

cated by Figure 4.

o Feature 2: With increasing magnetic field, the material should have a stiffer response
ie. higher shear modulus, due to increased interparticle magnetic attraction.

e Feature 3: The shear modulus should saturated with increasing magnetic field
strength.
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Figure 4: Stress vs. Strain measurements for Poly (dimethyl siloxane) sample Reference:
VARGA, FILIPCSEI & ZRINYI [2005]. Here D = XA — A~2 where A is the stretch.

2.2. Magnetorheological Elastomers with Transverse-Anisotropy

As mentioned earlier, if a magnetic field is applied during the curing process of the
MRE, then the iron particles get aligned along along a preferred direction leading to
transversely isotropic microstructure as shown in Figure 1.
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Figure 5: Effect of the magnetic field intensity on the elastic modulus for transversely
isotropic samples of magnetoelasts containing different amount of carbonyl-iron particles.
Here the mechanical loading is perpendicular to chains while magnetic field assumes different
directions. Reference: VARGA, FILIPCSEI & ZRINYT [2005].

Figure 5 and Figure 6 show that the shear modulus G is hardly changed when a
magnetic field is applied perpendicular to the direction of the chains. When they are
parallel however, the coupling is ‘switched on’ and the shear modulus changes significantly
with magnetic field.

Thus, we state the features to be captured by a transversely isotropic model as follows.

o Feature 1: When the magnetic field is perpendicular to the chain direction, response
is unaffected by magnetic field strength.

o Feature 2: When the magnetic field is parallel to the chains, the shear modulus
increases.

e Feature 3: One might expect buckling at high compressive strains due to the colum-
nar arrangement of iron particles.
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Figure 6: Effect of the magnetic field intensity on the elastic modulus for transversely
isotropic magnetoelasts containing different abount of carbonyl-iron particles. Reference:
VARGA, FILIPCSEI & ZRINYI [2005]. In both cases compression is in the direction of
the chains but magnetic field has different directions.

2.3. Importance of Boundary Conditions

Apart from the expected characteristics of material models another important consid-
eration is the application of magnetic boundary conditions. Figure 7 shows a typical ex-
perimental setup for conducting thermo-magneto-mechanical experiments (cf. [20]). One
may observe that the magnetic boundary conditions are not applied on the boundary of
the specimen but rather in the free-space adjoining it. This is because, a magnetic po-
tential difference A® is applied with the help of a current carrying coil and this is usually
placed at some distance from the sample.
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(a) Actual experimental setup (b) Schematic of experimental setup

Figure 7: Experimental setup in [20] for thermo-magneto-mechanical experiments.

This may be contrasted with the corresponding electric case where we may have
electro-active materials that are subjected to the equivalent electric boundary conditions.
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Here, the electric potential, is applied with the help of electrodes (cathode-anode), which
may be painted to the surface. However, in the magnetic case, we do not have a mag-
netic equivalent of an electrode (since magnetic monopoles have not been found to exist).
Therefore the closest we can get to applying the magnetic potential directly on the sur-
face, is by having a closed circuit with zero air gap. To have no air gap, one may need
to apply some pressure on the sample with the two ends. Enforcing this zero air gap is
thus, not only impractical but also interferes with the deformation of the sample as can
be seen in Figure 8.
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Figure 8: The magnetic circuit shown in the sketch may be considered closed, if the air gaps
between the magnetic material sample and the iron core are negligible. Such an experimental
setup may be considered the best physical approximation of magnetic potential boundary
conditions prescribed at the sample surface.

This motivates us to include the adjoining free space in our boundary value problems
with the boundary conditions being applied on the surface of this free-space rather than
directly on the surface of the body.
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3. Introduction to Continuum Magnetomechanics at Finite Strains

In this chapter the continuum-thermodynamics basis for a finite deformation theory
with an extension to magnetostatics is established. This derivation includes the typical
steps of defining the finite deformation kinematics based on fundamental geometric map-
pings, of introducing stress measures, the basic magnetic field variables as well as the
global and local balance laws of continuum magnetomechanics.

The following description of finite deformation kinematics conceptually relies on the
terminology of modern differential geometry (cf. MARSDEN & HUGHES [24]).

3.1. Geometrical Aspects of Finite Deformation Kinematics

A material body B is mathematically defined as the open set of material points P,
which can be identified with geometrical points in the three-dimensional Euclidean space
R? via the one-to-one configuration placement map x. The motion of a body is the
time-parameterized family of configurations

B — B, e R?,
Xt =

1
PeBw—x,=x,(P)€B; . @

This relation therefore describes the configuration of the body B in R? at time ¢. In the
referential description of motion one defines the reference or Lagrangian configuration
as the placement of the body at time tg, i.e. B:=x,,(B), with the reference coordinates
X :=x,,(P) € B. The current or Eulerian configuration at time t is defined as S:=x,(B),
with the spatial coordinates x:=x,(P) € S. The motion of the body with respect to the

Figure 9: Identification of the position X € B of a particle P € B in three-dimensional
Euclidian space R? through the configuration map x, and description of the motion of a
material point w.r.t the reference configuration via the deformation map ¢,.

reference configuration is then defined by the nonlinear deformation map
BxR, —SeR?,
@ = (2)
(X,1) = @ = p(X,1) = p,(X) .

which maps the material points X € B onto their deformed spatial positions © € S as
shown in Figure 9.
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Figure 10: The deformation gradient acting as the linear tangent map, which transforms
the material vector T'€ T’ B, tangent to a material curve € at X, onto the associated spatial
vector t €T, S, tangent to the material curve ¢ at x.

Mathematically, the deformation gradient F' is defined as the Fréchet derivative of the
deformation map, i.e. Fy(X) := Grad¢,. Geometrically, the deformation gradient can
be interpreted as the linear tangent map which maps tangents T' to material curves, i.e.
elements of the tangent spaces Ty B of the manifold B, onto tangents t of the deformed
material curves, i.e. elements of the tangent space 7, S of the manifold S, according to

IvB—-1T,S ,
Ft::{ X

(3)
THt:FtT

Y

as visualized in Figure 10. Note that, since ¢, is a one-to-one mapping and must prohibit
material interpenetration, the deformation gradient is subject to the following constraints
J:=det F > 0. The determinant of the deformation gradient can further directly be
interpreted as another fundamental mapping, the volume map, which relates infinitesimal
reference volume elements dv to their deformed spatial counterparts dV' via the relation

R-F_)R-l—a
J=detF := (4)
dV +— dv=det F'dV .

The co-factor of the deformation gradient cof F' is defined as the derivative of the volume
map with respect to F'. It can geometrically be interpreted as the area map, which maps
infinitesimal reference area elements onto the associated spatial ones via the relation
nda=JF TN dA = (cof F)N dA, also known as Nanson’s formula. Moreover, F~7
can thus be identified as the normal map, that maps normals of material surfaces, or,
again from the differential geometry view point, elements of the co-tangent space T¥B,
onto normals of the deformed spatial surfaces, i.e. elements of the co-tangent space 7S,

according to
{ I<B—T;S,
FT.=

5
N—n=FT TN . (5)

For the specification of coordinate representations one introduces the Cartesian frames
{E;} for TyB, {E'} for T{B, {e;} for T, S and {e'} for T;S. Capital letter indices
i ={A, B,C} are used for Lagrangian and lower case indices i = {a, b, c} for Eulerian
settings.! The reference and spatial coordinates are thus expressed as X = X4E, and

'Note that these frames will typically coincide, but they have formally been considered here for the
sake of clarity.
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x = 2%,. The deformation gradient then admits the representation F = F94e, @ E*,
with F%,=0¢®/0X*. Likewise, the component forms of the mappings (3) and (5) read
t*=F*,T4 and n,= (F‘l)A Ny.

a

In order to be able to measure geometric quantities such as the length of vectors,
however, one must additionally introduce metric tensors. In global Cartesian frames the
covariant and contravariant Lagrangian metric tensors admit the reduced representation
G =0,sE"® E? and G ' =6*PE, ® Ep, where 645 and 68 are Kronecker deltas.
Similarly, the covariant and contravariant Eulerian metric tensors reduce to g= e’ ®@e’
and g~! = §%e, ® e, respectively. The metric tensors represent mappings of vectors,
i.e. elements of the tangent spaces, onto normals (co-vectors), i.e. elements of the co-
tangent spaces. For the Lagrangian and the Eulerian manifolds these mappings are defined
by

(6)
T— N=GT ,
These mappings can also be interpreted as indexr lowering or raising procedures since
the coordinate representations of (6) read Ny = GapT? = 45T and n, = Gapt? = apt?,
respectively. It is

{TXBHT;B, {TwS—>T;S,
G = g =
t—n=gt.

Commutative diagrams, such as the ones displayed in Figure 11, significantly facilitate
the geometric meaning of the introduced mappings. Based on the definitions of the

T

t
T
B 7,8

T¢B = ;s

Figure 11: Commutative diagram illustrating the ‘push-forward’ and ’pull-back’ of the
covariant reference metric G and spatial metric g.

mappings (3), (5), (6) and their respective inverse mappings, one can introduce additional
deformation measures. The right Cauchy-Green tensor C' can in this context be defined
as the “pull-back’ of the spatial metric

C :=y*(g) = FgF | or  Cap=F29aF's, (7)

in coordinate representation, and can thus be interpreted as the 'representation of the
current metric in the Lagrangian setting’ or ’'convected spatial metric’. Similarly, the
inverse right Cauchy-Green tensor C ' is defined as

C!— (‘0*(971) _ F_lgle_T : or (C«fl)AB _ (Ffl)A
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Accordingly, via appropriate ‘push-forward’ operations, one defines the left Cauchy-Green
tensor b, often called the Finger tensor, and the inverse left Cauchy-Green tensor c,
respectively, as

b =, (G')=FG'F", o " =F",G"F', (9)
c=0) " =¢,(G)=FTGF", o ew=(F )" Gap(FH", . (10)

The reader is again referred to Figure 11 for a graphical representation of the geometrical
mapping properties of the introduced metric tensors.

3.2. Fundamental Stress Measures

Consider an arbitrary part P C B cut out of the undeformed body in the reference
configuration and its deformed counterpart P, CS with the respective closed surfaces OP
and 0Py, as shown in Figure 12. In the current configuration one replaces the mechanical
action of the rest of the body on the cut-out part by the spatial traction field ¢. According

Figure 12: The material and spatial traction vectors T'(X ,¢; N) € Ty B and t(x,t;n)eT, S
representing the forces per unit area exerted by the cut-off remainder of the body on the
surfaces OP and 9P, of the cut-out parts in the material and spatial settings, respectively.

to Cauchy’s theorem, t is assumed to be a linear function of the orientation of the cut,
represented by the spatial unit normal n€7T;'S to the surface OP;, or specifically

t(x,t;n) = o(x,t)n or t* = o%n,, . (11)

Therein o is the Cauchy stress tensor, which in our considered geometrical framework
can be understood as a contravariant mapping of the form

;8§ —-T1T,S,
o= (12)

n—t=on.

Another common spatial stress measure is the Kirchhoff stress tensor, or weighted Cauchy
stress tensor, T := Jo, which, due to the scalar nature of J, preserves the geometric
mapping properties of o.

One can further introduce a scaled spatial traction vector t € T, S that produces a
resultant force on an element of the reference surface which is equal to the force exerted
by t on an element of the deformed surface, such that t da=t dA. The nominal or first
Piola-Kirchhoff stress tensor P is then defined via the Cauchy-theorem-type relation
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T t,1
F
T, B T:$
A
P
S T=Jo
N
n
F*T
T8 > TS

Figure 13: Commutative diagram illustrating the geometric mapping properties of the
introduced stress tensors.

t:=PN, or t*=P*N,. Additionally, using Nanson’s formula, one obtains the following
relation between the introduced stress tensors P = JoF 1 = rF~T. Note that P is a
two-point (mixed-variant) tensor possessing the geometrical mapping properties

P::{T;BHTxS,

) (13)
N—t=PN .

The Lagrangian traction vector T' €Ty B may be defined as the ’pull-back’ of the spatial
traction field t € T, S, ie. T = ¢* (i) = F!'T as displayed in Figure 12. The second
Piola-Kirchhoff stress tensor S is then defined via the relation T:=SN, or T4 = S48 Np,
and has the mapping properties

TvB — TvB ,
Si={ " . (14)
N—T=SN.

The commutative diagram of Figure 13 depicts the geometrical relations between the
introduced stress tensors. It is immediately apparent that the following “pull-back’ oper-
ations on the mixed-variant and spatial stress tensors hold.

S:=¢ (P)=F'P, or S — (P! pB (15)
S=¢ (r)=F'7rF 7T, o S%=(FYH" rF1H’ .
Accordingly, the converse ’push-forward’ relations of the mixed-variant and reference
stress tensors are given by

T=Jo:=¢, (P)=PF", or 7% =prt, (17)
T:=¢,(8)=FSF", or 7% =p,8ABFb, (18)

3.3. Balance Principles of Continuum Thermo-Magneto-Mechanics

In this section the balance principles of continuum thermomechanics are briefly re-
viewed and the main focus is placed on their extension to the continuum mechanics of
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magnetizable matter. This step requires the addition of terms in the thermomechanical
balance laws, as well as the introduction of Maxwell’s equations. Extensive discussions of
the electrodynamics of continua have been presented by PA0 & HUTTER [27], PAO [26],
HUTTER & VAN DE VEN [15], MAUGIN [25], ERINGEN AND MAUGIN [13].

3.3.1. Maxwell’s Equations of Continuum Electrodynamics. The electrody-
namics of polarizable and magnetizable moving continua are in the non-relativistic limit
described by the following global form of Maxwell’s equations

Gauss’ law / d-nda= /pf dv (19a)
oP: Pr

Gauss-Faraday law / b-nda=0, (19b)
oP,

Faraday’s law / e dr = —% b-nda, (19¢)
0A; At

Ampere’s law /h'- dm:/j'f-nda—l—%/d-nda, (19d)
0A: A Ay

where e is the electric field strength, d the dielectric displacement, py the electric charge
density and j, the free current density. Primed field variables indicate that they are
measured with respect to the rest-frame, or in other words a co-moving observer.? The
above integrations in the spatial setting are carried out either over the part P, CS and
its boundary OP; or an arbitrary material surface A; with boundary 0.A;. Note further
that by applying Ampere’s law to a closed surface, such that A;=0P; and 0.4; =0, and
using Gauss’ law one obtains the expression

d

p pfdv—k/j’f-ndazo, (20)

Pt Py

commonly known as the conservation of charge equation.?

By applying the divergence theorem, Stokes’ theorem and the following transport
theorem for the rate of change of the flux of a spatial vector field 1 through the material

2The transformation relations of the rest frame variables to the variables measured with respect to
the laboratory frame, i.e. with respect to a stationary observer, depend on the basic invariance properties
of the chosen formulation (cf. [15]). As an example, the field transformation relations of the Minkowski
formulation are given by e =e +v x b, ' =h — v x d and j'f:jf — pfo.

3Different standpoints have been expressed in the literature on which of Maxwell’s equations are of
fundamental nature and whether they can be considered conservation laws. HUTTER AND VAN DE VEN
for example argue that Faraday’s law, often also referred to as the conservation of magnetic fluz, and
the conservation of charge equations should be considered the two fundamental conservation laws. The
Gauss-Faraday law would then be considered a special case of the former for closed surfaces and further
Gauss’ law and Ampere’s law simply as definitions of the dielectric displacement field and the magnetic
field, respectively. Other authors, however, disagree with this concept and consider all four Maxwell
equations as basic and the conservation of charge equation as a consistent consequence.
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surface A,

%/¢~nda:/:p’~nda:/{%—ijtvdivzb—curl(vxzb) ‘nda , (21)
A Ay

Ay

to the global form of Maxwell’s equations (19) and then localizing, one can derive the
local form of Maxwell’s equations for electromagnetic continua

Gauss’ law divd = py , (22a)
Gauss-Faraday law  divb =0, (22b)
Faraday’s law curle' = —b | (22¢)
Ampere’s law curlh’ = 5% +d (22d)

If, in particular, we restrict our attention to charge-free, non-polarizable media and con-
sider the slow-speed approximation of magnetostatics, then electric effects may be ne-
glected and no distinction is made between moving and stationary frames. The now
decoupled Maxwell equations of magnetostatics are then given by the following global and
local expressions

Gauss-Faraday law / b-nda=0, divb=0, (23a)
oP:
Ampere’s law / h-dx= /jf ‘nda , curlh =j, . (23b)
DA A

Using the geometrical framework of finite kinematics introduced in Section 3.1, one can
proceed to derive the material description of Maxwell’s equations. Using the area map it
follows

/b-nda:/b-JFTNdA:/B-NdA, (24)
0Py oP oP

where we have defined the reference magnetic induction field via the relation B:=JF b,
or BA=J(F _1)Aaba. Analogously, the free current density transforms according to the
relation J ¢ :=JF 15 - Using the mapping properties of the deformation gradient, it also

follows
/h~dw:/h'FdX:/H~dX, (25)
0A

0A; oA

with the definition of the reference magnetic field strength H := FTh, or Hy = F®4h,,.
The derived geometric relations are again visualized in a commutative diagram shown in
Figure 14. Based on the above derivations one obtains the Mazxwell equations of magne-
tostatics in the Lagrangian setting in global and local form

Gauss-Faraday law /B "N dA=0, DivB =0, (26a)
oP
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Jm
M B Jb
F
7.5 T,S
H h
F—T
T8 > ;S

Figure 14: Commutative diagram illustrating the geometric mapping relations between
material and spatial magnetic field variables.

Ampere’s law /H dX = /Jf - N dA Curl H =Jy . (26b)
0A A

In free space (vacuum) the magnetic induction and the magnetic field are related by
the expression b= jipg~'h. In matter it is often convenient to introduce an additional
variable, the spatial magnetization field m, which represents the contribution to the overall
magnetic induction caused by the interaction of the magnetic field with the magnetized
material. One thus obtains the general constitutive-type relation

b=yo(g 'h+m) . (27)

Based on (27), and by consistency with the mapping relations derived for b and h above
and visualized in Figure 14, it is concluded that the material magnetization field M is
defined via the mapping M :=JF 'm. Note that m transforms in the same manner as
b. The equivalent of relation (27) in the Lagrangian setting is thus given by

B=,(JC'H+M) . (28)

3.3.2. Extended Balance Laws of Continuum Thermodynamics. For any ad-
missible thermo-magneto-mechanical process the following global balance laws must hold
for every part P, CS of the material body, along with the Maxwell equations introduced
in the previous section. These balance equations contain, in addition to the classical
contributions, the ponderomotive body force field py™(x,t), the ponderomotive body cou-
ple field pl™ (x,t) and the magnetic energy source field pr™(x,t), which are due to the
field-matter-interactions of the deforming magnetizable body and the magnetic field.*

In the following equations M denotes the mass, £ the linear momentum, F the resul-
tant magnetomechanical force, Ay the angular momentum and My the resultant magne-
tomechanical moment about the origin, I the kinetic energy, € the internal energy, P the
power due to external magnetomechanical forces, Q" the thermal power, Q™ the additional

4The specific form of electromagnetic source terms depends on the underlying model for field matter

interactions, such as the dipole—dipole, or the dipole—current loop models discussed for example in [15],
[27].
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magnetic power®, T’ the total rate of entropy production, H the entropy and finally 8 the
entropy power of the considered part P;. We further introduce the spatial mass density
field p(x,t), the spatial velocity field v(x,t):= 0,p(X,t) o, (x), the mass specific me-
chanical body forces py(zx,t), the internal energy density per unit mass e(x,t), the mass
specific heat source r"(x,t), the surface heat fluz vector q(x,t), the entropy production
per unit mass y(x, t), the mass specific entropy n(x,t) and the absolute temperature field
O(x,t).

With these definitions at hand, one can express the global balance laws of continuum
thermodynamics for magnetizable media in the spatial setting in the following form

Balance of mass

N = - =0. 2
dtM 0, o p dv (29a)
Pt
Balance of linear momentum
d d
%L =3, i dv= [ [py+py"] dv+ [ tda. (29b)
Py Py Py

Balance of angular momentum

d d
—Ay =M, , E/mx,ofvdv:/[mx(p7+p7m)+plm] dv—i—/mxtda. (29¢)

dt
Pt Pt 0Py

Balance of energy (first law of thermodynamics)

d
E(3<+8)::P+Qh+£2’”, (29d)
d 1 m
- | [50v-gv+pe] dv= [ [(oy+py") gv] dv+ [t gvda
P Py 0P
+/prhdv—/q-nda+/prmdv.
P P Pi

Entropy inequality (second law of thermodynamics)

d d or’ q-n

=—H-8> = — — —dv— | —— > 0.

r dtg{ §>0, /py dv p /pn dv ( 7 dv / 7 da) > 0. (29)
Py Py Py P

By using standard divergence, transport and localization theorems as well as the geo-
metric mappings introduced above, the local balance laws of continuum thermodynamics
for magnetizable media in the spatial and material settings are derived as

Balance of mass
p+pdive=0,  Jp(p(X),t) = po(X) . (30a)

"We follow here the approach of PAO & HUTTER [27] and include the work done by the magnetic
body couple pl™ in the source term pr™.
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Balance of linear momentum

pv =dive +py+py",  poV =Div P + poI' + poI'™ . (30D)
Balance of angular momentum
skew o = pL™ | skew (PF") = pyL™ . (30c)
Balance of energy (first law of thermodynamics)
pé =o :gl+pr'" —divg + pr™ | poé = gP : F + poR" —DivQ + poR™ . (30d)
Entropy inequality (second law of thermodynamics)
N CL 1
pvzpn—pg—kadlvq—ﬁq-gradﬁ20, (30e)
. R 1 1
povzpon—p07+5D1vQ—@Q-Gradezo. (30f)

In the material setting we have defined the reference mass density field po(X), the material
velocity field V(X ,t):= 0,(X ,t), the material body force term T'™ =~ (x t)op,(X),
the material heat source R™ :=r(™)(x,t) o ,(X) and, using the area map, the material
heat fluz vector Q:=JqF~". The tensor pL™ in the angular momentum balance is the
dual of the body couple pl™ and defined through the relation L™a=— % I"x a, Va.

The balance laws for magnetizable continua listed above are general. As mentioned,
however, they require the specification of the ponderomotive force and couple terms as
well as the magnetic energy source term. These terms must be justified based on a par-
ticular field-matter-interactions theory. For a broader discussion of this deep subject the
reader is referred to [15]. In this work, we briefly mention the following two approaches.
The approach originally due to LORENTZ [23], which was further developed by DIXON &
ERINGEN [8, 9] and ERINGEN & MAUGIN [13], relies on the evaluation of the interac-
tions of elementary electrically-charged particles in a volume element with electromagnetic
fields, followed by a homogenization procedure, based on volume or phase-space averag-
ing, to derive the desired continuum model. The model that will be adopted here, mainly
because of its intuitiveness, mathematical simplicity and the resulting ”symmetry” of
electric and magnetic effects, is the two-dipole model in the so-called Chu Formulation,
as discussed in detail by PENFIELD & HAus [28] and HUTTER & VAN DE VEN [27].

The two dipole model is built on the following three assumptions (cf. [15]):

(i) each material particle is equipped with a number of mutually noninteracting electric
and magnetic dipoles,

(ii) each monopole experiences an electromagnetic body force as described by the Lorentz
force pF*:=q% + 1oq°v x h + ¢™h — €o¢™v x e, where ¢° and ¢"™ are the electric
and (fictitious) magnetic charges of the monopoles later respectively related to the
polarization and magnetization of an elementary volume, and

(iii) the monopoles of a particular dipole are only a small distance apart so that Taylor
series expansions are justified.

Restricting ourselves to purely magnetic effects for the present purpose, the field-matter-
interaction source terms of the (two)-dipole model are given by [15]

d
pY™" = o (gradh)m . pL™ = poskew [m@h] . pr™ = ph- — (Mopm) . (31
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3.3.3. The Maxwell Stress Tensor Concept. It is often convenient to reformulate
the balance of momentum equations in terms of spatial Cauchy-type Mazwell stress tensor
o™ . This second order tensor is defined such that dive™ = py™ and skew o™ = —pL™.
Further defining the total stress tensor o': =0 + o it then directly follows that (30b);
and (30c); can be rewritten in the following form®

dive'+py=0, skewo' =0 | (32)

such that the total Cauchy-stress tensor is again symmetric and the balance of angular
momentum is trivially satisfied. For the (two)-dipole model the Maxwell stress tensor
takes the form o™ := g 'h®b— % po (h-g~th) 1. Tt is easily verified that this definition
is consistent with the ponderomotive force and couple expressions given in (31); 5.

Similarly, with P':= P + P and P" := p*(Jo™) = Jo™F~" one obtains in the
Lagrangian setting

DivP'+pI' =0, skew[P'F']=0. (33)

For the (two)-dipole model the material Mazwell-type first Piola-Kirchhoff stress tensor
can be written in the form

gP" =F'H@B - ;Ju[C': (HoH)| F" (34)

3.4. Thermodynamically-Consistent Constitutive Theory

A continuum constitutive theory is considered to be thermodynamically-consistent if it
satisfies the fundamental balance equations of continuum mechanics and the laws of ther-
modynamics derived in the previous section at each material point (see also COLEMAN
& NoiL [5]). It is assumed that all thermodynamic properties of the material can be
characterized by a (scalar-valued) thermodynamic potential, such as the specific internal
energy previously introduced in the energy balance (29d). Following the Coleman and Noll
method it is possible to derive general constitutive relations for the dependent field vari-
ables in the form of gradients to the thermodynamic potential, such that thermodynamic
consistency is guaranteed a priori. To this end, one requests that the thermodynamic po-
tential satisfy the Clausius-Duhem inequality for all admissible thermodynamic processes.
In the case of inelastic response, a reduced form of the inequality additionally constrains
the evolution of internal state variables.

The specific form of the Clausius-Duhem inequality depends on the choice of thermody-
namic potential. The internal energy form in the material setting follows by substituting
the energy balance (30d)s into the entropy inequality (30f) as

. 1
JD = poyd = ponf + gP : F — poé + poR™ — §Q -Grad6 >0, (35)

5Tn mechanics it is typically straightforward to distinguish near-field effects, i.e. the mechanical inter-
action of a part with the cut-off remainder of the body, and far-field effects, such as the volumetric force
exerted on the body by the gravitational field. In the mechanics of electromagnetic continua, however,
this distinction is much more subtle and leads to the non-uniqueness of stress tensor definitions. In
the approach presented here, for example, one completely accounts for the far-field-type electromagnetic
interactions through Maxwell’s stress tensor, whose divergence is actually a measure of the near-field
interactions (see also discussion in [15]). Furthermore, one may add any divergence-free tensor field to
the chosen form of Maxwell’s stress tensor, without changing the corresponding equations of motion (32),
except of course in terms of the jump conditions on the boundary (cf. 77).
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where JD denotes the dissipation per unit reference volume. The dissipation may be
split into a local contribution JDy,.:= ponb + gP : F— po€ + poR™ and a contribution
due to heat conduction JD,,, = —%Q - Grad @, and one typically enforces the stronger
restriction that each of these terms individually be non-negative, which gives rise to the
Clausius-Planck-inequality Di,. > 0 and the Fourier inequality Dy, > 0.

An alternative form of the Clausius-Planck-inequality can be derived by introducing
the free energy-enthalpy function * via the partial Legendre transformation”

potb*(F, H,0) := poé(F, oM, n) — H - 11cM — pof . (36)

Computing the rate of change of the specific internal energy from (36) and substituting the
resulting expression into (35) along with the magnetic energy source term (31)3, which in
the Lagrangian setting takes the form pgR™=H - ,uOM + (F TH @ uoM ) F', yields the
free energy-enthalpy form of the Clausius-Planck inequality for finite magnetomechanics

JDioe = [gP + F"(H @ ioM))] : F — p1oM - H — pon) — pot)* > 0 . (37)

For thermodynamically-reversible processes, when no internal state variables are included,
the rate of ¢* is given by ¢* = Fw* F + 8H@/) -H + (%Qﬁ - and the inequality (37)
reduces to the equality

gP+ F '(H M) - poé’ﬂ@*] : F— [qu - poé’H@/?*] -H—pq [n + 5’91/3*} 6=0. (38)

Following the Coleman and Noll argumentation, that the individual terms in (38) are
linear in the rates of the state variables, but their coefficients are by the constitutive
assumptions independent of those rates, and requesting that the equality hold for all
admissible processes involving independent changes of the state variables, the following
general constitutive equations are deduced

gP = ppdpt* — F U (H @ poM) , oM = —podgd* , 1= 90" . (39)

It should be pointed out that the free energy-enthalpy function introduced above can be
attributed to the energy storage in the magnetizable and deformable thermoelastic solid.
Since, however, in electromagnetism energy is also stored in the free space occupied by
the material body, it is often convenient to reinterpret the energy balance by introducing
the amended free energy-enthalpy function (cf. DORFMANN & OGDEN [11])

V= VN(F, H) =" (F,H) + {""“(H) , (40)

which explicitly contains contributions related to the energy storage in matter and free
space. The free space energy storage is assumed as

. 1 1
pot™ " (H) = —5HoJh g h= _§M0JC’_1 (H® H) . (41)

"In the classical nomenclature of continuum thermomechanics ¢ = @(F,G) denotes the Helmholtz
free energy. In thermo-magneto-mechanics the free energy contains the magnetization or the magnetic
induction, see discussion on the free space energy storage contribution below, as an additional independent
state variable, i.e. ¥ = z/;(F,qu, 0). The thermodynamic potential ¢* = z/;*(F, H ,0) is thus of free-
energy-type in terms of the mechanical variable, but of free-enthalpy-type regarding the magnetic variable,
and hence the term free energy-enthalpy function is used here (see [7] for the related discussion of the
nomenclature in thermo-electro-mechanics, where the electric equivalent of this potential is referred to
as the electric Gibbs function.)
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Furthermore, its rate of change can be shown to result as

. 1 ;
potp™!"¢(H) = {_aﬂoj (C'":(HoH)F " +puJ (FTH® C‘lH)} - F
(42)
— ILLOg]CilH . H .

Substitution of —pgt)* = potp™7¢¢ — poW*, using (42), into the Clausius-Planck inequality
(37) yields after some algebraic manipulations

JDipe = lgP +F"H® (poM + 11opJC"'H) — %,uoj (C™': (Hw H)) F‘T} F
(43)
— Mo [M"—JC_lH] H—poq’* s

where isothermal conditions have been assumed for conciseness. Employing the consti-
tutive relation (28) and recognizing the first Piola-Kirchhoff-type Maxwell stress tensor
gP" from its definition (34), (43) takes the much simpler form

JDioe = [gP +gP"| . F—B-H — py¥* =0. (44)

Substituting the rate U* = 9p0* : F + 95 ¥* - H and again following the Coleman and
Noll argument, we arrive at the alternative set of general constitutive equations

gP' = pdpU* . B = —pydy " . (45)

The constitutive equation for the total first Piola-Kirchhoff stress tensor is thus given
simply in terms of the partial gradient of the amended energy-enthalpy function with
respect to the deformation gradient. Likewise, the partial gradient with respect to the
Lagrangian magnetic field yields the constitutive equation for the magnetic induction in
the material setting, with contributions from the field matter interactions as well as free
space. Relations (45) represent the basis for the construction of specific constitutive mod-
els of finite magnetoelasticity presented in Section 5. It should also be pointed out that
many other variations of thermodynamically-consistent constitutive equations, resulting
mainly from different choices of the set of independent state variables, have been dis-
cussed in the literature (see e.g. KANKANALA & TRIANTAFYLLIDIS [19] or DORFMANN
& OGDEN [12] for overviews.)

In addition to the requirement of thermodynamic consistency discussed above, the
constitutive equations must also satisfy the requirements of material objectivity and ma-
terial symmetry. The principle of material objectivity (PMO), also referred to as princi-
ple of material frame-invariance, requires that the material response be invariant under
changes in observer (see e.g. GURTIN [14]). From the so-called active viewpoint, this
requirement is equivalent to the statement that the energy stored in the system ought
to be unaffected by rigid-body motions of the form ;= Q(t)x + ¢(t) superimposed onto
the current configuration. Here, the proper orthogonal tensor Q(t) € SO (3) represents a
time-dependent rotation and the vector ¢(t) a time-dependent translation. Consequently,
the deformation gradient F'*, which maps tangents to material curves onto tangents of
the deformed and rigidly translated and rotated material curves, takes the form F*=QF'.
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The material magnetic field H, however, is unaffected by observer transformations in the
current configuration, since it is a Lagrangian field variable. For finite magnetoelasticity
in the two-point setting, the amended free energy-enthalpy function U* :\i/*(F, H) must
therefore additionally comply with the constraint

UH(F* H") =V (QF,H)=V*(F,H), VQ¢cS0O(3). (46)

In order to satisfy the objectivity requirement a priori, one can introduce the reduced
form of the free energy-enthalpy function®

U =V (C(F),H)=V" (F'gF, H) . (47)

With the orthogonality relation Q” gQ =g, it then directly follows

U (CH(F*),H") =V (F")"gF",H) = V" (F'Q"gQF . H) .

U (FT'gF,H) = V*(C(F),H) .

Textured and untextured poly-crystals, single-crystalline materials, many composites
and also materials with imposed directions of polarization or magnetization exhibit sym-
metries in their microstructure that must be taken into account in the construction of
constitutive models predicting their response. Furthermore, for magnetorheological elas-
tomers, which, as discussed, are essentially composites consisting of micron-sized magne-
tizable particles embedded in an elastomeric matrix material, we expect the response and
thus the energy-enthalpy function to be independent of the sign of the magnetic field, i e.

U(C,H)=¥*(C,—H) , (49)
which is automatically satisfied if one assumes
U (C,H)=V"(C,H® H) . (50)

The principle of material symmetry states that locally the free energy-enthalpy function
ought to be invariant with respect to rotations @ superimposed onto the open neighbor-
hood Ny C B of a material point X in the reference configuration, in case these rotations
are elements of the appropriate material symmetry group GCSO(3). Or in other words,
a magnetomechanical experiment involving the considered material should make no dis-
tinction between symmetry-related reference states. For the objective reduced form of the
free energy-enthalpy function this requirement is mathematically expressed as (see also
the discussion by STEIGMANN [30])

UH(C*, H*) = U*(QCQ",QH)=V*(C,H), YQecGcCS80O(3). (51)

Note that for an isotropic material the symmetry group is identical to the set of all
rotations, i.e. G=SO(3). From the combination of (50) and (51), one thus demands that
the free energy-enthalpy function, in order to satisfy objectivity, material symmetry and
invariance with respect to the sign of the magnetic field, satisfy the following constraint

I (QCQT,QH o H)Q") =V (C,H® H), YQecG. (52)

8Note that to keep the notation manageable, we have refrained from introducing another symbol for
the reduced form of the free energy-enthalpy function. The same policy will henceforth be followed where
appropriate.
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3.5. Fully-Coupled Boundary Value Problems

There exist two common approaches to solving boundary value problems in magne-
tostatics. The scalar potential formulation is based on the idea that, in the absence of
free electric currents, one can identically satisfy Ampere’s law, for example in the form
of (26b)s, by deriving the magnetic field from a scalar-valued potential ¢ according to
H = — Grad ®. One observes that Curl H = — Curl (Grad ®) = 0, since potential fields
(gradient fields) are curl-free (irrotational).” Problems involving general free volumetric
and surface electric current fields may be solved on the basis of a vector potential formula-
tion, in which the magnetic induction is defined as the curl of a vector-valued magnetic po-
tential ®,i.e. B=Curl ®. This definition identically satisfies the Gauss-Faraday law in the
form of (26a)s, i.e. Div (Curl ®) =0, since curl fields are divergence-free (i.e. source/sink-
free or solenoidal). While being more general, vector potential formulations suffer from
the disadvantage of non-uniqueness in three dimensional problems and their solutions may
contain spurious components (see e.g. [16, 29]). To overcome this problem, one must addi-
tionally specify appropriate gauge conditions, such as the commonly-used Coulomb gauge
Div® = 0, and enforce them for example via penalty-type methods. Furthermore, the
boundary conditions for vector-potential-based magnetostatic problems are much more
difficult to interpret from a physical standpoint. For these reasons, only scalar-potential
formulations will be employed in this work.”

To complete the formulation of well-posed boundary value problems in finite mag-
netomechanics, appropriate boundary conditions must be specified. To this end, one
considers the material body B depicted in Figure 15, whose surface is considered to be
subdivided into the non-overlapping segments 0B, and 0B;, such that 0B = 0B, U 0B,
and 0B, N 0B, € () from the mechanical viewpoint, and into the segments 9Bg and 0B,
with 0B=0Bs U0Bg and 0By NOBp € 0, in the magnetic case. There exists of course no
general restrictions on how the mechanical and magnetic surface segments might overlap.

The appropriate Dirichlet and Neumann-type mechanical and magnetic boundary con-
ditions to be applied to the respective boundary segments are given by

p=@, ondB,, PN =t', ondB,, (53)
d=0, onBs, B-N=DB, oniBg.

It has further been assumed, as depicted in Figure 15, that the body may contain a
discontinuity surface I'y over which the magneto-mechanical field variables can suffer
jumps. For the following considerations we restrict ourselves to material surfaces, i.e.
surfaces that consist of material points and thus possess no relative velocity compared to
the material coordinates. The appropriate jump conditions can directly be derived from

9In some cases the free current field may be simple enough, for example a spatially homogeneous
current with a particular direction, that it is possible to also use the scalar-potential formulation by
amending the potential in the form of ® — ® + ®7s, where ®’f is constructed such that its gradient is
identical to the desired free current field.

10For homogeneous isotropic materials, described for example by the constitutive relation B = uH,
where p is the permeability of the material, the magnetostatic problem in the scalar-valued formulation
reduces to the Laplace equation A® = 0 and consequently ® is said to be harmonic. In the vector
potential case one obtains, using the identity Curl(Curl ®) = Grad(Div ®) — A®, the inhomogeneous
Laplace or Poisson equation p 'A® = —J ¢, where A[-] is the vector-valued Laplace operator. For
current-free cases, ® satisfies the vectorial Laplace equation and is thus harmonic, which also implies
that it is simultaneously divergence free (solenoidal) and curl-free (irrotational).
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Figure 15: Visualization of the mechanical and magnetic boundary conditions on the sur-
face segments 0B=0B,U0B; or 0B=0BsU0IBg of the body in the reference configuration.

the global balance laws introduced in the preceding sections, by considering a generic
material volume containing a discontinuity surface and taking the limit as the volume
goes to zero. In the material setting they are given by

[e]=0, [PN=0, [®]=0, [B]-N=0, only. (54)

The notation is such that the jump of a scalar, vector or general tensor quantity A
is defined as [A] := A" — A~ where the sign superscript indicates the positive and
negative side of the discontinuity surface with respect to the unit normal IN. It should
be pointed out that the continuity condition (54)s, imposed on the magnetic potential,
also guarantees that the tangential component of the magnetic field is continuous over
the interface. Note also that for material surfaces the boundary conditions (53) can be
considered as special case of the jump conditions (54).

We have thus completed the derivation of the geometrically and physically-nonlinear
problem of (static) magnetomechanics at finite strains. The complete set of the associated
governing equations is summarized in Box 1.1}

3.6. Variational Formulations of Finite Magnetoelasticity

Alternative approaches to the modeling of coupled boundary value problems in finite
magnetomechanics can be derived by means of variational principles. Such approaches
are not only advantageous due to their mathematical elegance and conciseness, but also
because they naturally provide a basis for numerical methods, e.g. finite element discretiza-
tions, and automatically lead to symmetric tangent matrices, such that fast symmetric
solvers can be employed in the numerical solution of the considered highly-nonlinear prob-
lems. With these advantages in mind, we consider the following stationarity principle

I(p, —®) ::B/\I/*(F(go),H(—@)) dv —88/?, cpdA _33/ B-®dA — stat. (56)

HThe specific free energy-enthalpy function has now be redefined to be measured per unit reference
volume, instead of per unit mass as before. For conciseness, we have refrained from introducing another
symbol.
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Box 1: Summary of the Finite Deformation Magnetomechanical Boundary
Value Problem in the Two-Point Setting and Scalar Magnetic Potential For-
mulation.

1. Kinematics

F =Grady , H = —-Grad® . (55a)

2. Equilibrium equations/Gauss-Faraday law
Div P' + poI' = 0, DivB=0, inB. (55b)

3. Constitutive relations

A

gP!' =9, 0"(C(F),H) B=—-0yqV"(C(F),H). (55¢)

4. Boundary conditions

p=¢@, ondb,, P'N=t', onodB,
d=0, onbBs, B -N=B, ondBg. (55d)

5. Interface jump conditions
[pl=0, [PIN=0, [?]=0,

[B] - N=0, only. (55e)

It is demonstrated in Appendix A that the Fuler-Lagrange equations of the variational
problem (56) coincide with the field equations and boundary conditions of the magneto-
mechanical problem (55) summarized in Box 1 in Section 3.5.

The necessary condition for the stationarity of (56) requires that its first variation
vanish. Using the definitions 6 F = Grad d¢ and dH = Grad 6(—®), and enforcing the
essential boundary conditions ¢ = i on B, and & = & on dBg, one obtains the following
expression

SI(p,5p, —®,5(—D)) = / [aF\i/* : Grad ¢ + O U - Grada(—@)] %
B

—/Zt~(5cpdA+/B-5(—®) dA £ 0.
B¢ 0Bp

(57)

Note that (57) represents the weak form of the coupled problem on the basis of which the
finite element model will be constructed in Section 4. One may also interpret (57) as the
specific form of the principle of virtual work for the considered problem. The first term



Introduction to Continuum Magnetomechanics at Finite Strains 26

on the right-hand-side of (57) then represents the internal virtual work associated with
changes in the material and free space energy storage due to virtual changes of F' and
(negative) ®. The remaining terms represent the associated external virtual work of the
prescribed traction and normal component of the magnetic induction fields, respectively.

To find the roots of the geometrically- and physically-nonlinear problem (57) one typ-
ically employs a Newton-Raphson-type iteration scheme, for which one must compute
the linearization of the weak form. Defining G :=4§1I to simplify the notation, assuming
that the prescribed surface tractions and magnetic induction components are indepen-
dent of the deformation (i.e. dead loads), and linearizing the weak form about the point
(Lfo, 5p, —®, (5(—@))), it follows

LinG (¢, 00, Ap, —®,6(—®) ,A(—P)) = G (@,0p, —P,0(—D))
+ALG (@,00,Ap, —0,0(—D)) (58)
LA G (@.6p,—B.5(—B) , A(~)) .
where the increments are specifically given by

ALG :/ [Grad 0 : 0%p U - Grad Ap + Grad §(—®) : 940" : Grad Ago] av, (59)
B

ACeG :/ [Grad&o : 02U : Grad A(—®) + Grad 6(—®) : 92, 50" GradA(—CD)] av.
B

One easily observes the common structure of the mechanical and magnetic terms in
(56), (57) and (58). Motivated by this observation one may write the variational principle
(56) in the following compact notation form

I(w) ::/@*(@(u))dv—/i.udA _ stat. | (60)
B 0Bz
where we have introduced the generalized primary variable vector w := [, —¢]T, the

generalized deformation gradient & := Gradu = [F, H]T and the generalized prescribed

= —t =T
traction vector T := [tt, —B] . The necessary condition for the stationarity of (60) can
then similarly be written as

01 (u, du) :/86@*~Grad5udV— / T SudA=0. (61)
B 0Bz
The constitutive relations, which are needed for the evaluation of (61), have been specified

in (55c). Denoting the generalized stress tensor by s = [Pt, —B]T, these relations read

§=0,V*(®). Finally, the compact notation equivalent of the linearized weak form (58),
also substituting the increment expressions (59), is given by

Lin G(u1, 6, Au) = G(1, 61) + / [[Gradéu]T~8é®\iJ*~GradAu} dv — / T-oudA. (62)

B 0Bx
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4. Numerical Implementation of Finite Magnetomechanics

Since analytical solutions for the geometrically- and physically-nonlinear boundary
value problems of finite magnetomechanics can be derived only for a limited number of
special cases, computational methods must be employed in general. In this section a
finite element model is proposed which allows the computation of approximate numerical
solutions to the variational problem (60), described in Section 3.6.

Figure 16: Isoparametric mappings between the element parameter space A° and the
associated finite elements B¢ C B" and ¢ CS" in the Lagrangian and Eulerian settings.

In the standard finite element approach the spatial discretization of the continuum
body B is based on its approximate subdivision into a set of n.; finite elements B¢ C B",
such that

B~B'= A B (63)
e=1

where the symbol A<, denotes the standard finite element assembly operator. One
further defines a reference element A° with local coordinates 6, as shown in Figure 16.
The coordinates of the element in the material setting X" € B¢ and the spatial setting
x € 8¢ are then described by the isoparametric Lagrangian and Eulerian parameter maps

. A¢ — B B", A®— S¢St
X = . ) xy = : (64)
60— X"=X(0) 0 +— x" = 2,(0)

These mappings approximate the material and spatial coordinates on the basis of the
standard expressions

X~X"=X(0)=> N*0)D*=N(0)D (65a)
a=1
rra=12,0)=> N*O0)d; =N(0)d, (65b)
a=1

where n,,., denotes the number of nodes per element, N represents the matrix of shape
functions parameterized in the local coordinates € € A° of the finite element parameter
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space. The vectors D € R4m e and d, € R4 e where dim € {1,2,3} are the spatial
dimensions of the considered problem, contain the discrete Lagrangian and Eulerian nodal
positions of element B¢ at time ¢, respectively. Based on the introduced approximate
mappings and again referring to Figure 16, the deformation map can be expressed as

PHX") =20 X  =a,(0(X") . (66)
One may further define the gradients
J:=0,X=19 rz N“(Q)Da]:% D ® 9yN*(0), with J*; = ox4 :nz N%(D*)*
’ ’ a=1 a=1 ’ ’ Z aez a=1 ' ’
' ) Nnpe R N N Nnpe N R N . y ai'a Nnpe R N o
o = g = ao[Z;N o) |- > i p6), with %= G = 3 Wi

Note that, based on the chain rule, the above mappings may be utilized to related deriva-
tives in parameter space to derivatives in the reference and current configurations via

Grad N =J T9,N ,  grad N =5,79,N . (67)
With these definitions at hand, the deformation gradient is approximated as
F! = Grad !(X") = Grad [#,(8(X"))] = 0pt, 0510 = j,J ' = Bd, .  (68)

The matrix B (X") contains the derivatives of the shape functions with respect to the
Lagrangian coordinates X".'? Following the isoparametric concept, in which the geometry
and the field variables are approximated over the element domain by the same set of shape
functions, one can approximate the scalar magnetic potential, completely analogously to
(65), as

Nnpe

—® ~ —0" = 0,(0) = Y N*(0)(df)* = Ndy . (70)
a=1

where the vector d;b contains the (negative) magnetic potential value at the different
nodes at time ¢.

Utilizing again the compact notation concept that was used for the concise representa-
tion of the variational problem (60), we introduce the generalized nodal degree of freedom
vector 9 € RN+ “which contains the current nodal positions d; and negative magnetic
potential values d at time t at all N nodes of the mesh in an assembled format. Note
that we have dropped the superscript ¢. It is henceforth implied that all discrete variables
are evaluated at the current time ¢, or more accurately at the discrete time ¢, at the
end of the current time interval. The discrete generalized primary variable vector and
discrete generalized deformation gradient are then computed from the relations

u’ = 2No , &' = Grad [uh} =B, (71)
12The compact notation matrix relation F? :Bdt is to be interpreted in the sense that
. Nnpe aNO‘ S Nnpe . 8Na Nnpe o
FA:Z 901 (di)*(J 1)A:Z(d?)M—A:Z(d?)BA. (69)

a=1 a=1 a=1
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where 9T and B are the generalized shape function and their associated gradient matri-
ces. By defining the analogous approximations éu” = 9160 and Grad [5uh} =B §0 and
substituting into (61), one obtains the discrete equivalent of the necessary condition for
stationarity in the continuous setting as

5Ih:/sh-%Téde—/‘I-*)TTébdA::Ifg-cSD:O, (72)

B 0Bz

where the finite element residual vector has been defined as

R:=140) = /aBTsh dV — / N'TdA=0. (73)
B OB

Equation (73) represents a nonlinear algebraic system for the determination of the gen-
eralized displacement vector 0 of the coupled magneto-mechanical problem. To find the
roots of the nonlinear problem R = If%(b) = 0, an iterative solution procedure must
be employed. Following a standard Newton-Raphson scheme, one obtains the following
update relation for the nodal degree of freedom vector

0 [I,@)] ') =0 - /'R, (74)

The iteration procedure is terminated if the norm of the residual falls below as certain
tolerance, i.e. ||| <tol. In the preceding expressions we have utilized the definitions of
the finite element tangent matrix

R:=T140) = / BB av (75)
B
where we have assumed dead loads, and the discrete generalized stresses and discrete

coupled moduli . .
s = ®h¢*(%a) ) ¢ = éh@ﬂ/}*(%a) : (76>

It must be emphasized that due to the chosen variational formulation the tangent matrix
K is automatically symmetric, and consequently solvers for symmetric linear systems of
equations can be employed in the iterative solution procedure of the nonlinear problem.
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5. Constitutive Models of Finite Magnetoelasticity

In this section three specific constitutive models for finite magnetostriction are pro-
posed: i) an extended compressible Neo-Hookean model, ii) an anisotropic extension of the
first model and iii) an isotropic model with saturation of the magnetomechanical coupling
effect. These model are presented in a coordinate-independent formulation, which is based
on the framework of invariant theory, which shall be introduced next.

5.1. Invariant Theory of Isotropic Tensor Functions

According to representation theorems for isotropic tensor functions (see for example
BOEHLER [1]), scalar-valued isotropic functions ¥* of two symmetric second order tensor
arguments C' and H ® H, i.e. \i/*(C', H ® H), allow representations based on the irre-
ducible polynomial basis given by the combined set of mechanical, magnetic and coupling
invariants

T:={L,....Is} ={tr[C]g,tr [Cz}G,l, det[Clg-1,tr[H @ H| g1, -
tr[C(H @ H)] g, tr[C*(H ® H)] ;. }

where det[C|5-1 has replaced the invariant tr [C’g] o1 for convenience. This is possi-
ble since, by means of the Cayley-Hamilton theorem, one can express det[Cls-1 as a
polynomial of the invariants tr[C]g1, tr[C?] o1 and tr [03]G_1.

In combination with the discussion of thermodynamic consistency in Section 3.4, the
objective free energy-enthalpy for a general isotropic hyperelastic magnetic solid can be
written as

U (C,H ® H) = (7). (78)

Constitutive equations of the general form (78) thus a priori satisfy the material symmetry
constraint (52) on the reduced form of the free energy-enthalpy function for isotropic

materials where G=SO(3).

From the general constitutive relations (55¢), one then obtains the constitutive rela-
tions specified for general isotropic hyperelastic magnetic solids in terms of the total first
Piola-Kirchhoff stresses

gP' = 0,V*(C, H) = 2gF V"
—92gF [\i/j}l Ik + W, Opls + W, Ol + U, Ol + V7 Opl; + 07, 8016]
=2gF [xifj}lcfl +29,,GT'CGT + LV, CT + U, G'Ho GT'H (79)
120 sym [GTH © GT'CGTH]|

where the last step was based on the calculation of the partial derivatives of the invariants
(77) with respect to the deformation gradient. Similarly, for the Lagrangian magnetic
induction one finds
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B = —9,V*(C,H)
= —0,, U 0gly — 0, V" Oy Ly — Op, V" Opy Iy — 0y, V" Opg Iy — 0y, U Oy I — 0y, U™ Ogr I
=2\, G+ V. G'CGT + 1, GT'C*GT | H . (80)

5.2. An Extended Compressible Neo-Hookean Model

As a first example we consider the extension of a classical Neo-Hooke material to
incorporated magnetizability of the material and magnetomechanical coupling effects.
To this end the magnetic invariant /4 is included in the free energy-enthalpy function to
model the magnetic behavior and in variant 5 to capture the macroscopic influence of the
micro-scale magnetomechanical particle-matrix interactions in a phenomenological sense.
Following the decomposition of the amended free energy-enthalpy function into material
and a free space contributions (40), its specific form for the extended compressible Neo-
Hookean-type model of finite magnetostriction is proposed as

U = UX(F, H) = *(F, H) + "/ (H)
A _1 1
= g([l — lIl[Ig] —3) + g(lﬂ[[g])2 —f- 01[4 —f- 0215 — %13 2 IG — 11]5 —f- 5 (112 — IQ) ]4
— g(GilC —3) — pln[J] —I—% (In[J])*+ (G + G 'CG™") : (H® H)
1
—WOJC*1 (He® H) (81)

where p and A\ are the Lamé parameters (u is also called the shear modulus), ¢, is the
magnetic coefficient related to the permeability of the material and ¢, is the magnetome-
chanical coupling coefficient.

By evaluating the partial derivatives of (81) with respect to the invariants and substi-
tuting into (79) and (80) one then obtains the specific constitutive equations

gP'= 0.V =uFG '+ (A\n[J]-p) F "G + 2,FG'H® G 'H

+oJ(FTH @ C™ H) — % J[C (HoH) FT (82)

B=-0yV" = —20G'H - 26,G'CG'H + jypJC'H . (82b)

It must be pointed out that typically the free space contributions to the free energy-
enthalpy function are considered small and are therefore neglected in computations. In
some cases, however, where for example the magnetostatic attraction of the magnetized
iron particles on the microscale is to be modeled directly, free space terms are essential
(see discussion in KIEFER, ROSATO & MIEHE [22]).

5.3. An Anisotropic Compressible Extended Neo-Hookean Model

As discussed in Section 2, some magnetorheological elastomers have the magnetic
particles aligned in a preferred direction. In order to take into account this anisotropy,
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we use the standard method of introducing a structural tensor M = a ® a where a is
the preferred direction. Thus we make use of an isotropic free energy function with an
extended list of arguments to model isotropy.

T .= {[1,..,[11} .

That is, in addition to the six invariants needed as a polynomial basis for the free energy
function for an isotropic material, we have,

I; = w|(HH)CM|_.,, Is = tr[(H® H)C’M|
IlO = tl"[CQM]G,l, Ill = tr[H®a]G71.

G-’ [g = tr[CM]G_l

For simplicity, we take no dependence of ¥ on Ig....I1;

A
U = g([l — 3) — gln[fg] +Z(h’1[[3])2 + C1[4 + 62[5 + C3[7 . (83)

Accordingly, we have the following derived quantities
gP'= 0V =uFG "' — yF ' G+ \n[J]JF "G +2,FG'H® G 'H
+c;FG™'sym[H @ MH], (84a)

B=-04V=-20G'H - 26,G'CG'H
—csG7' [(CM)"H + CMH| . (84b)

Thus, in addition to the material parameters in the isotropic case, we have an additional
material parameter ¢3 which may be viewed as a measure of the coupling in the preferred
direction.

5.4. An Isotropic Model with Saturation of the Magnetomechanical Coupling
Effect

Tests done on magnetorheological elastomers show a ‘saturation effect’. This is at-
tributed to the existence of a saturation value of magnetization of the embedded iron
particles. With increasing applied field H, the magnetization of these particles increases
up to a certain saturation value mg,,. After this point, any increase in applied field does
not have any further stiffening effect on the material. In order to take the above effect
into account, we modify the free energy function to

1

1\k
¥ = £ o+ b 1)] [ L

2k

k‘ — 1:| — %hl[]g] +%(1D[Ig])2 —f‘ f(I_4) 3 (85)

where we have used a dimensionless form of I, as,
I =1,/¢ . (86)

Here f(I,) is physically interpreted as the energy in the undeformed configuration (in
which there is a residual stress due to the presence of the magnetic field). It is convenient
to assume a form for f such that f’'(l) is given by

f/(I) = =€l sech®(I]) + £6p tanh(I3) — &g . (87)
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The reason for the particular form of f is so that, like shear modulus, we also have the
the magnetic induction B reaching a maximum value independent of H. The above free
energy function give us the resulting constitutive equations as

g (L =1\""
gP' = 0,0 = [MO—I—MSGttanh(If)} ( 12 > FG™!

—uF TG+ \n[J|F TG, (88a)
* Tn—1 2/ 7T n:usat [1 - 1 F -1
B = — 0y V" = -2} "sech”(1}) ke 5 -1 +2y%, G H
—28tanh(I7) G 'H + 250 G'H . (88b)

In this model, pg is the shear modulus of the material at zero magnetic field and pisq;
is the maximum increase in shear modulus (due to magnetic field). The parameter g
is now the coefficient related to the magnetic permeability of free space while o and
are additional parameters related to the purely magnetic part and describe the material’s
magnetic response. The remaining parameter &, is a scaling factor related to the coupling
of magnetic and mechanical response.

With these expressions above we can code the different material models to obtain a
finite element solution. However, before we do that, we will test the material models with
some driver tests. The results of these tests are the first part of the next section.
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6. Numerical Results

6.1. Driver Tests

To test the proposed models, we would like to see the response to some simple defor-
mation driven tests at the material point level. To achieve this, we present below, the
driver algorithms used to evaluate the materials response to some simple deformation
processes. The results of the driver tests should help us analyze the results of boundary
value problems presented later in this chapter.

6.1.1. Simple Shear Driver. It is of interest to see how the response of the model
to shear deformation is altered by the magnetic field. To observe this we need to apply
a shear deformation at different magnetic fields and look at the stress response. We can
then plot shear stress vs. shear strain for these different magnetic fields as shown later.
In a cartesian coordinate system, given the shear deformation

Fupr = Fly(tata) (89)

at constant magnetic field in y- direction,
H,.1 = H, (90)

we want the equivalent stress component
Pt = P(Fpps, Hop) (91)

The above are scalar quantities but our material law gives us tensorial quantities. The
key step here, is the partitioning of the strain tensor as follows

F?’H—l = Fn+1€1 X E2 + Fn-i—l (92&)
Hn+1 = ]—In—i—l-E2 + ﬂn—f—l (92b)

where, in the present case of shear deformation and constant reference magnetic field,

Foy=1 (93a)

and

ﬂn+1 - 0 (93b)

Using F', 11 as above, in the constitutive model, we obtain P, ;. Thus we are now able
to determine the response of the model to shear deformation. The above algorithm is
concisely presented in Box 2.

Using the driver, we obtain the plots of shear stress vs shear strain for the different
models that have been proposed here.

6.1.1.1. Extended Isotropic Neo-Hookean Material Model. For this model, we
plot the shear stress vs. shear strain ie. P2 vs F'!, for different magnetic field strengths,
in Figure 17(a). By observing that the slopes of the stress-strain graphs increases with
increasing magnetic fields, one can conclude that the response of the material becomes
stiffer at higher field strengths. Thus, this model captures Feature 1 and Feature 2 stated
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1. Given F, ., = F'(t,41) and H, ., = HyE? (constant).Set
F, ,=F,=1
2. Calculate the total deformation as
Foo1=F,e.E*+F, .,

3. Calculate the algorithmic stresses from the material routine
Lt
me+1 =P (Fp1,Hpp)

and go back to 1. for next time step.

Box 2: Driver algorithm for simple shear.

Table 1: Material Parameters for Isotropic Neo-Hookean model.

k = 4.0 x 10> N/mm? c1 = -25x107°N/Amm

p = 1.8 N/mm? o = 50x1072N/Amm

in Section 1, i.e. the material is Neo-Hookean with increasingly stiffer response for higher
magnetic fields.

However, the results of the driver also bring out the main drawback of the model- the
model gives a monotonically increasing stiffer response with magnetic field which implies
that Feature 3, i.e. saturation of the shear modulus, is not captured. This can be verified
by plotting shear modulus (G) vs. magnetic field, which has been reported for this model
in Figure 17(b). The material parameters used in the simulation are stated in Table 1.

6.1.1.2. Transversely-Isotropic Material Model. Similarly, the results of the
shear test driver on the transversely-isotropic model, are displayed in Figure 18 and
Figure 19. In the case of the transversely-isotropic model, the model exhibits Neo-Hookean

Table 2: Material Parameters for transversely-isotropic model.

k = 4.0 x 103> N/mm? o = 0.0N/Amm
p = 1.8 N/mm? 3= 5.0x1072N/Amm

c1 = —25x 107 N/Amm
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(a) Shear stress vs. shear strain at varying H

10 T T T T T T T T T

AG

o 1 2 3 4 5 6 7 8 9 10 11
Hy

(b) Shear modulus vs applied H

Figure 17: Simple shear of isotropic material model

behavior when the chains are aligned perpendicular to the magnetic field with the stress
strain curves in different magnetic fields falling on top of each other (i.e. no effect of
magnetic field on shear modulus G). However, when the chains are aligned in the direction
of the magnetic field, the coupled behavior is 'switched on’ and the material stiffens with
increasing field strength. This is the desired response of the model since this coincides
with experimental observations in [31]. The material parameters for the simulation are
displayed in Table 2.

6.1.1.3. Saturation Type Material Model. The Isotropic Neo-Hookean model
above, has the drawback that the stiffening effect monotonically increases with applied
magnetic field strength whereas, in reality, it should approach a saturation value. In order
to overcome this we have introduced the Saturation type model. We now use the driver to
show the properties of this new model. The stress-strain plot is shown in Figure 20. It is
seen that the shear modulus reaches a saturation value as the magnetic field is increased
beyond a certain value. Thus this model successfully captures all the features i.e. Features
1,2 and 3 that we stated in Section 2 for the materials with isotropic distribution of iron
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Figure 18: Simple shear of transversely-isotropic material model with H perpendicular to
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Figure 19: Simple shear of transversely-isotropic material model with H parallel to pre-
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particles in the matrix i.e., in addition to the stiffening response, we also capture the
saturation of the shear modulus with increasing magnetic field. The material parameters
used for the simulation are listed in Table 3.
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Table 3: Material Parameters for Saturation type model.
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Figure 20: Simple shear of Saturation type material model
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2.06 N/mm?
3.41 N/mm? ¢ = 10.0kA?/m?
0.49 x 1075 N/A? ko= 075

5.0 x 1077 N/A? n o= 2

g0 = 6.2857 x 1077 N/A?
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6.1.2. Uniaxial Tension Test Driver. Another test of interest is a uniaxial test
in constant magnetic field in which the stress state is one dimensional. Since this is
deformation driven, the material is stretched along one direction, say the y-direction, and
the other components of F' are adjusted so as to allow a 1-D stress state

Clearly this requires an iterative procedure and is achieved as follows. Once more,
working in a cartesian coordinate system, given the axial deformation

Fop1r = Fhi(tos) (94)
the axial component of the stress
Pop1 = P (tns1) (95)

is desired. We have the following partitions as

Foi=F.e@E' + F,, (96a)
H,,=-H, .E'+H,,, (96b)
PnJrl = PnJrlel & El + PnJrl (966)

In this case, H,,; is a constant since we want to see the response in constant magnetic
field. Now with F' and H we call the material subroutine and obtain the stress and
moduli. For a 1-D stress state, we should satisfy

R, =P, =0 (97)
We have to solve the following equation
Rn+1 + A1%n+1 = PnJrl + AnJrl : AFTL+1 =0 (98)

where A, == 0F, 1 / 871_3“1 is the partition of the moduli associated with P, ;. This
gives us the update for F',,; as follows:

Fopn<Fo+AF,  =F, 1 +A P, (99)

In every iteration step the material routine is called until the convergence criteria is
satisfied ie.

[ R || < tol (100)

The algorithm is concisely presented in Box 3 The results of the uniaxial tension test
driver for the different models are presented below.

6.1.2.1. Extended Isotropic Neo-Hookean Material Model. Figure 21 is the
plot of P?? vs F, for this model. The values of bulk and shear modulus are 10.0N/mm?
and 5.0N/mm? respectively, while the values of ¢; and ¢, are the same as before. It is seen
that the stress-strain plots have higher slopes for higher magnetic fields which is what is
expected. The same explanations as stated in the shear driver tests hold here- increasing
magnetic field leads to increasingly stiffer response.
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1. Given F,, = Fyi(tny1) and H, ;1 = H;E" (constant).Set
Fn—i—l - Fn
and

2. Calculate the total deformation as

Fn+1 = Fn+lel ®E1 ‘I_Fn—l—l

3. Calculate the algorithmic stresses and moduli from the material routine
(three dimensional)

t

PZH = 15 (Fn-i—laHn—I—l)
AnJrl = aFn+1P(Fn+17Hn+1)

4. Extract the stress and moduli for the transverse part

Pfl-l—l = Pt—Pn+1€1®E1
AnJrl aj:‘n+1P(Fn+17Hn+1)

5. Update the transverse deformation as

_ _ L
Fryi <= Fno— AL Po

6. Check for Convergence. If (|| P} || > tol) go to 2.

Box 3: Driver algorithm for simple tension.

6.1.2.2. Transversely-Isotropic Material Model. Similar to the shear test re-
sponse, the relative directions of the chains and the magnetic field determine the extent
of the magneto-mechanical coupling. When they are perpendicular to one another the
coupling is absent. The values of bulk and shear modulus are 10.0N/mm? and 5.0N/mm?
respectively, while the values of ¢; and ¢, and c3 are the same as before. while the plots
are in Figure 22.

6.1.2.3. Saturation Type Material Model. Once again, since the above models
do not capture the saturation effect on stiffening response of the material, we look at the
Saturation type model. It can be seen in Figure 24 that the saturation effect is captured
since the plots of stress vs. strain are apart for the lower values of magnetic field but then
almost coincide for the higher magnetic fields. The material parameters are the same as
before.

It is important to note that the material parameters have been chosen after a parameter
identification process using a Sequential Quadratic Programming (SQP) algorithm for
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Figure 21: Simple tension of Neo-hookean material model solicited in the direction of the
magnetic field
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Figure 22: Simple tension of transversely anisotropic material model solicited in the two
different directions with respect to the magnetic field. Chains aligned perpendicular to
magnetic field

constrained optimization. This way, we may emphasize that the results obtained, capture
the real response of the material not only qualitatively but also quantitatively.
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Figure 23: Simple tension of Transversely anisotropic material model solicited in the two
different directions with respect to the magnetic field. Chains aligned parallel to magnetic
field
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Figure 24: Simple tension of Saturation type material model.
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6.2. Selected Boundary Value Problems

6.2.1. Shear test at constant reference magnetic field. Literature on the on
the characteristics of magnetostrictive elastomers although scarce, primarily focusses on
the change in shear modulus of a specimen with magnetic field. For example, Figure 3
in Section 2 taken from JOLLY ET AL [17] shows (a) the experimental setup used for
measuring change in shear modulus, and (b) the result obtained for one of the double lap
shear specimens. Here, the specimen, sandwiched between two plates is subjected to a
shear deformation while a magnetic field is applied in the vertical direction.

The above motivates us to consider a boundary value problem of the type shown in
Figure 25. Here, we specified displacement on the upper and lower edges and a constant
potential difference is applied across these two edges. The results of the Finite Element
simulation for potential differences of A® = {1 x 798.5 A, 2 x 798.5 A and 5 x 798.5 A}
are displayed in Figure 26. The values of A® used in the simulation are chosen such that
they, correspond to magnetic field strengths of H ~ {0.1 T, 0.2 T,and 0.5 T}.

v T T T II|ITv 7 7 777 _

magnetostrictive
material

100 Ad

1 10.0 }

Figure 25: Definition of the boundary value problem to study shear stress distribution
of the magnetostrictive block deformed in the presence of a constant magnetic field. All
dimensions are in mm and u, = 1.0 mm

Figure 26 shows the results of the Finite Element simulation where the material is
modeled with the isotropic Neo-Hookean-type free energy-enthalpy function. The shear
stress distribution is displayed at three different magnetic fields. It is clearly observed that
higher shear stresses result from higher magnetic fields. Physically, this is the expected
response since on increasing the applied magnetic field, the magnetization of the iron
particles embedded within the matrix increases. This results in increased magnetic forces
of attraction between particles that stiffens the material resulting in greater stresses for
the same deformation.

From a modeling viewpoint, a higher magnetic field raises the free energy-enthalpy
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Figure 26: Finite element simulation results for shear of block of Neo-Hookean type ma-
terial. The above are the plots of shear stress P'%¢ at different magnetic field strengths.

(81) of the material and similarly, the stress expression defined by (82a) shows that the
stress must increase. This is also in accordance with the driver test for shear deformation

in the previous subsection.
6.2.2. Magnetostrictive Material in Free Space. Boundary conditions play a
KIEFER, KARACA,

very important role in Thermo-Magneto-Mechanical experiments.
LAcoUDAS & KARAMAN [20] describes an experimental setup for studying magnetostric-

tive materials. In reality, magnetic boundary conditions are not applied on the surface of
the material but rather, in the adjoining 'free-space’ as explained in Section 2.3.
This motivates to also model the free space surrounding the material in our boundary
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value problem and apply the boundary conditions on this free space rather than directly
on the material domain. The free-space is modeled as a material with very low elastic
stiffness- of four orders of magnitude lower than that of the magnetostrictive material.
In the boundary value problem presented below we have a magnetostrictive material
surrounding a hard inclusion which is placed in a ’free-space box’.

The results of the simulation are shown in Figure 28 where we have used the isotropic
Neo-Hookean-type free energy enthalpy function and we can see that the magnetostrictive
material shrinks around the hard inclusion due to the magnetic field. This simulation

magnetostrictive ‘ X
material ‘ N

]

10.0 30.0 Ad

free space ‘ P

\“>
D
I

I
2, B0 o T, 0 P,

~

Figure 27: Definition of the boundary value problem with free space. Symmetry of the
problem is exploited so as to compute the solution on the shown ‘half mesh’ and results are
mirrored on the symmetry axis.

shows a more realistic solution in the sense of the boundary conditions being applied.

6.2.3. Magnetostrictive Material for varying the stiffness of a suspension
bushing. A bushing is a type of bearing or a cylindrical lining designed to constrict
motion of mechanical parts. A recent application of magnetostrictive materials is in
imparting an increased controllable stiffness to bushings as described by WATSON [34].
Here, a magnetostrictive elastomer is interposed between the inner and outer cylinders of
the bushing and a coil is disposed about the inner cylinder . When the coil is energized by
electrical current a magnetic field is generated under whose influence, the stiffness of the
magnetostrictive material changes which means that the bushing is imparted a variable
stiffness. In order to model a similar situation, we have the boundary problem as shown
in the following figure. We now solve the problem for two cases. In the first case, there is
no magnetic field while in the second case, the magnetic field is applied in the y-direction.
In both cases a force in the y-direction has been applied at the center of the rigid circle
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) Deformation at H ~ 1.0 T ) Deformation at H ~ 1.5T
) Deformation at H ~ 2.0 T ) Deformation at H ~ 2.5T

Figure 28: Finite element simulation results at different magnetic fields of the deformed
mesh for magnetostrictive material with a hard inclusion in free-space. Symmetry has been
exploited to show results.

as shown in Figure 29.

The mesh when deformed to the maximum extent for both cases has been shown in
Figure 30. The simulation gives the expected results. In the presence of the magnetic
field, the increased stiffness of the material causes the mesh deform to a lesser extent than
it does when the magnetic field is zero.
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Figure 29: Mesh and definition of the boundary value problem. A force is applied at the
center of the hard circular inclusion in a cyclic manner as shown in the figure.

Figure 30: Finite element simulation results of the deformed configuration at (a) no mag-
netic field and (b) magnetic field of approximately 0.03 T
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6.2.4. Bi-Material (Finger) Actuator. Another use of magnetostrictives materials
is in the field of robotics. Since these materials deform on the application of magnetic field,
they may be used in making finger actuators. Typically deformations in such applications
are large and this is an area where finite strain modeling is required. In the example
that follows, we model a finger as a composite bar and show how the bar deforms under
application of magnetic fields. The example shows that finite strain modeling is indeed a
requirement from a practical perspective.

A
1 10.0 |
VAY £ f
VAYAY AN K
magnetostrictive elastic
material material

Figure 31: Mesh and definition of the boundary value problem. A monotonically increasing
magnetic potential difference A® is applied between the ends of the composite bar and the
displacements at the right end are fixed.
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Figure 32: Deformed configurations of the composite bar at different applied potential
differences A®.
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7. Conclusions

In the work presented, a consistent finite deformation framework for the description of
magnetizable continua was derived with a focus on the fundamental geometric mappings of
mechanical and magnetic field variables, extended balance laws and Maxwell’s equations,
magnetic body force, couple and energy source terms and Maxwell’s stress tensor concept,
boundary and jump conditions, magnetic potentials and variational formulation of the
fully coupled problem.

Additionally, a discussion of constitutive theory for finite magnetostriction was pre-
sented with the key aspects being thermodynamic consistency, choice of thermodynamic
potential, objectivity, material symmetry, geometrical and physical nonlinearities, and
anisotropy. With this as background, three different models- an extended compressible
Neo-Hookean model, an anisotropic compressible extended Neo-Hookean model and an
1sotropic model with saturation of the magnetomechanical coupling effect have been pre-
sented so as to successfully capture the main features of magnetorheological elastomers.
We have also presented driver algorithms for observing the response of the proposed ma-
terial models to simple tension and shear tests. To this end, we have also shown in the
internship report with the title Implementation of a Parameter Identification Algorithm
for Finite Magnetostriction Models, how the driver algorithms are used in a nonlinear op-
timization algorithm in order to obtain an optimal set of parameters to fit experimental
data.

Finally, finite element solutions of technologically relevant fully-coupled two-dimensional
boundary value problems have been presented and discussed.
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A. Additional Derivations

A.1. The Euler-Lagrange Equations of the Variational Problem (56)

The starting point is the necessary condition for stationarity of the variational problem,
expression (57)

5I(p, 0, —®,6(—D)) = / [aF@Z)*;Gradagommzi*-erada(—cp) dv
B

—/tt-égodAJr/B-é(—@) dA £ 0.

OB oBp
Using the identities
dp)* : Grad d¢ = Div [(aF@z}*)Tago] ~ Div [aF@z}*} S (101)
Opt)* - Grad 6(~@) = Div [ 8(~@) Igrt6* | = 6(~@) Div [9p0"] (102)

and subsequently applying the divergence theorem, it follows for the first term on the
right hand side of the stationarity condition, which we denote as T1

T1 = B/ { Div [(GF@Z)*)T&O] — Div [GF@Z)*} -0 + Div [5(—®) aH@Z)*}

—5(—®) Div [aHz/}*} } v | (103)

_ / {(00") 0 + 6(~0) Oy } - N A

- / {Div [an/}*] .5 + Div [quz*] 5(—@)} dv .

The above stationarity condition can thus be rewritten as

51_/[ ] S dA+ / [(aHz@*)-N+B}5(—q>) dA  (104)

0Bt OBg

/D Opt)* 5godv—/D1v[8Hw]( ®)dV = 0.

B B

Since the necessary condition (104) must hold for all admissible d¢ and 6 (—®), one
obtains the following local expressions

Div [aﬂ&*] —0 inB, (0p0")N =t'  on 0B, | (105a)

Div [aH@z}*] —0 B, (9g0*) N=-B ondBg. (105b)
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In the terminology of variational calculus relations (105) are the FEuler-Lagrange equa-
tions of the variational problem (56) and include the natural boundary conditions of the
variational problem. Expressions (105) are identical with the equilibrium equations and
boundary conditions (55) specified in Section 3.5, Box 1. Note that in the above deriva-
tion the mechanical body force term has been excluded for conciseness. The appropriate
jump conditions over discontinuity surfaces (55¢) may also directly be deduced from the
variational problem by applying an extended form of the divergences theorem (see e.g. [2]).



