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1. Introduction

1.1. Introduction and Motivation

Nowadays, the daily life cannot separate apart from the mechanical systems and struc-

tures of mechanical systems are getting more and more complicated and sophisticated.

As examples for structure with numerous joints are showed in figure 1.1. The struc-

tures tend to contain a giant numbers of joints in the system which are one of the most

important factors that influence the dynamic response of the system. Investigation of

the relationship between the joint characteristics and the dynamical properties of struc-

ture is important for a various fields of research and industry.

Figure 1.1.: Examples of mechanical systems for daily life with numerous joints
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The vibrations and noises produced by mechanical systems serve as an important

criterion for customers. During the traveling with automobiles or airplanes, the vi-

brations and the noises are big annoyance factors which make the journey tired and

unpleasant. These are both affected by the dynamic properties of joint especially the

damping property. Even though the eigenfrequencies and mode shapes can be pre-

dicted successfully by existing Finite Element Method (FEM) software. However, the

damping property is still cannot be determined accurately with commercial FEM soft-

ware since less attention has paid to this fields of study.

The damping property is related to the dissipated energy during the dynamic process.

The dissipated energy is the culprit for vibrations and noises which are harmful for

systems and cause the fracture of systems. It is critical to design and analysis the

vibrating structures with respect to damping properties, since the dynamic response of

structures and transmission of vibrations to the environment is closely depended on the

damping mechanisms.

One of the existing approaches for dynamic analysis of mechanical systems is the

Experimental Modal Analysis (EMA) which is an experimental method used to extract

structural dynamic properties in terms of its modal parameters such as eigenfrequncies,

damping ratio as well as mode shapes. The general steps of EMA are: first, acquire

Frequency Response Functions (FRF) in the form of Universal File Format (UFF)

from the impact hammer experiment or experiment with shaker; second, from these

measured FRFs, Modal Parameter Estimation (MPE) with several different methods is

carried out and the modal parameters can be obtained as results. There are numbers

of MPE methods and the details about these methods are discussed in section 2.2.2.

In the thesis, several analytical modal data sets are created to compare these methods

with the software X-Modal II which is developed by the Structural Dynamics Research

Laboratory of University of Cincinnati (UC-SDRL). The damping is very sensitive, as

a consequence, the accuracy of these estimated modal parameters is greatly affected

by the method applied along with the other factors mentioned in section 4.2.

In order to reduce product development periods and associated costs, nowadays,

the industry is changing from the traditional ways of design to the Computer Aided

Design (CAD), the Computer Aided Simulation and the Computer Aided Manufactur-

ing (CAM). This means that the dynamical properties of a structure can be predicted

by the computer simulations before the physical prototype is available. One of the

standard approaches that allow the prediction of the vibration behavior for mechanical

products is the Finite Element (FE) simulation. Figuring out the relations between the

joint characteristic and the dynamic properties is the basic task and fundamentals for

computer simulations. In last years, it has reached a significant improvement and ap-
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plied successfully to the software to estimate the eigenfrequencies and mode shapes of

complicated structures. However, the prediction of damping properties of structure, in

other words, the dissipative properties still cannot be determined accurately[23].

Therefore, there is an urgent need to develop a strong reliable dynamic analysis tools

which provide understandings of the interrelation between the joint characteristics and

dynamic properties. The joint characteristics of the structure contain contact pressure

and the distribution etc; the dynamic properties of the structure include eigenfrequen-

cies and mode shapes as well as the damping properties.

1.2. Previous Work

To give a brief overview of the ongoing work, the previous works which have taken

place in the mentioned research fields will be outlined here.

ANGEL MOISES IGLESIAS [10] did an investigation of four modal parameter

estimation methods both in time domain and frequency domain with respect to the

damping ratio. After introducing these modal parameter estimation methods, he com-

pared the methods with Single Input Single Output (SISO) analytical data sets as well

as the experiment data sets in the form of Frequency Response Functions (FRF) or Im-

pulse Response Function (IRF). This work shows that the time domain methods result

in better estimation with analytical data sets.

ALLEMANG, BROWN, PHILLIPS,ADAMS, MAIA and SILVA [21] [19] [20] [17]

[1] [15] provide the fundamentals of analytical modal analysis and experimental modal

analysis. They also give relatively detail descriptions of the existing modal parameter

estimation methods. The advantages and disadvantages have been discussed. They

also provide the introduction about the software X-Modal II which is developed by

UC-SDRL which using different MPE methods to obtain the modal parameters.

Many works has been done in the research fields of joint modeling by BOGRAD,

SCHMIT and GAUL [23] [22] [9]. They summarized the works have been done and

provide the overview of joint modeling. Also from their works, the damping prop-

erties of system were considered as the combination of material damping and joint

patch damping. They provide the experimental determination of two kinds of damp-

ing properties. Several different possibilities to implement the described models into

the FEM have been investigated. One of these is to express the damping properties

in terms of imaginary parts of the complex stiffness matrix. From the result of sim-

ulation and experiment with U-shaped structure made by thin plate with one of the

implementation FEM (Thin layer methods), the existence of certain relations between

joint characteristics and dynamic properties of the structure can be noticed.
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1.3. Objectives and Tasks

The goal of the master thesis is to investigate the interrelation between different joint

characteristics and the dynamic properties (modal parameters) of the assembled struc-

ture. The first task is to design simple structures of system which can provide different

joint characteristics and fulfills certain criteria. The second problem is to investigate

the modal parameter estimation methods with respect to several analytical data sets

with low damping ratio. Then the investigation of the interrelation between different

joint characteristics and the dynamic properties with the data sets acquired from im-

pact hammer experiments is carried out. At last, the simulation with thin layer methods

applied with the parameters given was performed to verify the investigation made by

the previous chapters. The following outlines of the thesis are showed below.

In Chapter 2, the theories of the method and experiment were presented. For the ana-

lytical modal analysis, theories about modal model and spatial model are discussed; for

experimental modal analysis, the procedure for the experiment, the modal parameter

estimation methods and the brief knowledge of universal file format were summarized

and introduced; for the Finite Element simulation, the detail theories about the simula-

tion with the thin layer method and how it is related to ANSYS are provided.

In Chapter 3, the system with multiple joint characteristics was designed and man-

ufactured. The procedure to check whether the structure satisfies the criteria was pre-

sented.

In Chapter 4, here we created several analytical data sets with the MATLAB code

and used the data sets to investigate the modal parameter estimation methods with

respect to several factors, including pole selecting method; frequency resolution and

also different MPE methods applied.

In Chapter 5, here we talked the detail about the experiment and the simulation. In

the first part, we gave the detail description, the procedure and the important points

about the experiment, then the result was given, the data processing was operated and

the brief conclusion was made.

In Chapter 6, Summarization of the important points over the entire master thesis

was made, and then the recommendations for the further works were given.

In Appendix A the main part of MATLAB code to create the analytical model,

the ANSYS code to perform the simulation with thin layer element method and the

blueprints of the structures used in the thesis are given.



2. Theory

This chapter will show the detail theories which are related to the thesis, including

analytical and experimental modal analysis, modal parameter estimation methods, and

Finite Element simulation with thin layer elements method. For analytical modal anal-

ysis, the theories used to develop the analytical model data sets which will be used

in comparison with different modal parameter estimation methods are discussed. For

experimental modal analysis, the procedure applied to establish the experiment is in-

troduced. For modal parameter estimation methods, the brief introduction and summa-

rization of the theories of the MPE methods used in our data processing stage as well

as the knowledge about universal file format was presented. At last, theories related to

the simulation with thin layer method were discussed.

Assumptions [19] [20] for analytical modal analysis and experiment modal analysis

was presented as following.

• The structure must be a linear system which means the system must be repre-

sented by a set of linear, second order differential equations.

• The structure must be time invariant during the dynamic process. This implies

that the coefficients in the linear, second order differential equations are con-

stants with respect to time.

• The structure must be observable. This means that the system characteristics

describing the dynamic properties can be measured, in other words, there are

sufficient sensors to adequately describe the input-output characteristics of the

system. A linear system is observable if and only if the initial state can be deter-

mined from a finite interval of the output signals.

• The structure obeys Maxwell’s reciprocity theorem. This implies the following:

if one measures the frequency response function between points p and q by excit-

ing at p and measuring the response at q, the same frequency response function

will be measured by exciting at q and measuring the response at p which means

Hpq = Hqp.
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2.1. Analytical Modal Analysis

There are three different presentations for analytical model for the dynamic system.

First one is the spatial model which is represented with the mass matrix, stiffness

matrix, and damping matrix. Second one is the modal model which requires the modal

parameters such as eigenfrequencies, mode shapes and damping ratios. The last one

is the response model in the forms of Frequency Response Function (FRF) or Impulse

Response Function (IRF). These models can represent the analytical Multi Input Multi

Output (MIMO) model.

These three models are different in presentation, but related to each other. The

interrelations are showed in figure 2.1. Modal model can be acquired from the spatial

model by solving the eigenvalue problem. The spatial model can be obtained from

the modal model by doing the coordinate transformation. The response model is used

in the modal parameter estimation, and can be obtained from both spatial model and

modal model. The theories about getting response model in terms of FRF or IRF from

spatial model and modal model are introduced and used to develop the MATLAB codes

in Appendix A.1.

Figure 2.1.: Dynamic models interrelation

The detail of these theories can be found in reference[19] and pages 1 to 81 of
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reference[15].

2.1.1. Spatial Model to Response Model

The first theory is about how to represent the modal shows in figure 2.2 into the re-

sponse model. All the physical parameters of this MDOF model such as mass, damping

and stiffness are provided. The equation of motion is also showed below in equation (

2.1 ).

Figure 2.2.: Model with N degrees of freedom

Known:

Mass: m1 · · ·mN

Damping: c1 · · · cN+1

Stiffness: k1 · · · kN+1
m1 0 · · · 0

0 m2 · · · 0
...

... . . . ...

0 0 · · · mN




ẍ1

ẍ2

...

ẍN


+


c1 + c2 −c2 · · · 0

−c2 c2 + c3 · · · 0
...

... . . . ...

0 0 · · · cN + cN+1




ẋ1

ẋ2

...

ẋN


+


k1 + k2 −k2 · · · 0

−k2 k2 + k3 · · · 0
...

... . . . ...

0 0 · · · kN + kN+1




x1

x2

...

xN

 =


f1

f2

...

fN



(2.1)
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This can be written in the short form of equation ( 2.2 ).

[M ] {ẍ}+ [C] {ẋ}+ [K] {x} = {f} (2.2)

Where [M ] is mass matrix, [C] is damping matrix, [K] is stiffness matrix, {f} is

input force.

When the damping matrix [C] is non-proportional, the equations ( 2.2 ) ofN−degree

freedom system cannot yield the eigenvectors which can diagonalize the damping ma-

trix. A technique can be used to solve this problem by reformulating the set of N

equations into set of 2N equations known as Hamilton‘s Canonical Equations [19].

Consequently, The reformulation must be applied for the general damping matrix [C].

The identity ( 2.3 ) will be take in consider.

[M ] {ẋ} − [M ] {ẋ} = 0 (2.3)

Combine equations ( 2.2 ) and ( 2.3 ) yield a new system of 2N equations.

[A] {ẏ}+ [B] {y} =
{
f
}

(2.4)

Where

[A] =

[
[0] [M ]

[M ] [C]

]
[B] =

[
− [M ] [0]

[0] [K]

]

{ẏ} =

{
{ẍ}
{ẋ}

}
{y} =

{
{ẋ}
{x}

} {
f
}

=

{
{0}
{f}

} (2.5)

Figure 2.3.: Laplace plane pole location[19]
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Note that all matrices in equation ( 2.4) are symmetric and this equation is now

in a classical eigenvalue solution form. For this method, after solving the eigenvalue

problem and obtaining the poles of the system, The eigenfrequencies and damping

ratios can be calculated using the equations ( 2.7 ) ( 2.8 ). The locations of ploes are

showed in the figure 2.3 and the notations used in the figure can be found following.

σr : damping coefficient

ωr : damped natural freqeuncy

Ωr : resonant (undamped natural frequency)

ζr = cos βr : damping factor (or percent of critical damping)

The pole λr cay be written as

λr = σr + jωr =
(
−ζr + j

√
1− ζ2

r

)
Ωr (2.6)

From the above relationship, the following equations can be derived. damping ratio:

ζr =
−σr√
ω2
r + σ2

r

(2.7)

damped natural frequency:

fr =
ωr
2π

(2.8)

And for the 2N equation of system, we will use {ϕ} as the eigenvector. Notation

{ψ} is used for eigenvector of the original N equation system.

[ϕ] =
[
{ϕ1} {ϕ2} {· · · } {ϕr} {· · · } {ϕ2N}

]
(2.9)

[ϕ] =

[
λ1 {ψ}1 λ2 {ψ}2 · · · λr {ψ}r · · · λ2N {ψ}2N

{ψ}1 {ψ}2 · · · {ψ}r · · · {ψ}2N

]
(2.10)

Modal A is used for the theoretical case of damped systems (non-proportional or

proportional), the modal A scaling factor is also the basis for the relationship between

the scaled modal vectors and the residues determined from the measured frequency

response functions. In general, for most experimental work, modal A is used as the

default scaling approach. Starting with the analytical definition of modal mass in 2N

space.

MAr = {ϕ}Tr

[
[0] [M ]

[M ] [C]

]
{ϕ}r

=

{
λr {ψ}r
{ψ}r

}T [
[0] [M ]

[M ] [C]

]{
λr {ψ}r
{ψ}r

} (2.11)
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Multiplying Equation ( 2.11 ) out in terms of space yields:

MAr = λr {ψ}Tr [M ] {ψ}r + λr {ψ}Tr [M ] {ψ}r + {ψ}Tr [C] {ψ}r
= λrMr + λrMr + Cr = 2λrMr + Cr

(2.12)

Applying the SDOF relationship between the modal damping and modal mass,

Cr = −σrMr ⇒MAr = 2λrMr − 2σrMr

MAr = 2 (σr + jωr)Mr − 2σrMr = j2ωrMr

(2.13)

where MAr refers to modal A for mode r; Mr is modal mass for mode r. From

relationship between modal mass Mr and scaling factor Qr, The relationship between

MAr and Qr in Equation ( 2.14 ) can be obtained.

Mr =
1

j2ωrQr

⇒ MAr =
1

Qr

(2.14)

Then the residue Apqr is

Apqr = Qrψprψqr (2.15)

Finally, The Frequency Response Function (FRF) and Impulse Response Function

(IRF) with the relation in equantion ( 2.16 ) can be derived.

Hpq (ω) =
N∑
r=1

Apqr

jω−λr +
A∗pqr
jω−λ∗r

hpq (t) =
N∑
r=1

Apqre
λrt + A∗pqre

λ∗rt

(2.16)

2.1.2. Modal Model to Response Model

The second theory is about how to represent the modal model into the response model.

All the modal parameters of this MDOF model such as eigenfrequencies, modal damp-

ing ratios and the mode shapes in the terms of eigenvectors are provided.

Known:

Eigenfrequency for mode r: ωr = 2πfr ;

Modal damping ration for mode r: ζr ;

Scaled eigenvector for mode r: {ψ}r ;

Residue for response location p, reference location q, for mode r: Apq;

We know the transfer function of the multi degree of freedom system as

Hpq (s) =
N∑
r=1

Apqr
s− λr

+
A∗pqr

s− λ∗pqr
(2.17)

whereHpq is transfer function for response location p, reference location q; N refers to

the number of modes; λr is rth system eigenvalue or system pole; s is Laplace domain

variable.
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The Hpq (s) canbedefinedasHpq (s) = Xp(s)

Fq(s)
(2.18)

Therefore

Xp (s) = Fq (s)
N∑
r=1

Apqr
s− λr

+
A∗pqr

s− λ∗pqr
(2.19)

The impulse excitation force will be unity after the Laplace transformation. So we

can say Fq (s) = 1.

hpq (t) = L−1 Xp (s) = L−1

N∑
r=1

Apqr
s− λr

+
A∗pqr

s− λ∗pqr
=

N∑
r=1

Apqre
λrt + A∗pqre

λ∗rt

(2.20)

Where hpq (t) refers to impulse response funtion for response location p, reference

location q.

From the figure 2.3, the following equation can be drived.

λr = σr + jωr (2.21)

λr = σr − jωr (2.22)

Where σr refers to real part of the system pole, or damping for mode r.

And then, the equation as following is defined

Apqr =
Rpqr

2j
(2.23)

Using Euler‘s formula, equantion ( 2.20 ) becomes

hpq (t) =
N∑
r=1

Rpqr

2j

[
e(σr+jωr)t − e(σr−jωr)t

]
=

N∑
r=1

Rpqre
σrt (e

jωrt−e−jωrt)
2j

=
N∑
r=1

Rpqre
σrt sin (ωrt)

(2.24)

The residues can be obtained from the known mode shapes.

[A]r = Qr {ψ}r {ψ}
T
r ⇒ Apqr = Qrψprψqr (2.25)

whereQr is constant which is scaling factor. TheQr can be determined as following

Qr =
1

2jωrMr

(2.26)

Equation ( 2.26 ) represents the relationship between modal mass and the scaling

involved between the residues and the modal vectors. Therefore, once the residue

information is found for mode r and some convenient form of modal vector scaling is
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chosen for mode r, the scaling constant can be determined. Equation ( 2.26 ) can be

used to determine modal mass for mode r consistent with the modal vector scaling.

These theories discussed above are used to develop the MATLAB code which is used

to create several analytical data sets in the form of response model from both modal

model and spatial model to verify the modal parameter estimation methods. And this

part is also the fundamentals of experimental modal analysis.

2.2. Experimental Modal Analysis

Experimental modal analysis is an experimental approach to determine the modal pa-

rameters (eigenfrequencies, damping factors, modal vectors and modal scaling) of a

system under the assumptions established in the begging of the Chapter. The modal

parameters determined experimentally serve for future evaluations such as structural

modifications. Experimental modal analysis is used to explain dynamic problems such

as vibration or acoustic that is not obvious from the analytical models. It is important to

remember that most vibration and acoustic problems are a function of both the forcing

functions (or initial conditions) and the system characteristics described by the modal

parameters [20]. As a result, the experimental modal analysis can be summarized as

two steps: Experimental Data Acquisition and Data Processing.

The detail of the experimental modal analysis can be found in reference [15] and

reference [20]. Here the details about the theories related to experiment and modal

parameter estimation methods are presented.

2.2.1. Experiment Process

• Discretize structure and define nodes

• Either use roving sensor(s) (and fixed actuator(s)) Or roving actuator(s) (and

fixed sensor(s))

• Excite the structure using impact hammer or shaker as actuator

• Measurement of all input and output signals

• Calculate frequency response function (FRF)

• Perfrom modal parameter estimation from acquired FRF signals
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2.2.2. Modal Parameter Estimation Methods

In this section, the modal parameter estimation methods are introduced and classified.

A brief description of some methods that used in software X-Modal II are discussed.

The details of these methods can be found in reference [15], reference [20], reference

[1] and reference [10].

The methods can be classified into time domain and frequency domain methods.

Time domain and frequency domain methods can be divided into indirect (or modal)

and direct methods. The former means the identification of the FRF is based on the

modal model. The latter means that the identification is directly based on the spatial

model. A further division concerns the number of modes that can be analyzed. In

this respect, Single degree-of-freedom and Multi degree-of-freedom analyses can be

classified. In time domain only MDOF analysis can be applied. Direct methods only

apply to MDOF analysis. The figure 2.4 shows a diagram with the various possible

categories of methods.

Figure 2.4.: Classification of modal analysis methods[15]

Here, we will provide and brief introduction of the theories of the methods used in

the X-Modal II, which is PTD, ERA, RFP, PFD and RFP-z.
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The Polyreference Time Domain (PTD)

The PTD method is a time domain, indirect, high order, MIMO method. The PTD

method, which is also called as Polyreference complex exponential method, is an ex-

tension of the Least squares complex exponential method (LSCE). This method can

both estimate any part of the modal vector in their solutions for the modal frequencies

and indicate the existence of repeated roots. Since this algorithm has good numerical

characteristics, it is still the most commonly used algorithms today. The only limita-

tion is the cases involving high damping. As a high order algorithm, more time domain

information is required compared to the low order algorithm.

The basic equation is

[
[h (ti+0)] [h (ti+1)] · · · h (ti+m−1)

]
No×Nim


[α0]

[α1]

· · ·
[αm−1]


Nim×Ni

= − [h (ti+m)]No×Ni

(2.27)

One way to estimate the modal frequencies and modal vectors in the PTD algorithm

is to use a companion matrix, a state-space reduction of a high order matrix equation to

many first order matrix equations. The companion from is advantageous as an eigen-

value decomposition of the companion matrix generates the modal frequencies and

modal vectors in one step. When the inputs are the references, the modal vectors are

filled with modal participation factors.


− [αm−1] − [αm−2] · · · − [α1] − [α0]

[I] [0] · · · [0] [0]
...

... · · · ...
...

[0] [0] · · · [I] [0]


(Nim×Ni)×(Nim×Ni)


{zm−1}
{zm−2}

...

{z0}


Nim×Ni

= λ


{zm−1}
{zm−2}

...

{z0}


Nim×Ni

(2.28)

We can convert zr to λr use the relationship showed in equation (2.29).

zr = eλr∆t λr = σr + jωr

σr = Re
[

ln zr
∆t

]
ωr = Im

[
Inzr
∆t

] (2.29)

The necessary steps to use the present method are as follows: first, to take all the

time records of the IRFs to enter in the basic equation ( 2.27 ) and solve it; second,

to calculate the eigenvalues and eigenvectors of the companion matrix equation ( 2.28

) in order to find the natural frequencies and damping factors; finally to calculate the

residues.
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This method can determine the multiple roots or closely spaced modes of a struc-

ture. The time required for the analysis is reduced and the accuracy in the results

increased. It has also shown some difficulties in analyzing satisfactorily structures

with high damping.

The Eigensystem Realization Algorithm (ERA)

The ERA method is a time domain, indirect, first order, MIMO method. It is simply a

multiple reference version of the Ibrahim time domain (ITD) algorithm. This algorithm

is essentially a state-space formulation with respect to the second order time domain

algorithms.

The basic equation is

[[h (ti+0)] [h (ti+1)]]Ni×2No
[[α0]]2N0×2No

= − [[h (ti+1)] [h (ti+2)]]Ni×2No
(2.30)

The Hankel matrix is showed in equation ( 2.31 ) which is formed by the Markov

parameters is showed in equation ( 2.32 ).

[H (k − 1)] =


[X (k)] [X (k + 1)] · · · [X (k + j)]

[X (k + 1)] [X (k + 2)] · · · [X (k + j + 1)]
...

... · · · ...

[X (k + i)] [X (k + i+ 1)] · · · [X (k + i+ j)]

 (2.31)

[X (k)] = [R] [A]k−1 [B] (2.32)

where

{x (t)} = [R] {u (t)}
[A] = e[A′]∆t

[B]−
∫ ∆t

0
e[A′]τ ′dτ ′ [B′]

[A′] =

[
[0] [I]

− [M ]−1 [K] − [M ]−1 [C]

]
[B′] =

[
[0]

[M ]−1 [F ]

]
(2.33)

The pseudo-inverse of [H (0)] can be calculated via the Singular Value Decomposi-

tion (SVD).

[H (0)] = [U ] [Σ] [V ]T (2.34)

Calculate the realized matrices with the equation ( 2.35 ).

[R] = [Ep]
T [U2N ] [Σ2N ]

1/2

[A] = [Σ2N ]−
1/2 [U2N ]T [H (1)] [V2N ] [Σ2N ]

1/2

[B] = [Σ2N ]
1/2 [V2N ]T [Eq]

(2.35)
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where [Ep]
T =

[
[I] [0] · · · [0]

]
[Eq] =


[I]

[0]
...

[0]


In order to determine the modal parameters of the system, we must solve the eigen-

problem based on the [A], of the formof the equation ( 2.36 ).

[A] {ψu} = λ {ψu} (2.36)

The mode shape in terms of physical coordinates of the system is showed in equation

( 2.37 )

{ψx} = [R] {ψu} (2.37)

The relationship between eigenvalues βr + iγr and the roots of the system sr =

ar+ibr is used to calculate the damping ratios and natural frequencies with the equation

( 2.38 )
βr + iγr = e(ar+ibr)∆t = Vr

Rr = In (Vr) fr = |Rr|
2π·∆t ξr =

√
1

1+( Im(Rr)
Re(Rr)

)
2

(2.38)

The necessary step to perform an analysis with the ERA are as follows: first, choice

of the measured data to construct matrix [H (0)]; second, calculate of the SVD of

[H (0)], to calculate [U2N ], [V2N ] and [Σ2N ] and to recalculate [H (0)] based on the

value of the rank found (order of the system); third, construction of matrix [H (1)]

and calculation of the ’realized’ matrices [R], [A] and [B]; at last, calculation of the

eigenvalues and eigenvectors of matrix [A] and the eigenvectors corresponding to the

physical coordinates and calculation of the modal parameters.

This method, as the results from the SVD, may not be correct when there are noise

or nonlinearities.

The Rational Fraction Polynomial Method (RFP)

The RFP method is a frequency domain, indirect, high order, SISO method. The for-

mulation of the FRF is expressed in rational fraction form equation ( 2.39 ) instead of

the partial fraction form where the error function is established in a way that the re-

sulting system of equations is linear. Because the resulting linear system of equations

involves matrices that are ill conditioned, the Gradient Method is used to minimize this

error function and initial estimate is calculated by using the leas Square Method [10].

H (ω) =

2N−1∑
k=0

ak (iω)k

2N∑
k=0

bk (iω)k
(2.39)
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Set b2N = 1, this leads to

e′j =
2N−1∑
k=0

ak (iωj)
k −He (ωj)

[
2N−1∑
k=0

bk (iωj)
k + (iωj)

2N

]
(2.40)

The error function is showed in equation ( 2.41 ) and ( 2.42 ).

[E] =


1 (iω1) (iω1)2 · · · (iω1)2N−1

1 (iω2) (iω2)2 · · · (iω2)2N−1

...
...

... . . . ...

1 (iωL) (iωL)2 · · · (iωL)2N−1




a0

a1

...

a2N−1

−


He (ω1) (iω1)2N

He (ω2) (iω2)2N

...

He (ωL) (iωL)2N


−


He (ω1) He (ω1) (iω1) · · · He (ω1) (iω1)2N−1

He (ω2) He (ω2) (iω2) · · · He (ω2) (iω2)2N−1

...
... . . . ...

He (ωL) He (ωL) (iωL) · · · He (ωL) (iωL)2N−1




b0

b1

...

b2N−1


(2.41)

{E} = [P ] {a} − [T ] {b} − {W} (2.42)

The squared error function J will be minimized with the Gradient method.

J = {E∗}T {E} (2.43)

After minimize equation ( 2.43 ) using the Gradient method, we can get the coeffi-

cients of the rational fraction equation ( 2.39 ). Then the roots or poles of the denomi-

nator polynomial contain the values of the natural frequency and damping ratio. These

can be obtained with equation ( 2.44 ).

fr =
|sr|
2π

ξr = −Re (sr)

|sr|
(2.44)

This high order frequency domain algorithm, in the form of scalar coefficients, was

the multiple degree of freedom algorithm utilized to estimate modal parameters once

discrete data was available. The algorithm works well for narrow frequency bands and

limited numbers of modes but have poor numerical characteristics otherwise. While

the use of multiple references reduces the numerical conditioning problem, the prob-

lem is still significant and not easily handled. In order to circumvent the poor numerical

characteristics, many approaches have been used (frequency normalization, orthogo-

nal polynomials) but the use of low order frequency domain models has proven more

effective.
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The Polyreference Frequency Domain method (PFD)

The PFD method is a frequency domain, indirect, second order, MIMO method. The

basic equation for this method is showed in equation ( 2.45 ).

[
[H (ωi)] (jωi)

1 [H (ωi)] − [I] − (jωi) [I]
]
Ni×4No


[α0]

[α1]

[β0]

[β1]


4No×No

= − (jωi)
2 [H (ωi)]Ni×No

(2.45)

This method given evidence of good performance when dealing with close modes; it

appears also be less sensitive to computational modes when compared to time domain

methods and allows for the use of unequal frequency step.

This algorithm has superior numerical characteristics compared to the high order

frequency domain algorithms. Unlike the low order time domain algorithms, though,

sufficient data from across the complete frequency range of interest must be included

in order to obtain a satisfactory solution.

The RFP-z method

There was several different names for this method such as PolyMax method. This

method is a polyreference least square complex freqeuncy domain MIMO method.

It can be implemented simliarly as PTD method. The necessary step to perform an

analysis with the RFP-z are as follows: First, represent the measured FRFs with the

right matrix fraction model which showed in the equation ( 2.46 ).

[H (ω)] =

p∑
r=0

zr [βr]

(
p∑
r=0

zr [αr]

)−1

(2.46)

where [H (ω)] is matrix containing with the FRFs between all m input and all l output

in the complex domain. [βr] are the numerator matrix polynomial coefficients; [αr] are

the denominator matrix polynomial coefficients. p is the model order. The model for

the equation ( /refeqn:rmfm ) is called z-domain modal with

z = ejω∆t (2.47)

where ∆t is the sampling time. The unknown model coefficients [αr], [βr] are then

found with the least square method. Second, after determin the denominator matrix

polynomial coefficients. the poles and modal participation facors can be obtained from

the eigensolution of the companion matrix [14] [12]. Third, here a new way to deter-

mine the mode shapes will be provided with a model named pole-residue model [14]
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[12]. the mode shapes can be obtained by solving the pole-residue model with the

linear least square method.

The advantage is that, the method will yields very clear consistancy diagram than

other method, in other words, it is easy to the physical poles from the diagram. This is

because the non-physical poles will be estimated with negative damping ratio so that

the diagram only contains the physical poles. And this method can deal with large

frequency range and large model order, since it does not suffer from the numerical

problems as it is in the z-domain. The method shows very good performance for the

systems with high damping ratios [12].

2.2.3. Universal File Format (UFF)

The experimental data collected from the experiment is stored in UFF files. The detail

format can be found on the website of UC-SDRC and reference [25].

Universal File Formats (UFF) were originally developed by the Structural Dynamics

Research Corporation (SDRC) in the late 1960s and early 1970s to facilitate data trans-

fer between Computer Aided Design (CAD) and Computer Aided Test (CAT) in order

to make the Computer Aided Engineering (CAE) easier. SDRC continues to support

and use the UFF as part of their CAE software.

The formats were originally developed as 80 character in each line, ASCII records

that occur in a specific order according to each UFF. As computer files became rou-

tinely available, single UFF were concatenated into computer file structures. Recently,

a hybrid UF file structure (UF Dataset 58 Binary) was developed. The data stored in

this format is twice as small as the former format.

The use of the Universal File Format as a "standard" has been of great value to the

experimental dynamics (vibration and acoustic) community, particularly in the area of

modal analysis.

2.3. FE Simulation

The details of this part can be found on the reference [23], reference [9], reference [11]

and reference [4].

The joint connections can be divided into normally loaded and tangentially loaded

joints. Generally, the damping in normally loaded joints is very small compared to

tangentially loaded since the relative displacement of the two parts of the joint is the

main factor wich influence the damping and there will be relatively small displacement

in the normal direction [9].
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It has been shown by experimental investigations that joint damping is nearly fre-

quency independent. Similar results have been shown for material damping in metals,

where the main cause of dissipation is inner friction in the material [23]. During the FE

modeling the constant hysteresis damping will be used. The method uses frequency-

independent damping and linear joint stiffness parameters in order to predict the vi-

bration response of structures. This allows fast prediction of the eigenfrequencies and

modal damping factors of structures before there exists a physical prototype for exper-

imental testing [9].

The thin-layer element is a method making use of thin layer elements for interfaces

and joints. The basic idea is that the behavior near the interface involves a finite thin

zone. The response of that zone is different from the behavior of the surrounding

materials and it is achieved by considering appropriate constitutive law for the element

[7].

During the calculation of the vibrational characteristics of the structure with the

FEM, the following equation of motion for an undamped system is used.

[M ] {ü}+ [K] {u} = {0} (2.48)

Where [M ] is a mass matrix, [K] is a real valued stiffness matrix, and {u} is the

displacement vector. Eigenvalues and eigenmodes can be determined by performing

a numerical modal analysis with ANSYS. For the case of utilizing constant hysteresis

damping, it will be add to the stiffness matrix as a complex-valued product of dissipa-

tion multiplayer αi and βi for the material and the joint damping.

[K∗] = [K] + j [C] = [K] + j
n∑
i=1

αi
[
Kmaterial
i

]
+ j

n∑
i=1

βi

[
Kjoint
j

]
(2.49)

where for the considered system with low damping αi, βi � 1 , this problem can

be solved by harmonic analysis in ANSYS. And in this case modal damping for the

structure can be estimated form the FRF obtained from the harmonic analysis.

Simulating with ANSYS, The damping matrix [C] is used in harmonic analyses. In

its most general form, it is showed in equation ( 2.50 ). The detail of this part can be

found in reference [11] and reference [4]

[C] = α [M ] + (β + βc) [K] +
Nm∑
j=1

[(
βmj +

2

Ω
βξj

)
[Kj]

]
+

Ne∑
k=1

[Ck] + [Cξ] (2.50)

where

[C] = structure damping matrix

α = mass matrix multiplier (input on ALPHAD command)
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[M ] = structure mass matrix

β = stiffness matrix multiplier (input on BETAD command)

βc = variable stiffness matrix multiplier

[K] = structure stiffness matrix

Nm = number of materials with DAMP or DMPR input

βmj = stiffness matrix multiplier for material j (input as DAMP on MP command)

βξj = constant (frequency-independent) stiffness matrix coefficient for material j

(input as DMPR on MP command)

Ω = circular excitation frequency

Kj = portion of structure stiffness matrix based on material j

Ne = number of elements with specified damping

Ck = element damping matrix

Cξ = frequency-dependent damping matrix

For the simulation, α and the βξj is related to complex-value stiffness coefficients αi
and βi in equation ( 2.49 ), since βξj is frequency-independent and can reperesent the

damping of the material with constant constant hysteresis.

A Schematic diagram of an arbitrary joint modeled by a thin layer is presented in

figure 2.5.

Figure 2.5.: Schematic diagram of a joint with a thin layer elemet

The stress can be expressed as

τ = Gγ ≈ G
u

d
(2.51)

where G is the shear modulus and γ is the shear angle. The shear stress can also be
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estimated by the ratio of tangential force F and area of the contact A.

τ =
F

A
(2.52)

Combining Equations ( 2.51 ) and ( 2.52 ), the force can be calculated

F ≈ GA

d
u = ku (2.53)

It is important to recognize that the characteristics of the joint‘s interface that is

represented by the thin layer elements is orthotropic. There are significant differences

in tangential and normal behavior of the joint

From equation ( 2.53 ) the shear modulus can be approximated as

G =
kd

A
(2.54)

The damping coefficient ξ for the joint and stiffness k can be obtained from the

joint patch experiment.The material damping can also be determined by experimental

approach with half-width value method. The related experiments are introduced in

reference [23]

For the simulation, the orthotropic material has been chosen and the constitutive

material law can be expressed in the equation ( 2.55 ).

σxx

σyy

σzz

σxy

σyz

σzx


=



E11 E12 E13 0 0 0

E22 E23 0 0 0

E33 0 0 0

E44 0 0

E55 0

E66





εxx

εyy

εzz

εxy

εyz

εzx


(2.55)

The off-diagonal terms (E12, E13, E23) are zero for physical reasons (there is no

transversal constriction invoked by the contact interface). Also, since the interface

has no stiffness in and directions (parallel to the joint‘s surface), the terms E11 and

E22 disappear. E33 represents the normal stiffness, whereas E55 = E66 = G define

the tangential stiffness of the joint. Since the joint exhibits no stiffness for in-plane

shearing, E44 is also zero. For numerical reasons all diagonal terms in equation ( 2.55

) must be different from zero. Thus, in the calculation the values of E11, E22 and E44

are set to some small values.

And in this thesis, the interrelations between the joint characteristics and the material

parameters such as shear module G and βξj will be figured out.



3. Design the System

For this thesis, design a mechanical system which can perform different joint properties

is compulsory, in order to investigate the relationship between joint properties and the

structural dynamic properties. In this chapter design and verification of a mechanical

structure will be carried out with the help of ANSYS.

3.1. Criteria

There are several criteria need to be satisfied.

• The maximum mass of the total system is 20kg. The mass must be big enough

to avoid the massloading effect of the accelerometers or the bolts. however, it

cannot be exceed the capability of experimenter as the structure must hanged

during the experiment.

• The 1st eigenfrequency must between 100Hz and 400Hz. The eigenfrequencies

of the strucutre surpposed to be lies in the low frequency range.

• Different pressure distribution must be counted in. and this can be relized with

different bolt spacing. In this thesis, the pressure distribution is one of the im-

portant factors need to be investigated which influence the dynamic properties

of the structure.

• The structure must assembled in several different ways. This related to the capa-

bility of the structure to perform many different joint characteristics.

• The structure must as simple as possible. So that the problem will be simply

described and the relations between the joint characteristics and dynamic prop-

erties of the structure can be clearly expressed.
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3.2. Design

3.2.1. Assumption

Here, arbitrary structures and dimensions are given and checked with ANSYS, the

structures need to satisfy the criteria discussed in section 3.1. The assumptions for

the simulation with ANSYS must be made before design. Firts, the whole structure

assumed to be welded together. Second, all parts has the same material properties as the

eigenfrequecy and modes shape did not depend too much on the damping properties.

Under this two assumption the simulation will be carried out to verify whether the

designed structure satisfies the criteria or not. The ANSYS command can be checked

in reference [4]. and the command stream which used to set up the structure is showed

in Appendix A.2.

3.2.2. Sturcture

After several times of simulation and redesign process, finally, the structure of system

determined to be constructed with two separate parts, named structure B and structure

C. The detail size, shape can be found in the Appendix A.3. The design of the shape of

the structure, the joint and the ways of assembly can be referenced from the reference

[8].

In this thesis, the Structure B and Structure C was used to form a structure with bolt

which showed in figure 3.1.

With the structure designed, several different assemblies can be constructed and can

also perform joints with different characteristics.

3.2.3. Simulation

The necessary steps for the simulation is: first, decide the mesh size for the following

step; second, perform the modal analysis to check whether the structure satisfy the

criteria or not. Mesh size affects the accuracy of the simulation. As the mesh size

getting smaller, the finite elements model will tends to real model and the simulation

results will approach the exact values.

Determine the Mesh Density

As the main structure which will create the major parts of the elements is Structure B,

the influence that caused by the mesh size of this structure must be investigated. And

here the structure A (figure 3.2 and Appendix A.3) designed and used to verify the
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Figure 3.1.: Drawing of the assembled structure

influence of the mesh size as the example. As the mesh size getting smaller, the result

Figure 3.2.: Meshing the structure A

will be converge to a certain value. The relation between the mesh size and the result

will be discussed in the following.

The mesh size over the both sides which will be conneted with other structure in-

dicated 1 in the figure 3.2 must be small enough in order to represent with the effect

of joint clearly. The mesh size over the middle part indicated 2 in the figure 3.2 of

structure A can be changed as there will be less thing happens and the the influence

of mesh size for this part will be not significant. As a result, the element numbers can

be reduced. Comparing 4 different mesh sizes: First the division over length of part
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2 is 76; second the division is 38; third the division is 19, at last, the division 13 is

performed. The first three eigenfrequecies for each mesh size are compared. The Mass

of this structure is 1.88554kg. and the result is showed below with the table 3.1 and

figure 3.3.

Table 3.1.: Comparison with different meshing density

Division Mesh Size(mm) Eigenfrequencies(Hz)

1st 2nd 3rd

76 2.5 1216.8, 2411 3316.8

38 5 1218.1, 2417.4 3319.7

19 10 1221.1 2431.4 3327

13 14.615 1224.3 2444.9 3333.7

Figure 3.3.: Eigenfrequencies of the Structure with different Meshing density

• For division of 76. The length is 2.5mm and length width ratio of the ele-

ment is 2.5:4.583. The first three eigenfrequecies are 1216.8Hz, 2411.0Hz and

3316.8Hz.

• For division of 38. The length is 5mm and length width ratio of the element is

5:4.583. The first two eigenfrequecies are 1218.1Hz, 2417.4Hz and 3319.7Hz.
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• C. For division of 19. The length is 10mm and length width ratio of the ele-

ment is 10:4.583. The first two eigenfrequecies are 1221.1Hz, 2431.4Hz and

3327.0Hz.

• For division of 13. The length is 14.615mm and length width ratio of the el-

ement is 14.615:4.583. The first two eigenfrequecies are 1224.3Hz, 2444.9Hz

and 3333.7Hz.

The result can be found in the figure 3.3 that the mesh will not influence the result

too much, and the division of 25 will be chosen in order to make sure not only the

accuracy of the result, but also reduce the calculating time.

Modal Analysis

After dtermining the mesh size and meshing the structure, the modal analysis with

ANSYS will be carried out to calculate the eigenfrequencies of the assembly struc-

ture. Detail introduction of the modal analysis can be found in reference [3] and the

command stream for modal analysis is showed in Appendix A.2.

The mode shapes and the eigenfrequencies for the first 8 modals are showed in figure

3.4.

Comparison with the criteria

• Mass

Here the density of all the structure is set to 7800kg/m3 and the total mass for

the structure showed in figure 3.1 is 5 37043kg. The total mass is much smaller

than 20kg state in the criteria. This sturcture is easy to set up since the structure

is not so heavy, but there will be some effect of massloading. At the following

section 5.1, the massloading effect will be checked out, and it shows the effect

of massloading is small enough to ignore.

• First three eigenfrequency

When division is 25, element number is 30080, youngs modulus is 2 05e11 and

passion‘s ratio is 0 3. then the results are: 1st mode is 371 7Hz; 2nd mode is

811 7Hz; 3rd mode is 867 3Hz. This is satisfying the criterion for first eigen-

frequency and the first several eigenfreqeuncies of this sturcuture will lies in the

low frequency range.

• The structure can perform different bolt spacing.

The bolt holes of the joint designed into a 3× 3 array. With this structure, many
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Figure 3.4.: Eigenfrequencies of the assembled Structure
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different bolt position for the joint can be applied, which will be discussed in

section 5.1.3. This means the structure will provide different types of pressure

distributions.

• The structure can perform several different assembly.

The strucutres can be assembled in many different ways, with the different joint

types. For the thesis, only the structure showed in figure 3.1 will be used.

• The structure is very simple.

The structure can be nearly considered as several bars conneting to each other

with the joints. Each structure can be considered as linear system, and the struc-

tures will be satisfys the assumptions for the analytical and experimental modal

analysis state in chapter 2.

The structures designed are satisfying the criteria and can be used in the investigation

with experimental modal analysis.
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For the thesis, the X-Modal II which is developed by the Structural Dynamics Research

Laboratory of University of Cincinnati (UC-SDRL) will be utilized. This software

provides 6 kinds of modal parameter estimation methods. Which method is the more

suitable one for the analytical data sets with the low damping will be discussed with

the analytical approach in this chapter. The analytical data sets with known properties

are generated using the MATLAB code (see appendix A.1). And the analytical data

sets will be transferred into Universal File Format (UFF) in order to be loaded into

X-Modal II. After calculating the poles and vectors, the poles must be chosen from

many possible solutions ( section 4.2.1 ). Two techniques used to select the poles will

be cpmpared. The different modal parameter estimation methods will be investigated

with respect to several different aspects such as the pole selecting method and the

frequency resolution to determine the more suitable method for the data sets with low

damping properties.

4.1. Analytical Data Sets Creation

First, the Single Input Single Output (SISO) modal model is constructed to generate

analytical data sets with different frequency resolutions and these data sets will be used

to compare the two methods used to select poles and vectors in X-Modal II. Investi-

gation of the influences caused by different frequency resolutions also requires these

data sets. For the frequency domain method, the Multi Input Multi Output (MIMO)

modal model used to generate analytical data sets are utilized to determine the better

pole selecting method and the frequency resolution for the following investigations.

Second, the MIMO Spatial model with the chosen frequency resolution will be pro-

vided. For the modal parameter estimation, the pole selecting method chosen by the

first step will be applied. These analytical data sets obtained from the MIMO spatial

model will be used to investigate the different modal parameter estimation methods.

At the end, the MIMO modal model with noise is used to generated the analytical

data sets to investigate the influence caused by the noise with different amplitude as

well as determine which modal parameter estimation method can overcome the uncer-
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tainty of the experimental and analytical data sets.

4.1.1. Analytical Data Sets With SISO Modal Model

Here the MATLAB code refereced form reference [10] in Appnedix A.1 is used to

generate the analytical data sets with the five modes separated in a frequency range of

0 ∼ 1000Hz. The data sets with the frequency resolution at 1Hz, 0 5Hz, and 0 25Hz

are given respectively.

Table 4.1.: Properties of the SISO modal model data set

Mode Residue Damped Natural Frequency (Hz) Daping Ratio (%)

1 10 128 0.1

2 20 256 0.0833

3 30 512 0.0463

4 39 768 0.0309

5 50.7 806.4 0.0154

Figure 4.1.: Signals of SISO modal model data sets
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The plots of Impulse Response Function (IRF), Frequency Response Function (FRF)

and Phase angle of analytical data sets with the modal properties showed in table 4.1 at

different frequency resolutions are presented in the figure 4.1. At the last of the figure

4.1, the third mode of the FRFs with different freqeucny resolution have been overlaid.

From this, the results that the frequency resolution do not change the eigenfreqeucny

too much, but the damping will be greatly affected for the method use the frequency

domain data sets can be derived out.

The data sets created will be transferred into universal file format using the MAT-

LAB code [6]. These data sets are used to determine the suitable frequency resolution

for the following analytical models.

4.1.2. Analytical Data Sets With MIMO Modal Model

Here the MIMO modal model will be created with the modal frequencies and mode

shapes. The transformation matrix introduced in equantion ( 2.25 ) which will used

to creat the MIMO system can be constructed with the mode shapes as columns. The

modal damping properties and damped natural frequencies of this model are the same

as the table 4.1. Here the transformation matrix of the original system will be given as

equation ( 4.1 ).

ψ =


−10 −10 −10 −10 −10

5 10 5 5 −5

10 0 −15 0 10

5 −10 5 −5 −5

−10 10 −10 10 −10

 (4.1)

The frequency resolution is 1Hz which will be determined in the section 4.2.2. These

data sets are used to find out what kind of influences will be caused by the different

noise amplitudes.

4.1.3. Analytical Data Sets With MIMO Spatial Model

The spatial model is developed form the structure showed in figure 2.2. The degree

of freedom (DOF) for this system is five. The system contains five mass points, four

damping and four stiffness which are between each mass as well as two damping and

two stiffness which are between the first and last mass and the environments. The

mass, damping and stiffness will be provided in table 4.2 for the spatial model.

Here the first five modes lie in the frequency range of 0 to 1000Hz. The analytical

data sets with MIMO spatial model are generated with the above physical parameters

such as mass, stiffness and damping, and the modal properties can be calculated out
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Table 4.2.: The Values of Mass, Stiffness and Damping

Mass(Kg) Stiffness(N/m) Damping(Kg/s)

m1 30 k1 9E+07 c1 60

m2 20 k2 15E+07 c2 70

m3 25 k3 15E+07 c3 80

m4 20 k4 15E+07 c4 90

m5 25 k5 20E+07 c5 100

k6 10E+07 c6 110

and summarized in table 4.3. In order to get the MIMO data sets, the sensors are

supposed to located on the second and fifth mass, and the impact hammer is used to

hit at each mass point. This means the output or response indexes are 2 and 5; the

input or reference indexes will be from 1 to 5. This is just similar to the process of

the experimental modal analysis in which the sensor (response) will be fixed and the

actuator (input) is roved. As a consquence, 10 data sets for the frequency resolution

given are created. These data sets are used to compare the different modal parameter

estimation methods and to dtermine the more suitable method for the data process with

the data sets acquired from the experiment.

Table 4.3.: Properties of the MIMO spatial model data set

Frequency (Hz) Damping ratio (%)

181.2 0.0457

351.1 0.0781

517.3 0.0974

724.4 0.1177

827.9 0.1442

4.2. Investigation of Modal Parameter Estimation

Methods

After creating the analytical data sets, these data sets will be trasfered into universal

file formats use the MATLAB code, then the UFF file will be loaded in to X-Modal II

to perfrom the modal parameter estimation with several different methods. The modal
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parameters can be obtained in terms of eigenfrequencies (damped natural frequencies)

and modal damping ratio. The exact eigenfrequecies and the damping ratio are already

known in the section 4.1, and the methods will be investigated by the comparison of

the exact value and the values acquired from the X-Modal II. This detail procedure can

be found in the reference [24]. The user interface of modal parameter estimation of the

X-Modal II showed in figure 4.2.

Figure 4.2.: MPE user interface of X modal II [17]

4.2.1. Pole Selecting Methods

First, the methods used to select the poles and vectors with X-Modal II must be de-

termined with the help of the consistancy diagram (figure 4.3)or density diagram (fig-

ure4.4). Consistency diagram is one of the most common methods for determining the

proper poles and vectors. It is developed by computing different modal solutions with

respect to model orders, normalization methods and equation condensation methods.

Different model solutions are showed in this diagram and it is hard to select the proper

solutions among such a mess. Generally, pole surface density diagrams are more pow-
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erful than consistency or stability diagrams at locating similar pole vector estimates

from all of the possible solutions represented in the consistency diagram [18]. The

high desity of the pole surface density plot means there are a large number of solutions

for the modal parameters [2] and the poles of this region are surpposed as the proper

solutions. The detail can be found in reference [18], reference [5] and reference [2]

Figure 4.3.: Consistency Diagram for Experiment Datasets

Figure 4.4.: Pole Surface Density Diagram for Experiment Datasets

Zoom in the high desity region in the density diagram (figure 4.5), there are also

many possibilities of poles and vectors. In order to select one pole, there are two kinds
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of methods provided. First method is to select a pole near the centroid of the poles with

high density and this is indicated as method A; second method is to create a pole at

centroid of the poles with high density indicating method B. How to select the region

is also a problem. Generally, rectangles which can contains the consist poles as many

as possible and do not contains bad estimations at the same time (figure 4.5) will be

used to select the region. For these two methods, it will perform several times and take

the average as the final results of modal parameters.

Figure 4.5.: Pole Selectiong Mehods with X-Modal II

Which method give better estimation of modal parameters with different frequency

resolutions is the priority. For this investigation following parameters are selected.

• Model: SISO modal model

• MPE Method: PTD, RFP, RFP-Z (as ERA and PFD is MIMO method)

• Frequency Resolution: 1Hz, 0.5Hz, 0.25Hz

• The exact modal parameters provided in tabel 4.4
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Table 4.4.: The Exact Properties for SISO Modal Model

Mode Nr. 1 2 3 4 5

Freq(Hz) 128 256 512 768 806.4

Damping(%) 0.1000 0.0833 0.0463 0.0309 0.0154

For this investigation, analytical data sets for each frequency resolution are created.

The modal parameter estimation is carried out for these data sets with different pole

selecting methods. From the MPE results of modal parameters, summarization was

made to make the things easy to understand. Pole selecting methods at the same fre-

quency resolution for different modal parameter estimation methods are investigated

with the average errors for frequency and damping respectively in table 4.5, table 4.6

and table 4.7.

Table 4.5.: The Average Error with SISO Modal Model at Frequency Resolution 1Hz

Method Error(%) A B

PTD Freq 0.0497 0.0496

Damp 0.7513 0.4993

RFP Freq 0.0451 0.0407

Damp 11.9600 15.2600

RFP-Z Freq 0.0486 0.0246

Damp 0.1279 0.0000

Table 4.6.: The Average Error with SISO Modal Model at Frequency Resolution 0.5Hz

Method Error(%) A B

PTD Freq 0.0246 0.0247

Damp 0.6353 0.5361

RFP Freq 0.022 0.0184

Damp 11.2100 10.9100

RFP-Z Freq 0.0246 0.0246

Damp 0.5704 0.6382
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Table 4.7.: The Average Error with SISO Modal Model at Frequency Resolution 0.25Hz

Method Error(%) A B

PTD Freq 0.0112 0.0115

Damp 0.7749 0.5588

RFP Freq 0.0109 0.0099

Damp 12.3900 5.9400

RFP-Z Freq 0.012 0.0121

Damp 1.1300 1.1700

From table 4.5, table 4.6 and table 4.7, conclusions can be made that the eigenfre-

qencies will not differ too much with respect to pole selecting methods. For all the

modal parameter estimation methods used and for all the frequency resolutions given,

the method B, which creates a pole at centroid, gives better estimation of the damping

ratio. The method B will provide better estimation since it avarages the poles inside

the rectangle and has the informations about the system. While the method A will only

select one pole near the center of region of square and the results only related to the

rectangle used to select the poles. This will have less information of the system.

4.2.2. Frequency Resolution

From the results above, the effect caused by the frequency resolution with respect to

PTD, RFP and RFP-Z methods can be noticed. The results are written in another way

so that it is easy to understand. For the investigation, the following results will be used.

• Pole selecting method B

Table 4.8.: The Average Error with SISO Modal for Different Frequency Resolutions

Average error (%)

Method PTD RFP RFP-Z

Df Freq Damp Freq Damp Freq Damp

1Hz 0.0496 0.4993 0.0407 15.2600 0.0246 0.0000

0.5Hz 0.0247 0.5361 0.0184 10.9100 0.0246 0.6382

0.25Hz 0.0115 0.5588 0.0099 5.9400 0.0121 1.1700
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From the table 4.8, the conclusion can be made that for time domain or z-domain

method, the frequency resolution will not play too much role for results of modal

parameters. Because the time domain method and z-domain method do not use the

frequency domain information. For the frequency domain methods, the average error

will get smaller as the frequency resolution get finer, which means the damping will

be more accurate as the frequency resolution get smaller.

Here the investigation of what kind of role the frequency resolution plays in fre-

quency domain methods is carried out. For this investigation, following parameters

are selected.

• Model: MIMO modal model

• MPE Method: RFP and PFD

• Frequency Resolution: 1Hz, 2Hz, 3Hz

• Pole selecting method: Method B

• The exact modal properties in the table 4.9

Table 4.9.: The Exact Properties for MIMO Modal Model

Mode Nr. 1 2 3 4 5

Freq(Hz) 127.9999 255.9999 512.0000 768.0000 806.4000

Damp(%) 0.1000 0.0833 0.0463 0.0309 0.0154

The frequency resolution will not change the eigenfrequency too much, but it will

affect the damping a lot with frequency domain methods. The frequency resolution

can be considered as the sampling frequency. As the sampling frequency get bigger,

the analytical data sets in the form of Frequency Responce Function start to lose some

informations (figure 4.1). The freqeuncy domain methods will use data sets in the form

of FRF to perform the modal parameter estimation. so the damping will be overesti-

mated.

From the result in the table 4.10, the relation can be noticed that as the frequency res-

olution getting bigger, the average error for eigenfreqeuncies and damping get bigger

when using the freqeuncy domain MPE methods. This is satisfy the theoretic analysis

and reasonable.

Conclusions can be made from the table 4.8 and table 4.10 that, the estimation of

modal parameters using time domain method is much better than frequency domain

methods. For the analytical analysis, the frequency resolution will be set to 1Hz.
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Table 4.10.: The Average Error with MIMO Modal Model for Different Frequency Resolutions

Average error (%)

Method RFP PFD

Df Freq Damp Freq Damp

1Hz 0.0467 3.029 0.0477 5.406

2Hz 0.0943 18.823 0.0955 4.954

3Hz 0.2106 38.484 0.2274 16.413

4.2.3. Modal Parameter Estimation Methods

The method for selecting the poles with X-Modal II has been determined in the previ-

ous section. The frequency resolution is set to 1Hz. Which method shows better modal

parameter estimation for analytical data sets with low damping need to be investigated.

For this task, the following parameters will be utilized.

• Model: MIMO modal model

• MPE Method: PTD, ERA, RFP, PFD, RFP-Z

• Frequency Resolution: 1Hz

• Pole selecting method: Method B

• Exact modal properties given in table 4.11

Table 4.11.: The Exact Properties for MIMO Spatial Model

Mode Nr. 1 2 3 4 5

Freq(Hz) 181.206 351.0845 517.2696 724.3909 827.8862

Damping(%) 0.0457 0.0782 0.0974 0.1177 0.1442

From the MPE results with MIMO spatial model, summarization is made in the table

4.12 to make the things easy to understand.

It can be seen from the table 4.12 that, five MPE methods all gives good estimation

for the eigenfrequencies. However, the PTD method gives best estimation for damping

followed by PRF-z method. the next are RFP method and PFD method. ERA method

gives the worst estimation of damping as the data sets has few spatial informations.
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Table 4.12.: The Average Error with MIMO Spatial Model(1Hz and Method B)

Average error (%)

Method PTD ERA RFP PFD RFP-Z

Freq 0.0007 0.0025 0.0079 0.0012 0.0016

damp 0.3657 4.2452 2.3298 2.6343 1.1269

Then the investigation of modal estimation method with respect to random noise is

carried out with the data sets generated from MIMO spatial model added with noise.

Here, which method shows better resistance against the noise will be checked out, and

for this investigation the following parameters will be utilized.

• Model: MIMO modal model with noise

• MPE Method: PTD, ERA, RFP, PFD, RFP-Z

• Frequency Resolution: 1Hz

• Pole selecting method: Method B

• Exact modal properties in table 4.9.

• The amplitude of the random noise: 0 001

The MPE results will be summarized in table 4.13.

Table 4.13.: The Average Error with MIMO Modal Model with Random Noise

Average error (%)

Method PTD ERA RFP PFD RFP-Z

Freq 0.0488 0.0476 0.043 0.0319 0.0491

damp 1.0559 3.6864 3.6827 10.5711 1.9486

The same result as the previous investigation can be drived from the table 4.13 with

a little difference. The error for eigenfrequencies and damping are all become bigger

than the case without noise. PTD method still gives the best estimation for damping.

Investigation for PTD method with respect to the amplitude of noise will be carried out

and the MPE results are summarized in the table 4.14.
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Table 4.14.: The Average Error with MIMO Modal Model with Different Noise Amplitude

Average error (%)

Noise amp 0.001 0.005 0.01

Freq 0.0491 0.0494 0.0500

Damp 1.0188 3.6693 4.3443

It can be seen from the table 4.14 that, as the amplitude of the nosie getting big-

ger, the avarage error for damping will get bigger since the noise means more energy

dissipation.

It can be concluded from the investigations in this chapter that, when using the

same data sets, the PTD gives best estimation, followed by PRF-Z. PFD method gives

worst estimation. For our data sets, time domain methods gives better estimation than

frequency domain method. For the data prossing with experimetal data sets, PTD

method will be applied.

Time domain methods tend to provide the best results when a large frequency range

or large numbers of modes exist in the data. The frequency domain models tends to

provide the best results when the frequency range of interest is limited and the number

of the modes is relatively small [15].

High order methods require more spatial data because they use only a limited sub-

set of spatial data (i.e. fewer physical DOFs); therefore, they work well when many

time or frequency data points are measured. Low order models must be used when

measurements at many points are made at only few time points [1].

As the frequency range of the system is 0 ∼ 3000Hz, the PTD which is high order

time domain method will obtain better results than the other methods. For ERA, this

method is not suitable for our system since the data has a few input and output points

(spatial information). Also the system creates the IRF and then transferred the data

into FRF using FFT. With the usage of FFT, the information of the original system will

get lost. As a result, the frequency domain method shows bad results. The z domain

method is very stable and shows good performance. But the error is still bigger than

PTD. The PTD method will be chosen for processing the experimetal data sets.
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After structures designed and manufactured, the experiment is carried out in order

to get the impulse response function or frequency response function used to perform

modal parameter esitmation. First, each part of the total structure separately is tested

in order to adjust the material parameters such as density, Young‘s modulus and Pois-

son‘s ratio. The structures are assembled and suspended with elastic ropes. then free-

free boundary condition experiment are performed by hitting the structure with impact

hammer. The several sets of frequency response function are obtained from the ex-

periment. The data sets are stored in the form of universal file format and loaded into

X-Modal II directly. The PTD method is applied to do the modal parameter estimation

so as to get the dynamic properties. The process is repeated with the assembly with

different joint properties such as different torques and different bolt positions. Then the

commercial software ANSYS is used to doing the structure analysis including modal

analysis and harmonic analysis. The modal analysis is used to verify the relationship

between the joint characteristics such as normal force in the joint and the the pres-

sure distribution of the joint and the modal parameters especially eigenfrequecies; the

harmonic analysis is used to get the frequency response function of the structure, the

data will transfer into universal file format and loaded into X-Modal II to calculate the

modal parameters, here the interrelation between the joint characteristics mentioned

above and damping properties. The thin layer methods will be applied.

5.1. Experiment

The purpose of the experiment is to get the FRF data sets with impact hammer and

accelerometers. The separate parts of our structure are showed in figure 5.1 and the

two pieces of part B and two pieces of part C are used to construct the total system.

5.1.1. Experimental System Description

The experiment setup is showed in figure 5.2. The structure will be discretized and the

nodes are defined as figure 5.3. the structured is suspended freely and attached with
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Figure 5.1.: Part A, Part B and Part C

Figure 5.2.: Experiment Setup
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accelerometers. The accelerometer must attach to the nodes which can be excited in

most modes. Attaching the accelerometer to the zero nodes for some modes need to be

avoided. The cables of accelerometers and impact hammer must connect to the signal

processing device named Focus II and the Focus II will be connected to the laptop with

the USB connection. Then the impact hammer experiment is carried out.

Figure 5.3.: Descretization of the Measured Structure

Some points must be paid attention to. First, the structure need to be suspended

with flexible rope so that the resonace frequencies of these ropes to the system are far

away from the frequency range of interest. Second, the right tip of the impact hammer

must be selected. Different tips excite different frequency range. According to the

frequency range of interest, the proper tip must be selected. Third, the structure must

hit with impact force at 150 ± 25N since the impact force affects dynamic properties

especially the damping ratio [23]. At last double hitting must also be avoided in order

to get the Impulse Responce Function.

Two pieces of part A, four pieces of part B and two pieces of part C are manufactured

and marked with A-1, A-2, B-1, B-2, B-3, B-4, C-1, C-2, C-3, C-4. The mass of these

part showed in in table 5.1.

Table 5.1.: Mass of Each Part of Real Structure

Part Mass (kg) Part Mass (kg)

A-1 2.0790 A-2 2.0792

B-1 2.2534 C-1 0.3235

B-2 2.2451 C-2 0.3245

B-3 2.2476 C-3 0.3252

B-4 2.2518 C-4 0.3239

For the mechanical system, B-1, B-4 and C-1, C-4 are selected to assemble the

system since the mass of this parts is closed to each other. Here the mass of the bolts
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also need to be taken into considerarion as the mass attaching to the structure affect the

damping and eigenfrequencies as showed in figure 5.4.

Figure 5.4.: Massloading Effect for Part A at 1st Mode

Here a very simple investigation about the massloading effect is carried out. The

part A is used and attached with the accelerometer at nodes 1 and 3, then hit the nodes

6 and get the FRF data. The results can be seen from table 5.2 and table 5.3. When

Table 5.2.: Effect of Mass attached and cable for Input -6z Output 1z

I-6z O1z Mode Nr. 1 2 3 4

With 1acc Freq(Hz) 1277.7 2431.2 3525.9 4099.1

Damping(%) 0.0932 0.1638 0.3974 0.2986

With 2acc Freq(Hz) 1272.5 2421.8 3501.6 4007.9

Withcable Damping(%) 0.1062 0.5574 0.3823 0.2514

With 2acc Freq(Hz) 1272.7 2432 3500.6 4006.2

No cable Damping(%) 0.1548 0.5272 0.2837 0.3225

additional mass is added to the structure, the eigenfrequencies for each mode tend

to become smaller. However the error for eigenfrequencies stays in 0 6% whereas

error for damping of certain modes is exceed 100%. When the mass is attached to
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Table 5.3.: Effect of Mass attached and cable for Input -6z Output 3z

I-6z O3z Mode Nr. 1 2 3 4

With 1acc Freq(Hz) 1286.4 2461.2 3554.5 4013.9

Damping(%) 0.0237 0.0379 0.0141 0.0266

With 2acc Freq(Hz) 1285.3 2461.4 3554.2 4010.9

Withcable Damping(%) 0.0608 0.0416 0.0237 0.0418

With 2acc Freq(Hz) 1285.6 2461.3 3553.8 4011.2

No cable Damping(%) 0.0585 0.0247 0.014 0.0398

the low mass part (which has big deformation), the effect is much bigger. So the

accelerometers are better to attached to the part has bigger mass.

5.1.2. Experimental Procedure

In order to adjust the material parameters for our structure, the experimental modal

analysis will be carried out for each part of the structure. All the structures are need

to be descretize and the nodes must be marked on the structures. After connecting all

the cables and equipments, the flexible ropes are used to suspend the structure to the

supporting frame and the accelerometers are attached to the structures. Each node are

hit by the impact hammer and the frequency response functions are obtained from the

signals of accelerometers processed by the Focus II into the computer. The data sets

are stored in universal file format. The impact hammer experiment is showed in figure

5.5.

The nodes for part A, part B and part C is showed in figure 5.6. For part A, the

accelerometer is attached at the node 1 and 9, then all nodes are hit to get the frequency

response functions. For part B, the accelerometer is attached at node 2 and 10, all the

nodes are hit to get the FRF. For part C, the accelerometer is attached at node 6 and

2, then all the nodes are hit to get the FRF. Note that, here only one accelerometer is

used to avoid the massloading effect. The data sets obtained will be used to adjust the

material parameters of the system, especially density and Young‘s modulus.

Then the experimental modal analysis with the assembled structure is carrid out.

Here the effects of different torques used to fastening the bolts and different position

and numbers of bolts will be taken into consideration. Four kinds of bolt positions

named Type A, Type B, Type C and Type D are showed in figure 5.7. The real system

with the bolt position type D is showed in figure 5.8. The torques used for fastening



50 5. Experiment and Simulation

Figure 5.5.: Impact Hammer Experiment for Part C
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Figure 5.6.: Nodes for the part A, part B and part C

Figure 5.7.: Types of Different Positions of Bolts
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Figure 5.8.: Real System of Bolt Position Type D

the bolts are 10Nm, 20Nm and 30Nm. For Type A, the impact hammer experiment

with the torques 10Nm, 20Nm and 30Nm will be performed. For Type B, torques

of 20Nm and 30Nm are applied for the experiment. For Type C, torques of 20Nm,

30Nm are used. For Type D, torque of 30Nm is used. The experiments performed are

showed in the table 5.4.

Table 5.4.: The Experiments performed

Torque(Nm) 10 20 30

Type A • • •
Type B • •
Type C • •
Type D •

During the experiments, the total structure are constructed and the nodes for assem-

bled system showed in figure 5.9. The accelerometers are attached at the nodes 4 and

8, and then nodes from 1 to 20 are hit to get the FRF of the assembled structure.

Figure 5.9.: The Total System with Bolt Position Type A

The FRFs get from the experiments will be processed by the X-Modal II and used
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to investigate the influnce of the joints characteristics on the modal parameters.

5.1.3. Data Processing

In this section, data processing is performed. The data sets get from the impact hammer

experiments are loaded into X-Modal II and the modal parameter estimation is carried

out.

First, the data sets from the experiment with each part of the system are dealed with.

For part A, part B and part C, the modal parameters can be calculated from X-Modal

II and showed in table 5.5. This table will be used to adjust the material parameters

of the system including density, Possion‘s ratio and Young‘s modulus in section 5.2.1.

The damping for Part C is much bigger than Part A and Part B since the masseffect is

bigger in the structure with low mass.

Table 5.5.: Modal Parameters for Part A, Part B and Part C

Mode Nr 1 2 3 4 5

Part A Freq(Hz) 1287.4 2459.1 3474.5 3549.3 4013.9

Dmp(%) 0.0085 0.0311 0.0290 0.0187 0.0249

Part B Freq(Hz) 1255.4 2719.8 3230.0 3483.0

Dmp(%) 0.0050 0.0572 0.0177 0.0162

Part C Freq(Hz) 3017.5 3701.7

Dmp(%) 0.3735 0.2089

Then, the Modal Parameter Estimation (MPE) is carried out using the data sets

obtained from the experiment with the total system with different bolt position types

and different fastening torques. In the modal parameter estimation for the assembled

structure, the MPE is performed for three times and the average of the three results will

be used as the final result. The results are summarized in the way that the relationship

between dynamic properties and different joint characteristics can be easily seen from.

The results with respect to the torque for each bolt posotion type are summarized.

The table 5.6 shows the modal parameters for type A at the torque with 10Nm, 20Nm

and 30Nm. The table 5.7 shows the modal parameters for type B at the torque with

20Nm and 30Nm. The table 5.8 shows the modal results for type C at the torque

with 20Nm and 30Nm. Then the relation of modal properties and the torque used to

fastening the bolts which related to the normal force at the joints is investigated.
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Table 5.6.: Modal Parameters for Type A with Torque 10Nm, 20Nm and 30Nm

Freq(Hz) Dmp(%)

Mode \T (Nm) 10 20 30 10 20 30

1 364.8 368.7 369.7 0.0456 0.0421 0.0419

2 722.3 739.4 743.9 0.1489 0.0959 0.0977

3 861.9 864.8 865.5 0.0323 0.0209 0.0307

4 1629.9 1642.7 1646.7 0.121 0.1044 0.0608

5 1791.5 1844.9 1857.7 0.237 0.2141 0.1724

6 2192.6 2203.2 2205.3 0.1092 0.0718 0.1747

7 2241.6 2254.8 2258.4 0.1163 0.0877 0.0605

8 3018.6 3022.4 3033.1 0.2028 0.1716 0.1232

Table 5.7.: Modal Parameters for Type B with Torque 20Nm and 30Nm

Freq(Hz) Dmp(%)

Mode \T (Nm) 20 30 20 30

1 365.2 367.8 0.0434 0.044

2 768.6 772.6 0.0824 0.0747

3 861.4 863 0.0406 0.0353

4 1636.5 1643 0.0747 0.0631

5 1921.9 1933.2 0.1292 0.086

6 2212.2 2215.3 0.0829 0.0753

7 2241.5 2248.6 0.1125 0.0482

8 2963.5 2966.2 0.3055 0.1457
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Table 5.8.: Modal Parameters for Type C with Torque 20Nm and 30Nm

Freq(Hz) Dmp(%)

Mode \T(Nm) 20 30 20 30

1 368.6 370.5 0.0466 0.0533

2 812.3 818.7 0.1107 0.0704

3 862.1 863.5 0.0696 0.0287

4 1646.1 1652.2 0.0667 0.0588

5 1965 1975.4 0.0834 0.0683

6 2229.1 2233.3 0.0661 0.0523

7 2247.5 2252.5 0.0627 0.0622

8 2960.8 2966.2 0.0695 0.0548

From the results above, conclusions are made about the influence of the torque used

to fasten the bolts which is related to the normal force at the joints.

• For the same bolt position type, the eigenfrequencies for each mode get bigger

as the torque getting bigger. It can be seen from this result that, the structure

gets stiffer as the torque getting bigger. As the normal force at the joint getting

bigger, the displacement at the joints gets smaller, and the deformation at the

joint also gets smaller. This means that when modeling the joint, big Young‘s

modulus must be given to the joint model at the point where the bolt is applied.

The Young‘s modulus for the joints model gets bigger as the torque or the normal

force at the joint getting bigger.

• For the bolt position type A, there is no specific rules for damping with respect

to torque. But for the bolt position type B and type C, the modal damping ratio

tends to get smaller as the torque getting bigger since the damping in the struc-

ture is depending on the deformation in the joint occurring due to a certain mode

shape [23]. The pressure distribution happends near the vicinity of the bolts.

For Type A, there are only two bolts for the joint and the pressure distribution

for the part without bolts will not change linearly during the changes of torque.

The effects of non-linearity occurred, as a results the damping has no specific

pattern. For Type B and Type C, the deformation of the structure gets smaller as

the normal force getting bigger which means the damping ratio also gets smaller

as the torque getting bigger.

At last, the results with respect to the bolt position type for different torque are
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concluded. Table 5.9 shows the modal parameters using the torque 30Nm for the bolt

position type A, type B, type C and type D. Table 5.10 shows the modal parameters

using the torque 20Nm for type A, type B and type C. Then the relation between the

different bolt position type and joint modal parameters are investigated.

Table 5.9.: Modal Parameters for Torque 30Nm with Type A,B,C,D

Freq(Hz) Dmp(%)

Mode \Type A B C D A B C D

1 369.7 367.8 370.5 370 0.0419 0.044 0.0533 0.0455

2 743.9 772.6 818.7 814.4 0.0977 0.0747 0.0704 0.0582

3 865.5 863 863.5 862.3 0.0307 0.0353 0.0287 0.0268

4 1646.7 1643 1652.2 1651.7 0.0608 0.0631 0.0588 0.0423

5 1857.7 1933.2 1975.4 1981.3 0.1724 0.086 0.0683 0.0554

6 2205.3 2215.3 2233.3 2231.7 0.1747 0.0753 0.0523 0.0560

7 2258.4 2248.6 2252.5 2248.9 0.0605 0.0482 0.0622 0.0672

8 3033.1 2966.2 2966.2 2952.3 0.1232 0.1457 0.0548 0.0477

Table 5.10.: Modal Parameters for Torque 20Nm with Type A,B,C

Freq(Hz) Dmp(%)

Mode \Type A B C A B C

1 368.7 365.2 368.6 0.0421 0.0434 0.0466

2 739.4 768.6 812.3 0.0959 0.0824 0.1107

3 864.8 861.4 862.1 0.0209 0.0406 0.0696

4 1642.7 1636.5 1646.1 0.1044 0.0747 0.0667

5 1844.9 1921.9 1965 0.2141 0.1292 0.0834

6 2203.2 2212.2 2229.1 0.0718 0.0829 0.0661

7 2254.8 2241.5 2247.5 0.0877 0.1125 0.0627

8 3022.4 2963.5 2960.8 0.1716 0.3055 0.0695

Some conclusions about the effect of the bolt position type can be seen from the

results above.

• For the same torque, the eigenfrequenies for each mode get bigger in the order

of Type A, B and C. For the type D, eigenfrequencies become smaller than the
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previous Types. In the order of Type A, B, Cand D, the number of the bolts used

in the joints get larger, the joint become stiffer and the deformation decrease.

However the mass effect must be taken into consideration. As the number of

the bolts increasing, the mass also become larger. For the first three types, the

effect of pressure distribution plays more role than the mass effect. But for Type

D, mass effect plays important role. So during simulations, Young‘s modulus

related to bolts position type and mass of the bolts are both need to be consid-

ered. The bolt mass is modeled with the elements around the bolt holes (figure

5.10), the density of these elements is set to be higher than the other part of the

stucuture. The density here is 33500kg/m3 in comparison with 7806kg/m3 for

other parts.

Figure 5.10.: Modeling the Bolt Mass

• For the same torque, damping ratio for some mode remain the same and some

are tends to get smaller as the numbers of the bolts get larger. From type A

to D, the joint become much stiffer since the normal force has become more

equally contributed, the deformation becomes much less and the structures are

assembled more tightly to each other. It is mentioned above that, the damping in

the structure is depend on the deformation in the joint occurring due to a certain

mode shape. It can be see from table 5.9 that, the damping almost the same at the

bending mode with respect to y-axis (mode 1, 3, 4, 7) and it gets smaller at the

torsion mode and mode that bending in z-axis direction (mode 3, 5, 6, 8) since
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the defomation at the joint is small for the mode 1, 3, 4, 7 and the defomation at

the joint is small big for mode 3, 5, 6, 8.

5.2. Simulation

The main purpose of this thesis is to investigate the relations between the joints char-

acteristics and the modal parameters of the structure and to provide some basis, data

bases and methods in order to improve the modeling of the joints so that the engineers

can determine all the dynamic properties of the structure before the prototype created.

Here simple simulation will be performed to introduce the method which is utilized in

the simulation of the system with ANSYS. With the conclusions get from the experi-

ment, the material parameters are modifyed to simulate the dynamic properties which

will be compared with the experimental result.

5.2.1. Adjust Material Properties

Because there are difference between the experimental results and the simulated re-

sults, the material properties and the element properties of model must be updated

(refine the mesh or using high order element) to get better estimation of eigenfrequen-

cies. The joint damping will be discussed later. The density is selected as 7806kg/m3

so that the simulated mass is close to the real mass. The mesh size and the element type

Table 5.11.: Experiment and Simulation Results with Different Element Type for Part A

Experiment Simulation solid45 Simulation solid95

Mode Freq(Hz) Freq(Hz) Diff(%) Freq(Hz) Diff(%)

1 1287.4 1318.6 2.4235 1311.8 1.8953

2 2459.1 2562.1 4.1885 2529.5 2.8628

3 3474.5 3519.7 1.3009 3504.0 0.8490

4 3549.3 3546.2 0.0873 3505.9 1.2228

5 4013.9 4167.6 3.8292 4104.4 2.2547

Average error(%) 2.36589 1.8169

need to be considered. The high order and low order element types are investigated.

Here the result wiht the solid 45 element which is low order (8 nodes) element and

the solid 95 which is high order (20 nodes) element is compared with the experimental

result which showed in table 5.5. The comparison can be found in table 5.11.
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The improvement is not significant, also the solid95 element consumes much time

than solid45 elements.

Then the mesh need to be refined. The mesh size along the x direction of the part

A is selected as 2 29mm which lead to finer mesh.The density is 7806kg/m3, young‘s

modulus E = 2 05E11N/m2, the Poisson’s ratio ν = 0 33. The result of the simula-

tion compared with the experimetal data is showed in table 5.12.

Table 5.12.: Experiment and Simulation Result with Finer Mesh for Part A

Experiment Simulation solid45 Simulation solid95

Mode Freq(Hz) Freq(Hz) Diff(%) Freq(Hz) Diff(%)

1 1287.4 1295.6 0.6369 1292.0 0.3573

2 2459.1 2497.9 1.5778 2480.4 0.8662

3 3474.5 3467.5 0.2015 3453.1 0.6159

4 3549.3 3513.4 1.0115 3494.9 1.5327

5 4013.9 4056.5 1.0613 4030.5 0.4136

Average error(%) 0.8978 0.75713

It can be seen from the result that, the simulated mass is ms = 2 0789kg (solid45),

real mass ismr = 2 0790kg, error for simulated mass is 0 00481%. The result of eigen-

frequencies is improved a lot for both element type. however, the solid95 consumes

much time and the improvement is not significant. So it‘s better to perform simulation

with solid45 element. When the mesh is refined, the proper density, Young‘s mod-

ulus and Possion ratio are defined, the eigenfrequency results with solid 45 element

becomes close to the experiment results. The calculation time is also smaller than us-

ing solid95. So for the following simulations, the solid with finer mesh and solid45

element is chosen.

The update model parameters are checked with simulation for Part B and Part C.

The simulated results can be found in table 5.13.

The error for simulated mass of Part B and Part C are 0 2312% and 1 3601% respec-

tively. The simulation for eigenfrequencies of Part B and Part C shows pretty good

results. So the material parameters will be set as density 7806kg/m3, young‘s modu-

lus 2 05E11N/m2 and possion‘s ratio 0 33 along with the refined mesh with soild 45

low order elements.
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Table 5.13.: Experiment and Simulation Result with Finer Mesh for Part B and Part C

Part B Part C

Experiment Simulation solid45 Experiment Simulation solid45

Mode Freq(Hz) Freq(Hz) Erro(%) Freq(Hz) Freq(Hz) Erro(%)

1 1244.9 1252.6 0.6147 3017.5 3063.1 1.4887

2 2669.8 2716.8 1.73 3701.7 3685.6 0.4368

3 3214 3213.4 0.0187

4 3462.6 3427.3 1.03

Average 0.8483 0.9628

error(%)

5.2.2. Thin Layer Method

For the modeling of the joints, the thin layer method is applied. The detail of the

method is introduced in the section 2.3. The finite elements model of the joint is

showed in the figure 5.11. For the finite element modeling with thin layer, a thin layer

will be embeded at the joint and the material properties are defined in the term of stress-

strain matrix which also called tangent module for material showed in the equation (

5.1 ). The element type of solid64 is utilized to satisfy this request. The thin layer

has very small thickness. For ANSYS, the length-thickness ratio must be smaller than

16:1 for element type solid64.

σxx

σyy

σzz

σxy

σyz

σzx


=
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E11 0 0 0 0 0
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(5.1)

Since the interface has no stiffness in x and y directions, the terms E11 and E22 are

disappeared. E33 represents the normal stiffness, whereas E55 = E66 = G defines the

tangential stiffness of the joint. As the joint exhibits no stiffness for in-plane shearing,

E44 is also zero. For numerical reasons all diagonal terms in equation ( 5.1 ) are not

zero for ANSYS. So the values of E11, E22 and E33 are set to some small values in the

calculation. These three parameters are set to 10, the E33 also will not affect the result

too much and will chosen as E33 = 2E9N/m2. For each bolt position type and each

torque, it can be simulate with the different value of E55 = E66 = G.
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Figure 5.11.: FE Model for the Joint with Thin Layer Method

With the parameters provided, the structural dynamic analysis will be carried out.

The modal analysis and harmonic analysis is performed. The modal analysis is used to

obtian the eigenfrequencies and the harmonic analysis is used to simulate the damping

properties.

Eigenfrequency estimation with Modal Analysis

The modal analysis [4] [3] is used to calculate the eigenfrequencies. During this analy-

sis, the structure is supposed to have a sandwich structure with thin layer in the middle

glued toghter with each other. The damping will be ignored. Bolt position Type B and

Type C with different torques with 20Nm and 30Nm are simulated. For this simulation,

the module C will have the form of the equation ( 5.2 ) with the proper shear modulus

G which gives the best result.

C =



10 0 0 0 0 0

10 0 0 0 0

2e9 0 0 0

10 0 0

G 0

G


(5.2)
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For Type B with torque 20Nm, the shear modulus G = 3 5E8N/m2 shows good

simulation results of eigenfrequencies which can be seen from table 5.14.

Table 5.14.: Experiment and Simulation Result for Type B with Torque 20Nm

Mode 1 2 3 4 5 6 7 8

Exp(Hz) 365.2 768.6 861.4 1636.5 1921.9 2212.2 2241.5 2963.5

Sim(Hz) 363.1 778 863.6 1637.8 1906.8 2210.7 2262.1 2978.8

Diff(%) 0.5784 1.2082 0.2547 0.0773 0.7902 0.0679 0.9092 0.5125

For Type B with torque 30Nm, the shear modulus G = 4E8N/m2 shows good

simulation results of eigenfrequencies which can be seen from table 5.15.

Table 5.15.: Experiment and Simulation Result for Type B with Torque 30Nm

Mode 1 2 3 4 5 6 7 8

Exp(Hz) 367.8 772.6 863 1643 1933.2 2215.3 2248.6 2966.2

Sim(Hz) 364.5 783.4 864.4 1642.2 1914.5 2214.4 2265.4 2982.1

Diff(%) 1.2944 0.6984 0.0656 0.3155 1.3845 0.2081 0.5968 0.4241

For Type C with torque 20Nm, the shear modulus G = 9E8N/m2 shows good

simulation results of eigenfrequencies which can be seen from table 5.16.

Table 5.16.: Experiment and Simulation Result for Type C with Torque 20Nm

Mode 1 2 3 4 5 6 7 8

Exp(Hz) 368.6 812.3 862.1 1646.1 1965 2229.1 2247.5 2960.8

Sim(Hz) 371.1 808.7 867.3 1662.5 1948.7 2227.7 2279.6 2972

Diff(%) 0.6737 0.4452 0.5996 0.9845 0.8365 0.0643 1.4081 0.3757

For Type C with torque 30Nm, the shear modulus G = 10E8N/m2 shows good

simulation results of eigenfrequencies which can be seen from table 5.17.

The result is summarized in the table 5.18 to see the interrelation between different

bolt position type and different torque. It can be easily seen from table 5.18 that, the

experiment results of eigenfrequencies and the simulation of eigenfrequencies are quite

match each other, in other word, the eigenfrequency and mode shape can be simulated

with very high accuracy.



5.2. Simulation 63

Table 5.17.: Experiment and Simulation Result for Type C with Torque 30Nm

Mode 1 2 3 4 5 6 7 8

Exp(Hz) 370.5 818.7 863.5 1652.2 1975.4 2233.3 2252.5 2966.2

Sim(Hz) 371.7 811.7 867.7 1663.6 1952 2229.6 2282.2 2974.3

Diff(%) 0.3228 0.8665 0.4802 0.6833 1.1988 0.1674 1.2999 0.2735

Table 5.18.: Shear Modulus and Average Error for Type B, Type C with torque 20Nm, 30Nm

Type B Type C

Torque (Nm) 20 30 20 30

G (N/m2) 3.50E+08 4.00E+08 9.00E+08 1.00E+09

The shear modulus is larger than Type B, this means Type C is stiffer. Since Type C

put the bolts at edges of the structure which can reduce the deformation of the joints.

Harmonic Analysis for Damping

For ANSYS, there is no complex modal analysis which can calculate the damping ratio

directly. So the harmonic analysis is used to get FRF, then the damping can be obtained

from the FRF using X-Modal II.

It is necessary for harmonic analysis to put constraint on the model. So the modal

analysis is used to find three points constrain which will fix the system with less dif-

ference of eigenfrequencies of previous free-free boundary condition system.

The three point with the coordinates (0.180, 0, 0), (0.180, 0, 0.02015), (0.180,

0.0029, 0.01015) are chosen the comparison of the eigenfrequencies with and with-

out constrain is showed in figure 5.19.

Table 5.19.: Eigenfrequencies for Type C and 30Nm With and Without Constrain

With (Hz) 371.7 811.7 867.7 1663.6 1952 2229.6 2282.2 2973.3

Without(Hz) 371.7 811.7 867.7 1663.6 1952 2229.6 2282.2 2974.3

The harmonic analysis is performed for the system with the joint damping which

input into ANSYS model with the commend MP, DMPR. This commend is only avail-

able for harmonic analysis and can be used to modeling the hysteresis damping. The
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damping ratio is given as 0 057 which is given in the reference [9]. The constrains with

the three points given, the harmonic analysis with the frequency range from 200Hz to

3200Hz is carried out with the substep 300 which means the frequency resolution of

20Hz and 10Hz. Input force is at the node 4 of the structure and the output of the node

4 is recorded for the harmonic analysis. After the analysis, the result will be overlaid

together with the experimental data get from the section 5.1.3. The plot can be found

in figure 5.12.

Figure 5.12.: Comparison of FRFs for simulation with 20Hz and experiment

For the simulation with ANSYS, the FRF obtained is displacement divided by the

force, however the FRF ontained for the experiment is acceleration divided by the

force. So the displacement signal need to transfered into acceleration signal in fre-

quency domain in order to plot the FRFs in the same figure and compare them. The

simulation FRF als need to be transfered into the universal file formats for the further

processing with X-Modal II. The relation between displacement signal and accelera-

tion signal in the frequency domain can be seen in the equation ( 5.3 ).

Ẍ (f) = − (2πf)2X (f) = −ω2X (f) (5.3)

where Ẍ (f) is acceleration signal, X (f) is displacement signal, f is frequency, ω

is angular frequency [16].

It can be seen from the figure 5.12 that, the simulation overestimates the damping.

So the same frequency resolution as the experiment data which is 0.25Hz must be
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applied in order to compare the experimental results and simulated results. The com-

parison of the first two picks for the damping ratio given as 0 057 is showed in the

figure 5.13 and the damping result for the first two pick will be summarized in the

table 5.20.

Figure 5.13.: Comparison of FRFs for simulation with 20Hz and experiment

The Simulation result with harmonic analysis is showed in the table 5.20. Actually

the second mode is not appeared so well in this plot. So the mode we interested in is

actually the first and third mode. The frequency range for the first mode is 350Hz to

400Hz and 840Hz to 890Hz for the third mode.

Table 5.20.: Comparison of Modal Parameters for First 2 Pick the Experiments and Simulation

at 0.25Hz

ANSYS EXPERIMENT(4boltT 30N)

Frequency(Hz) Damping(%) Frequency(Hz) Damping(%)

1st mode 371.8 0.2154 370.6 0.1147

3rd mode 867.7 0.0623 863.4 0.0594

It can be seen from the figure 5.13 and table 5.20 the damping is bigger than the

experiment result and the curve also do not fit too well. Then the damping ratio must

be adjusted useing the simulation for the 1st modes. After several simulation, the
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Figure 5.14.: Comparison of FRFs for simulation with 20Hz and experiment

Table 5.21.: Comparison of Modal Parameters for Experiments and Simulation at 0.25Hz

ANSYS Experiment Error(%)

mode Frq(Hz) frq (Hz) Dmp(%) frq (Hz) Dmp(%) freq Damp

1st 360∼ 385 371.7 0.0383 370.8 0.0328 0.2427 16.7683

2nd 850∼ 890 867.7 0.011 863.5 0.0206 0.4864 46.6019

3rd 1645∼ 1685 1664.2 0.0248 1652.9 0.0309 0.6836 19.7411

4th 1935∼ 1975 1951.5 0.0386 1975.7 0.0529 1.2249 27.0321

5th 2263∼ 2303 2280.5 0.0189 2253.1 0.0472 1.2161 59.9576

6th 2953∼ 2993 2972.4 0.0121 2966.6 0.0469 0.1955 74.2004
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damping ratio is updated to 0.01 which give the best curve fit to the experiment result.

The simulation result is showed in figure 5.14 and table 5.21.

It can be seen from the figure 5.14 and table 5.21 that, the estimation of damping

is not so good. the highest error for damping is 74%. The simulation showes good

estimation for the first three mode and get worse for the mode in high frequency range.

the result can be improved with using the material damping also with the constant

frequency independent stiffness matrix coefficient βξj .





6. Conclusions and
Recommendations

In this thesis, the structures with multiple joint characteristics are designed, constructed

and investigated . The structures which satisfies the criteria is manufactured and used

in the investigation of the system with multiple joint characteristics. Analytical ap-

proach is performed in order to select the modal parameter estimation methods. The

experimental approach summarizes the influence caused by the different bolts posi-

tion and the different torque, the influence is discussed with respect to not only the

eigenfrequencies but also damping ratio. the simulation is performed to compare the

simulated results with experimental results. In this Chapter several conclusions are

made and some recommendations for further work are given.

6.1. Conclusions

• The PTD method showed best results for the analytical data with low damping,

the PTD method is utilized to the analysis with the experimental data. The PTD

method is high order time domain method. As time domain methods tend to

provide the best results when a large frequency ranges and high order methods

require more spatial data because they use only a limited subset of spatial data.

For our structure the frequency range will be 0 3000Hz and also the system use

only 2 accelerometers which means there are few physical DOFs.

• For the same bolt position (identical pressure distribution), the eigenfrequencies

for each mode will get bigger as the torque getting bigger. As the normal force

at the joint getting bigger, the deformation at the joint gets smaller, the system

gets stiffer which means young‘s modulus for the joint model get bigger.

• For the same bolt position (identical pressure distribution), modal damping ra-

tios tend to get smaller as the torque getting bigger, since the damping in the

structure is also dependent on the deformation in the joint occurring due to a

certain mode shape. Damping ratios also get smaller as the torque get smaller.
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Type A performs non-linearity which implies that, there must be enough bolts to

make the structure perform linear.

• For the same torque, according to the order of the type A, B and C, the eigen-

frequenies for each mode get bigger. But for the type D the eigenfrequency has

become smaller than the previous bolt position type. In the order of type A, B, C,

D, the number of the bolts used in the joints will get larger, the joint will become

more and stiffer and the deformation will decrease. At the same time, the mass

effect for the simulation must also take place. If the strucutre can be designed

more heavier, this effect will be avoided.

• For the same torque, the damping ratio for the most modes also tends get smaller

according to the order of the type A, B, C and D, which means that the numbers

of the bolts get larger and the pressure get more well-distributed. From type A

to D, the joint become much stiffer; the normal force has become more equally

distributed; and the deformation becomes much less.

• The eigenfrequencies and the mode shapes can be calculated with finite elements

method high accuracy. In this thesis, thin layer elements method is utilized and

this method can simulate not only the different type of bolt position, but also the

different torque used to fastening the bolts (pressure distribution).

• The damping ratio can also be simulated with finite element method. However,

the result still shows big errors since the damping is very sensitive.

6.2. Recommendations

• For the structure used in the experiments, we only performed with part B and

part C. In the further work the part A must also be utilized to perform more

complicated structures with different joint characteristics. The structure is better

to be more heavier, in order to avoid the massloading effect.

• More complex structure can be constructed with the Part A, Part B and Part C to

investigate the system with joint characteristics.

• For the analytical approach, the noise must be take consider with respect to

power, amplitude and so on. Also the model must be generated both in the

time domain and frequency domain in order to check the effect of data sets with

different domain to the MPE methods.
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• For the experiment, the shaker can be used instead of the impact hammer in

further work, by the reason that the impact hammer cannot provide the structure

with constant impulse. The shaker can solve this problem easily. But for this

method, the massloading effect of the accelerometers will be need to take in

consider.

• For the experiment, instead of use the FRF signal of the system, the impulse

signal can be directly used in order to investigate the MPE methods with the

experimental data sets in time domain.

• For the simulation, the stiffness and damping property are considered as constant

in the thin layer at the joint. But in further work, the material and dynamic

properties of system must be determined differently from position to position in

the thin layer elements according to the bolt position. This must be providing

much better result.

• For simulation, ANSYS is used to perform the simulation, where the length to

thickness ratio of the thin layer for solid 64 is smaller than 16:1. So other element

type or other software such as Nastran which allows bigger length to thickness

ratio must be applied for simulation.

• As a consequence, investigattion of the effect of the thickness ratio of the thin

layer and the elements nearby is required.

• For the simulation, modeling the bolts with different methods will be also one

of the interesting research fields for the further work, which can be referenced

from referece [13]

• For damping, more investigations are required.
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A.1. MATLAB codes

% I m p o r t a n t MATLAB Command l i n e s f o r A n a l y t i c a l Models

% s i g n a l p a r a m e t e r s

d f = 0 . 2 5 ; % Frequency R e s o l u t i o n

t t = 1 / d f ; % T o t a l Time

L = t t ∗2048 ; % Sampl ing Frequency Number

t = l i n s p a c e ( 0 , t t , L ) ; % Array of Time

d t = t ( 3 ) − t ( 2 ) ; % Time R e s o l u t i o n

Lf = L / 2 ;

f = l i n s p a c e ( 0 , d f ∗ ( Lf−1) , Lf ) ; % Array of Frequency

% 2N sys tem

A=[Z ,M;M, C ] ;

B=[−M, Z ; Z ,K ] ;

[ x , d ]= e i g (− i n v (A)∗B ) ;

o r i g _ l a m b d a = d i a g ( d ) ;

[Y, I ]= s o r t ( imag ( o r i g _ l a m b d a ) ) ;

lambda= o r i g _ l a m b d a ( I ) ; % e i g e n f r e q e q u e n c y

xx=x ( : , I ) ;

ma=xx . ’∗A∗xx ; % modal A

mb=xx . ’∗B∗xx ; % modal B

R ( : , : , i )= p s i ( 1 : N, i )∗ p s i ( 1 : N, i ) ’ . / ma ( i , i ) ; %r e s i d u e

%IRF

x t = 0 ;
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f o r i = 1 :2∗N

x t = x t + r e s i d u ( i ) . / 2 ∗ exp ( lambda ( i ) . ∗ t ) ;

end

%FRF

om= f . ∗ 2 . ∗ p i ;

H = 0 ;

f o r i = 1 :2∗N

H = H + r e s i d u ( i ) . / ( j . ∗om−lambda ( i ) ) ;

end

% Read Uff f i l e

[ U f f D a t a S e t s , In fo , e r rmsg ] = r e a d u f f ( ’ xx . unv ’ ) ;

% Chage t h e U f f D a t a S e t s

U f f D a t a S e t s { 3 } . x = ;

U f f D a t a S e t s { 3 } . measData = ;

%Wri t e Uff f i l e

I n f o = w r i t e u f f ( ’ xx . unv ’ , U f f D a t a S e t s ) ;

A.2. ANSYS codes

% I m p o r t a n t ANSYS Command l i n e s f o r Models

f i n i

/ c l e a r

/ p rep7

! I n p u t s

x _ l e n g t h = ! l e n g t h o f t h e b l o c k

y_wid th = ! ( a l l u n i t s i n m)

z _ t h i c k =

exs = ! Young ’ s modulus p i p e w a l l

nuxs= ! P o i s s o n number p i p e w a l l

d e n s s = ! p i p e d e n s i t y

DMPR_ratio_1 =
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! D i v i s i o n s

t l l =25 ! D i v i s i o n s ove r wid th

t l w =24 ! D i v i s i o n s ove r h e i g h t

t l t =4 ! D i v i s i o n s ove r t h i c k n e s s

! D e f in e m a t e r i a l p r o p e r t i e s

ET , 1 , SOLID45

MAT, 1

MP, EX, 1 , exs

MP,NUXY, 1 , nuxs

MP, DENS, 1 , d e n s s

ALPHAD, DMPR_ratio_1

! C r e a t t h e b l o c k

block , 0 , x _ l e n g t h , 0 , y_width , 0 , z _ t h i c k

! D i s c r e t i z e

l s e l , s , l e n g t h , , x _ l e n g t h

l e s i z e , a l l , , , t l l

l s e l , s , l e n g t h , , y_wid th

l e s i z e , a l l , , , t l w

l s e l , s , l e n g t h , , z _ t h i c k

l e s i z e , a l l , , , t l t

! Mesh

type , 1

MAT, 1

vmesh , a l l

a l l s e l

s f t r a n

! Save t h i s model

/ s o l u

CDWRITE, comb , E : \ xx \ xx

! Read model

CDREAD, comb , E : \ xx \ xx
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! Move or Copy t h e volume

vgen , ( number ) , a l l , , , x , y , z , , , 1 ( 0 )

! Modal A n a l y s i s

/SOLU

ANTYPE, 2

MODOPT, damp , 2 5 , 5 , 4 0 0 0

MXPAND, 2 5

a l l s e l

s o l v e

f i n i s h

! Harmonic A n a l y s i s

/SOLU

ANTYPE, 3 ! Harmonic r e s p o n s e a n a l y s i s

HROPT, FULL ! F u l l harmonic r e s p o n s e

HROUT, on ! R e s u l t s a s a m p l i t u d e s & phase a n g l e s

NSUBST, 1 6 0 ! I n t e r v a l s w i t h i n f r e q . r a n g e

HARFRQ, 1 , 2 ! Frequency r a n g e 1 t o 2

KBC, 1 ! S t ep boundary c o n d i t i o n

! c o n s t r a i n

n s e l , s , loc , x , 0 . 1 8 0

n s e l , r , loc , y , 0 . 0

n s e l , r , loc , z , 0 . 0

D, ALL, ALL

FK, 4 6 2 , FZ,−1 ! Force

! Outpu t f i l e c o n t r o l

o u t r e s , a l l , none

o u t r e s , NSOL, ALL, neednode

ALLSEL

SOLVE

FINISH
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A.3. Blueprint

Figure A.1.: Drawing of the structure A

For the further work, structure A must be utilized. and it can constructed to the

structure showed in figure A.4.
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Figure A.2.: Drawing of the structure B
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Figure A.3.: Drawing of the structure C

Figure A.4.: Drawing of the total structure
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