
Universitat Politècnica de Catalunya

ETSECCPB

Treball Fi de Màster
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Abstract

Simultaneous Untangling and Smoothing of Hexahedral Meshes

Thomas James Wilson

A new hexahedral mesh untangler and smoother is developed using global optimi-

sation. The method is compared with an existing local optimisation smoother and

found to converge on the same improved mesh. The result validates the technique of

smoothing meshes node by node, bypassing the issues associated with solving large

systems of linear systems.

The Geometric Element Transform Method is compared with the new smoother as well

as existing techniques. While it is not guaranteed to untangle the mesh, the GETMe

method is typically able to increase the minimum and mean qualities of meshes in a

time span at least an order of magnitude below that of the optimisation smoother.

Converged qualities are below those of the optimisation method but above Laplacian

smoothing. The mesh obtained from the Geometric Element Transform Method can

be examined and further smoothed with an optimisation method only if its quality is

insufficient.

Keywords: Hexahedral mesh smoothing; Hexahedral mesh untangling; Mesh optimisation.
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Chapter 1

Introduction

1.1 Motivation

The accuracy and performance of a finite element analysis depends on the quality of

the mesh on which the spatial domain has been discretised. Most three dimensional

meshes are composed of tetrahedral elements as they can be automatically generated

to discretise an arbitrary domain by rapid, mature algorithms (Tournois et al., 2009).

While more challenging to mesh, hexahedral elements have several advantages over

tetrahedra (Roca, 2009).

More Accurate For a given number of degrees of freedom, hexahedral meshes have

been shown to be more accurate in empirical structural analyses.

More Robust Hexahedral elements are less likely to encounter shear locking.

Better Anisotropy As elemental aspect ratios increase well beyond unity (as is

desirable, for example, in boundary layer fluid dynamics problems and composite

solid problems) hexahedral elements are able to better approximate the true

solution.

Unfortunately, ready access to these advantages is hampered by the significant chal-

lenges regarding the generation of the hexahedral mesh. At this stage no automated

technique exists which compares to tetrahedral methods such as Delaunay refinement.
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Techniques which do exist operate over a smaller domain and in a less robust manner.

Meshes generated automatically can include poorly formed or even inverted elements

(Ledoux, 2008). It is therefore of value to develop techniques for the smoothing and

untangling of hexahedral meshes.

As available computing power increases an ever greater number of problems become

tractable. One such class of problems is the smoothing of meshes using minimisation

methods to find the globally optimal node configuration.

1.2 Objectives

The process of moving the nodes of a mesh to improve the overall quality of the ele-

ments is termed as smoothing, while the process of transforming inverted elements to

correctly oriented ones is called untangling. Both will be addressed herein, although

the connectivity of the mesh will remain unchanged. Therefore, the smoothers and

untanglers will only modifiy the location of interior nodes.

The objective of this thesis is to develop and compare algorithms for the smoothing

and untangling of purely hexahedral meshes in R3. Compared algorithms fall into two

principle categories,

Heuristic Algorithms which operate by the geometrical manipulation of nodal posi-

tions. Such methods are typically quick running. Examples include Laplacian

smoothing (Frey et al., 2007) and GETMe (Vartziotis and Wipper, 2011).

Minimisation Algorithms which search for a minimum of an objective function, po-

tentially using its first and second derivatives. These methods typically generate

a higher quality mesh at a greater computational expense. (Escobar et al., 2003;

Knupp, 2003)

As well as comparing existing mesh smoothing methods, a new, global approach to

the minimisation problem will be developed. The method will be able to smooth
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and untangle hexahedral meshes simultaneously by generating a global system of

equations.

1.3 Main Contributions

A global, all hexahedral combined smoother and untangler has been developed using

functional optimisation. The smoother has been compared to a local smoother based

on the same function as well as heuristic smoothers.

Local and Global objective function based smoothers have been shown to converge

on the same nodal configuration. This validates local smoothers as a robust method

of optimising the quality of hexahedral meshes.

The Geometric Element Transform Method has been shown to provide a high quality

mesh as well as an effective initial guess to the optimisation procedure.





Chapter 2

Background

2.1 Quality Index

In order to improve the quality of the mesh we must define a way to measure it. The

quality of a hexahedron will be based on that of the tetrahedra composed within.

2.1.1 Requirements of the Quality Index

The measure used should satisfy the definition given in (Dompierre et al., 1998), with

the exception of the maximum corresponding to a regular tetrahedron. Our maximum

quality corresponds to the tetrahedron forming the corner of a regular hexahedron.

A tetrahedron shape measure is a continuous function that evaluates

the quality of a tetrahedron. It must be invariant under translation, rota-

tion, reflection and uniform scaling of the tetrahedron. It must be maxi-

mum for the regular tetrahedron and it must be minimum for a degenerate

tetrahedron. There is no local maximum other than the global maximum

for a regular tetrahedron and there is no local minimum other than the

global minimum for a degenerate tetrahedron. For the ease of compar-

ison, it should be scaled to the interval [0, 1], and be 1 for the regular

tetrahedron and 0 for a degenerate tetrahedron.

5
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x1

x4

x3

x2

Figure 2.1: Tetrahedral Edges Defining Vector Space

2.1.2 Affine Transforms Between Elements

Throughout this section bold symbols x1 denote column vectors of coordinates in

R3, bold capitals A denote matricies and italic symbols x1 denote individual scalar

components.

Consider an arbitrary tetrahedral element. A vector space exists defined by the edges

prodruding from the first node x1 to each of the remaining nodes, x2,x3,x4. These

are shown in Figure 2.1.

{x2 − x1 x3 − x1 x4 − x1} (2.1)

Linearity holds between such spaces definied on different elements. We can define

an affine mapping between two elemental vector spaces using a linear transformation

matrix and a translation. These affine transormations are defined in reference to three

nodal configurations,

Physical Element The element defined by the nodes as they are in the mesh. Co-

ordinates in this space are denoted by the symbol x.

Ideal Element The desired nodal configuration. Coordinates denoted by xi.
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x

y

(0,0) (1,0)

(0,1)

x

y

(0,0) (w,0)

(w/2,h)

x0

x1

x2

x

y

Ideal Element

Reference Element

Physical

Element

W

A
S

Figure 2.2: Transformations between elements (Rivas, C. A., 2010).

Reference Element The configuration shown in Figure 2.3, with unit vectors aligned

with the cartesian space (x, y and z axes). Coordinates denoted by xr.

Transformation from the reference to the physical element is done by (2.2). Trans-

formation from the reference to ideal element is done by (2.3), while transformation

from the ideal to physical element is done with (2.4). The transformations are shown

in Figure 2.2

x = Axr + x1 (2.2)

xi = Wxr (2.3)

x = Sxi + x1 (2.4)

Nodal positions of a tetrahedron make up the matrix A according to (2.5). The first
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tetrahedral node is the base of the tetrahedron, at which all are mutually perpendic-

ular in the ideal case. Coordinates used are those of the physical element.

A =


x2 − x1 x3 − x1 x4 − x1
y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1

 (2.5)

Now we demonstrate the use of affine transformation (2.2) to transform the third node

of the reference element to the physical space,

A · (xi3) + x1

=


x2 − x1 x3 − x1 x4 − x1
y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1

 ·


0

1

0

+


x1

y1

z1



=


x3 − x1
y3 − y1
z3 − z1

+


x1

y1

z1



=


x3

y3

z3


= x3

In this work the reference and ideal elements are the same since the ideal tetrahedron

is one which makes up a corner of a cube. For tetrahedral meshes the ideal element

is the regular tetrahedron. We therefore simplfy with W = I.

S = AW−1 (2.6)

S = A (2.7)
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2.1.3 Tetrahedral Quality Measures

We use the measure given by (Knupp, 2000).

q(T ) =


3σ2/3

|S|2
σ > 0

0 otherwise

(2.8)

σ = det S (2.9)

2.1.4 Hexahedral Quality Measures

The quality of a hexahedron is defined by the average quality of eight tetrahedra

composed of its nodes (Vartziotis and Wipper, 2011).

q(H) =
1

8

8∑
i=1

q (Ti) (2.10)

Note this differs from the quality measure used in (Knupp, 2001; Rivas, C. A., 2010).

The node on each corner of the hexahedron, as well as the other three with which it

shares an edge, form an element. The element’s quality is determined from Section

2.1.3. The permutations used to extract these tetrahedra are given in Table 2.1.

2.1.5 Combining Elemental Qualities

We will consider two primary metrics to evaluate the quality of a whole mesh from

the quality of the elements.

Qmin = min (qi) (2.11)

Qmean =
1

n

n∑
i=1

qi (2.12)

The set of elements i = {1, ..., n} is all hexahedral elements in the mesh.
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Figure 2.3: Tetrahedra used to calculate the quality of a hexahedral element. Indices
from Table 2.1.
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Element
Node

1 2 3 4
1 1 4 5 2
2 2 1 6 3
3 3 2 7 4
4 4 3 8 1
5 5 8 6 1
6 6 5 7 2
7 7 6 8 3
8 8 7 5 4

Table 2.1: Nodes of hexahedon used to form eight sub-tetrahedra as used to generate
Figure 2.3

2.2 State Of The Art

Mesh smoothing and untangling is a rapidly evolving field, here we summarise some

important recent results. A number of the citations given here pertain to tetrahedral

meshes, on which most of the literature has been written.

2.2.1 Heuristic Methods

The Geometric Element Transform Method (Vartziotis and Wipper, 2011) regularises

a hexahedron using its dual octahedron. Weighting the new node position based on

the quality of the elements which contain it often results in a mesh of higher quality

than would be obtained from Laplacian smoothing. In addition, the method typically

approaches convergence more rapidly. The method includes a check which reverts

any node movement leading to an inverted element, which can occur if elements have

large aspect ratios.

2.2.2 Optimisation Methods

Optimisation methods smooth the mesh by defining an objective function inversely

related to the qualities of elements. This objective function is minimised, at which

point the quality is at its highest.
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One method with which this can be done is to use a single objective function for the

whole mesh. The movement of all nodes are considered simultaneously, as is the effect

of this movement on the qualities of all elements. This approach, as used on hexa-

hedral elements in (Knupp, 2003) has the advantage that the problem being solved

is directly related to the desired outcome. If Newton based methods are called upon

(making use of the second derivatives), difficulties can emerge on account of the large

linear system and the fact that the Hessian matrix is not always positive definite. An

example of a convex triangular mesh with just two free nodes and an indefinite Hes-

sian can be found in (Munson, 2007), in which the global smoothing of an untangled

tetrahedral mesh is investigated.

The issues of large systems are bypassed if the smoothing is done on a node by node

basis, in which sequential single nodes in the mesh are considered free while all others

are fixed (Sastry and Shontz, 2009). Such methods do not require the solution of large

systems of equations but have other drawbacks. If a large group of nodes lie a long

distance from their optimal position they require several iterations to approach the

optimal value since the progress is hindered by the artificial boundary conditions of

the surrounding ’fixed’ nodes.

A comparison between these two broad methods as applied to tetrahedral meshes can

be found in (Freitag et al., 2006). The authors report that while an optimal mesh is

typically found more quickly using the global approach, good progress can be made

by local methods (referred to as coordinate descent) in the time spent setting up the

global one (for example, computing and allocating the sparsity pattern for the global

Hessian). The authors also note the advantages of global methods are diminished as

the element size heterogeneity increases.

Untangling has traditionally been done separately to smoothing (Knupp, 2000). Mod-

ification of the objective function to facilitate untangling while retaining satisfactory
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local smoothing was proposed for tetrahedral meshes in (Escobar et al., 2003), and

extended to hexahedral meshes by (Rivas, C. A., 2010). In this work we will extend

the combined untangling and smoothing of hexahedral meshes to a global approach.





Chapter 3

Mesh Quality Improvement

The methods detailed here share the convergence criterion of Algorithm A.1. The

GETMe method also requires an increase in either minimum or mean quality.

3.1 Heuristic Methods

3.1.1 Laplacian Smoothing

Laplacian Smoothing updates the position of a node to the average of the nodes di-

rectly connected to it by an edge. It is computationally cheap to perform an iteration,

but it can generate inverted elements in concave domains. A Smart Laplace variant

exists which checks all elements affected by a node relocation and reverts the change

if any have become inverted.

Algorithm 3.1 Laplacian Smoothing

nodes← {x1,x2,x3, . . . ,xn} Set of interior nodes
repeat

for xi ∈ nodes do
a← nodes attached by an edge to xi

xi ← 1
N

∑N
j aj

end for
until Convergence using Algorithm A.1

15
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3.1.2 Geometric Element Transform Method Simultaneous

Smoothing

The GETMe Simultaneous method has ben implemented unchanged from its original

presentation (Vartziotis and Wipper, 2011).

Note that the full GETMe smoothing method is a two stage process, a simultaneous

smoothing of all nodes followed by sequential smoothing of the lowest quality ele-

ments. The second stage involves finding the lowest quality element and regularising

it. This portion of the algorithm is not vectorisable, and also requires the maintenance

of a sorted mapping of qualities to elements.

On meshes of the size examined in this work it was not feasible to run the sequential

GETMe algorithm. We have implemented it in C++ for inclusion in the ez4u meshing

framework and can confirm the algorithm improves the minimum quality of all meshes

on which it has been tested. Numerical results will not be included since they would

entail a comparison between MATLAB and C++.

3.2 Optimisation Methods

Meshes to be smoothed using optimisation methods can optionally be preconditioned

by a heuristic method.

3.2.1 Objective Function

We base the objective function on the inverse of the elemental quality functions we

wish to maximise (2.10), combined with the generalised mean. The same function is

used for local and global smoothing operations. The set of elements over which the

sum operates Selems can be those surrounding a node or all elements in the mesh.
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η =
|S|2

3h (σ)2/3
(3.1)

h (σ) =
1

2

(
σ +
√
σ2 + 4δ2

)
(3.2)

ηglobal =

(
n∑
i=1

ηi
p

)1/p

ηi ∈ Selems (3.3)

Using a value of p = 1 in (3.3) defines the accumulated quality as the mean of the

elemental contributions. In this work we will use p = 2, giving us the quadratic mean.

Such a value causes the algorithm to more heavily weight the lowest quality elements

which have the highest value of η.

The modification from h(σ) = σ given in (3.2) was proposed by (Escobar et al., 2003)

and allows us to untangle as well as smooth the mesh. It is important to note that the

inclusion of a non-zero δ prevents the inverse of η being a quality metric as defined in

Section 2.1.1 since it is no longer size independent. An explanation of its function is

given in Section 3.2.4.

Methods below require first and sometimes second derivatives to operate. Refer to

Appendix B where there are reported or developed where necessary.

Local Optimisation

To perform a local optimisation of a single node, the elements in Selems in (3.3) are

the elements attached to the node in question. All other nodes in the mesh are fixed.

The steps are given in Algorithm 3.2.

Global Optimisation

Smoothing of all nodes in the mesh simultaneously is done by assigning all mesh ele-

ments to Selems in (3.3). The steps are given in Algorithm 3.3.
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Algorithm 3.2 Local Optimisation

Snodes ← interior nodes
iters← 0
while unconverged and iters < maxIters do

for all xi ∈ Snodes do
Apply local smoothing to node xi

end for
iters← iters+ 1

end while

We need to ensure that the local and global methods agree on the location of the

optimal point. This is done in Appendix C.

Algorithm 3.3 Global Optimisation
iters← 0
while unconverged and iters < maxIters do

Apply global smoothing to interior nodes
iters← iters+ 1

end while

3.2.2 Search Direction Methods

We implement the most simple search direction methods since the primary objective

is to compare the broad local and global methods rather than implementation details,

which can be found in Appendix A.

First Derivative Methods

A number of first order methods exist which approximate the Hessian using successive

gradient vectors. These are not used in local smoothing operations because successive

iterations of search direction are interspersed with the movement of adjacent nodes,

rendering past results invalid. Performing multiple iterations on a single free node

was not found to be an economical technique.
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Steepest Descent A new nodal position is sought in the opposite direction to the

gradient at the current point. Algorithm A.2.

Second Derivative Methods

We set the derivative of the quadratic model to zero to obtain the search direction for

Newton’s Method. B is the Hessian or some approximation of it.

f (xk + p) ≈ mk (p)

mk (p) = fk + pT∇fk +
1

2
pTBp (3.4)

∂mk(p)

∂p
= ∇fk + Bp = 0

p = − (B)−1∇fk

Netwon Raphson By making the substitution B = ∇2fk in (3.4) we obtain a search

direction p. Explicit steps can be found in (Nocedal and Wright, 1999) or

Algorithm A.3.

Modified Newton Raphson We cannot rely on the global Hessian matrix to be

positive definite, even when the mesh is in the feasible region (Munson, 2007).

If the system is positive definite we have at our disposal a larger range of iterative

solvers (Saad, 2003). As such, we increase the eigenvalues of the Hessian by the

simple method of adding a constant to each term of the main diagonal. There

are many alternative procedures for modifying the Hessian (Nocedal and Wright,

1999). For example, the one used by (Freitag et al., 2006) is the addition of a

block diagonal. Our implementation is given in Algorithm A.4.

3.2.3 Step Size Selection

The selection of step size for all minimisation problems is done with a Back Line

Search satisfying the Armijo Condition for descent. Specifics are listed in Algorithm

A.5 in Appendix A
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det(S)

σ
h(σ)

Figure 3.1: Modified σ with zero as an asymptote

3.2.4 Removing Barriers Caused by Tangled Elements

Using the inverse of the quality function (2.8) as the basis for our objective func-

tion causes problems with inverted elements. A tangled element, which has σ = 0

according to (2.8), gives an infinite objective function, preventing the method from

functioning.

A modification to the objective function has been proposed (3.2) which prevents this

barrier from occurring (Escobar et al., 2003). The modified function asymptotically

approaches the unmodified function as det(S) increases and zero as it decreases. The

modified and unmodified contributions can be seen in Figure 3.1. Larger values of δ

entail larger deviations from the unmodified function.

δ is only assigned a non-zero value when the mesh is outside the feasible region. When

all elements are untangled smoothing proceeds with an unmodified objective function.



Chapter 4

Results

4.1 Introduction

Here we present results for a three geometries of increasing complexity. Results will

show the strengths and weaknesses of the smoothers.

BridgeSharp A structured mesh with a sharp concavity.

FiveSide A semi-structured convex mesh.

Plane An unstructured mesh of the outer domain of an aeroplane.

The smoothing was performed on the Linux Workstations with 4GB of RAM and an

Intel Core2 Duo CPU E4800 running at 3.00GHZ. Smoothers were run in MATLAB

2007 on Ubuntu 8.04 LTS, which uses Linux kernel 2.6.24-26.

4.1.1 Notation

The following abeviations have been used in tables throught this chapter.

Lap Laplacian smoothing without checks for bad elements

GETMe Geometric Element Transform Method Simultanous smoothing

Init The initial mesh
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SD Steepest Descent search direction, Algorithm A.2

NR Newton Raphson search direction, Algorithm A.3

MNR Modified Newton Raphson search direction, Algorithm A.4

Abbreviated terms used in Tables 4.1 to 4.13 are given below.

qMin Minimum element quality

qMean Mean elemental quality

qNorm Inverse Quadratic Norm of the elements. Equivalent to the global objective

function when in feasible region.

qNorm =
1√

1
n

∑n
1

(
1
qi

)2
time Smoothing Time in Seconds

iters Number of iterations to converge

timeIter Time per iteration

tIterNode Time per iteration per node

Optimisation methods which were unable to converge on the optimal solution in the

allocated number of iterations are shown shown with a shaded background. The

shortest remaining time is shown in bold face.

4.1.2 Result Caveats

There are a number of factors to bear in mind when analysing these results.

Vectorised Code The algorithms have been implemented in MATLAB, which suf-

fers significantly in the presence of low level loops. The best performance is
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obtained when the data is in large homogeneous arrays or matricies, coding in

this manner led to a number of compromises. Further research is needed to

determine the performance of the smoothers when implemented in a lower level

language.

Local Implications Elemental node locations are duplicated across several dif-

ferent arrays for use in each of the local optimisation problems.

Global Implications Storage and assembly of the contributions of the global

Hessian matrix consume approximately 50 times more memory than the

Hessian itself, since for each global Hessian component there are aproxi-

mately 8 elements contributing 4 attached tetrahedra. Each of these 32

double float components also has a 32bit integer index consuming half the

space. Assembly temporarily consumes even more.

To avoid running out of memory it was necessary to generate global Hessian

chunks of 10000 to 30000 elements at a time and accumulate them.

Iterative Methods Solving the global linear system was done using MATLAB’s

’minres’ command to implement the Minimum Residual Method without pre-

conditioning. The method was found to be the fastest suitable in the suite of

MATLAB’s iterative solvers. It is able to accommodate negative eigenvalues

and takes into account the symmetry in the system.

It is expected that significant performance improvements could be made with a

more optimised iterative solver.

4.1.3 General Comments

Some features of the optimisation smoothers are inherent to the methods and are

presented ahead of numerical results.

Advantages of Global Optimisation
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No Artificial Barriers Since the global smoother is able to move all the nodes

at once, the convergence is not inhibited by the additional boundary con-

ditions of surrounding nodes being stationary.

Better Derivative Component Reuse When calculating second derivatives

we can reuse intermediate terms. This is not possible with the local

smoother since movement occurs between the calcualtion of derivatives

of each node of the element.

Advantages of Local Optimisation

No Large Linear Solutions Since the solver obtains solutions with only three

degrees of freedom, solving large systems are not required. Increasing the

number of nodes only increases the number of solutions required, not their

size. The scaling is O (n) for this aspect of the solution. In addition to

computational expense, solving many small systems instead of one large

one requires less memory.

Second Order Search Direction Accuracy Directly solving the small lin-

ear system gives us a more accurate result than one derivied by iterative

means.

Better Suited to Meshes of Variable Sized Elements Because each patch

is dealt with separately, it is simple to add a step of scaling the patch. Do-

ing so normalizes the influence of δ, which is not a function of the size of

the element.

Simpler Derivative Calculations Holding all but three nodes constant sim-

plifies the calculation of second derivatives, both in number of derivative

components and the complexity of those components. See details in Ap-

pendix B.

Importance of Search Direction Accuracy

We can see that the Global Steepest Descent method has very slow convergence. The

method only arrives at the optimal solution when smoothing the two smallest meshes
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considered, FiveSide4 and FiveSide5 having 6119 and 14587 free nodes respectively.

Search direction is very important for the global smoother. Since all the nodes are

moved at the same time, any poorly selected component of the search direction will

impeede the progress of the whole mesh.

Calculation of the partial first order derivatives in the global case is done by varying

only the coordinate of interest. As such, the local and global first derivatives at a

given point are identical. The additional freedom of having all nodes move simulta-

neously is not incorporated into the search direction, only it’s length. To obtain a

search direction which explicitly uses the movement of all nodes we must use a second

order method.

When smoothing meshes locally it is not worthwhile spending time obtaining an

accurate search direction. Only one step is taken before the algorithm fixes the node

and moves on to another. Between iterations the surrounding nodes (and therefore

the optimal position) are modified.

4.2 BridgeSharp Mesh

The fully structured BridgeSharp mesh has been generated with GiD. It contains a

sharp concave region in which elements become inverted after Laplacian smoothing.

The mesh has 32000 hexahedral elements and 28899 interior nodes. The 3D geometry

is shown in Figure 4.1. The 2D mesh from the front face is shown in Figure 4.2.

We examine three initial conditions for the mesh. We only compared configurations

likely to be encountered in practice, no artificial distortion have been applied.

Initial The mesh as it was received from GiD.

Laplacian Smoothed Smoothed to convergence with Laplacian smoothing. Lapa-

cian preconditioning can be applied to the mesh before a more expensive smooth-

ing method.
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Figure 4.1: BridgeSharp geometry

Figure 4.2: BridgeSharp mesh

GETMe Smoothed Smoothed to convergence with the GETMe Simultaneous method.

The GETMe method is computationally more expensive per iteration than

Laplacian smoothing, but can result in a higher quality final mesh. As it is

cheaper to perform than the optimzation methods it is a valid preconditioner.
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Mesh: bridgeSharpGiD, δ = N/A
Local Smoothing Global Smoothing

Init SD NR SD NR MNR
qMin 0.1679 0.3474 0.3474 0.3205 0.3475 0.3475

qMean 0.8098 0.8831 0.8831 0.8331 0.8832 0.8832
qNorm 0.6421 0.8659 0.8660 0.8029 0.8660 0.8660

time 800.365 2486.47 427.491 1518.79 2560.36
iters 41 35 50 9 15

timeIter 1.952e+01 7.104e+01 8.550e+00 1.688e+02 1.707e+02
tIterNode 6.755e-04 2.458e-03 2.959e-04 5.839e-03 5.906e-03

Table 4.1: Smoothing Mesh bridgeSharpGiD with 28899 free nodes. Initially 0 out of
32000 hexahedra had at least one inverted tetrahedron

Mesh: bridgeSharpGETMe, δ = N/A
Local Smoothing Global Smoothing

Init SD NR SD NR MNR
qMin 0.3576 0.3472 0.3474 0.3471 0.3475 0.3475

qMean 0.8586 0.8831 0.8831 0.8800 0.8832 0.8832
qNorm 0.8397 0.8660 0.8660 0.8632 0.8660 0.8660

time 202.32 650.278 1972.72 3843.5 604 1860.26
iters 439 39 31 501 4 11

timeIter 4.609e-01 1.667e+01 6.364e+01 7.672e+00 1.510e+02 1.691e+02
tIterNode 1.595e-05 5.770e-04 2.202e-03 2.655e-04 5.225e-03 5.852e-03

Table 4.2: Smoothing Mesh bridgeSharpGETMe with 28899 free nodes. Initially 0
out of 32000 hexahedra had at least one inverted tetrahedron

Mesh: bridgeSharpLaplace, δ = 0.01
Local Smoothing Global Smoothing

Init SD NR SD NR MNR
qMin 0.0000 0.3474 0.3476 0.0544 0.0641 0.0474

qMean 0.8594 0.8831 0.8831 0.8588 0.8665 0.8587
qNorm 0.0000 0.8660 0.8660 0.6293 0.8275 0.7054

time 29.418 628.614 2193.99 114.745 41688.5 9106.9
iters 408 35 30 11 201 65

timeIter 7.210e-02 1.796e+01 7.313e+01 1.043e+01 2.074e+02 1.401e+02
tIterNode 2.495e-06 6.215e-04 2.531e-03 3.610e-04 7.177e-03 4.848e-03

Table 4.3: Smoothing Mesh bridgeSharpLaplace with 28899 free nodes. Initially 396
out of 32000 hexahedra had at least one inverted tetrahedron
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Mesh: bridgeSharpLaplace, δ = 0.2
Local Smoothing Global Smoothing

Init SD NR SD NR MNR
qMin 0.0000 0.0000 0.0000 0.0970 0.3475 0.3475

qMean 0.8594 0.8538 0.8531 0.8719 0.8832 0.8832
qNorm 0.0000 0.0000 0.0000 0.7799 0.8660 0.8660

time 29.418 129.752 484.966 1103.23 1683.11 2344.48
iters 408 14 14 157 10 14

timeIter 7.210e-02 9.268e+00 3.464e+01 7.027e+00 1.683e+02 1.675e+02
tIterNode 2.495e-06 3.207e-04 1.199e-03 2.432e-04 5.824e-03 5.795e-03

Table 4.4: Smoothing Mesh bridgeSharpLaplace with 28899 free nodes. Initially 396
out of 32000 hexahedra had at least one inverted tetrahedron

4.2.1 Results

Numerical results for BridgeSharp are presented in Tables 4.1 to 4.4. We see that

Global Steepest descent is unable to smooth the meshes in any of the cases.

A noteworthy effect is observed in Tables 4.3 and 4.4. Selection of a small δ value pre-

vents the Hessian Based Global methods from reaching convergence. This is because

as δ → 0 the entries in the Hessian matricies corresponding to inverted elements get

very large. These cause no problem for the direct solver used on the 3 × 3 Hessian,

but having a large condition number in the global Hessian impeedes convergence and

causes the iterative solver to abort with an inaccurate solution.

Large δ values change the objective function and therefore the location of the smoothed

nodes. If δ is too large there is a chance the modified optimal configuration lies out-

side the feasible region and δ is never set to zero. We see this happen with the local

smoother using δ = 0.2 in Table 4.4.

Untangling is only needed outside the feasible region, and as such δ is immediately

set to zero and has no effect on the results in Tables 4.1 and 4.2.
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Figure 4.3: FiveSide geometry

Preconditioning the optimisation smoothers with a heuristc smoother lead to faster

convergence for the quickest method, Steepest Descent Local Optimisation. This was

true for both the GETMe and Laplacian smoothers even though the Laplacian method

inverted several elements which were previously well oriented.

4.3 FiveSide

The FiveSide geometry is a regular pentagon which has been extruded, rotated and

tapered. It is shown in Figure 4.3 and has been meshed using a range of discretisations

to examine the scaling performance of the smoothers.

The semi-structured convex meshes are all used as generated by GiD. Finer discreti-

sations had some inverted elements.
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Mesh: FiveSide4
Local Smoothing Global Smoothing

Init SD NR SD NR MNR
qMin 0.5038 0.5702 0.5686 0.5648 0.5709 0.5709

qMean 0.8343 0.8445 0.8447 0.8447 0.8445 0.8445
qNorm 0.8177 0.8315 0.8315 0.8315 0.8315 0.8315

time 95.7855 173.808 315.493 126.9 213.617
iters 32 16 281 4 6

timeIter 2.993e+00 1.086e+01 1.123e+00 3.173e+01 3.560e+01
tIterNode 4.892e-04 1.775e-03 1.835e-04 5.185e-03 5.818e-03

Table 4.5: Smoothing Mesh FiveSide4 with 6119 free nodes. Initially 0 out of 7350
hexahedra had at least one inverted tetrahedron

Mesh: FiveSide5
Local Smoothing Global Smoothing

Init SD NR SD NR MNR
qMin 0.4591 0.6035 0.6036 0.6033 0.6036 0.6036

qMean 0.8697 0.8850 0.8851 0.8848 0.8850 0.8850
qNorm 0.8598 0.8790 0.8790 0.8783 0.8790 0.8790

time 185.494 331.551 1797.15 526.962 815.034
iters 29 14 501 7 10

timeIter 6.396e+00 2.368e+01 3.587e+00 7.528e+01 8.150e+01
tIterNode 4.385e-04 1.624e-03 2.459e-04 5.161e-03 5.587e-03

Table 4.6: Smoothing Mesh FiveSide5 with 14587 free nodes. Initially 0 out of 16650
hexahedra had at least one inverted tetrahedron

4.3.1 Results

In all of the cases examined we see that the steepest descent method with local

smoothing is the fastest optimisation based smoother to converge. We also note that

of the global methods, Newton Raphson is the superior one. As with the BridgeSharp

mesh, global search direction is important.

While the Hessian Based Global algorithms do contain O (n2) operations, we can see

from Figure 4.4 that when the global methods are sucessful the scaling is not notica-

bly worse than the local optimisation or heuristic methods. Note, however, that on
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Mesh: FiveSide6
Local Smoothing Global Smoothing

Init SD NR SD NR MNR
qMin 0.2681 0.3445 0.3486 0.3059 0.3490 0.3482

qMean 0.6440 0.6695 0.6710 0.6616 0.6709 0.6710
qNorm 0.5986 0.6395 0.6402 0.6300 0.6402 0.6402

time 2314.44 22532.2 1101.37 5828.79 3904.82
iters 62 183 96 24 17

timeIter 3.733e+01 1.231e+02 1.147e+01 2.429e+02 2.297e+02
tIterNode 9.394e-04 3.099e-03 2.887e-04 6.112e-03 5.780e-03

Table 4.7: Smoothing Mesh FiveSide6 with 39737 free nodes. Initially 0 out of 44400
hexahedra had at least one inverted tetrahedron

Mesh: FiveSide60k
Local Smoothing Global Smoothing

Init SD NR SD NR MNR
qMin 0.4582 0.5964 0.6001 0.6504 0.0000 0.5959

qMean 0.8712 0.8953 0.8953 0.8756 0.8766 0.8955
qNorm 0.8654 0.8895 0.8896 0.8705 0.0000 0.8896

time 2007.59 7570.52 197.92 83960.9 7401.57
iters 62 64 12 201 23

timeIter 3.238e+01 1.183e+02 1.649e+01 4.177e+02 3.218e+02
tIterNode 5.624e-04 2.055e-03 2.865e-04 7.255e-03 5.589e-03

Table 4.8: Smoothing Mesh FiveSide60k with 57575 free nodes. Initially 0 out of
62350 hexahedra had at least one inverted tetrahedron. While the global steepest
descent method returned a higher minimum quality than any other, the solution was
worse in terms of the objective function. We can see that the qNorm value was below
that of the sucessful search direction methods.

several meshes the global smoother was not able to converge. This was due to a poor

search direction from either the Steepest Descent method or failure of the iterative

solver to converge within 1000 iterations.

Modifying the Hessian to ensure positive definiteness is of negligible advantage in

either the local or global optimization. We saw no local case in which Hessian modi-

fication reduced the number of iterations required to converge.
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Mesh: FiveSide90k
Local Smoothing Global Smoothing

Init SD NR SD NR MNR
qMin 0.1095 0.4057 0.4057 0.1095 0.0000 0.0000

qMean 0.7632 0.8245 0.8247 0.7632 0.8026 0.8027
qNorm 0.6903 0.8089 0.8089 0.6903 0.0000 0.0000

time 2726.78 10048.9 190.392 2142.19 6644.5
iters 60 53 4 5 14

timeIter 4.545e+01 1.896e+02 4.760e+01 4.284e+02 4.746e+02
tIterNode 5.760e-04 2.403e-03 6.033e-04 5.430e-03 6.016e-03

Table 4.9: Smoothing Mesh FiveSide90k with 78897 free nodes. Initially 24 out of
85400 hexahedra had at least one inverted tetrahedron

Mesh: FiveSide110k
Local Smoothing Global Smoothing

Init SD NR1 SD NR MNR
qMin 0.2004 0.6146 0.6210 0.2004 0.6119 0.6138

qMean 0.8238 0.8895 0.8896 0.8238 0.8898 0.8898
qNorm 0.7829 0.8857 0.8857 0.7829 0.8859 0.8859

time 4783.04 13757.8 259.024 5656.01 14057.6
iters 79 67 4 9 23

timeIter 6.054e+01 2.053e+02 6.476e+01 6.284e+02 6.112e+02
tIterNode 5.850e-04 1.984e-03 6.257e-04 6.073e-03 5.906e-03

Table 4.10: Smoothing Mesh FiveSide110k with 103488 free nodes. Initially 2 out of
110450 hexahedra had at least one inverted tetrahedron

Mesh: FiveSide4 Mesh: FiveSide5
Init Lap GETMe Init Lap GETMe

qMin 0.5038 0.5849 0.6684 0.4591 0.4749 0.5783
qMean 0.8343 0.8408 0.8310 0.8697 0.8777 0.8819
qNorm 0.8177 0.8299 0.8240 0.8598 0.8682 0.8759

time 2.44896 26.201 8.40326 14.2094
iters 144 319 230 73

timeIter 1.701e-02 8.213e-02 3.654e-02 1.946e-01
tIterNode 2.779e-06 1.342e-05 2.505e-06 1.334e-05

Table 4.11: Heuristic smoothing of two meshes:
FiveSide4, with 6119 free nodes (from a total of 8711).
FiveSide5, with 14587 free nodes (from a total of 18879).
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Mesh: FiveSide6 Mesh: FiveSide60k
Init Lap GETMe Init Lap GETMe

qMin 0.2681 0.3557 0.3789 0.4582 0.4131 0.6608
qMean 0.6440 0.6662 0.6562 0.8712 0.8888 0.8851
qNorm 0.5986 0.6387 0.6343 0.8654 0.8818 0.8815

time 33.368 208.144 47.9087 55.9691
iters 342 376 345 69

timeIter 9.757e-02 5.536e-01 1.389e-01 8.111e-01
tIterNode 2.455e-06 1.393e-05 2.412e-06 1.409e-05

Table 4.12: Heuristic smoothing of two meshes:
FiveSide6GiD, with 39737 free nodes (from a total of 49329).
FiveSide60k, with 57575 free nodes (from a total of 67371).

Mesh: FiveSide90k Mesh: FiveSide110k
Init Lap GETMe Init Lap GETMe

qMin 0.1095 0.1397 0.2815 0.2004 0.4214 0.6334
qMean 0.7632 0.8118 0.8150 0.8238 0.8816 0.8780
qNorm 0.6903 0.7771 0.7911 0.7829 0.8736 0.8736

time 71.4581 183.629 127.026 265.754
iters 371 148 471 160

timeIter 1.926e-01 1.241e+00 2.697e-01 1.661e+00
tIterNode 2.441e-06 1.573e-05 2.606e-06 1.605e-05

Table 4.13: Heuristic smoothing of two meshes:
FiveSide90k, with 78897 free nodes (from a total of 92209).
FiveSide110k, with 103488 free nodes (from a total of 117708).

Well conditioned Global Hessian matricies can be effectively solved by the minres

routine without modification. If the matrix is poorly conditioned, local smoothing

methods are more appropriate.

4.4 Plane

Here we present the final quality distribution of a fully unstructured mesh of the do-

main around a plane. It has been generated with the receding front method by Eloi

Riuz-Gironés. The geometry can be seen in Figure 4.5. Since the optimisation meth-

ods are based on the same objective function they generate the same final quality.
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Figure 4.4: Scaling of smoothing algorithms with number of free nodes in fiveSide
geometry

Figure 4.5: Domain around an aeroplane, courtesy Eloi Ruiz-Gironés
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Figure 4.6: Original Plane Mesh, courtesy Eloi Ruiz-Gironés

As such, only one result is presented in Table 4.14 and Figure 4.9, it applies to all

search directions for local and global optimisation in which convergence was success-

fully achieved.

A cross section of the original mesh is shown in Figure 4.6, the same clipping plane

has been used on the smoothed meshes in Figures 4.7 and 4.8. Final qualities are

given in Table 4.14, and their distribution is shown in Figure 4.9.

4.4.1 Results

We can see from Table 4.14 that optimization methods are able to converge on a

higher quality final mesh than any other. For this mesh Laplacian smoothing low-

ers the mean quality and inverts a number of elements which were previously in the

feasible region. GETMe Simultaneous smoothing increases the minimum and mean
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Figure 4.7: Plane mesh smoothed using the GETMe Simultaneous smoother
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Figure 4.8: Plane mesh smoothed using optimization smoothers
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Smoothing Method Min Mean
Initial 0.0945 0.8164

Laplacian 0.0000 0.6902
GETMe Simultaneous 0.5037 0.8792

Optimization 0.6057 0.9129

Table 4.14: Converged Qualities of smoothers on Plane mesh
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Figure 4.9: Quality distributions for Plane mesh

qualities, but not as much as optimisation smoothing.

Table 4.15 lists the smoothing times of the various methods. Optimisation smoothers

have been run on both the initial mesh and the converged GETMe mesh.

On this mesh the global optimisation method is not suitable. The complex geometry

and wide range of element sizes leads to a poorly selected search direction in the

case of Global Steepest Descent, and an ill-conditioned Hessian for the Global Newton

Raphson method. Further discussion can be found in Section 4.1.3.
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Method
Time (s) / Iterations / Qualities
Time per Iteration (s) Min Mean ± Std Dev Max

Initial Mesh 0.0945 0.8164 ± 0.1276 0.9968

Heuristic Smoothing of Initial Plane
Lap 43.507278 (609) 0.071441 0.0000 0.6902 ± 0.2829 0.9938

GETMeSim 86.945900 (204) 0.426205 0.5037 0.8792 ± 0.0689 0.9959

Local Smoothing of Initial Plane
SD 1028.099 (71) 14.480 0.6057 0.9129 ± 0.0636 0.9973
NR 2719.213 (45) 60.427 0.6022 0.9131 ± 0.0639 0.9974

Global Smoothing of Initial Plane
SD 515.061 (4) 128.765 0.0945 0.8164 ± 0.1276 0.9968
NR 41978.557 (201) 208.849 0.0843 0.8654 ± 0.0969 0.9984

MNR 13477.851 (88) 153.157 0.6031 0.9127 ± 0.0645 0.9968

Local Smoothing of GETMe Smoothed Plane
SD 1073.170 (69) 15.553 0.6054 0.9129 ± 0.0636 0.9973
NR 2349.306 (39) 60.239 0.6031 0.9130 ± 0.0638 0.9974

Global Smoothing of GETMe Smoothed Plane
SD 517.673 (4) 129.418 0.5037 0.8792 ± 0.0689 0.9959
NR 42742.141 (201) 212.648 0.0040 0.9038 ± 0.0873 0.9979

MNR 19177.808 (141) 136.013 0.1100 0.8785 ± 0.0721 0.9959

Table 4.15: Using mesh Plane, with 30389 free nodes (from a total of 33411). In the
Initial configuration 163 of the 31760 elements have at least one inverted tetrahedron.
In the GETMe Smoothed configuration, 4 of the 31760 elements have at least one
inverted tetrahedron. In all optimisation methods δ = 0.01.

The heuristic smoothers are able to converge much more rapidly than optimisation

based smoothers. The fastest optimisation method, Local Steepest Descent, was more

than an order of magnitude slower than the slowest heuristic method, GETMe.

When smoothing the BridgeSharp mesh we noted that time spent preconditioning the

mesh heuristically was compensated for by a faster optimisation stage. This was not
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the case with the Plane mesh, Local Steepest Descent smoothing was slightly faster

from the mesh’s initial state.





Chapter 5

Conclusions

5.1 Conclusions

We have implemented the Laplacian and GETMe heuristic smoothers, as well as a

local optimisation smoother and untangler of hexahedral meshes. We have compared

these methods with a new, global smoother and untangler developed in this work.

We have shown several examples in which local and global approaches to untangling

and smoothing converge to the same optimum. Global smoothers have been shown

to be less robust and are competitive only when using second order search direction

methods with a well conditioned Hessian. Practical issues arise on larger meshes,

meshes with a large range of element sizes and meshes which contain heavily inverted

elements. These issues make local optimisation the most appealing method of max-

imising the quality of a hexahedral mesh.

We have shown that local smoothing of single nodes is best performed with the steep-

est descent search direction. Since the information used to determine the direction is

temporary, a more accurate solution is unnecessary.

Furthermore, we have shown that heuristic smoothing methods, while not resulting
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in optimal node locations, can serve as an effective initial guess to the optimisation

methods. A general procedure for improving the quality of a hexahedral mesh using

the results of this work is given in Algorithm 5.1.

Algorithm 5.1 General Smoothing Method

Given initial mesh Xinit

XGETMe ← GETMe smoothed Xinit

if Quality of XGETMe is sufficient then
Return XGETMe

else
if Mesh contains similarly sized, untangled elements then

Return Global NR smoothed XGETMe

else
Return Local SD smoothed XGETMe

end if
end if

5.2 Future Work

5.2.1 Boundary Node Movement

The global mesh quality could be improved if nodes were able to move on the bound-

ary. For example, nodes on an edge could be confined to just this edge. Nodes a

surface could be free to move on that surface, and nodes on an edge could move along

the edge.

Since optimisation methods have been used, an objective function could be defined

which takes into account the quality of surface elements as well as the three dimen-

sional volume elements. An example of surface mesh smoothing can be found in

(Gargallo, A., 2011).
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5.2.2 Iterative Solver Improvements

The size of the linear system generated by the global approach requires an iterative

method to solve it. Only the most superficial research has been put into optimising

this part of the solver and it is expected that efficiency gains could be made by further

exploring this major area of research.

5.2.3 Coding in a Lower Level Language

Results presented in this work are based on code written in MATLAB. Reimplemen-

tation using the ez4u framework in C++ has been done for the heuristic methods as

well as the local optimiser, but not the global optimiser. A comparison of all methods

using C++ could result in different conclusions as the MATLAB overhead may vary

between methods.

5.2.4 Use of Multiple δ Values

We have seen that large values of δ make the system easier to solve, but in some cases

can lead to an optimal solution outside the feasible region. The possibility exists to

reduce δ as the system approaches the feasible region.

5.2.5 Smoothing Large Patches Sequentially

In this work we have examined smoothing all nodes simultaneously as well as one at

a time. It is possible there is a more efficient middle ground in which the sequential

smoothing of groups of connected nodes of a fixed size could be performed.

This would have the some of the advantages of global smoothing such as derivative

component reuse and would enable more nodal movement at each step. The number

of elements could be selected such that the direct solution of the system was feasible,

or that indirect methods would not encounter prohibitive scaling.
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5.2.6 Intelligent Smoothing Order

Since the mesh boundary is fixed, information propagates from it to the mesh interior.

By smoothing levels of nodes starting at the boundary it could be possible to take

advantage of this inherent directionality.
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Appendix A

Algorithms

A.1 Convergence

Algorithm A.1 Convergence Criterion

X ← Original Coordinates
X ′ ← Updated Coordinates
tol← Tolerace
dXG← 0
for xi ∈ X, x′i ∈ X ′ do
dX ←abs(x′i − xi)
if dX > dXG then
dXG← dX

end if
xi ← x′i

end for
if dXG < tol then

Converged ← True
else

Converged ← False
end if

A.2 Search Direction

Algorithms A.2, A.3 and A.4 are used to select the direction for the line search. They

can be found in (Nocedal and Wright, 1999).
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With regard to the Modified Newton Raphson Algorithm A.4, in the local case where

we have a 3 × 3 matrix the eigenvalues λmin and λmax are computed directly. When

smoothing the global case they must be approximated, which is an expensive process

if the ratio λmax

λmin
is large. If the approximation does not converge within 50 iterations

the minimum eigenvale is taken to be zero and the algorithm increases the eigenvalues.

Algorithm A.2 Steepest Descent

given initial x0
k ← 0
repeat

obtain ∇f (xk)
set pk = −∇f (xk)
set xk+1 ← xk + αkpk {using Line Search}
k ← k + 1

until convergence

Algorithm A.3 Newton Raphson

given initial x0
k ← 0
repeat

H← ∇2f (xk)
solve Hpk = −∇f (xk) for search direction pk
set xk+1 ← xk + αkpk {using Line Search}
k ← k + 1

until convergence

A.3 Step Length
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Algorithm A.4 Modified Newton Raphson.

given initial x0
k ← 0
repeat

H← ∇2f (xk)
obtain eigenvectors λmin, λmax from H
if λmin < 0.001λmax then

H← H + (0.001λmax − λmin) I
end if
solve Hpk = −∇f (xk) for search direction pk
set xk+1 ← xk + αkpk {using Line Search}
k ← k + 1

until convergence

Algorithm A.5 Back Line Search with Armijo condition

λ← 0.7
c1 ← 10−4

α← 1
while f (xk + αpk) ≥ f (xk) + c1α∇fTk pk do
α← λα

end while





Appendix B

Second Derivative of the Shape
Metric η

The shape metric given by (Escobar et al., 2003) is

η =
|S|2

nh(σ)2/n
(B.1)

h(σ) =
1

2

(
σ +
√
σ2 + 4δ2

)
(B.2)

where n is the number of dimensions. Throughout this work n = 3 but the coefficient

is left in for generality.

The development of the first derivative given in (Rivas, C. A., 2010) is valid in the

global case, and is given by

∂η

∂α
= 2η

[(
∂S

∂α
,S

)
1

|S|2
− 1

n

∂σ

∂α

1√
σ2 + 4δ2

]
(B.3)

To obtain the second derivative we will consider the following relations, given in

(Petersen and Pedersen, 2008). α and β are arbitrary degrees of freedom, any single
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coordinate direction of a node of a tetrahedron. S and T are matricies.

σ = det S (B.4)

∂σ

∂α
= σ Tr

[
S−1

∂S

∂α

]
(B.5)

∂ Tr S

∂α
= Tr

[
∂S

∂α

]
(B.6)

∂ST

∂α
=

∂S

∂α
T + S

∂T

∂α
(B.7)

∂S−1

∂α
= −S−1

∂S

∂α
S−1 (B.8)

and in our case

∂2S

∂α∂β
= 0 (B.9)

B.1 Second Derivative of σ

Using (B.6) and (B.7) on the first σ derivative (B.5) we obtain the following

∂

∂β

(
∂σ

∂α

)
= σ Tr

[
S−1

∂S

∂β

]
Tr

[
S−1

∂S

∂α

]
+

σ Tr

[
∂S−1

∂β

∂S

∂α

]
+ σ Tr

[
S−1

∂2S

∂α∂β

]
(B.10)

Now using (B.8) and (B.9) we obtain the expression

∂2σ

∂α∂β
= σ Tr

[
S−1

∂S

∂β

]
Tr

[
S−1

∂S

∂α

]
− σ Tr

[
S−1

∂S

∂β
S−1

∂S

∂α

]
(B.11)

While the expression given by (B.11) is nonzero in the general global case and must

be included, it goes to zero in following special cases, the first of which applies when

performing element by element local optimization.

1. Both of the degrees of freedom α and β are on the same node.

2. Both of the degrees of freedom α and β are in the same direction (x, y or z).
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B.2 Second Derivative of Tetrahedral η

We follow a similar procedure to that in (Rivas, C. A., 2010), however no simplifica-

tions are made which depend on both of the components of second derivative being

taken at the same node. We begin by taking the derivative of (B.3) with respect to a

new degree of freedom β,

∂2η

∂α∂β
= 2

∂η

∂β

[(
∂S

∂α
,S

)
1

|S|2
− 1

n

∂σ

∂α

1√
σ2 + 4δ2

]
+

2η
∂

∂β

[(
∂S

∂α
,S

)
1

|S|2
− 1

n

∂σ

∂α

1√
σ2 + 4δ2

]
(B.12)

We split (B.12) into several terms as follow:

2
∂η

∂β

[(
∂S

∂α
,S

)
1

|S|2
− 1

n

∂σ

∂β

1√
σ2 + 4δ2

]
= A×B (B.13)

where A and B are defined as

A = 2η

[(
∂S

∂β
,S

)
1

|S|2
− 1

n

∂σ

∂β

1√
σ2 + 4δ2

]
=

∂η

∂β
(B.14)

B = 2

[(
∂S

∂α
,S

)
1

|S|2
− 1

n

∂σ

∂α

1√
σ2 + 4δ2

]
=

1

η

∂η

∂α
(B.15)

Combining (B.14) and (B.15) with (B.13) gives us

2
∂η

∂β

[(
∂S

∂α
,S

)
1

|S|2
− 1

n

∂σ

∂α

1√
σ2 + 4δ2

]
=

1

η

∂η

∂α

∂η

∂β
(B.16)

The second part of (B.12) will be considered as two parts in the following manner:
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2η
∂

∂β

[(
∂S

∂α
,S

)
1

|S|2

]

= 2η

[(
∂2S

∂α∂β
,S
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1
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)
1
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− 2

(
∂S
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,S

)
1

|S|4

(
∂S

∂β
,S
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(B.17)

Considering the second part of the second term of (B.12) gives us the following

2η
∂

∂β

(
− 1

n

∂σ
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1√
σ2 + 4δ2

)
= −2η

n

(
∂2σ
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1√
σ2 + 4δ2

+
∂σ
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∂
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∂σ
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∂β
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σ2 + 4δ2

)−3
2

)
(B.18)

By incorporating (B.9) and (B.11) into (B.18) then substituting this along with (B.16)

and (B.17) into (B.12), we obtain the global second derivative of a tetradehron com-

ponent.
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1
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)−3
2

]
(B.19)
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B.3 Derivatives of Hexahedral η

The shape metric of a hexahedron is defined as the mean value of the tetrahedra

which compose it, trasposed such that the minimum (a perfect cube element) is zero

(Escobar et al., 2003).

ηhex =
1

8

∑
ηi − 1 (B.20)

∂ηhex
∂α

=
1

8

∑ ∂ηi
∂α

(B.21)

∂2ηhex
∂α∂β

=
1

8

∑ ∂2ηi
∂α∂β

(B.22)

In Equations (B.20) to (B.22) i subscripts (for example, ηi) denote the sub-elements in

the hexahedra. It is important to note that the indicies of tetrahedral and hexahedral

α and β are not the same, an assembley needs to be performed based on the entries

in Table 2.1.





Appendix C

Local and Global Agreement of
Mesh Optimum Point

We aim to assert that a nodal configuration (x1, x2, . . . , xn) is a candidate of the

global minimization if and only if is a candidate point for the local minimization.

We aim to assert that a nodal configuration (x1,x2, . . . ,xn) is a candidate point for

the global minimisation if and only if if is a candidate point for the local minimisation.

We start with some nomenclature,

i index for nodes xi

j index for elements

ηj objective function of element j

Si indicies j of elements ηj in which node xi can be found

nx number of free nodes in the mesh

ne number of elements in the mesh

The elemental objective function derivative is
∂ηj
∂xi

, therefore

∂ηpj
∂xi

=


p · ∂ηj

∂xi

· ηp−1j if j ∈ Si

0 otherwise

(C.1)
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We now condsider the derivative of the global objective function (3.3),

η =

(
ne∑
j=1

ηpj

) 1
p

∂η

∂xi

=
ne∑
j=1

∂ηpj
∂xi

· 1

p
·

(
ne∑
j=1

ηpj

) 1
p
−1

(C.2)

By removing zero terms with (C.1), (C.2) becomes

∂η

∂xi

=
∑
j∈Si

∂ηpj
∂xi

· 1

p
·

(∑
j∈Si

ηpj

) 1
p
−1

(C.3)

We now obtain the derivative of the local objective function at node xi by setting

Selems from (3.3) to Si. The function ηi is the combination of objective functions of

elements ηj in Si.

ηi =

(∑
j∈Si

ηpj

) 1
p

Making use of (C.1),

∂ηi
∂xi

=
∑
j∈Si

∂ηpj
∂xi

· 1

p
·

(∑
j∈Si

ηpj

) 1
p
−1

(C.4)

We see from (C.3) and (C.4) that the derivatives of the global and local objective

function are the same at any node xi, allowing us to trivially prove the assertation.
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If (x1,x2, . . . ,xn) is a singular point of global η then

∂η

∂xi

= 0 for all i = 1, 2, . . . , nx

0 =
∂η (x1,x2, . . . ,xn)

∂xi

∂ηi (xi)

∂xi

= 0 for all i = 1, 2, . . . , nx

therefore (x1,x2, . . . ,xn) is also a singular point of local ηi around node xi.
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de Catalunya.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems Society for Industrial
and Applied Mathematics (Philadelphia) ISBN 0-898-71534-2

Sastry, S. and Shontz, S. (2009) A Comparison of Gradient- and Hessian-Based
Optimization Methods for Tetrahedral Mesh Quality Improvement Proceedings of
the 18th International Meshing Roundtable 631–648.

Tournois, Wormser, Alliez and Desbrun (2009). Interleaving Delaunay refinement
and optimization for practical isotropic tetrahedron mesh generation. ACM Trans.
Graph. 28(3), 75:1–75:9.

Vartziotis, D. and Wipper, J. (2011). A dual element based geometric element trans-
formation method for all-hexahedral mesh smoothing Computer Methods in Applied
Mechanics and Engineering 200 (9-12), 1186–1203.



(Petersen and Pedersen, 2008; Rivas, C. A., 2010; Gargallo, A., 2011; Escobar et al.,

2003; Dompierre et al., 1998; Tournois et al., 2009; Roca, 2009; Vartziotis and Wipper,

2011; Freitag et al., 2006; Knupp, 2003, 2001; Nocedal and Wright, 1999; Sastry and

Shontz, 2009; Munson, 2007; Knupp, 2000; Saad, 2003; Ledoux, 2008; Frey et al.,

2007)

DO NOT INCLUDE THIS PAGE!


