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SUMMARY 

 

 

This thesis focuses on the implementation of the lattice Boltzmann method for 

simulating incompressible immiscible two phase flow problems. This 

implementation was carried out in a sequential manner. First the single phase lattice 

Boltzmann model was implemented and the code was tested for stability and 

accuracy by simulating a number of bench mark problems like Poiseuille flow and 

lid driven cavity flow. After the stability of the single phase flow model was 

ascertained the single phase lattice Boltzmann implementation was then extended to a 

framework for simulating incompressible two phase flow problems. The implemented 

two phase flow model was then subjected to numerical simulation of a number of two 

phase flow problems to study its accuracy and stability. It was observed that the 

implemented code was successfully in simulating a wide variety of immiscible two 

phase flow problems. 

 



   TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ......................................................................................... 4 

LIST OF FIGURES ..................................................................................................... 5 

LIST OF SYMBOLS ................................................................................................... 6 

LIST OF ABBREVIATIONS ...................................................................................... 7 

1. INTRODUCTION ............................................................................................... 8 

1.1 Approaches used in two phase flow simulation ............................................ 9 

1.1.1 Front Capturing Method ......................................................................... 9 

1.1.2 Front Tracking Methods ....................................................................... 10 

1.1.3 Lattice Boltzmann Two Phase Models ................................................ 11 

1.2 Objectives of the Research ............................................................................... 11 

1.3 Document Layout ............................................................................................. 11 

2. THEORY OF LATTICE BOLTZMANN METHOD........................................ 13 

2.1 Kinetic Theory of Gases .............................................................................. 14 

2.2 Lattice Gas Cellular Automaton (LGCA) ................................................... 16 

2.3 Principles of Lattice Boltzmann Method ..................................................... 17 

2.3.1 LB Formulation .................................................................................... 17 

2.3.2 Domain Discretisation .......................................................................... 19 

2.3.3 The Collision Process ........................................................................... 21 

2.3.4 The Equilibrium Function .................................................................... 22 

2.4 Accuracy and Stability ................................................................................ 22 

2.4.1 Dependence of Accuracy on Model Parameters .................................. 23 

2.4.2 Methodology of choosing model Parameters ....................................... 24 

2.5 Lattice Units ................................................................................................ 25 



2 

 

3. BOUNDARY CONDITIONS ............................................................................ 26 

3.1 Periodic Boundary Conditions .................................................................... 26 

3.1.1 Periodic Boundary Conditions at Left and Right Boundaries .............. 26 

3.1.2 Periodic Boundary Conditions at Corner Nodes .................................. 27 

3.2 No-slip Boundary Conditions ...................................................................... 28 

3.2.1 Single Step Bounce Back ..................................................................... 29 

3.2.2 Two Step Bounce Back ........................................................................ 29 

3.3 Pressure and Velocity Boundaries ............................................................... 30 

3.3.1 Velocity Wall Boundary Condition ..................................................... 30 

3.3.2 Specification of Pressure on a Flow Boundary .................................... 31 

3.3.3 Specification of Velocity on a Flow Boundary .................................... 33 

3.4 Inclusion of External Body Force ............................................................... 34 

4. SINGLE PHASE LBM NUMERICAL RESULTS ........................................... 35 

4.1 2D Poiseuille Flow ...................................................................................... 35 

4.1.1 Problem Setup ...................................................................................... 36 

4.1.2 Results and Discussion ......................................................................... 37 

4.2 2D Lid driven cavity flow ........................................................................... 39 

4.2.1 Problem setup ....................................................................................... 39 

4.2.2 Results and discussion ......................................................................... 40 

5. LATTICE BOLTZMANN MODEL FOR SIMULATING IMMISCIBLE TWO-

PHASE FLOWS ........................................................................................................ 43 

5.1 Immiscible lattice Boltzmann model ........................................................... 45 

5.1.1 Two-phase collision operator ............................................................... 48 

5.1.2 Re-colouring ......................................................................................... 49 

5.1.3 Interface Relaxation parameter ............................................................ 50 

5.1.4 Surface Tension .................................................................................... 51 

5.1.5 Simulation steps for Two-Phase flow .................................................. 52 



3 

 

6. IMMISCIBLE TWO PHASE FLOW LBM NUMERICAL RESULTS ........... 54 

6.1 Two Phase Poiseuille Flow ......................................................................... 54 

6.1.1 Problem Setup ...................................................................................... 55 

6.1.2 Results and Discussion ......................................................................... 57 

6.2 Deformation of square droplet of one fluid in another fluid ....................... 59 

6.2.1 Problem Setup ...................................................................................... 59 

6.2.2 Results and Discussion ......................................................................... 61 

6.3 Coalescence of two circular droplets of very high density.......................... 62 

6.3.1 Problem Setup ...................................................................................... 63 

6.3.2 Results and Discussion ......................................................................... 64 

7. CONCLUSION AND FURTHER RESEARCH ............................................... 66 

7.1 Discussion of Results .................................................................................. 66 

7.2 Conclusions ................................................................................................. 68 

7.3 Recommendations for further research ....................................................... 68 

APPENDIX A: THE RELATIONSHIP BETWEEN LATTICE AND PHYSICAL 

UNITS ........................................................................................................................ 69 

REFERENCES ........................................................................................................... 70 

 

  



4 

 

ACKNOWLEDGEMENTS 

 

 

I would like to express my profound gratitude to Professor Yuntian Feng for being 

my thesis supervisor. He has been very helpful in guiding me and encouraging me to 

learn new things, without which, this thesis would not have been possible. 

I am also thankful to European Commission for sponsoring this Erasmus 

Mundus Master Program and also to International Centre for Numerical Methods in 

Engineering (CIMNE), Barcelona for forming such wonderful curriculum. 

I am thankful to Dr. Antonio J. Gil being for all the help and support provided 

during the Masters course.  

 

I would like to express my gratitude to Bruce Jones and Shankar for being 

part of lengthy discussions and providing valuable guidance and suggestions during 

the period of my thesis. 

I would also like to thank my course mates Venkatesh and Rodolfo and other 

friends for making my stay in Swansea memorable.  

I owe my loving thanks to my family and friends. Without their 

encouragement and understanding it would have been impossible for me to finish 

this work.  

  



5 

 

LIST OF FIGURES 

 

2.1 A simple enclosed lattice Boltzmann domain 

2.2 Popular 2D LB discretisation models 

2.3 D2Q9 LB Discretisation 

3.1 Periodic Boundary Conditions 

3.2 Single step bounce back condition 

3.3 Two step bounce-back boundary condition 

4.1 Poiseuille flow driven by body force G. 

4.2 Contour plot of the Poiseuille velocity profile for relaxation parameter of 1 

4.3 Horizontal Poiseuille velocity comparison at x=0 and at x=25 

4.4 Horizontal Poiseuille velocity comparison at x=50 and at x=100 

4.5 Plot of the maximum velocity relative error v/s relaxation parameter 

4.6 Lid driven cavity flow problem setup 

4.7 Velocity contour for lid driven cavity flow at Re 100  

4.8 Velocity contour for lid driven cavity flow at Re 400  

4.9 Cavity Flow-Plot of horizontal velocity along vertical line through geometric 

centre 

4.10 Cavity Flow-Plot of vertical velocity along horizontal line through geometric 

centre. 

5.1 Two phase flow-Colour gradient F is normal to the interface 

5.2 Surface tension in two phase flow 

6.1 Two-phase Poiseuille flow driven by body force G with red fluid sandwiched 

between blue fluid 

6.2 Contour plot of the velocity profile for 0.1   

6.3 Two phase Poiseuille flow horizontal velocity comparison 

6.4 Plot of the maximum velocity relative error v/s interface thickness   

6.5 Initial configuration- Deformation of square droplet of high density fluid 

(Red) inside low density fluid (Blue) 

6.6 Deformation of square droplet of high density fluid inside low density fluid 

6.7 Variation of simulation time with Surface tension parameter 

6.8 Initial configuration- Coalescence of two circular droplets of very high density fluid 

(Red) inside low density fluid (Blue) 

6.9 Coalescence of two circular droplets of very high density fluid 

 



6 

 

 
LIST OF SYMBOLS 

 

v  Velocity 

x  Position Vector 

p  Momentum 

Av
 

Avogadro Number 

in  Particle population in LGCA 

 Ensemble of particles 

if  
Particle distribution functions 

t  Time step 

i  Collision Operator 

f 
 Post collision distribution function  

  Density 

u  Momentum flux 

c  Lattice speed 

sc  Speed of sound 

ijM  Collision matrix 

h
 

Lattice width 

Ma  Mach Number 

  Viscosity 

h  Lattice spacing in lattice units 

0  True fluid density 

G Body force 


 

Two phase collision operator 

2i


 

Two phase surface tension operator 

3i


 

Recolouring Operator 


 

Surface Tension 

  



7 

 

LIST OF ABBREVIATIONS  

 

MAC Marker and Cell Method 

VOF Volume of Fluid Method 

BEM Boundary Element Method 

LBM Lattice Boltzmann Method 

NS Navier-Stokes Equations 

CFD Computational Fluid Dynamics 

BE Boltzmann Equation 

RHS Right Hand Side 

LGCA Lattice gas cellular automaton 

  

 

  



8 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

Multiphase flows play an important role in many natural processes and engineering 

applications.  They occur in a variety of environmental phenomena like rain, fog, 

snow, avalanches, soil erosion, avalanches, landslides, etc. Very critical biological 

and medical flows like blood flow are multiphase flows. Virtually every processing 

technology deals with multiphase flows [29]. They find their application in nuclear 

power plants, combustion engines, propulsion systems, blood flows inside human 

body, chemical industry, oil and gas production and transportation, biological 

industry, food production, etc. In all these applications, it is important to predict the 

multiphase behaviour. Thus it is very essential to understand the principles of 

multiphase flow for both fundamental research and engineering applications 

A common feature in all multiphase flow problems is the existence of 

distinguishable interfaces, or boundaries, that separate one phase from another and 

also the discontinuities of the associated properties at the interface. The topology of 

the interface constantly changes as the phases interact with each other exchanging 

energy, momentum and mass (where phase change is involved).Also, a wide variety 

of multiphase flow patterns were observed by different researchers. Shad et al [30] 

suggested that 84 different flow patterns exist in multiphase flow problems when 

they performed a survey of different flow patterns in multiphase flow. These flow 

patterns are highly dependent on different flow parameters like fluid properties, 

geometry of the flow channel, etc. The rate of exchange of mass, momentum and 

energy between different phases and also between the fluids and the external 

boundaries are dependent on these flow patterns. Thus the study and prediction of 

multiphase flow behaviour is challenging due to the diverse nature of these flow 

patterns. 



9 

 

The main focus in the study of multiphase flows is the need to model and 

predict the detailed behaviour of those flows and the phenomena that they manifest 

as the accuracy and consistency of the model directly influences the design process. 

Although theoretical and experimental approaches are available, they are not viable 

for a majority of multiphase flow problems due their complex nature. Thus 

computational approaches serve as valuables tools for predicting and understanding 

multiphase flow simulations. 

1.1 Approaches used in two phase flow simulation 

The traditional methods for simulating two phase flow problems are based on solving 

either the differential or integral form of partial differential equations. These 

approaches are called as “top down” approaches. The governing partial differential 

equations are discretised by finite difference, finite volumes or finite element 

methods and the solutions are obtained on the discretised spatial and temporal scales. 

These traditional methods can be classified into two categories: the front capturing 

method and the front tracking method. Each of these methods is briefly reviewed. 

1.1.1 Front Capturing Method 

In the front capturing method, the movement of the fluid is tracked first and the 

interface is captured afterwards. The two fluids are considered as a single continuum 

with discontinuous features at the interface. The same Eulerian mesh is used for 

solving the fluid flow equations of both the fluids. Based on how interface 

propagation is captured, there are three types of front capturing methods: the Marker-

and-Cell (MAC) method [31], Volume-of-Fluid (VOF) method [32], and level set 

method [33]. 

The Marker-and-Cell (MAC) method makes use of Lagrangian markers to 

represent the location of a particular phase. The interface is then constructed by using 

the location details of the markers. In order to track the interface accurately, a large 

number of markers are required, thus making the MAC method computationally 

expensive. 
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The objective of introduction of Volume-of-Fluid (VOF) method was to 

reduce the heavy computational load of the MAC method [32]. In the VOF method, 

the volume fraction of fluid in each cell is used to track the movement of the liquid 

instead of tracking a large number of markers. Even though the computational costs 

reduced greatly, determining the exact location of the interface was still difficult.  

In the level set method two different sets of equations are used to model the 

two-phase flow [33]. The first set of equations contains the single fluid Navier-

Stokes equations. The second set is a transient scalar advection equation which tracks 

a level set. The level set functions are defined in such a way that its value is equal to 

zero at the interface, negative in one phase and positive in other phase. The interface 

location is determined by interpolating between the level set function values. The 

advantage of the level set method is that it is easier to track the interface compared to 

the MAC and VOF method. However, the advection of the level set function is not 

based on a strictly conservative equation and thus mass is not conserved properly in 

the level set method. 

1.1.2 Front Tracking Methods 

In the front-tracking method, the location of the interface is tracked directly. It is 

therefore possible to calculate the curvature of the interface more accurately [35]. 

There are three commonly used front-tracking methods: the boundary-fitted grid 

method [37], Tryggvassions‟s hybrid method [35], and Boundary Element Method 

(BEM) [36].  

Two sets of Navier-Stokes equations are solved in the boundary-fitted grid 

method, each equation corresponding to one fluid. The mesh in the computational 

domain is constructed in such a manner that the interface between two phases is 

located along a grid line and the movement of the interface is determined by a force 

balance. 

Two sets of grids are used in the hybrid method proposed by Tryggvason 

[35]. A stationary grid is used to determine the fluid flow and a lower dimension grid 

used to track the interface.  
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In the Boundary Element Method (BEM), a multitude of boundary nodes are 

employed to represent the two-phase interface [36]. The movement of these 

boundary nodes is based on the potential function equations. 

The front-tracking and front-capturing methods are conceptually simple. 

However it is more difficult to implement these methods in two-phase flow 

simulations because a lot of difficulties arise from the interface deformation and 

interaction. Also tracking a lot of interfaces is computationally expensive. 

1.1.3 Lattice Boltzmann Two Phase Models 

Unlike the traditional CFD method, the lattice Boltzmann method is based on a 

“bottom-up” approach. The lattice Boltzmann method solves mesoscopic equations 

(such as the Boltzmann equation) for an ensemble-averaged distribution of moving, 

interacting fluid particles on a discrete lattice. The desired macroscopic partial 

differential equations are then recovered using multi-scale analysis. The lattice 

Boltzmann method for simulating two phase flow is discussed in great detail in the 

following chapters. 

1.2 Objectives of the Research 

The aim of this research is to implement a lattice Boltzmann method (LBM) 

framework for simulating immiscible two phase flows. This framework is then to be 

applied to a variety of two phase flow problems. The development of this framework 

can be split into the following components. 

1) Implement the single phase lattice Boltzmann method and validate the 

performance of code by simulating benchmark problems. 

2) Research and implement the immiscible two phase lattice Boltzmann 

framework by extending the single phase lattice Boltzmann code with the 

principles of two phase flow. 

3) Validate the newly implemented two phase immiscible lattice Boltzmann 

method code by testing it against a number of two phase flow problems. 
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1.3 Document Layout 

This thesis is divided into seven chapters. Following this introductory chapter, 

Chapter 2 discusses the theory of lattice Boltzmann method. The evolution of the 

lattice Boltzmann method from the kinetic theory of gases is discussed and the 

various principles of the numerical model are outlined. 

 Chapter 3 discusses the principles behind various initial and boundary 

conditions and the technique for incorporating body forces in LB simulations is 

described. 

 Chapter 4 discusses the numerical validation of the implemented lattice 

Boltzmann code by simulating a number of benchmark single phase flow problems. 

The problems implemented were 2D Poiseuille flow and 2D cavity flow. 

 Chapter 5 discusses the development of a colour gradient based lattice 

Boltzmann model to simulate incompressible immiscible two phase flows. The 

algorithm for interface tracking and the various parameters controlling the surface 

tension at the interface are outlined. 

 Chapter 6 discusses the numerical validation of the implemented immiscible 

two phase lattice Boltzmann code. The implemented code is subjected to a number of 

tests by simulating various cases of two phase flow problems. 

 Chapter 7 discusses and offers concluding remarks on the results of single 

phase and two phase flow analyses. The scope for additional research, improvement 

and further development are outlined. 
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CHAPTER 2 

 

THEORY OF LATTICE BOLTZMANN 
METHOD 

 

 

The phenomenon of fluid flow can be studied at different spatial and temporal scales. 

At the macroscopic level a fluid can be characterized in terms of continuous 

hydrodynamic quantities such as velocity and density fields whereas at the 

microscopic [4] level a fluid can be represented as a system of a large number of 

molecular particles interacting in a complicated way. In general, the details of 

interaction at the microscopic level do not affect the behaviour at the macroscopic 

level. 

The fundamental principle of LBM is to construct a simplified kinetic model 

which exhibits behaviour identical to classical hydrodynamic equations at the 

macroscopic level [2] by incorporating mesoscopic processes. This approach can be 

justified because of the fact that collective behaviour of many microscopic particles 

result into macroscopic behaviour and the details of the microscopic interactions are 

not essential [3] for majority of fluid flow problems. Thus the process of following 

each particle in molecular dynamic simulations and the process of solving 

complicated kinetics equations like the Boltzmann equation can be avoided. Even 

though the LBM is based on a microscopic picture, its principal focus is the averaged 

macroscopic behaviour. The macroscopic Navier-Stokes (NS) equation in the near-

incompressible limit can be obtained from the LBM. Also pressure can be obtained 

from the equation of state [2]. The kinetic nature inherently provides many 

advantages of molecular dynamics, including clear physical pictures, easy 

implementation of boundary conditions, and fully parallel algorithms. 

The lattice Boltzmann method historically originated as an extension of 

lattice gas cellular automata (LGCA) to overcome the various shortcomings like 
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statistical noise, etc. The lattice gas cellular automaton and lattice Boltzmann method 

can be both considered as simplifications to the kinetic theory of gases originally 

introduced by Ludwig Boltzmann [17].  The basic idea of Boltzmann‟s work was 

that a gas is composed of interacting particles that can be described by classical 

mechanics, and, because there are so many particles, a statistical treatment is 

necessary and appropriate. The mechanics of interacting particles can be extremely 

simplified and encapsulated by utilizing the notions of streaming in space and 

billiard-like collision interactions. The LB models simplify even further and yet, like 

lattice gas models, still reproduce the behaviour of real fluids. The basic concept of 

kinetic theory of gases and statistical mechanics and a simplified form of the 

Boltzmann equation are described in the following section. 

2.1 Kinetic Theory of Gases 

Consider a dilute gas consisting of hard spherical particles moving with some 

arbitrary velocity v . It is assumed that the particles interact among them only through 

elastic collisions. If we know the position vector x and momentump of each of the 

particle at some instant of time t , the exact dynamical state of the system can be 

determined which, together with classical mechanics, would allow exact predictions 

of all future states. Let  , ,N Nf tN
x p be one such function describing the system 

where N is the number of particles. This function also known as the distribution 

function can be thought as residing in a „phase space‟, which is a space in which the 

coordinates are position and momentum vectors and time. The time evolution of 

phase space distribution function is given by the Liouville equation which introduces 

6N functions of time. This description of the distribution function is unviable 

because N is generally of the order of the Avogadro number 23~ 10Av , far too big for 

any foreseeable computer. Therefore it appears wise to approach the collective 

behaviour of ensemble of molecules from a statistical point of view. This can be 

done at various levels of complexity. But the simplest one: the one body kinetic 

level is considered here. 

The distribution 1( , , )f tx p gives the probability of finding a particular 

molecule with a given position and momentum. The positions and momenta of the 
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remaining N-1 molecules can be ignored. The single particle distribution function 1f  

is sufficient for describing all gas properties which do not depend on relative 

positions of molecules. The probable number of molecules with position coordinates 

in the range dx x and momentum coordinates dp p can be determined by 

 1 , ,f t dxdx p p .It is assumed that an external force F that is small relative to the 

intermolecular forces is acting on the system. If there are no collisions, then at time 

t dt the new positions of the molecules starting at x are given by 

    / /m dt d dt dt d    x p x x x x  (2.1) 

 

The new momenta are given by 

  /dt d dt dt d     p p F p p p p  (2.2) 

 

Thus, when there are no collisions and when the positions and the momenta are 

known at a particular time t , (1)f at time t dt can be determined using 

  (1) (1)( , , ) , ,f d d t dt d d f t d d   x x p p x p x p x p  (2.3) 

 

This is the streaming process. However, in reality there are collisions occurring in the 

system. Due to these collisions some phase points starting at  ,x p do not arrive at

 ,d d x x p p . Also there are some molecules not starting at  ,x p arriving at

 ,d d x x p p . Let ( )d d dt
Γ x p  and ( )d d dt

Γ x p  be the number of molecules that do 

not arrive at the expected position  ,d d x x p p  and the number of molecules that 

start somewhere else other than  ,x p and arrive at  ,d d x x p p  respectively due 

to collisions occurring during time interval dt . Thus after considering the effects of 

collision Equation (2.3) can be modified and written as, 

 

 

(1)

(1) ( ) ( )

( , , )

, ,

f d d t dt d d

f t d d d d dt 

   

   

x x p p x p

x p x p Γ Γ x p
 (2.4) 

The first order terms of a Taylor series expansion of the LHS of Equation (2.4) is 

given by 
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   
 

(1)

1
1(1) (1)

( , , )

, , ,

f d d t dt

f
f t d f d f dt

t

   

 
           

x p

x x p p

x p x p
 (2.5) 

Thus combining Equations (2.4) and (2.5), it can be written as 

 
   

 

 

1
1(1) (1)

(1) ( ) ( )

, ,

, ,

f
f t d f d f dt d d

t

f t d d d d dt 

  
              

    

x px p x p x p

x p x p Γ Γ x p

 (2.6) 

Simplifying Equation (2.6) it can be written as 

 
 

 1
1(1) ( ) ( )f

f f
t

 
     


x p

v F Γ Γ  (2.7) 

The Equation (2.7) is the Boltzmann equation (BE). The RHS of the Boltzmann 

equation is the collision operator which in its complete form is a complex nonlinear 

integral differential equation. With LGCA and the LBM the Boltzmann equation is 

approximately solved from the particle perspective and focus to obtain an equation 

similar to Equation (2.4) which explicitly contains the „collision‟ and „streaming‟ 

operations. 

2.2 Lattice Gas Cellular Automaton (LGCA) 

A cellular automaton (CA) is a discrete model which comprises a regular grid of 

cells called as the lattice. Each of the sites in the lattice can take certain number of 

different states. The lattice grid can be in any finite number of dimensions. The 

neighbourhood of each lattice node is defined relative to the specified node. In 

LGCA the various states are particles ( , )n tx with certain velocities, x being the 

lattice site location. The evolution of simulation is carried out in discrete time steps. 

The state at a given site after each time step can be determined from the state of the 

site itself and the neighbouring sites, at the previous time step. In LGCA the state at 

each site is purely Boolean (i.e. true if a particle is present and false if it is not). Two 

processes are carried out after each time step, propagation and collision. Each 

particle will move to the neighbouring step in the propagation step determined by the 

current velocity of the particle. In the collision step, collision rules are used to 

http://en.wikipedia.org/wiki/Automaton
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determine what happens if multiple particles reach the same site at the same time. 

The stream-collision evolution of the particle populations can be written as 

 ( , 1) ( , ) ( ( , ))i i in t n t n t   
i

x c x x  ( 0,1,2,..... )i M  (2.8) 

Where x is the position of the lattice node, ci is the particle velocity; Ωi is the 

collision operator and M is the number of velocity directions at each lattice node. 

Macroscopic quantities like density, momentum can be calculated by summing up 

the particles at each site and multiplying the particle velocities before summing up 

respectively. 

The LGCA method has its own set of advantages and disadvantages. The 

main assets were that the states of the model are Boolean in nature which enabled 

exact computing without any round-off error due to floating point precision. Also the 

LGCA meant that the simulations could be run using parallel computing. The 

development of the Lattice Boltzmann method (LBM) was motivated by the 

characteristic shortcomings of LGCA such as the large noise-signal ratio, non-

Galilean invariance and the unphysical dependence of pressure on the velocity field. 

Another limitation of LGCA is the transport coefficients (i.e. viscosity) that emerge 

from the microscopic collision operators are of very limited range [8]. 

2.3 Principles of Lattice Boltzmann Method 

The fundamental feature of LBM is that the Boolean particle occupation variables 

( , )in tx in the LGCA method is replaced by real valued particle distribution 

functions, ( , ) ( , )i if t n tx x [9], where denotes an ensemble average. This 

procedure helps to eliminate statistical noise in LBM. These particle distribution 

functions exist at each of the lattice grid node that make up the fluid domain and 

form the primary variables in LBM unlike density and velocity in macroscopic fluid 

dynamics. The particle distribution functions represent the probable amount of fluid 

particles at each node, moving with a discrete speed in a discrete direction at each 

time step.  
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2.3.1 LB Formulation 

The central issue to the LB formulation [5] is to define the rule that governs the 

movement of fluid particles in the lattice at discrete time instances. The lattice 

Boltzmann formulation of evolution of particle distribution function is given by 

 ( , ) ( , ) ( ( , ))i i if t t t f t f t     
i

x e x x  ( 0,1,2,..... )i M  (2.9) 

where x is the position, h is the lattice spacing, t is the explicit time step, 
i

e is the 

velocity along direction i  and ( ( , ))i f t x  is the collision operator controlling the 

relaxation rate of the particle distribution functions that meet at a node and M  is the 

number of velocity directions at each lattice node. The discretisation of space in 

LBM is performed in a manner which is consistent with the kinetic equation such 

that the particle distribution function velocities are parallel to the locations of the 

neighbouring nodes. Therefore, the neighbours to node x  can be defined as t 
i

x c . 

The solution of LBM advances via a two stage process at each time step. Collision 

(also known as relaxation) redistributes the functions that arrive at each node and 

then streaming (also known as convection) propagates the redistributed functions to 

their nearest neighbouring nodes. 

The process of collision and streaming are shown in Figure (2.1). The image 

to the left shows the post collision particle distribution functions.  

 

Figure 2.1: A simple enclosed domain discretised by the lattice Boltzmann method 

showing the particle distribution functions after collisions (a) which are then 

streamed (b) to their respective neighbouring nodes. 

( , )if t
x

h

h

( , )if t t 
i

x c

( )a ( )b
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The functions then stream to their respective neighbouring nodes as shown in the 

image to the right.The lattice Boltzmann Equation (2.9) can be written in terms of the 

post-collision distribution function given by, 

 ( , ) ( , ) ( ( , ))i i if t f t f t  x x x  (2.10) 

Then Equation (2.9) can be simplified as, 

 ( , ) ( , ).i if t t t f t    
i

x c x  (2.11) 

Therefore, it can be seen that no additional calculations are required in streaming 

process. The post collision distribution functions are just shifted to the neighbouring 

nodes. The macroscopic fluid variables like density  , and momentum flux, u can 

be calculated at each lattice node as velocity moments of the particle distribution 

functions given by, 

 
i

i

f   (2.12) 

 
i

i

f  i
u c  (2.13) 

The isothermal equation of state is used to calculate the pressure directly from 

density, 

 2

sp c   (2.14) 

where 3sc c is the lattice speed of sound.  

 

  

Figure 2.2: Popular2D LB discretisation methods 
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2.3.2 Domain Discretisation 

The lattice gas models [6] required certain minimum lattice symmetry to ensure the 

isotropy of the velocity tensors and recover the Navier-Stokes equation from the 

kinetic model. The LBM also has the same symmetry requirement. Periodic arrays of 

polyhedra, both in two and three dimensions have been traditionally used as the 

lattice structure with increasing number of velocities and symmetry. But the benefits 

of increased symmetry can increase the associated computational cost. A wide family 

of lattice structures dubbed as DnQm for m speed model in n directions is available. 

Popular examples for two dimensional simulations are shown the Figure (2.2). The 

2 9D Q discretisation scheme is used in the present work considering the accuracy and 

computational cost factors mentioned above. 

2.3.2.1 D2Q9 Discretisation 

Consider a 2D incompressible fluid flow domain with density  and kinematic 

viscosity , in a rectangular domain . The domain is divided into a regular grid, or 

lattice with spacing h in both x and y directions, as shown in Figure (2.3a). The fluid 

phase is represented as a collection of fluid „particles‟ residing at lattice nodes[5] 

moving to neighbouring nodes along a fixed set of discrete directions with given 

discrete velocities at discrete time steps. The D2Q9 model, shown in Figure (2.3b) is 

a widely used 2D LB discretisation scheme. In this scheme the fluid particles at each 

node are allowed to move to its eight immediate neighbours with eight different 

velocities , ( 1,...,8)i ic . 

 

Figure 2.3: a) Standard 2D LB lattice. b) D2Q9 model 

0c

1c

5c
2c

6c

3c

7c 4c
8c

( )a ( )b

h

h
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A certain proportion of particles at each node can be at rest, thus having zero velocity

0c . Following the numbering system shown in Figure (2b), these nine discrete 

velocity vectors can be defined as 

 

0 ( 0)

( 1) ( 1)
(cos ,sin ) ( 1,..., 4)

2 2

(2 9) (2 9)
(cos ,sin ) ( 5,...,8)

4 4

i

i i
C i

i i
C i

 

 


 


 
 


 


ic  (2.15) 

where C is the lattice speed and given by 

 /C h t   (2.16) 

2.3.3 The Collision Process 

In the LGCA, the collision process was carried out by a set of scattering rules that 

listed probabilities of every output state for each input state. The handling of these 

rules was costly from a computational point of view. Higuera and Jiménez [10] 

proposed a simplified Lattice Boltzmann Method with linearised collision operator in 

Equation (4) and (5) is given by,  

 ( ( , )) ( ( , ) ( , ))eq

i ijf t M f t f t   x x x  (2.17) 

Where 
ijM is the collision matrix, ( , )eqf tx  is the equilibrium distribution function. It 

is assumed that the particle distribution functions are never far from their equilibrium 

state, even for dynamic flows. The dimension of the square collision matrix is equal 

to the number of lattice functions. Also the components depend purely on the angle 

between the colliding functions. The collision operator corresponds to the action of 

hydrodynamic viscosity in lattice Boltzmann method [1]. From Equation (2.17) it can 

be seen that the collision process drives the non-equilibrium part of the particle 

distribution function at a node to equilibrium. Also the collision process is local. 

Therefore, only the distribution functions arriving at a particular node are considered 

in the collision operation. This local nature of the collision process is an important 

attribute for the parallel nature of the LBM.  
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2.3.3.1 Lattice Bhatnagar-Gross-Krook Collision Model 

The lattice Bhatnagar-Gross-Krook [LBGK] model proposed by a number of authors 

[11, 12, 13] simplified the components of the collision matrix
ijM assuming that the 

collision operator relaxes the local particle distribution at  a single rate and is given 

by, 

 1
ij ijM 


   (2.18) 

The LBGK collision operator is written as, 

 
( ( , )) ( ( , ) ( , ))eq

i

t
f t f t f t




   x x x  (2.19) 

The relaxation parameter  controls the rate at which the particle distribution relaxes 

towards the equilibrium by operating directly on the non-equilibrium function. The 

kinematic viscosity of the fluid  can be implicitly determined by the discretisation 

parameters h , t and  as 

 21 1 1 1

3 2 3 2

h
Ch

t
  

   
      

   
 (2.20) 

2.3.4 The Equilibrium Function 

The equilibrium distribution functions eqf used in the collision process in section 

(1.3.1) is given by the following relations for a 2 9D Q discretisation scheme: 

 
0 0 2

3
(1 . )

2

eqf w
C

  v v  ( 0)i   

(2.21) 
 

2

2 4 2

3 9 3
(1 . ( . ) . )

2 2

eq

i if w
C C C

   i ie v e v v v  ( 1,...,8)i   

 

In which iw are weighting factors: 

 
1,2,3,4 5,6,7,8

4 1 1

9 9 36
ow w w    (2.22) 
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2.4 Accuracy and Stability  

The lattice Boltzmann method recovers the incompressible Navier-Stokes equation to 

the second order in both space and time [5]. Due to the fact that the LB Equation 

(2.9) is obtained by the linearised expansion of the original kinetic theory based LB 

equation, the macroscopic results obtained converge to the solution of 

incompressible Navier-Stokes equation with order 2Ma , where Ma is termed the 

„computational ‟ Mach number. It is given by 

 
maxMa
C


  (2.23) 

where max is the maximum simulated velocity in the flow. Therefore, it is required 

that 

 1Ma   (2.24) 

This indicates that the lattice speed should be sufficiently larger than the maximum 

fluid velocity to ensure that the solution is reasonably accurate. Also the pressure 

state from Equation (2.14) reveals that the incompressibility of the fluid is satisfied 

only approximately by the lattice Boltzmann formulation. It indicates that the LB 

model can be considered as a „penalty-based‟ method that allows a limited degree of 

compressibility to occur and the fluid speed of sound sC acts as the penalty value. 

Thus, a larger value of C will lead to a better approximation of incompressibility 

condition. 

2.4.1 Dependence of Accuracy on Model Parameters 

There are three model parameters in Lattice Boltzmann simulation, viz. the 

relaxation time , the lattice spacing h and the time step t . These three parameters 

are to be chosen in such a way that desired solution accuracy can be achieved with 

reasonable computational cost. The spatial discretisation error is determined by the 

lattice spacing h . The temporal discretisation error and the total number of time steps 

of simulation are determined by the time step t . In general the error in a LB 

simulation can be expressed as 

 2 2( ) ( )O h O Ma  (2.25) 
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Hence the compressibility error has to be in balance with the resolution error. The 

relaxation time  characterizes the time-scale behaviour of fluid particle collisions 

and determines the lattice fluid viscosity in the lattice scale. The viscosity in LB 

units is given as 

 1 1

3 2
 

 
  

 
 (2.26) 

Thus the true fluid viscosity  and the lattice viscosity are related by, 

 2
2h

C t
t

    


 (2.27) 

It can be seen from relations (2.20) and (2.26) that τ should be, 

 1

2
   (2.28) 

 also influences the stability of the solution. Higher value of means that the fluid 

is more viscous and the LB simulation is more stable. 

2.4.2 Methodology of choosing model Parameters  

From Equation (2.20) t be determined as 

 21

2 3

h
t 



 
   

 
 (2.29) 

The following methodology may be used to determine the optimum model 

parameters for a fluid with given viscosity . 

1) The lattice spacing h is chosen purely from the computational point of view. 

2) The value of is chosen from stability consideration Equation (2.28). 

3) The value of t is determined from Relation (2.29) and the corresponding 

lattice speed is the calculated. 

4) The simulation is performed. If a stable solution is achieved, the maximum 

fluid velocity is obtained and the Mach number Ma is checked. A reasonably 

accurately solution may have been achieved if Ma is sufficiently small. 

5) If the numerical solution obtained is not stable the above procedure is 

repeated with a larger value of . 
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It can be seen from the Relation (2.29) that for a given viscosity  and with 

constant, reducing h by half will result in the decrease of t . Thus the lattice speedC

doubles leading to a much accurate solution. However the computational cost of this 

method will increase the computational cost. On the other hand, if h is reduced 

keeping C constant, the value of will increase following the Relation (2.20), 

thereby enhancing the stability of the solution. 

2.5 Lattice Units 

The LB formulation developed in the preceding sections is introduced in physical 

coordinates. All the relevant physical variables are in their standard units. It is 

advantageous to perform numerical simulation in lattice units as non-dimensional 

variables can be used in the simulation and are easy to handle. Therefore lattice units 

are used for simulations in the present work also. The particle density distribution 

functions if and the relaxation parameter  are already non-dimensional and thus 

remain the same in both the systems. In lattice units, the spacing h and time step t

are both unity. Thus the lattice speed C also becomes equal to unity. The indices of 

the grid nodes become their lattice coordinates x , and time instances t become 

integers. The lattice density is defined as 0/   , where 0 is the true fluid 

density. The incompressibility condition is not exactly satisfied in LB simulations. 

Thus  is slightly different than 0 . The lattice Boltzmann Equations (2.21) can be 

converted to lattice units by replacing all the variables by the corresponding lattice 

variables. Thus the converted LBGK equation in lattice units is written as 

 
     

1
, 1 , , ( , )eq

i i i i if t f t f t f t

      x e x x x   0,...,8i   (2.30) 

The equilibrium distribution functions in lattice system eq

if are given by 

 
0

eqf   0

3
1 .

2
w 

 
 

 
v v   0i   

(2.31) 
 

eq

if    
29 3

1 3 . . .
2 2

iw 
 
   

 
i ie v e v v v   1,...,8i   
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CHAPTER 3 

 

BOUNDARY CONDITIONS  

 

 

Boundary conditions and initial conditions are essential for any computational fluid 

dynamic methods. In a LB simulation, the particle distribution functions are primary 

variables. Thus pressure, velocity and other macroscopic variables are determined by 

operations on the particle distribution functions. The principal aspect of applying 

boundary conditions in LB method is to determine a set of particle distribution 

functions such that desired macroscopic quantities are applied at the boundary nodes. 

Also it would be advantageous if the boundary implementation procedure maintains 

the simplicity and locality of the LB solution process. 

3.1 Periodic Boundary Conditions 

Periodic boundary conditions are the simplest type of boundary conditions and can 

be easily implemented. In this boundary condition, the output of a fluid domain is 

used as its input. Thus, an infinite array of analysed fluid domain is created in the 

direction of the boundary normal. The schematic diagram of the periodic boundary 

condition is shown in Figure (3.1). 

3.1.1 Periodic Boundary Conditions at Left and Right Boundaries 

At the left boundary the inward facing particle distributions 1f , 5f and 8f  are 

unknown after the streaming operation. These values are obtained from the outward 

facing distributions at the right boundary. Thus, 

 
1 1

5 5

8 8

left right

left right

left right

f f

f f

f f







 

     

(3.1) 



27 

 

 

 

Figure 3.1: Periodic Boundary Conditions 

At the right boundary the inward facing particle distribution functions 3f , 6f and 7f  

are unknown after streaming. These values are obtained from the outward facing 

populations at the left boundary. Thus, 

 
3 3

6 6

7 7

right left

right left

right left

f f

f f

f f







 

     

(3.2) 

3.1.2 Periodic Boundary Conditions at Corner Nodes 

The treatment of periodic boundary condition at the corner nodes is performed in a 

slightly different way compared to other nodes at the boundary. At the top left corner 

the populations 1f , 4f and 8f are unknown after streaming. They are determined using 

the flowing rule. 

 
1 1

4 4

8 8

top left top right

top left bot left

top left bot right

f f

f f

f f

 

 

 







 

     

(3.3) 

 

At the bottom left corner the populations 1f , 2f and 5f are unknown after streaming. 

They are determined using the following rule. 
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1 1

2 2

5 5

bot left bot right

bot left top left

bot left top right

f f

f f

f f

 

 

 







 

     

(3.4) 

 

Similarly the unknown populations at the top-right corner can be determined using 

the following set of rules. 

 
3 3

4 4

7 7

top right top left

top right bot right

top right bot left

f f

f f

f f

 

 

 







 

     

(3.5) 

 

The unknown populations at the bottom-right corner can be determined as follows. 

 
2 2

3 3

6 6

bot right top right

bot right bot left

bot right top left

f f

f f

f f

 

 

 







 

     

(3.6) 

3.2 No-slip Boundary Conditions  

The wall boundary condition or the no-slip boundary condition occurs at the 

interface of the fluid and the stationary solid wall. The no-slip boundary condition 

can be implemented by the bounce back method which reflects the particle 

distribution functions at boundary nodes in the direction of incidence. The main 

advantage of the bounce back method is that it is very easy to implement. Also the 

locality of the LB solution process is maintained. However the bounce-back 

boundary condition is only first order accurate in most of the situations. The no-slip 

condition can be enforced over one or two steps as described below. 
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(a) 

 

(b) 

Figure 3.2: Single step bounce back condition at time t (left) and time t+1 (right) 

3.2.1 Single Step Bounce Back 

The nodes lying within the wall region are called solid nodes and the nodes in the 

fluid region are fluid nodes. The single step bounce back method is applied at the 

fluid nodes just before the solid nodes. The post collision distribution functions ready 

to be streamed to the solid nodes are redirected in the opposite direction instead 

being streamed. The single step bounce back procedure is shown in Figure (3.2).  

3.2.2 Two Step Bounce Back  

The two step bounce back boundary condition is implemented in two time steps and 

at the solid nodes placed just adjacent to the boundary. As indicated in Figure (3.3) 

the particle distribution function at fluid nodes are relaxed at time t  resulting in three 

particle distributions pointing towards the respective solid nodes. They are 

propagated to the solid nodes during the streaming process. The bounce-back 

condition is then enforced on all the solid nodes by modifying the relaxation process 

by of reversing the direction of each of the distributions at these nodes. Then the 

standard streaming process is performed so that the functions pointing in the 

direction of the fluid are streamed back to the fluid node. Thus at time 2t  the 

reflected particle distribution functions are at the fluid nodes where they started 

ready to be relaxed. The advantage of the two step approach is that it is not required  

 

( , )if t
x

( , )if t t 
i

x c

 4 ,f tx

 8 ,f tx 7 ,f tx

( , )if t
x

( , )if t t 
i

x c

 4 ,f tx

 8 ,f tx 7 ,f tx
 

 
6

8

, 1

,

f t

f t





x

x

 

 
2

4

, 1

,

f t

f t





x

x

 

 
5

7

, 1

,

f t

f t





x

x



30 

 

 

Figure 3.3: Two step bounce-back boundary condition at time t (left), time t+1 

(middle) and time t+2 (right) 

to define the fluid boundary nodes. Also if the physical boundary is assumed to lie 

halfway between the fluid node and the solid node the two step bounce back 

condition is found to be second order accurate. 

3.3 Pressure and Velocity Boundaries 

The application of pressure and velocity boundary conditions involves the inverse 

problem of determining the particle distribution functions from the prescribed 

macroscopic variables. The pressure and velocity boundary conditions discussed in 

the below sections was proposed by Zou and He [15]. Like the bounce-back 

boundary conditions, the operations in this boundary technique are also local 

preserving the parallel nature of the solution process. 

3.3.1 Velocity Wall Boundary Condition  

Consider a 2D flow boundary with prescribed velocity xu and
yu . At the bottom node 

the boundary is aligned with the x -direction. The particle distribution functions 4f ,

7f and 8f are pointing into the wall. The functions 0 1 3 4 7 8, , , , ,f f f f f f are known post 

the streaming operation. The distribution functions 2 5 6, ,f f f  and density are to be 

determined. 

From the mass conservation equation (2.12), it can be written as, 
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2 5 6 0 1 3 4 7 8( )f f f f f f f f f              (3.7) 

From the momentum conservation equation (2.13), it can be written as, 

 
5 6 1 3 7 8( )xf f u f f f f           (3.8) 

 
2 5 6 4 7 8( )yf f f u f f f     

 
(3.9) 

       

Thus from equation (3.7) and (3.9) the density can be derived as 

 
 0 1 3 4 7 8

1
2( )

1 y

f f f f f f
u

      


     (3.10) 

Assuming that the bounce-back rule is still valid for the non-equilibrium part of the 

particle distribution functions normal to the boundary the unknown populations can 

be determined as  

 
2 4

2
,

3
yf f u   

(3.11)        
 

 5 7 1 3

1 1 1
,

2 2 6
x yf f f f u u     

 

 
 6 8 1 3

1 1 1

2 2 6
x yf f f f u u       

3.3.2 Specification of Pressure on a Flow Boundary 

In the lattice Boltzmann method the pressure is related to the density by the 

isothermal Equation (2.14) of state. Thus a specification of pressure difference means 

a specification of density difference. Consider a 2D domain as shown in Figure (3.4) 

with a pressure 2

in inp c   and velocity 
yu applied to the left boundary. From the 

mass conservation Equation (2.12) it can be written as, 

  1 5 8 0 2 3 4 6 7inf f f f f f f f f              (3.12) 

From the momentum conservation equation it can be obtained as 

  1 5 8 3 6 7in xf f f u f f f       
    (3.13) 

 
5 8 2 4 6 7f f f f f f    

 

From Equations (3.12) and (3.13), xu can be derived as, 
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  0 2 4 3 6 72
1x

in

f f f f f f
u



      
       (3.14) 

Assuming that the bounce-back rule is valid for the non-equilibrium particle 

distributions normal to the inlet boundary  1 1 3 3

eq eqf f f f   , the unknown 

distributions can be determined by, 
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





 

   

   

     (3.15) 

The corner node at the inlet requires a special treatment. Consider the bottom node as 

example. The distribution functions 3 4 7, ,f f f are known post streaming. The density 

 is specified and the velocity xu and 
yu are equal to zero. The distribution functions 

1 2 5 6 8, , , ,f f f f f  are to be determined. Assuming that the bounce-back rule is valid for 

the non-equilibrium part of the particle distribution normal to the inlet and the 

boundary, we have 

  

 

( ) ( )

1 3 1 3 3

( ) ( )

2 4 1 3 4

,eq eq

eq eq

f f f f f

f f f f f

   

   
     (3.16) 

 

 

Figure 3.4: Specification of Pressure at flow boundary 
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From Equation (3.15) and the mass conservation Equation (2.12), the unknown 

distribution functions can be determined as, 

 

 

5 7

6 8 0 1 2 3 4 5 7

,

1

2
in

f f

f f f f f f f f f



          

     (3.17) 

Similar procedure can be applied to the top inlet node, the outlet corner nodes and in 

situations where the vertical velocity 
yu is non-zero. 

3.3.3 Specification of Velocity on a Flow Boundary 

Velocity boundary conditions are often defined in a fluid flow. Consider a 2D 

domain with both xu and
yu specified at the inlet as shown in Figure (3.5).  After 

streaming the particle distribution functions 2 4 3 6 7, , , ,f f f f f are known at the inlet. 

The density  and the functions 1 5 8, ,f f f are to be determined. Following a procedure 

similar to the pressure boundary conditions, the solution can be obtained as follows: 
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     (3.18) 

Similarly the density and the distribution functions at the outlet boundary can be 

determined as, 
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3.4 Inclusion of External Body Force 

There are a wide range of fluid flow problems in which gravity and buoyancy effects 

are significant [38]. The incorporation of the effects of gravity and other external 

body forces in a lattice Boltzmann model was introduced by Buick et al [38]. They 

suggested that the body force can be incorporated by adding an additional term in the 

collision operator which modifies the distribution function given by. 

 
   

2

1
( , ) , ,e

i i i i i

D
t f t f t F c

bc
      x x x  (3.20) 

where i is the collision operator defined by Equation (2.19), D is the number of 

dimensions and b is the number of lattice directions and F is the body force acting 

on the fluid. The addition of a term in the collision operator results in change in 

momentum and this change is incorporated by modifying the momentum as follows. 

 1

2
i i iv u F    (3.21) 
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CHAPTER 4 
  

SINGLE PHASE LBM NUMERICAL 
RESULTS 

 

 

The lattice Boltzmann method and the various boundary conditions discussed in the 

preceding chapters were implemented and simulation of a number of flow validation 

problems was performed. The aim of these simulations was to determine the 

accuracy and the robustness of the code and also to investigate issues like stability, 

compressibility errors, etc. The D2Q9 LBGK model was used for the two 

dimensional simulations. The two step bounce back method was used for 

implementing the wall boundaries. This method was chosen over the single step 

bounce back method because the two step method is second order accurate if the wall 

is assumed to be midway between the wall and the fluid node. Also the bounce back 

method is extremely convenient in modelling irregular boundaries. The Zou and He 

[15] technique is used for defining the pressure and velocities at the boundaries. The 

body forces were included using a post-collision operation which alters the momenta 

of the particle distribution functions as discussed in Section (3.4). 

4.1 2D Poiseuille Flow  

Poiseuille flow is an incompressible flow between two stationary parallel plates. It is 

generally used as a benchmark for numerical analysis as the analytical solution can 

be derived from Navier-Stokes equation. For a flow driven by constant body force, 

the velocity profile across the width of the channel is given by 

 2
2

( )
2 2

x

G a
u y y



   
   

   

 
     

(4.1) 

where G is the body force and a is the channel height. 
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 (a) 

 

(b) 

Figure 4.1: Poiseuille flow driven by body force G. (a) Domain setup (b) LB Grid 

4.1.1 Problem Setup  

The implemented LBM code was applied to a plane Poiseuille flow driven by 

a body force. The schematic diagram of a rectangular domain of size 

100 24x yL L   LU‟s is shown in the Figure (4.1a). The applied body force along 

the x-direction is given by 0.00011G  . Periodic boundaries were employed at the 

inlet and outlet boundaries in order to maintain a plane flow.  

No-slip boundary condition was applied to the walls at the top and bottom 

using the two-step bounce back method. Since the two step bounce back method 

assumes the actual boundary to be present half way between the fluid and solid node, 

the effective height of the domain is 1 23yL   LU‟s. The initial condition of 

0, 0x yu u   and an average density of 0 1  was applied in the interior of the 

domain.  

The criteria used to determine the steady state is given by 
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( , 1) ( , )
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( , 1)i

u t u t

u t


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


i i

i

x x

x
 

     

(4.2) 

where the summation is over all the lattice nodes in the domain. The steady state 

solution was obtained only after a few thousand iterations depending on the value of 

viscosity and the boundary conditions. The simulations were performed using 

xL

yL G

xL

yL

0

yN

xN
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different values of  (0.75, 0.9, 1.0, 1.25 and 1.5) to study the effect of the relaxation 

parameter on the velocity profile obtained.  

 

Figure 4.2: Contour plot of the velocity profile for 1.0   

4.1.2 Results and Discussion 

The velocity profile was measured at several cross sections. The magnitude of the 

vertical component of velocity
yu was always found to be smaller than 610  

irrespective of .The steady state velocity contour plot obtained from the simulation 

for 1.0   is shown in Figure 4.2. Also a plot of comparison of the horizontal 

velocity profile with analytical velocity profile at various sections along the domain 

for 1.0   is show in Figure (4.3) and Figure (4.4). It can be seen that the velocity 

profile obtained from the LB simulation matches well with the analytical solution at 

all the sections in the channel. The velocity profile obtained for other values of  is 

not shown since they were similar to plots shown in Figure (4.3) and Figure (4.4). In 

order to determine the effect of relaxation parameter on the LB simulation  was 

varied from 0.55 to 3. It can be seen from Figure (4.5) that the maximum velocity 

relative error is close to zero only for values of ranging from 0.7 to 1. Hence for 

further LB simulations in this work, the value of is taken between 0.8 and 1.0.   
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 (a) 

 

(b) 

Figure 4.3: Horizontal velocity comparison. (a) At x=0. (b) At x=25[  indicates the 

analytical velocity and indicates the actual velocity] 

 

 (a) 

 

(b) 

Figure 4.4: Horizontal velocity comparison. (a) At x=50. (b) At x=100[  indicates 

the analytical velocity and indicates the actual velocity] 
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Figure 4.5: Plot of the maximum velocity relative error v/s relaxation parameter  

4.2 2D Lid driven cavity flow 

Lid driven cavity flow is a standard benchmark problem in the field of CFD. Most of 

the conventional numerical solutions for this problem are based on vorticity and 

stream function formulation and discretisation of the Navier-Stokes equation using 

finite difference, multi-grid or the finite element methods. A thorough analysis of the 

problem was done by Ghia et al [28]. The results obtained from the LB simulation of 

the problem will be compared with work of Ghia et al [28]. 

4.2.1 Problem setup 

A square cavity of dimensions 129 129x yL L   LU‟s is shown in Figure (4.1). The 

cavity is filled with a fluid of uniform density 2.7LU‟s. The horizontal and vertical 

velocity at bottom horizontal wall and the two vertical walls are set to zero. This is 

done by the two step bounce back method described in Section (3.2.2). A uniform 

horizontal uniform velocity of 1xu  and a vertical velocity of 0yu  is applied to 

the horizontal wall at the top as shown in the Figure (4.1) using the velocity wall 

boundary condition described in Section (3.3.1). 
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Figure 4.6: Lid driven cavity flow problem setup 

4.2.2 Results and discussion 

The simulations are performed for a Reynolds number of Re 100 and Re 400 . 

The velocity contours obtained are shown in Figure (4.7) and Figure (4.8). It can be 

seen that as the Reynolds number is increased, the vortex formed moves towards the 

geometric center of the cavity 

 

 

Figure 4.7: Velocity contour for lid driven cavity flow at Re 100  
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Figure 4.8: Velocity contour for lid driven cavity flow at Re 400  

The velocity xu  in horizontal direction was observed at various nodes on the vertical 

line through the geometric center. The Figure (4.9) shows comparison plot of these  

 

(a) Present Work 

 

(b) Ghia et al 

Figure 4.9: Plot of horizontal velocity along vertical line through geometric centre. 

(a) Present work. (b) Ghia et al  
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(a) Present work 

 

(b) Ghia et al 

Figure 4.10: Plot of vertical velocity along horizontal line through geometric centre. 

(a) Present work. (b) Ghia et al  

velocities obtained in the present work and those found by Ghia et al [28]. It can be 

seen that the results obtained in the present work closely match the values obtained 

by Ghia et al [28]. Similarly the velocities in the vertical direction were observed at a 

horizontal line through the geometric centre and plotted as shown in Figure (4.10). 

The obtained results in the present work agree with results obtained by Ghia et al 

[28].    
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CHAPTER 5 
  

LATTICE BOLTZMANN MODEL FOR 
SIMULATING IMMISCIBLE TWO-

PHASE FLOWS 

 

 

In problems involving immiscible multiphase flows, the equations of motion that 

hold in each fluid are solved with appropriate conditions defined at the interface 

between the fluids. The interface is a free surface that evolves in time and the 

conditions that hold at the interface involve the physical properties of the fluids such 

as surface tension. An alternative description of immiscible two-phase flows is based 

on diffuse-interface models in which quantities such as surface tension, for example, 

are distributed throughout an interfacial region. In such a description, surface tension 

is represented as a distributed stress within this region. 

The numerical simulation of multiphase flow problems can be performed 

using two different approaches; the Lagrangian approach and the Eulerian approach. 

In both these approaches it is required to track the interface(s) between the two 

phases as they evolve in time. The Lagrangian approach can accurately track an 

interface as the fluid flow is analysed by observing the trajectories of specific fluid 

particles. The dynamics of the interface can be captured from the evolution of the 

boundary. However, if the interface topology is completely changed the Lagrangian 

method can suffer from ill-conditioning and singularities. Also, three dimensional 

computations can prove costly due to the necessity to mesh complex geometries. In 

the Eulerian approach the analysis is performed by observing the field variables like 

velocity, pressure, density, etc. Instead of tracking the interface explicitly, the 

Eulerian method reconstructs it as an isocontour of a field variable. Thus the Eulerian 

overcomes the difficulties in the Lagrangian approach since large deformations in an 

interface can be captured without a re-discretisation of the domain. However, the 
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problem with this method is that interfacial diffusion effects are generally smeared 

over a region surrounding the interface due to the lack of explicit treatment. 

The micro/mesoscopic consideration of a two-phase flow indicates that the 

segregation of two fluids is due to inter-particle forces at the kinetic level. The lattice 

Boltzmann model, as described in Chapter 2, constructs a simplified kinetic model 

which exhibits behaviour identical to classical hydrodynamic equations at the 

macroscopic level by incorporating the mesoscopic processes. Also the LBM can be 

implemented efficiently on parallel computers. Thus the LBM is in a strong position 

compared to other continuum based approaches since the particle interactions can be 

incorporated into the evolution of the distribution function. As a result, a multiphase 

lattice Boltzmann model facilitates the interfaces to emerge spontaneously from the 

underlying dynamics rather than tracking them.  

Many lattice gas and lattice Boltzmann models have been developed to 

predict the flow of two interacting fluids, each having its own set of advantages and 

limitations.  

The seven-velocity Shan-Chen model proposed by Shan and Chen [18] is 

widely used for multiphase flows due to its simplicity and elegance. Since the flows 

with more than one phase have a non-ideal equation of state, Shan and Chen [18] 

looked to preserve this feature in a lattice Boltzmann framework by incorporating 

non-local interactions among particles by defining a concept of interaction potential. 

In the Shan and Chen [18] model the surface tension is given by strength of the 

microscopic interaction and the shape of the density profile at the liquid-gas 

interface. Although it is possible to adjust these two independently, keeping the 

density profile constant and changing the surface tension requires the adjustment of 

two parameters. Furthermore the absolute value of surface tension is not known prior 

to evaluation of the density profile on the interface. A simulation of flows of 

immiscible fluids with different viscosities was done by Chin et al [19] by using the 

Shan-Chen model on a D2Q9 lattice with LBGK collision operator. The evaluation 

of Laplace‟s law for surface tension showed noticeable errors and two-phase 

Poiseuille flow gave noticeable discrepancies near the interface region.  

Alternative LB model for simulating immiscible fluid flow was proposed by 

Swift et al. [20] by introducing the phase effects directly in collision using a free-

energy approach. Their model is constructed such that the pressure tensor is 

consistent with the tensor derived from the free-energy function of non-uniform 
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fluids. This model leaves the interface width relatively wide as pointed out by Latva-

Kokko [22]. Theoretical criticisms of the free-energy approach are made by Luo 

[21].  

Another approach for simulating the two phase flow for immiscible fluids is a 

method based on colour gradients. The colour gradient method was first proposed by 

Gunstensen et al [23]. This method combined the single phase LBM of McNamara 

and Zanetti [24] with the multiphase lattice gas algorithm of Keller and Rothman 

[25]. In this method a perturbation is added to the linearised collision operator which 

makes the pressure tensor locally anisotropic near the interface. The result of this 

addition is the   surface tension at the interfaces while retaining the adherence to the 

Navier-Stokes equations in the homogeneous regions. The perturbation addition also 

leads to mass being depleted along lattice links parallel to an interface and mass 

being added to lattice link perpendicular to an interface. This model is utilises a fully 

linearised collision operator which is computationally inefficient in 3D and is 

restricted to flows in which the fluids have same densities and viscosities. Also the 

governing equations are not exactly solved for two-phase flow. The key advantage of 

LB models which followed from the multiphase lattice gas algorithm of Keller and 

Rothman [25] is that the density ratio, the viscosity ratio and surface tension can be 

chosen independently. A number of other models extending the Rothman-Keller 

model have been proposed. The models proposed by Gunstensen et al [23] and Tölke 

et al [26] allowed for different densities and viscosities by incorporating the freedom 

of rest particle equilibrium distribution function and space dependent relaxation 

process. 

This work uses the model proposed by Reis and Phillips [27] for simulating 

immiscible two phase flows on a D2Q9 lattice. The model proposed by Reis and 

Phillips [27] was similar to the model of Gunstensen et al [23] but with several 

important modifications. 

5.1 Immiscible lattice Boltzmann model 

Consider a 2D incompressible two phase flow domain. Let „ R ‟ and „ B ‟ denote the 

two phases in the domain and let their densities be R and B respectively. A D2Q9 

lattice Boltzmann model is constructed on the domain as described in Section 
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2.3.2.1. Let  ,if t
x be the density distribution function at position x and time 

instant t . The superscript R   or B indicates the species of the fluid. Thus the total 

at node x at any instant of time t is given by 

      , , ,R B

i i if t f t f t x x x  (5.1) 

As in the case of single phase flow, the LBM solution progresses via a two stage 

process of collision and streaming at each time step. However in the case of two-

phase flow the operations of collision and streaming are performed separately on the 

two phases. Thus the evolution of each phase is given by 

      , 1 , ,i i if t f t t     
i

x c x x  (5.2) 

The collision operator  ,i t x consists of three parts given by 

    , 3 1 2i i i it       x  (5.3) 

The first operation 1i

 is similar to the collision operator incorporating the relaxation 

to the local equilibrium state described in Sections 2.4 and 2.7. Using the LBGK 

operator 1i

 is given by,  

   1
1

e

i i if f
 


     (5.4) 

where  is the relaxation time, 
 e

if


is the equilibrium distribution function 

corresponding to the phase . Taking 1   as the relaxation parameter, 

Equation 5.4 can be written as 

   1
e

i i if f
       (5.5) 

The equilibrium functions are chosen as follows: 
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where  is a free parameter which determines the speed of sound,  
2

sc . Thus 

controls the hydrodynamic pressure at the interfaces. It can be viewed as representing 

the ensemble average number of degenerate rest particles, which are required to 

maintain a stable interface and achieve a density variation between the fluids. Thus, 

the choice of the parameter  is very important for multiphase flows with large 

density difference. In order to ensure that 0 1if
  , it is required that the value of

 is chosen between 0 and 1.   

The weights 
iW used in Equations 5.6, 5.7, 5.8 are given by 

 4
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 0i   

(5.9)  1,2,3,4i   

 5,6,7,8i   

Mass is defined as the first moment of the density distribution function respectively 

and is given by 

  e

i i

i i

f f
      (5.10) 

where  is the density of the fluid , R B    is the total density. The 

momentum is defined as the second moment of the density distribution function 

respectively and is given by 

  e

i i

i i

f f


 

   i i
u c c  (5.11) 

where u is the local fluid velocity. The pressure is given by  

  
 

2

0

3 1

5
sp c

 

  
 




   (5.12) 

Also the density ratio is defined as 

 1

1

R B

B R

 

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
 (5.13) 
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5.1.1 Two-phase collision operator 

The two-phase collision operator, 2i

 , is responsible for generation of surface 

tension at the interface while satisfying the mass and momentum conservation given 

by Equation 5.10 and Equation 5.11 respectively. In the two-phase collision 

operation an anisotropic perturbation is added to the particle distribution functions 

near the interface. The position of interface is located by examining the magnitude of 

the local colour gradient. If the spatial colour difference,   is defined as 

      R B   x x x , (5.14) 

the colour gradient can be calculated in terms of the colour difference as follows: 

  ( )  H x x  (5.15) 

A fourth-order approximation of the colour gradient is given by 
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i i i
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     F x c x c x c  (5.16) 

It should be noted that the value of 0F  in pure phases. The two-phase collision 

operator 2i

 is obtained from the colour gradient using the relation 

  
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2
2
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i

i i i

A
W B
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

 
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  

c F
F

F
  0,...,8i   (5.17) 

The parameter A is a free parameter controlling the surface tension. Since the 

magnitude of 0F in pure phases, 2i

 only contributes to mixed interfacial 

regions. The weights iW are the same as those defined in the relation 5.9. The 

parameter iB used on the calculation of 2i

 is given by 
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It should be noted that the two phase collision operator should ensure that the mass 

and momentum are conserved. The relations for momentum and mass conservation 

are given by 

 8

2 0i

i

   (5.19) 

 8

2 0i i

i

  c  
(5.20) 

The pictorial representation of the colour gradient is shown in Figure 5.1. The colour 

gradient ( )F x is normal to the interface. Thus the two-phase collision operator 2i

  

serves to add mass to populations in the direction of the colour gradient and depletes 

mass parallel to the interface.  

 

Figure 5.1: Colour gradient F is normal to the interface 

5.1.2 Re-colouring  

The re-colouring collision step redistributes the mass post two-phase collision step to 

achieve separation of the two fluids. Let '

if
 and ''

if
 be the distributions post two-

phase collision and re-colouring step respectively. Following the method proposed 

by Gunstensen et al [23], the re-colouring is carried out as follows: 

1) The link vectors ic are listed in descending order starting with the one nearest 

to the colour gradient vector F . 

F
Red

Blue

F

Interface
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2) The available numbers of red particles are sent in the directions close to F

(i.e. perpendicular to the interface) and he blue particles are sent in the 

opposite direction. 

It should be noted that the following constraints should be adhered to while 

performing the re-colouring operation. 

 ' ' 'R B

i i if f f   (5.21) 

 'R R

i

i

f   (5.22) 

Some potential draw backs in this re-colouring technique were pointed out by Latva-

Kokko et al [22]. One such drawback is lattice-pinning. This situation occurs when 

one fluid is very close to the interface and the flow is too weak to move the red 

particles. Thus the interface gets pinned to that particular lattice. Alternative re-

colouring techniques were proposed by Latva-Kokko et al [22] and Tölke et al [26] 

in which the separation of phases is not as strong as in the algorithm mentioned 

above, but the stability of the method is improved. It should be noted that the choice 

of the re-colouring algorithm does not affect the surface tension values. Due to ease 

of implementation the algorithm explained in Section 5.1.2 is used in this work. 

5.1.3 Interface Relaxation parameter 

The averaged relaxation parameter is an important factor in determining the 

thickness of an interface. When the relaxation parameters  are different, the 

viscosities of the fluid are also different, leading to an increase in the interface width. 

In order to ensure a stable interface and smooth change in viscosity, an order 

parameter  ( ) /R B R B        and relaxation function is defined as follows 

 

 

 

,

,

,

R

Rf

Bf

B



 










 





 

 

(5.23) 

,   

0,    

0 ,     

    

where  Rf  and  Bf  are given by 
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   2Rf        (5.24) 

   2Bf        (5.25) 

The constants , , ,    and are chosen in such a way that the relaxation parameter

and its derivative are continuous functions. These constants can be determined from 

the following expressions. 

    (5.26) 

  2 R 





  

(5.27) 

 

2





   

(5.28) 

  2 B 





  

(5.29) 

 

2





  

(5.30) 

where  is the averaged relaxation parameter across the interface given by 

 2 R B

R B

 


 



 (5.31) 

It should be noted that 1   is a free parameter which determines the interface 

thickness. The interface thickness varies from few lattice units to multiple lattice 

units when the value of varies from 0.1 to 1. Also the value of does not affect the 

thickness and the dynamics of the interface if the viscosities of the two fluids are 

equal. 

5.1.4 Surface Tension 

The magnitude of surface tension acting in planar interface region shown in Figure 

5.2a as derived by Reis and Phillips [27] is given by 

 R BA A





  (5.32) 

Also the magnitude of surface tension acting on a thin plane interface parallel to y-

axis as show in Figure 5.2b is given by 
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  5

6

R BA A





  (5.33) 

 
 

Figure 5.2: (a) General plane interface. (b) Thin planer interface parallel to y-axis    

5.2 Simulation steps for Two-Phase flow  

The procedure followed in this work for simulating the immiscible two-phase flow 

described in the above sections is outlined below. 

1) After initializing the domain with initial conditions the relaxation parameters 

is determined at all the nodes using the Relation 5.24 

2) The colour gradient is determined and the interface is located using the 

Relation 5.16 

3) The equilibrium functions at all the lattice nodes are evaluated in all the 

directions using the Relations 5.6, 5.7 and 5.8. 

4) The collision operation 1i

 is performed using the Relation 5.5 and the 

relaxation parameters determined in step 1. 

5) If the fluid flow is driven by body forces, the effect of body is included in the 

collision 

6) The two-phase collision operation 2i

 is performed based on the Relation 

5.17 at lattice nodes where the magnitude of the colour gradient is positive. 

7) The re-colouring operation is performed using the procedure described in 

Section 5.1.2 

8) Streaming operation is performed for each of the phases using the Relation 

2.11 

z

X

Y

Z

Interface

( )a

Interface

Red-Fluid Blue-Fluid

( )b



53 

 

9) The macroscopic variables are determined for post processing and for 

determination of the microscopic conditions for the next iteration. 

10) The procedure mentioned in the above steps is performed till the steady state 

is reached.  
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CHAPTER 6 
  

IMMISCIBLE TWO PHASE FLOW LBM 
NUMERICAL RESULTS 

 

 

The immiscible two-phase lattice Boltzmann method discussed in Chapter 5 was 

implemented and simulation of a number of flow validation problems was 

performed. The aim of these simulations was to determine the accuracy and the 

robustness of the code and also to investigate issues like stability, compressibility 

errors, etc. The boundary conditions developed for single phase flow are also 

applicable for the two-phase flow problems. The two step bounce back method was 

used for implementing the wall boundaries. This method was chosen over the single 

step bounce back method because the two step method is second order accurate if the 

wall is assumed to be midway between the wall and the fluid node. Also the bounce 

back method is extremely convenient in modelling irregular boundaries. The Zou and 

He [15] technique is used for defining the pressure and velocities at the boundaries. 

The body forces were included using a post-collision operation which alters the 

momenta of the particle distribution functions as discussed in section (3.4). 

6.1 Two Phase Poiseuille Flow  

Consider a flow of two incompressible immiscible fluids, the high viscosity fluid 

sandwiched inside the low viscosity fluid, moving in the x-direction under the 

influence of a horizontal pressure gradient G as shown in Figure (6.1). Let the high 

viscosity and low viscosity fluid be the red and blue fluid respectively. If the flow is 

sufficiently small so that no instabilities occur within the interface then the analytical 

solutions for the steady flow are found to be [27] 

 2 2 23 4

8

B

R B

G h h y
u

 

 
  

 
 

2

h
h y     (6.1) 
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Figure 6.1: Two-phase Poiseuille flow driven by body force G with red fluid 

sandwiched between blue fluid 
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2

h
y h   (6.3) 

 

where G is the body force and h is the channel height and R and B are the dynamic 

viscosities of red and blue fluid. 

6.1.1 Problem Setup  

The implemented LBM code was applied to a plane two-phase Poiseuille 

flow driven by a body force. The schematic diagram of a rectangular domain of size 

128 63x yL L   LU‟s is shown in the Figure (6.1). The applied body force along 

the x-direction is given by 0.00003G  . Periodic boundaries were employed at the 

inlet and outlet boundaries in order to maintain a plane flow.  

No-slip boundary condition was applied to the walls at the top and bottom 

using the two-step bounce back method. Since the two step bounce back method 

assumes the actual boundary to be present half way between the fluid and solid node, 

the effective height of the domain is 1 62yL   LU‟s. The initial condition of 

G

Blue Fluid

Blue Fluid

Red Fluid
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0, 0x yu u   and an average density of 0 1  was applied in the interior of the 

domain. The following properties of the two fluids were used in the simulation. 

Table 6.1: Properties used for simulation 

Property Blue Fluid Red Fluid 

A  0 0 

  0.1 0.1 

  0.2525 0.795229 

  0.795229 0.360685 

 

The criteria used to determine the steady state is given by 

 
6

( , 1) ( , )
10

( , 1)i

u t u t

u t


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


i i

i

x x

x
 

     

(6.4) 

where the summation is over all the lattice nodes in the domain. The steady state 

solution was obtained only after a few thousand iterations depending on the value of 

viscosity and the boundary conditions. The simulations were performed using 

different values of  (0.01, 0.1, 0.3, 0.5, 0.7 and 0.9) to study the effect of the 

interface thickness on the velocity profile obtained.  

 

Figure 6.2: Contour plot of the velocity profile for 0.1   
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6.1.2 Results and Discussion 

The velocity profile was measured at several cross sections. The magnitude of the 

vertical component of velocity
yu was always found to be smaller than 610  

irrespective of .The steady state velocity contour plot obtained from the simulation 

for 1.0   is shown in Figure 4.2. Also a plot of comparison of the horizontal 

velocity profile with analytical velocity profile at various sections along the domain 

for 1.0   is show in  

 

 (a) 

 

(b) 

 

 (c) 

 

(d) 

Figure 6.3: Horizontal velocity comparison. (a) At x=1 (b) At x=32 (c) At x=96 (b) 

At x=128. [ indicates the analytical velocity and indicates the actual velocity] 
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Figure (6.3). It can be seen that the velocity profile obtained from the LB simulation 

matches well with the analytical solution at all the sections in the channel. The steady 

state velocity profile obtained for other values of  is not shown since they were 

similar to plots shown in Figure (6.3)  

 In order to determine the effect of interface thickness on the LB simulation 

was varied from 0.01 to 0.9. It can be seen from Figure (6.4) that the maximum 

velocity relative error increases as the value of   is increased towards 0.9. Hence for 

further two-phase LB simulations in this work, the value of is taken as 0.1.   

 

Figure 6.4: Plot of the maximum velocity relative error v/s interface thickness   

6.2 Deformation of square droplet of one fluid in another fluid 

When a square droplet of high density fluid is immersed in a low density fluid, the 

forces of surface tension cause it to deform and attain a circular shape. This 

behaviour is tested in the developed two-phase LB code. 

6.2.1 Problem Setup 

A red square droplet of size 32 32 LU‟s is immersed in larger blue droplet of size 

64 64 LU‟s. The density of the red fluid and blue fluid is taken as 2.0R   and 

1.0B   respectively thus creating a density ratio of 2.  

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

Interface Thickness

M
a
x
im

u
m

 V
e
lo

c
it
y
 R

e
la

ti
v
e
 E

rr
o
r



59 

 

 

Figure 6.5: Initial configuration- Deformation of square droplet of high density fluid 

(Red) inside low density fluid (Blue) 

The criterion used to determine the steady state is given by 
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(6.5) 

where the summation is over all the lattice nodes and  is the total density given by 

 R B     (6.6) 

The parameters chosen for the simulation are tabulated below. 

Table 6.1: Properties used for simulation 

Property Blue Fluid Red Fluid 

A  0.01 0.01 

  0 0.1 

  1 1 

  0.2857 0.2857 
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6.2.2 Results and Discussion 

The initial configuration is shown in the Figure (6.5).  The density profile of the red 

droplet at various time steps is shown in Figure (6.6). After 20 time steps the corners 

of  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.6: Deformation of square droplet of high density fluid (a) At 20t  , (b) At 

140t  , (b) At 300t  ,(b) At 980t   
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Figure 6.7: Variation of simulation time with Surface tension parameter 

the square start collapsing due to the effects of surface tension. After 140 time steps 

the corners collapse completely which in turn starts pushing the centre of the edges 

outwards as shown in Figure (6.6b and 6.6c). This process continues till a steady 

state of smooth round shape is obtained as shown in Figure (6.6d). 

 In order to determine the effect of surface tension on the simulation, the 

surface tension parameter was varied in the range of 0.0001 to 0.01. The time step at 

which steady state was attained is plotted relative to the surface tension parameter in 

Figure (6.7). It was found that the number of time steps required in attaining steady 

state decreased with increase in surface tension parameter. 

 Also the radius of the circular droplet formed was found to be 18 LU‟s which 

is very close to the theoretical radius, 18.05, obtained from volume conservation 

principles. 

6.3 Coalescence of two circular droplets of very high density 

When two high density circular fluid droplets are immersed in a low density fluid, 

the forces of surface tension cause them to coalescence and fuse together forming a 

larger circular droplet.  
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Figure 6.8: Initial configuration- Coalescence of two circular droplets of very high 

density fluid (Red) inside low density fluid (Blue) 

In order to test the developed code for very high density difference multiphase flow, 

the above mentioned behaviour of the coalescence of two circular droplets is 

implemented.  

6.3.1 Problem Setup 

Two circular red droplets of radius 18 LU‟s are placed to each other and are 

immersed in blue droplet of size 100 100 LU‟s. The positions of the circular 

droplets are symmetric with respect to the geometric center along the y-direction. 

The density of the red fluid and blue fluid is taken as 2.261R   and 0.122B   

respectively thus creating a density ratio of 18.5. The same criterion used in Section 

6.2.1 is used to determine the steady state and is given by Equation (6.5).The 

parameters chosen for the simulation are tabulated below. 

Table 6.2: Properties used for simulation 

Property Blue Fluid Red Fluid 

A  0.008 0.008 

  0.075 0.95 

  1 1 

  0.2857 0.2857 
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6.3.2 Results and Discussion 

The initial configuration is shown in the Figure (6.8).  The density profile of the red 

fluid at various time steps is shown in the Figure (6.9). The inter-molecular forces 

cause the bubbles to coalesce progressively over a period of time. The steady state 

solution is obtained after 4990 time steps. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

(f) 
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(g) 

 

(h) 

Figure 6.9: Coalescence of two circular droplets of very high density fluid (a) At

150t  , (b) At 450t  , (c) At 800t  ,(d) At 1000t  ,(e) At 2000t  ,(f) At 

3565t  and (g) At 4990t   
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CHAPTER 7 

 

CONCLUSION AND FURTHER 
RESEARCH 

 

 

This thesis has presented the implementation of the lattice Boltzmann method for 

simulating incompressible two phase flow problems. This implementation was 

carried out through a sequence of steps. First the lattice Boltzmann method was 

implemented for single phase flow problems. The implemented code was tested for 

stability and accuracy by simulating a number of flow validating benchmark 

problems. The single phase lattice Boltzmann implementation was then extended to a 

framework for simulating incompressible two phase flow problems. The 

implemented two phase flow model was then subjected to numerical simulation of a 

number of two phase flow problems to study its accuracy and stability. 

7.1 Discussion of Results 

The implementation of the single phase lattice Boltzmann model was discussed in 

Chapter 2. The theoretical convergence behaviour of the method and the stability and 

accuracy constraints of the method were outlined. 

The implementation of boundary conditions in the lattice Boltzmann method 

was outlined in Chapter 3. The various boundary conditions like the periodic 

boundary conditions, the no-slip boundary condition using single step and two step 

bounce back method, the velocity wall boundary conditions, the application of 

pressure and velocity at the boundary and inclusion of external forcing effects were 

explained in detail. Also it was outlined that two-step bounce back method for 

applying no-slip boundary condition is second order accurate if the solid wall is 

considered to be at the exact centre between the solid node and the fluid node. 
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The simulation of various benchmark problems using the implemented single 

phase LBM code was outlined in Chapter 4. The aim of the benchmark tests was to 

determine the accuracy and stability of the implemented method. The problem of 2D 

Poiseuille flow was implemented and simulations were performed for different 

values of relaxation parameters. It was found that accuracy of the solution decreased 

when the relaxation parameter was increased above the value of 1.0. When the 

relaxation parameter was kept within the range of 0.7 and 1.0 the velocity profiles 

obtained were exactly matching the velocity profile obtained from the analytical 

solution. The problem of 2D lid driven cavity flow was simulated using the 

developed single phase lattice Boltzmann code. Simulations were performed for 

Reynolds number values of 100 and 400 and the obtained horizontal and vertical 

velocities at the geometric centre matched exactly with the results obtained by Ghia 

et al [28]. 

The implementation of the two phase LBM was outlined in Chapter 5. This was 

done by implementing the colour gradient based two phase LBM algorithm proposed by 

Reis et al [27]. The algorithm involves the tracking the interface by evaluating the 

colour gradient at each of the nodes and adding a surface tension contribution to the 

nodes where a positive colour gradient exists. The post collision distributions were 

re-coloured to conserve mass before the streaming operation was performed. The 

dependence of the accuracy of the solution in the interface thickness was highlighted.  

The numerical implementation of the immiscible two phase LBM code 

developed was described in Chapter 6.  First the simulations of multiphase Poiseuille 

flow was performed with a layer of high viscosity fluid sandwiched between two layers of 

low viscosity fluid with various values of interface thickness. The accuracy of the solution 

seemed to reduce with an increase in interface thickness value. When the interface thickness 

was kept close to zero the velocity profile obtained matched accurately with the analytical 

solution. The second two phase simulation that was performed was the collapsing of a high 

density square bubble inside a low density fluid under the action of surface tension. The 

forces of surface tension caused the bubble to collapse to a circular shape. The radius of the 

circular bubble was found to be equal to the theoretical radius obtained from volume 

conservation principles. Next the simulation of coalescence of two very high density circular 

droplets inside a low density fluid was simulated. The two droplets gradually coalesced and 

formed a larger circular bubble with a radius very close to the theoretical value obtained 

from volume conservation. 
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7.2 Conclusions 

1) The Lattice-Boltzmann method is based upon very simple conservation 

principles. In comparison to the top-down methods, the LBM is a more 

comprehensive approach consisting solely of local collision and propagation 

rules. The local nature of these rules also makes the LBM capable to 

parallelization. 

2) The implemented LBM method code can be successfully used to simulate 

incompressible single phase flow and solutions very close to analytical 

solutions can be obtained  

3) The implemented immiscible two phase LBM code can be successfully used 

to simulate a variety of two phase problems. It is also capable of simulating 

flows with very high density ratio. 

4)  In the case of immiscible two phase flow the interface can be successfully 

tracked and the thickness of the interface can be controlled by specifying a 

free parameter.  

7.3 Recommendations for further research 

1) The immiscible two phase LBM method can be extended to multiphase flow 

problems. 

2) The size of the two-phase flow domain that can be solved in a serial 

processing architecture is very limited especially in the case of 3D flow 

problems. The implementation of the model in a parallel processing 

architecture would drastically increase the size of the domain that could be 

modelled.  

3) Recently multiple-relaxation-time (MRT) collision operator has been used for 

simulating LBM flows which offer greater number of model parameters [39]. 

These parameters can be used to tune the hydrodynamic behaviour 

independent of the spatial and temporal discretisation. Thus the usage of 

MRT collision operators for multiphase flow simulations could be 

advantageous. 
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APPENDIX A 
  

THE RELATIONSHIP BETWEEN 
LATTICE AND PHYSICAL UNITS 

 

 

The variables in the lattice Boltzmann method are often reduced to lattice units as 

described in section (2.5). The relationship between two system for common 

variables used in LB simulation are outlined below from the work of [5]. 

Table A.1: Relation between lattice and physical units 

Variables Physical Units Lattice Units Relationship 

Density 0    1   
0    

Density Function i

i

f
w


  

1
i

i

f
w

  
0i if f  

Relaxation Time     t    

Lattice Spacing x  1x   - 

Time Step t  1t   - 

Lattice Speed 
x

c
t





 1c   - 

Viscosity 

21 1
1

3 2

h

t
 

 
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 
 

1 1
1
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 
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2h
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 


 

Displacement x  x  x x x  

Velocity 
d

dt


x
v  

d

dt


x
v  cv v  

Acceleration 
2

2

d

dt
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