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Abstract 

The resolution of solid mechanics problems implying complex multi-phase 

materials or composites materials requires paying special attention to the micro-

structure of these materials. The homogenisation procedure, in the context of the 

Finite Element numerical approaches, enables to treat such multi-scale problems 

by solving, for each Gauss point of the macroscopic mesh, a micro-scale problem 

to determine the local constitutive equation. The purpose of this Master thesis is to 

apply model order reduction techniques to the micro-scale problem. As a single 

reduction of the displacement space is not efficient enough, a hyper-reduction 

method is proposed to solve the micro-scale problem. This method, based on the 

Gappy Data Reconstruction technique, makes it possible to entirely reconstruct 

the stress tensor using the computational results of a couple of stress components 

and a stress basis. By reducing the resolution to a given set of stress components 

and working in a reduced displacement space the computational cost of the micro-

scale problem considerably decreases without losing accuracy. 
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Chapter 1: 

Introduction 

 

1.1 Motivation 

To provide a constitutive modelling of materials with complex micro-structure, such as 

composite materials, it is necessary to adopt a multi-scale approach dealing with 

different length scales, two in the present proposal: the macroscopic scale for the 

phenomenological behaviour of the solid and the microscopic scale to describe the small 

scale structure of the material.  

 

  
                

Figure 1.1: Multi-scale problem diagram 

 

Micro-structure 

Macro-structure 
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The homogenisation technique makes it possible to deal more easily with these two 

scales. The idea of this technique is to determine a constitutive equation for each Gauss 

point of the macroscopic mesh, which implies solving a complete sub-problem for each 

Gauss point. The computational cost of the resolution of such multi-scale problem 

becomes huge as the problem requires a fine mesh. 

The purpose of this thesis is to decrease the size of the system involved in the resolution 

of the problem at the micro-scale, by applying projection-based Model Order Reduction 

techniques. But, as shown later, it actually needs to go further than a first step of 

reduction and apply a hyper-reduction of the micro-scale problem to achieve an 

interesting speed up in comparison to the classical finite element multi-scale model. 

 

1.2 Background 

Over the last years, in order to provide more accurate models for the analysis of the 

complex materials with microstructure, the interest for the multi-scale approach has 

increased.  

E.A. de Souza Neto and R.A. Feijόo have studied the homogenisation theory of solids 

based on the volume averaging of the microscopic strain and stress fields over a 

representative volume element (RVE), see [6].The Hill-Mandel Principle of Macro-

Homogeneity, in this approach, is a milestone in order to develop a correct averaging 

procedure. These authors have established a complete kinematical variational 

formulation of multi-scale solid constitutive models. 

The Model Order Reduction is based on the Proper Orthogonal Decomposition which 

has been largely studied in the past. The papers of Y.C. Liang, H.P. Lee, S.P. Lim, W.Z. 

Lin, K.H. Lee & C.G. Wu [9] and S. Volkwein [11] developed the mathematical theory 

of this technique. 

K. Carlberg & C. Farhat [2] [3] [4] and D. Ryckelynck [10] have worked on the 

application, in finite elements models, of model order reduction techniques and realized 

the necessity to go further than the simple reduction of the displacement space to 
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achieve efficient speed up. The first ones proposed to construct POD-reduced bases for 

the residue of the internal forces and the Jacobian, and apply Gappy Data Reconstruction 

to reduce the computational cost. The second one proposed to use the hyper-reduction to 

compute the internal variables. 

The Gappy Data Reconstruction has originally been used for image reconstruction by 

Everson R. & Sirovich L. in the reference [7], a posterior application for estimating 

missing points in the resolution of computational fluid dynamics problems was 

presented by P. Astrid, S. Weiland, K. Willcox, & T. Backx [1]. 

The hyper-reduction performed in this thesis also uses the Gappy Data Reconstruction 

but to evaluate the stress tensor after determining a POD-reduced stress basis.  

 

1.3 Objectives 

The starting material of the thesis is a Matlab finite element code developed by P.J. 

Sánchez and S.Toro.  

Three objectives are pursued in this work:  

i ) The first one is to implement a projection-based model order reduction, in the 

displacement field, and evaluate the speed up of the computational time and the 

accuracy achieved by the reduced model.  

ii ) The following objective is to get a better speed up of the computational time by 

adding a hyper-reduction of the micro-scale problem. This second level of reduction 

is applied to a judiciously selected set of stress components. An analysis on the 

accuracy, the stability and the speed up results of the effects of the parameters 

which appear in this method is developed to determine selection criteria for these 

parameters. 

iii ) Finally the third objective is to evaluate the performance of the complete multi-scale 

algorithm using the hyper-reduction process to solve the micro-scale problem 
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1.4 Thesis Outline 

In what follows, the Chapter 2 develops the theory of the hyper-reduction of the micro-

scale problem. It starts with a description of the multi-scale approach and the 

homogenisation techniques. Then the Proper Order Reduction techniques, which are the 

basis of the model order reduction, are introduced. And finally, the hyper-reduction 

process in two levels is presented. 

The Chapter 3 presents some numerical examples. First, the results of the single-step 

model order reduction and then the hyper-reduction of the micro-scale problem are 

analysed to compare the computational accelerations achieved at the micro-scale. 

Second, two examples of multi-scale problems are studied to evaluate the performances 

achieved on a whole multi-scale problem by introducing a hyper-reduction of the micro-

scale problem.  
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Chapter 2: 

Model Reduction Strategy 

 

2.1 Definition of the mechanical problem 
 

2.1.1 Multi-scale approach 

A multi-scale approach can be envisaged when the principle of separation of scales is 

verified. According to M.G.D. Geers, V.G. Kouznetsova & W.A.M. Brekelmans [8]: 

“The microscopic length scale is assumed to be much smaller than the characteristic 

length over which the macroscopic loading varies in space”, which results in a ranking 

of the governing length scales:  micro macrol l ,    

where microl and macrol  refer to the micro-scale and the macro-scale lengths respectively. 

Even when the methodology can be applied to rather general micro-structure topologies, 

for simplicity, we are considering the existence of a two phase material: a homogeneous 

material 
s

  (matrix) with voids 
v

 , which are periodically distributed into the 

homogeneous matrix. Thus, we are analyzing the smallest periodic cell which we call 

the Unit Cell, see Figure 2.1. 
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Figure 2.1 : Periodicity of the micro-structure and Unit Cell 

 

Also, we assume that the void part of the Unit Cell does not intersect the Unit Cell 

boundary, i.e.:  
v

    , 

where 
v

 denotes all points in 
v

  plus the limit points of 
v

 , and   the Unit Cell 

boundary. 

Assuming these conditions, a homogenisation procedure can be used. This procedure 

can be applied to the resolution of multi-scale problems. In this purpose, the stress tensor 

for each Gauss point of the mesh at the macroscopic scale will be determined by 

resolving the micro-scale problem of a Unit Cell submitted to the corresponding input 

strain. The output data of this micro-scale problem have to be homogenised to be used 

by the Gauss point analysed at the macroscopic scale. The pattern of the multi-scale 

resolution process is presented in the Figure 2.2. 

The purpose of the Chapter 2 is to determine a strategy to reduce the micro-scale 

problem. Two steps of reduction are required to reduce efficiently the computational 

cost of the multi-scale problem. But before reducing the problem some variables and 

concept have to be defined in this paragraph 2.1.  

s



v



Unit Cell Global Periodicity 
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Figure 2.2 : Diagram of resolution of a multi-scale problem  

 

2.1.2 Unit Cell Equilibrium problem and homogenised variables 

 

In this subsection, we present a summary of the homogenization procedure theoretical 

basis which follows closely the paper of Souza et al (Con Feijoo). Additional details are 

presented in the reference work. 

 

2.1.2.1 The displacement fluctuation field 

Without losing generality of the formulation, any microscopic displacement field u can 

be split into a sum of a homogeneous strain displacement ε(t)y (i.e. a displacement that 

varies linearly in y), and a displacement fluctuation field u : 

( , ) ( ) ( , )t t t  u ε uy y y , ( 1 ) 

In the same way the microscopic strain field εμ is defined as the sum of a homogeneous 

(constant in y) strain coinciding with the macroscopic strain ε, and a strain fluctuation 

field: 
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( , ) ( , ) ( , ) ( , ) st t t t    ε ε ε ε uy x y x , ( 2 ) 

 

2.1.2.2 The homogenised strain tensor 

The microscopic strain tensor field εμ is defined as the symmetric gradient of the 

microscopic displacement field u  of the Unit Cell: 

s

  ε u  ( 3 ) 

At any instant t, the macroscopic strain tensor ε at an arbitrary point x is defined as the 

volume average of this microscopic strain tensor field, εμ, over  : 

1
( ) ( , )dVt y t

V 





 ε ε , ( 4 ) 

where V is the volume of the Unit Cell. 

 

2.1.2.3 Unit Cell Equilibrium equation 

The equilibrium of the Unit Cell has to be conserved for each instant t of the 

deformation. 

We assume that the Unit Cell is not subjected to body forces or external tractions 

applied on its external boundary  . Then the variational formulation of the Unit Cell 

equilibrium can be written as: 

( , ) : dV 0st


 


  σ y , ( 5 ) 

where ( , )t σ σ y  refers to the microscopic stress. 

2.1.2.4 The homogenised stress tensor 

At every point x of the macro-continuum the macroscopic (or homogenised) stress σ  is 

defined as the volume average of the microscopic stress field σ , over  : 
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1
( , ) ( , )dVt t

V 





 σ σx y , ( 6 ) 

1 1
( , ) ( , )dV ( , )dV

s v
t t t

V V 

 

 
 

  σ σ σx y y , ( 7 ) 

 

2.1.2.5 The homogenised consistent tangent operator 

The consistent tangent operator enables to evaluate the variation of the stress regarding 

the deformation. It is defined as follows:  

kl
ijkl

ij





σ

ε
, ( 8 ) 

( )s 




σ ε u

ε
, ( 9 ) 

Similarly to the homogenised strain tensor and the homogenised stress tensor the 

homogenised consistent tangent operator is defined as the volume average of this 

microscopic consistent tangent operator, 


, over  : 

1
+ . dV

s

sV 

  

 


   
      


σ σ u

ε u ε
 

( 10 ) 

A numerical perturbation method will be used to evaluate the homogenised tensor over 

the micro-cell in the case of the hyper-reduced model. After obtaining the homogenised 

stress tensor 
σ  for a deformation 

ε  we solve again three times the microscopic 

problem introducing three perturbations xε  , 
yε  and 

xyγ to obtain the three stress 

tensors corresponding: *

xσ  , 
*

yσ  and 
*

xyσ . Then the homogenised consistent tangent 

tensor for the micro-cell is built as follows: 

* **

0

0

0

0

y xyx

x y xy

 



 
 

  
    
 
 
 
 

σ σ σ σσ σ

ε ε γ

 

( 11 ) 
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2.1.3 Finite Element Analysis 

The Finite Element formulation developed is based on the Principle of Virtual Work, 

which states that the total virtual work done by all the forces acting on a system in static 

equilibrium in zero for a set of infinitesimal virtual displacements from equilibrium.  

Considering that a body force field b  and an external traction field e
t  act on the solid, 

the principle of virtual work can be written for a 2D problem as follows:   

d d dT T T e  
  

        ε σ u b u t ,     u admissible ( 12 ) 

 

The finite element method will be used to solve the problem at the micro-scale (noted 

“micro-cell problem”). This micro-cell has boundary conditions which ensure its 

periodicity. The input of the micro-scale problem is the stain tensor arising on the 

corresponding Gauss point of the macro-scale mesh. The main output is the fluctuations 

required to keep the micro-cell in equilibrium under this constraint. Thus, in this case, 

the body force field b  and the external traction field e
t  produce null virtual work, i.e. 

they are orthogonal to the space of the virtual displacements fluctuations (after 

considering the Hill-Mandel principle)and the equation ( 12 ) becomes: 

d 0T




   ε σ , ( 13 ) 

Similarly to the equation ( 1 ) the microscopic strain tensor 
ε  is the sum of the 

macroscopic strain tensor acting on the Gauss point and the perturbations of the micro-

cell due to the macroscopic strain tensor: 

( , ) ( , ) ( , )macrot t t  ε ε εy x y , ( 14 ) 

According to the finite element theory a relationship is made between stress, strain and 

displacement: 

ε Bu , ( 15 ) 

σ ε , ( 16 ) 

where B denotes the strain-displacement matrix and 
 
is the consistent tangent operator. 
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Using the relationships ( 15 ) and ( 16 ) the equation ( 13 ) can be rewritten: 

    0
e

T
e T e e

A
dA       u B B u , ( 17 ) 

i.e.                                                     0
T

e e e

    u K u  ( 18 ) 

where the element stiffness matrix is defined as: 

. .
e

e T e

A
dA    K B B . ( 19 ) 

The integrations over the elements of the micro-cell are performed numerically using the 

Gaussian quadrature in the Matlab code developed. 
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2.2 Proper Orthogonal Decomposition (POD) 

The model order reduction process developed is based on the Proper Orthogonal 

Decomposition (POD). These methods aim to find a basis for the modal decomposition 

of an ensemble of data.  

The three main POD algorithms are the Principal Component Analysis (PCA), the 

Karhunen-Loève Decomposition (KLD) and the Singular Value Decomposition (SVD). 

This last one will be used twice in the reduction process to obtain the reduced basis 

vectors from the snapshots matrices. 

Initially developed for real-square matrices, the SVD is nowadays established for 

general non-squares matrices.  

Let 1[ ,..., ]nX x x  be a m x n matrix, with m n  and 
m

j x  , of rank d m . 

Arranging in decreasing order the singular values iσ  of T
X : 1 2 ... 0d        the 

SVD ensures the existence of orthogonal matrices   x... m m

m 1φ φ  and 

  x

1 ... n n

n V v v  such that: 

. . TX ΣV  ( 20 ) 

 

1

1

x

x

... . ( , ... , )

T

n

m m

m m

T

m

m n

with

 
 
 
 

  
 
 
 
  

1

q

X φ φ q q

q

 ( 21 ) 

The columns of   and V are respectively the eigenvectors of the matrices T
XX  and 

T
X X . 

For a given k d  the orthogonal basis vector that best approximates X is 

 1, ... , kφ φ , named the POD basis of rank k.    
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The error of the approximate function using this POD basis is given by: 

2

1 1 1 12

( ) ²
n k d d

T

i j i i i i

j i i k i k

 
     

     x x φ φ
 

( 22 ) 

(Volkwein  [11]). 

Thus, inasmuch as the snapshot matrix of data describes the whole general space, the 

POD method makes it possible to determine an accurate reduced basis. In what follows 

the POD method will be used to determine the displacements modes in the first Model 

Order Reduction (2.3) and the stress modes in the hyper-reduction of the micro-scale 

model (2.4). 

 

2.3 Model order reduction of the micro-scale 

problem 

The idea of the model order reduction is to work in a reduced-space to decrease the size 

of the system and therefore decrease the computational cost of resolution of the micro-

scale problem.  

This reduction technique is composed of two parts. The offline part contains the 

determination of the reduced basis and the computation of the strain-displacement 

matrix. These calculations are isolated because they just need to be performed once in 

the process and do not depend of the macroscopic strain imposed on the micro-cell. 

Then the online part is the resolution of the problem. 

2.3.1 Construction of a reduced displacement basis   

The first step of the model order reduction is to build a reduced displacement basis 

 1 ˆ
, ... , n

u
φ φ  of rank û

n  which will be used like a map between the general 

space and the reduced displacement space. This construction is performed offline. The 

rank 
û

n  of   is chosen to conserve the most important displacement modes.  

The displacement vector u is recovered from the reduced displacement û  using the 

following relationship: 
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1 1ˆ ˆ

ˆ
n x nn x n xdofdof
totaltotal



u u

u u
 ( 23 ) 

To create the snapshot matrix of displacements necessary for the determination of the 

reduced basis, the classical Finite Element code is run imposing a given strain path. The 

choice of this “training” path is a crucial factor in constructing the reduced basis. Indeed 

the snapshot matrix has to be able to capture any strain path during the online process. 

The training path used for the 2D problems studied in this thesis is composed of 

load/unload functions including an inelastic part, in three directions of the strain space

 1 0 0xε ε , 2 0 0y
   ε ε  and 3 0 0 xy

   ε γ . 

This part of construction of the reduced basis is common to the two model order 

reduction processes presented in the paragraphs 2.3.2 and 2.3.3. 

2.3.2 “Phi-K-Phi” model 

This first implemented model order reduction uses the reduced space in the online part 

of the process. The offline computation of the strain-displacement matrix  is carried 

out without using the reduced basis. The name of this model comes from the calculation 

of the stiffness matrix during the online part. 

 Calculation of the strain-displacement matrix 

The strain-displacement matrix  is composed of sub-matrices ( )i  for all integration 

points and assembled as follows: 

(1)

(2)

( )NPG

 
 
 
 
 
  

 
( 24 ) 

Each ( )i  sub-matrix is deduced from the elemental strain-displacement matrix e
B , 

Jacobian matrix 
e

J and volume 
eV  multiplied by the weight factor of the Gauss point 

( )iw . These sub-matrices are composed of as many lines as the number of components 

(in the Voigt notation) of the Cauchy stress tensor tensn  and the number of columns is 

equal to the total number of degrees of freedom. 
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( ) ( )i i e e e

n x ntens dof
total

w V B J
 ( 25 ) 

 

 Online part 

The online part consists in the proper resolution of the micro-scale problem.  

Considering its geometry and its material properties the online part aims to determine 

the behaviour of the micro-cell under the macroscopic strain imposed. 

The first step of the resolution is the computation of the internal force vector using the 

strain-displacement tensor  calculated in the offline part and the stress tensor 

assembled as follows:  

( )(1)

( )(2)

( )

( )

( )( )

where in the Voigt notation.

x

y

z

xy

i

i

i

i

iNPG









  
  
     

 
 

 
     

σ

σ
σ

σ

 
( 26 ) 

Thus the internal force vector int
f  is written: 

int Tf
 

( 27 ) 

The reduced internal force vector is obtained multiplying int
f by the reduced 

displacement basis: 

int int

11 ˆˆ

ˆ T

n x n n xn x dof dof
total total



uu

f Φ f
 ( 28 ) 

This model requires the computation of the full stiffness matrix K  of the micro-cell. 

This matrix is assembled from the element stiffness matrices e
K . 
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e T eK B B

 

( 29 ) 

1

nelem
e

e
K K

 

( 30 ) 

where 
1

nelem

e
 denotes the assembly process and elemn  the number of element in the 

micro-cell. 

The reduced stiffness matrix K̂  is calculated afterward using the reduced displacement 

basis: 

ˆ ˆ

ˆ T

n x nn x n dof dof
total total



u u

K Φ K Φ
 ( 31 ) 

Thus, rewriting the equation ( 18 ), the system of equations to solve becomes: 

   
ˆ ˆ1 1ˆ ˆ

ˆˆ ˆ 0
T

n x n
x n n x



u u
u u

u K u
 ( 32 ) 

The iterative Newton-Raphson algorithm is applied to solve numerically this reduced 

micro-scale problem. At each iteration a displacement increment ˆu  is added to the 

displacement guess to get closer to the exact solution. 

1 1ˆ ˆ ˆk k k   u u u
 

( 33 ) 

where                                           

1
1 ˆˆ .k k k


         

u K res
 

( 34 ) 

and k  res  is the residual for the iteration k.  

This iterative method ensures a quadratic convergence to the solution. 

A drawback of this first model order reduction is that it is necessary to calculate the full 

strain-displacement matrix and the full stiffness matrix. The reduction is only applied 

after performing these costly calculations. 
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2.3.3  “ B̂ ” model 

The name of this second model order reduction process comes from the fact that, 

contrary to the first one, this model uses a reduced strain-displacement matrix. Thus the 

calculation of the stiffness matrix is directly performed in the reduced space and does 

not require calculating the full stiffness matrix. The offline part as well as the online part 

of these two models is different. Nevertheless the offline construction of the reduced 

displacement basis  1
ˆ

, ... , n
u

Φ φ φ  is unchanged. 

 Calculation of the reduced strain-displacement matrix 

The reduced element strain-displacement matrix ˆ e
B  is derived from the element strain-

displacement matrix e
B  using the sub-matrix of the reduced displacement basis Φ

 

corresponding to the degrees of freedom of the element, denoted e
Φ .     

ˆ ˆ

ˆ e e e

n x n n x n n x ne etens tens



u uu u

B B Φ
 

( 35 ) 

where 
û

n  is the rank of Φ  and 
uen  is the number of degrees of freedom of the element.  

 Online part 

The input data of the online part are the same as the first model order reduction, except 

the strain-displacement matrix which is now reduced directly in the offline part. 

Another relevant difference is the assembly process of the internal force vector and the 

stiffness matrix. Indeed the element matrices and the global matrix have now the same 

dimensions and the assembly consists in a sum of the elemental contributions.   

Thus the internal force vector is given by: 

   int int int

1
1 1ˆ

1ˆ

ˆ ˆ ˆ
nn elemelem e e

e
n x e

n x




  
u

u

f f f
 

( 36 ) 

where               

  ( )int

1

ˆ ˆ ˆ . | | .PG

e PG PG PG

PG

PG

e T T
ie e e e e e

i i i
V

i

n

dV w V


    
   f B σ B σ J

 
( 37 ) 
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Similarly the stiffness matrix of the micro-cell is:  

1
1ˆ ˆ ˆ ˆ

ˆ ˆ ˆ
nn elemelem

e e

e
n x n n x ne




  
u u u u

K K K
 

( 38 ) 

where the element stiffness matrices ˆ e
K

 

are deduced from the element reduced strain-

displacement matrices and the element consistent tangent operators by a relationship 

similar to the expression ( 29 ).  

Finally the reduced system to solve is the same than in the previous model: 

   
ˆ ˆ1 1ˆ ˆ

ˆˆ ˆ 0
T

n x n
x n n x



u u
u u

u K u
 ( 39 ) 

In the same way it is solved using the iterative Newton-Raphson method. 

As stated before this second model has the advantage to directly calculate the reduced 

stiffness matrix and so save the cost of the computation of the full matrix and its 

multiplication by the reduction matrix Φ. But as the number of displacement modes nû 

increases the size of the element stiffness matrices also increases and the saving done 

can be lost because the computation of the element matrices becomes more expensive, 

that is why the method “Phi-K-Phi” presented in the paragraph 2.3.2 will be used in the 

complete reduction algorithm instead of the this second model order reduction named    

“ B̂ ”. 

It is important to notice that working in the reduced displacement space implies losing 

the locality of the information. Each component of the reduced displacement vector is no 

longer directly linked to a real degree of freedom, which makes it more difficult to apply 

non-zero boundary conditions. In this thesis only zero boundary conditions have been 

studied for the micro-scale problem. 
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2.4 Hyper-reduction of the micro-scale problem 

Because of the disappointing results of the two model order reduction methods present 

in the paragraph 2.3 other reduction techniques have to be used to decrease the 

computational cost of the multi-scale problem. Thus a hyper-reduction of the micro-

scale problem is performed.   

2.4.1 Construction of reduced displacement and stress bases  

The first step of this new model is to build a reduced displacement basis Φu and a 

reduced stress basis Φσ.  

Similarly to the two precedent models the classical Finite Element algorithm is run for a 

given path strain to generate the snapshot matrix of displacement Xu.  

Then the “Phi-K-Phi” model order reduction is applied for a path strain and a chosen 

dimension nû of truncated displacement basis in order to generate the stress snapshot 

matrix Xσ. A perturbation force is introduced to capture a trajectory of the stress ( )σ ε  

close to the equilibrium but not exactly on it to try to avoid singularity, later on, in the 

online part which used this matrix Xσ.  

The problem to solve becomes: 

T d


   B σ f 0
 

( 40 ) 

The perturbation force is controlled by the parameter . For each snapshot i the force 

vector is computed as follows:  

( ) ( ) E. (1 ) ( )
T

u u

Text T

i u u i

i

dV dV 
 

  

       
I

II I II I I

B Φ X

f ε B σ ε B B Φ Φ u ε
 ( 41 ) 

where the indication “I” refers to the classical FE model without model order reduction 

and “II” corresponds to the reduced model “Phi-K-Phi”. This construction of the 

perturbation force implies the use of the same number of snapshot for the generation of 

the stress snapshot matrix as used for the generation of the displacement snapshot matrix 
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The displacement and stress bases are obtained from the snapshot matrices Xu and Xσ 

using the Proper Orthogonal Decomposition presented in the paragraph 2.2. The choice 

of the dimensions ˆn
u

 and nσ  of the truncated bases is important to avoid future 

singularity in the resolution of the problem. Some relationships to respect between these 

dimensions are determined in the paragraph 2.4.4. 

2.4.2 Strategies of selection of stress tensor components  

The hyper-reduction strategy is based on the Gappy Data Reconstruction which makes it 

possible to obtain the result of the complete stress tensor from the computation results of 

a set of selected elements of the microscopic mesh. Two different strategies have been 

developed to select the stress tensor components which enable to reconstruct accurately 

the full stress tensor. This selection is done offline. 

2.4.2.1 Greedy Algorithm adapted to Gappy Data Reconstruction 

The first one is based on the Greedy algorithm. The principle is to make, at each 

iteration, the locally optimal choice with the aim to approach the global optimum. 

The idea of use this iterative procedure has been proposed by K.Carlberg, C.Bou-

Mosleh & C. Farhat [4]. They applied it in order to select the appropriate components to 

reduce the residual and the Jacobian matrix. Thus the procedure implemented in our case 

is quite different, even though it is based on the same concept. 

The criterion of selection of the elements is the minimization of the error in the 

projection in the stress space reconstructed using the reduced stress basis. For each 

iteration i the component of maximum value is looked for in the difference vector 

between the stress mode ( )i

σφ  and its projection ( )i

σφ

 

in the space formed by the 

projections of the modes  (1) ( 1)ˆ ˆ,..., i

σ σφ φ .    

It is important to notice that, contrary to the case of reduction of the residual and 

Jacobian matrix studied by Carlberg, as soon as one stress component of one Gauss 

point of an element has been selected by this Greedy algorithm all the components of 
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this element have to be added to the sample stress components list. This requirement is 

imposed by the Gappy Data Reconstruction implementation. 

2.4.2.2 POD Reconstruction-based algorithm  

The second selection algorithm is based on the POD reconstruction error minimisation. 

The Proper Orthogonal Decomposition provides three matrices , andΦ Σ V  which 

enables to approximate the snapshot matrix. 

(1)

1
( )PG

T

k k k

k
n x ntens

n




 
 

  
 
 


σ

σ

σ

σ

X

X φ V

X

 

( 42 ) 

As the dimension nσ  of the reduced stress basis becomes closer to the rank d of the 

stress snapshot matrix σX  this approximation σX  tends to be exact.  

For each component i of the stress tensor the error i
e  is computed: 

i i i σ σe X X

 

( 43 ) 

where andi i

σ σX X  correspond respectively to the i
th

 lines of the exact and approximated 

stress snapshot matrices. 

This algorithm looks for the σ*n  indices of stress components which provide the 

smallest error. They correspond to the best reconstructed lines of the stress snapshot 

matrix by the Proper Order Decomposition.  

The Figure 2.3 presents the evolution of the POD reconstruction error for various 

dimension σn  of truncated stress space. The abscissas of the graphics are the number of 

the Gauss points. They have been renumbered from the Gauss point which deals with 

the smallest POD reconstruction error to the Gauss point encountering the higher error. 

When the number σn
 
of stress modes used in the approximation of σX  is small the 

gradient of the distribution of the error is higher than for high σn . That means that this 

criterion is more selective when few stress modes are chosen. 
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Figure 2.3 : Variation of the POD reconstruction error distribution according to σn  

As for the Greedy algorithm when one Gauss point is selected by this algorithm all 

components of all Gauss points of the element are selected in the sample list of stress 

components used in the Gappy Data Reconstruction. 

  

POD reconstruction error  

POD reconstruction error  
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2.4.3 Gappy Data Reconstruction 

The hyper-reduction is based on the Gappy Data Reconstruction method. It is a 

technique, mathematically equivalent to a least-squares regression in one discrete 

variable, to reconstruct an incomplete set of data using some experimental and 

additional computational known data. Within the framework of the model order 

reduction it aims to approximate the results of all elements from the computational 

results of some selected elements and a reduced basis.  

A judicious selection of σ*n  components of the stress vector 
( )(1) (2) PG

T
n   σ σ σ  

is performed using one of the two algorithms presented in the paragraph 2.4.2. Thus the 

stress tensor can be split into two sub-vectors: 
σ** 1n x

  which corresponds to the 

selected components and 
σ*(( ) ) 1tens PGn xn n x

  which will be deduced from 
*
. The 

reduced stress basis 
( )tens PGn x n x n

 σ

σΦ  is decomposed similarly into *
*

n x n
 σσ

σΦ  and 

*(( ) )tens PGn xn n xn
 σσ

σΦ .  


*

 
 

 
 
 

σ

σΦ

Φ

*

 
 
 
 
 σ
Φ

 
( 44 ) 

 

The numerical integration of the constitutive equation is only performed at the Gauss 

Point corresponding to the selected elements and provides the part 
σ** 1n x

  of the 

stress tensor. The complementary part  is deduced as follows: 


*

 
 

 
 
 

σΦ

*

ˆ

R
denoted

 
 

 
 
 σ

σ

Φ
*

R

 
 
 
 
 

 
( 45 ) 

* *

*
ˆthus R 

σ
Φ σ

 

( 46 ) 

*

* * *
ˆ( )T T

R σ σ σΦ Φ Φ σ

 

( 47 ) 
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1 *

* * *
ˆ ( )T T

R

 σ σ σσ Φ Φ Φ

 

( 48 ) 

( ) 1

R

tens PG

R

n x n x


*

R

 
 

 
 
 

σΦ
1

* * *

1 *

* * *

1
*

( )

( )

( )

tens PG

T T

T T

R

n x

n x n x n





 
 


 
   σ

σ

σ σ σ σ

σ σ σ

σ

Φ Φ Φ Φ

Φ Φ Φ

Φ *

*

*

* 1

* * *
1

( )

( )

tens PG

R

T T n x

n x n x n



 
 
 
 
 

σ

σ

σ σ σΦ Φ Φ Φ

 

( 49 ) 

which can be rewritten:  

σ*σ*

*

σ

1( )( ) 1

R

tens PGtens PG

R

n xn x n x nn x n x



 

( 50 ) 

1

* * *( )

where

T T

σ

σ σ σ σΦ Φ Φ Φ

*

1

( )

* * * *( )

tens PG

T T

n x n x n



 
 

 
 
 

σ

σ σ σ σΦ Φ Φ Φ

 

( 51 ) 

The Gappy Data Reconstruction makes it possible to reconstruct exactly the part R

 

of 

the stress vector from the computed part *

R
 as long as the complete rank of the matrix 

σ  is ensured. It becomes an approximation as soon as the number of integration point 

is reduced. 

2.4.4 Resolution of the hyper-reduced problem 
 

 Calculation of the strain-displacement matrix 

The reduced strain-displacement matrix B̂  is obtained from the B matrix (which is 

calculated from the geometry of the elements) and the reduced displacement basis uΦ  

similarly to the equation ( 35 ):   

ˆ
ˆ

( ) ( )

ˆ

tens tensPG PG dof
doftotal
total

n x n x n n x n x n n x n



u
u

uB B Φ
 ( 52 ) 

As explained before the Gappy Data Reconstruction enables to reduce the analysis to a 

selection of stress components using the hyper-reduction matrix σ . Thus the hyper-

reduced strain-displacement matrix 
*

B̂  is given by: 
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* ˆ ˆ
*

*

( )( )

ˆ ˆ

tens PG
tens PG

T

n x n n x n x nn x n x n


σ u u

σ

σB B
 

( 53 ) 

In the online part of the hyper-reduction process the matrix 
*

B  will denote the matrix 

composed of the sub-matrices of the reduced matrix B̂  corresponding to the selected 

components of the stress tensor. 

*

* * ˆ

(1)

(2)

( )

ˆ

ˆ

ˆ n

n xn

 
 
 

  
 
 
 

σ

σ u

B

B
B

B

 
( 54 ) 

 Online part 

The input data of the online part are the geometrical and material properties, the strain-

displacement matrices 
*

B̂ and
*

B , the hyper-reduction matrix σ  , the reduced bases and 

the list of selected stress components and the macroscopic strain imposed to the micro-

cell macroε . 

The computation of the reduced internal force vector int
f̂  is performed similarly to the 

equation ( 37 ):    

  ( )int

1

ˆ ˆ ˆ | |
e

PG

PG

PG PG PG

PG

n
e T T

ie e e e e e

i i i
V

i

dV w V


        
   f B σ B σ J

 
( 55 ) 

ˆ
*

ˆ *

int * * *

1 1

ˆ ˆ ˆ ˆ
T

T T

n x n xn x n

   
 

u
σ

σu

σf B B B
 

( 56 ) 

The stress * is linked to the reduced displacement û  by the reduced consistent tangent 

operator * . 

* * * ˆ ˆ
*

* * *

11

ˆ
n x n n x n n xn x


σ σ σ u u

σ

B u
 

( 57 ) 

This reduced consistent tangent operator * is composed, on the diagonal, of the sub-

matrices of the full consistent tangent operator corresponding to the selected stress 

components. 
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*

(1)

(2)

(3)* * *

( )

(0)

(0)

n

n xn

 
 
 
  
 
 
 
 

σ

σ σ

C

C

C

C

 
( 58 ) 

 

Thus the expression ( 56 ) becomes:   

int * * * *ˆ ˆ ˆˆ ˆ
T

  
 

f B B u K u
 

( 59 ) 

where the stiffness matrix *
K̂ is given by:  

ˆ ˆ ˆ

ˆ

* * *
*

* * * *ˆ ˆ
T

n x n n x n n x n
n x n

 
 

u u u

u

σ σ σ
σ

K B B
 

( 60 ) 

The hyper-reduction problem is now posed. As in the first reduced models it is 

numerically solved using the iterative Newton-Raphson algorithm.  

For each iteration k the new reduced displacement guess is computed adding an 

increment 1ûk to the previous guess ˆ k
u . 

1 1ˆ ˆ ˆk k k   u u u
 

( 61 ) 

where                                           
ˆ

ˆˆ ˆ

1
1 *

1
1

ˆ ˆˆ .k k k

n x
n xn xn


         

u
uu u

u K res
 ( 62 ) 

and                                           

int

ˆ ˆ
ˆ

1 1
1

ˆ ˆˆ k ext

n x n x
n x

    
u u

u

res f f
 ( 63 ) 

The accuracy of this hyper-reduced model is determined by the “quality” of the snapshot 

matrices, the choice of the dimensions of the truncated bases 
û

n  and σn , the number 

σ*n  of selected stress components for the Gappy Data Reconstruction and the selection 

strategy of these components. 
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 Relationship between 
û

n  , σn  and σ*n  

To avoid singularities it is important to respect some relationships between the 

dimensions 
û

n  , σn  and σ*n . 

Firstly, the equation 

ˆ ˆ1 1

ˆˆ ˆ 0
n xnn x n x

 
σσ u u

ε B u  must only have the trivial solution ˆ 0u  . 

Thus to avoid the reduced strain-displacement matrix B̂  to be singular the dimension of 

the truncated displacement basis has to be inferior to the one of the truncated stress 

basis. 

σû
n n

 
( 64 ) 

Furthermore the hyper-reduced stress vector *
σ  is computed from the reduced stress 

vector by the relationship: 

* *

** 1 1

ˆ
n xnn x n x


σ σσσ

σ Φ σ
 

( 65 ) 

Thus the matrix *
Φ also has to be no singular which implies that the number of selected 

stress component has to be greater than the dimension of the truncated stress basis. 

σ*σn n
 

( 66 ) 

Finally, these three parameters have to respect the following relationship: 

σˆ σ*u
n n n 

 
( 67 ) 

The numerical examples presented in the chapter 3 developed the effect of these 

dimensions on the convergence and the accuracy of the computational solution. 
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2.4.5 Synthesis of the hyper-reduction of the micro-scale 

problem 

The hyper-reduction process can be split into two distinct parts: the offline part which 

contains the preparation steps of the micro-scale problem and the online part which is 

run for the resolution of the multi-scale problem to determine the constitutive equation 

of each Gauss point of the macroscopic mesh. 

 Offline part 

 

 
Figure 2.4 : Diagram of the offline process of the hyper-reduction 

  

*
B̂
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 Online part 

 

 

Figure 2.5 : Diagram of the online process of the hyper-reduction 

 

 

 

 

  

*
B̂
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Chapter 3: 

Numerical Examples 

The Chapter 3 presents the results of the reduction and hyper-reduction models 

implemented. It is split into 2 parts. The first one provides an analysis on the micro-scale 

problem. In the second one, 2 complete multi-scale problems are studied. The model 

named High Fidelity (HF) refers to the classical Finite Element approach without using 

model order reduction techniques. 

3.1 Analysis on the micro-scale problem 
 

3.1.1 Efficiency of the model order reduction techniques on the 

micro-cell 

The example treated in this paragraph is the case of a clamped square Representative 

Volume Element with a hole at the centre. Three meshes are used with various degrees 

of discretization around the hole. They are presented in the Figure 3.1. 

 

 

  
Figure 3.1 : Meshes used to analyze the efficiency of the model order reduction  

1363 elements 1796 elements 13349 elements 
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 Plasticity model 

The first model implemented is a plane J2 plasticity model with isotropic hardening. The 

values of the material parameters are: 

 Young Modulus  : E = 2.1 GPa  

 Poisson ratio :  ν = 0.3 

 Initial yield stress :  σy = 1000 MPa 

 Kinematic hardening parameter :  H = 0.0   

The generation of the displacement snapshot matrix uses a training strain path in the 

direction εx, εy and γxy and contains an elastic part and a plastic part.  

The Figure 3.2, Figure 3.3 and Figure 3.4  present the evolution of the homogenized 

stress-strain graphic according to the model order reduction technique and the number of 

displacement snapshots used. 

 
Figure 3.2 : Stress-strain graphic in direction X for J2 plasticity model 
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Figure 3.3 : Stress-strain graphic in direction Y for J2 plasticity model 
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Figure 3.4 : Stress-strain graphic in direction XY for J2 plasticity model 

 

In all directions the reduced models “Phi-K-Phi” and “ B̂ ” provide exactly the same 

results. Thus the calculation or not of the full stiffness matrix before working with the 

reduced stiffness matrix, which is the main difference between these two models, does 

not change the final results. 

Furthermore it seems that the number of displacement snapshots used during the training 

phase does not affect significantly the accuracy. Thus fifteen displacement snapshots 

(i.e. six in each direction) are sufficient to approach the exact solution. 

Besides it appears that the stresses in the direction X and Y are well captured by these 

reduced models while the difference between the classical Finite Element model (HF) 

and the reduced models is more important in the direction XY than in the two other 

directions, especially in the plastic part of the path. Even increasing the number of 

displacement snapshots in this particular direction does not make it possible to increase 

the accuracy. Nevertheless these accuracy results are globally satisfactory. 

The Table 3.1 presents the speed up results obtained with the two reduced models 

implemented. The “ B̂ ” model enables to reach a slightly higher speed up than the “Phi-

K-Phi” model. However these two methods do not make it possible to achieve a speed 

up higher than 1.37 whatever the degree of discretization of the mesh.   
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# elements 
# displacement 

snapshots 

# displacement 

modes used 
û

n  
“Phi-K-Phi” 

Speed Up 
" B̂ " model 

Speed Up 

1 363 15 12 1.10 1.18 

1 796 15 13 1.16 1.30 

13 349 15 13 1.24 1.37 

Table 3.1: Speed up results for the J2 plasticity model 

In what follows the analysis uses a damage model. 

 

 Damage model 

A damage model with a pseudo-hardening behaviour is analyzed and uses the following 

material parameters: 

 Young Modulus  : E = 2.1 GPa  

 Poisson ratio :  ν = 0.3 

 Initial yield stress :  σy = 1000 MPa 

The results for three values of the pseudo-hardening parameter are analyzed: H=0.5, 

H=0.333 and H=0.05.   

The Figure 3.5, Figure 3.6 and Figure 3.7 present the homogenized stress-strain graphics 

in the three directions respectively for H=0.5, H=0.333 and H=0.05 in the case of the 

1363-element mesh. As noted before the “Phi-K-Phi” reduced model and the “ B̂ ” 

reduced model give exactly the same results. Thus only the results of the “ B̂ ” model are 

presented in these figures. 

  

Loading 

Unloading 
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Figure 3.5 : Stress-strain graphics for damage model with H=0.5  

For a high value of the pseudo-hardening parameter H, the Figure 3.5 shows that the 

reduced models provide an approximation nearly exact. 

Decreasing this value until 0.333 small errors start appearing as shown in the Figure 3.6. 

The speed up achieved, presented in the Table 3.2, is similar to the one obtain with the 

plasticity model, around 1.20. 
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Figure 3.6 : Stress-strain graphics for damage model with H=0.333  

 

# elements 
# displacement 

snapshots 

# displacement 

modes used 
û

n  
“Phi-K-Phi” 

Speed Up 
" B̂ " model 

Speed Up 

1 363 15 10 1.16 1.27 

1 796 15 10 1.17 1.29 

Table 3.2: Speed up results for damage model with H=0.333 

 

In the case of H=0.05 the reduced models have more difficulties to approximate the 

damage part of the curve while the elastic part and the unload part are exactly estimated. 

The error is particularly more important in the direction XY as shown in the Figure 3.7.  

Regarding the speed up results presented in the Table 3.3 they are higher than for higher 

values of the pseudo-hardening parameter H, but stays relatively low.  
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Figure 3.7 : Stress-strain graphics for damage model with H=0.05  
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# elements 
# displacement 

snapshots 

# displacement 

modes used 
û

n  
“Phi-K-Phi” 

Speed Up 
" B̂ " model 

Speed Up 

1 363 15 10 1.28 1.47 

1 796 15 10 1.33 1.49 

Table 3.3: Speed up results for damage model with H=0.05 

The speed up achieved with the “Phi-K-Phi” reduced model as well as the “ B̂ ” reduced 

model are disappointing that is why a hyper-reduction of the micro-scale problem is then 

tested. 

 

3.1.2 Efficiency of the hyper-reduction procedure on the micro-

cell 

A damage model similar to the one analyzed in the previous paragraph is used with a 

kinematic hardening parameter H equal to 0.1. 

 

 One-hole square example 

The first part of this paragraph uses the case of the same clamped square micro-cell with 

a hole at the centre. The mesh is slightly coarser; it is now composed of 1024 elements. 

 

Figure 3.8 : Mesh of the one-hole square used to test the hyper-reduction method 

Regarding the displacement and stress snapshot matrices, each one contains 18 

snapshots. Thus the maximum number of displacement or stress modes available is 18.  

 Interest of the perturbation force in the generation of the stress 

snapshot matrix 

1024 elements 
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As explains in the paragraph 2.4.1 the generation of the stress snapshot matrix uses a 

perturbation force which depends on the parameter η. The Table 3.4 shows the interest of 

this perturbation. Indeed when the parameter η is not null the cases of divergence of the 

Newton-Raphson algorithm are less frequent than in absence of perturbation. Moreover 

increasing the number σn of stress modes the convergence is only lost when the 

equation ( 66 ) is not respect, i.e. when σn  becomes higher than the number of stress 

components selected verified σ* * *x 3tenselem elemn n n n  . When 0  the speed up is 

lightly inferior but the method seems more stable as the number of stress modes 

increases.   

It can be notice that the speed up achieved using the hyper-reduction technique is around 

200 which is considerably higher than the ones obtained before which were around 1.2. 

 

# displacement 

modes used  

û
n  

# stress 

modes used

σn  

# elements 

selected

*elemn  
η 

Speed 

Up 

Displacement  

Error 

Stress 

Error 

5 7 5 0 292.6 13,91% 12,67% 

5 8 5 0 307.2 44,64% 27,62% 

5 9 5 0 Not converged 

5 10 5 0 287.6 0,50% 1,02% 

5 11 5 0 Not converged 

5 12 5 0 275.9 0,63% 3,21% 

5 13 5 0 266.8 1,96% 13,54% 

5 14 5 0 Not converged 

5 15 5 0 Not converged 

5 7 5 100 Not converged 

5 8 5 100 
 

88,1% 118,8% 

5 9 5 100 176.7 4,94% 11,32% 

5 10 5 100 208.0 0,08% 3,11% 

5 11 5 100 206.1 0,08% 3,11% 

5 12 5 100 223.4 0,08% 3,05% 

5 13 5 100 211.8 0,09% 3,10% 

5 14 5 100 198.3 0,09% 3,13% 

5 15 5 100 203.9 0,09% 3,13% 

Table 3.4: Analysis of the effect of the perturbation force in the stress 

snapshot matrix generation on the hyper-reduction results 
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The displacement and stress errors presented in the Table 3.4 and in all that follows are 

calculated from the results of the High Fidelity models HF
u  and HF

σ : 

2

2

dV

dV

HF

Displacement Error 









u u

u
 ( 68 ) 

 

2

2

dV

dV

HF

Stress Error 









σ σ

σ
 

( 69 ) 

 

 Stress component selection strategies 

In the previous tests the stress component selection for the Gappy Data Reconstruction 

has been performed using the Greedy algorithm. But as presented in the paragraph 2.4.2 

a POD reconstruction-based algorithm can also been implemented. 

The Table 3.5 presents the accuracy results of these two methods obtained for various 

numbers of stress modes and selected elements. The displacement error computed is 

generally inferior when the POD reconstruction-based algorithm is used but on the other 

hand the stress error is slightly higher.  

Regarding the occurrence of divergence cases as the number of elements selected 

increases there is no clear tendency. Indeed for 6σn   or 10σn   the convergence is not 

lost by increasing elem*n  in the POD reconstruction-based case contrary to the results of 

the Greedy algorithm. But for 9σn   divergence cases appear for 5, 6 or 8elem*n   while 

accurate results have been obtained with 4 elements. 

Thus no one of these two stress components selection strategies can totally ensure the 

convergence of the Newton-Raphson algorithm. Nevertheless the Greedy algorithm will 

be used in what follows. 
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û
n  σn  elem*n  

Greedy algorithm 
POD reconstruction-based 

algorithm 

Displacement 

error 

Stress  

error 

Displacement 

error 

Stress  

error 

4 6 5 7.81% 2.77% Not converged 

4 6 6 7.17% 2.22% Not converged 

4 6 7 35.72% 8.31% 0.33% 6.66% 

4 6 10 13.08% 2.25% 0.33% 6.68% 

4 6 11 Not converged 1.28% 2.57% 

4 6 12 Not converged 0.77% 2.74% 

4 6 13 14.60% 4.28% 0.94% 2.72% 

4 6 17 8.33% 4.17% 0.35% 3.66% 

4 7 5 7.19% 6.33% Not converged 

4 7 6 45.57% 9.27% 0.20% 7.81% 

4 7 7 4.51% 2.30% 0.21% 7.78% 

4 7 8 6.64% 2.68% 0.21% 7.76% 

4 7 10 6.50% 2.95% 0.23% 6.20% 

4 7 11 4.63% 3.30% 0.18% 6.28% 

4 7 13 4.39% 2.77% 0.19% 6.23% 

4 7 15 3.56% 2.78% 0.19% 6.13% 

4 7 17 4.34% 2.49% 0.20% 7.35% 

4 9 4 0.12% 1.39% 0.60% 2.09% 

4 9 5 0.19% 0.74% Not converged 

4 9 6 0.23% 0.70% Not converged 

4 9 7 0.32% 0.72% 161.74% 42.15% 

4 9 8 0.21% 0.73% Not converged 

4 9 10 0.16% 0.76% 0.14% 0.92% 

4 9 11 0.13% 0.75% 0.20% 1.05% 

4 9 12 Not converged 0.08% 0.95% 

4 9 15 Not converged 0.17% 0.90% 

4 9 17 Not converged Not converged 

4 10 4 0.14% 1.53% Not converged 

4 10 5 Not converged 0.33% 2.63% 

4 10 6 Not converged 0.06% 1.13% 

4 10 8 Not converged 0.07% 1.15% 

4 10 9 0.25% 0.84% 0.07% 1.14% 

4 10 10 0.26% 0.85% 0.07% 1.13% 

4 10 17 0.11% 0.80% 0.06% 1.24% 

Table 3.5: Comparison of the accuracy results of the Greedy algorithm 

and the POD reconstruction-based algorithm 
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 Asymmetric two-hole square example 

The second part of this paragraph studies the case of a clamped asymmetric two-hole 

square micro-cell. The mesh contains 1639 elements and is presented in the Figure 3.9. 

 
Figure 3.9 : Mesh of the asymmetric two-hole square used to test the 

hyper-reduction method 

42 displacement and stress snapshots are generated in the offline part of the process. 

The Table 3.6 presents the speed up and accuracy results of the hyper-reduction method 

for two different values of the parameter η and various dimensions σn of the reduced 

stress basis.  

û
n  σn  elem*n  η Speed Up 

Displacement 

Error 

Stress 

Error 

4 5 4 1000 456.9 0.79% 10.72% 

4 6 4 1000 466.7 0.39% 9.66% 

4 7 4 1000 437.0 1.89% 21.00% 

4 8 4 1000 Not converged 

4 9 4 1000 Not converged 

4 10 4 1000 Not converged 

4 11 4 1000 Not converged 

4 12 4 1000 322.2 1.12% 33.39% 

4 5 4 50 460.6 0.90% 7.90% 

4 6 4 50 437.2 0.44% 6.18% 

4 7 4 50 462.3 0.21% 5.97% 

4 8 4 50 440.2 0.38% 7.12% 

4 9 4 50 396.8 0.92% 26.04% 

4 10 4 50 419.1 0.58% 10.64% 

4 11 4 50 447.8 0.76% 6.87% 

4 12 4 50 380.2 0.59% 7.04% 

Table 3.6: Analysis of the hyper-reduction results on the asymmetric 

two-hole square problem 

1639 elements 
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For η = 1000 divergence cases are more frequent than for a smaller value of this 

parameter. Moreover the errors computed are lower and the speed up slightly higher for 

η = 50. Thus it seems that as η decreases the solution of the hyper-reduction process is 

more stable and closer to the classical Finite Element solution. Nevertheless when the 

value of the parameter η becomes too small (η < 50 for this problem and η < 30 for the 

one-hole problem) a lot of divergence cases appear.  

Thus the value of η has to be chosen as small as possible to generate a stress snapshot 

matrix close enough to the equilibrium curve but not exactly on it to avoid singularity.     

Regarding the relationship between the dimensions 
û

n  , σn  and σ*n , in addition to the 

respect of the equation ( 67 ), it has been observed in the two problems studied in this 

hyper-reduction paragraph that a good compromise between stability, accuracy and 

speed up is generally obtained for σ û elem*n n n   and 
ûelem*n n  where *elemn is 

defined as σ* σ*
* 3tens

elem

n n
n

n
  . Moreover a judicious value for the dimension 

û
n of the 

reduced displacement basis seems to be half of the rank of the displacement snapshot 

matrix. These relationships are experimental observations and have not been justified 

analytically. 

  

3.2 Examples of multi-scale problems 

The hyper-reduction process of the micro-scale problem is now introduced in the 

resolution of a global multi-scale problem. In what follows the micro-structure 

considered is a one-hole square micro-cell presented in the Figure 3.8.   

During the training of the micro-cell 18 displacement and stress snapshots have been 

generated, using a perturbation parameter η equal to 30 in the stress training. As long as 

the number of elements elem*n  used for the Gappy Data Reconstruction is inferior to this 

number of snapshots the stress components selection can be performed by the Greedy 

algorithm. But it is not possible to select more elements with this algorithm because the 

addition of one element is based on the reconstruction of one mode as detailed in the 
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paragraph 2.4.2. Thus only the selections of less than 18 elements are performed by the 

Greedy algorithm in what follows. 

3.2.1 Simple square 

The first multi-scale problem analyzed is the case of a simple square split into 2 

triangular elements. The geometry and the macroscopic boundary conditions are 

presented in the Figure 3.10. 

 
Figure 3.10 : Mesh of the simple square multi-scale example 

 

The Table 3.7 presents the speed up and accuracy results for the resolution of this multi-

scale problem for various combinations of hyper-reduction parameters. As the number 

of elements used during the hyper-reduction increases the speed up decreases. 

Nevertheless a good accuracy can be achieved with a speed up of almost 100. While the 

displacement error varies between 23% and 5% the evaluation of the stress tensor is 

almost exact. 

û
n  σn  elem*n  

Speed 

up 
Displacement Error 

Stress 

Error 

4 8 4 111.2 23.56% 10.9e-9 % 

4 8 5 88.7 18.24% 5.9e-9 % 

4 8 6 91.9 15.84% 1.1e-9 % 

4 8 8 83.5 8.00% 1.0e-9 % 

4 8 10 75.5 9.07% 7.8e-9 % 

4 8 15 49.2 12.83% 3.7e-9 % 

4 10 25 53.2 8.04% 1.1e-8 % 

4 10 50 28.1 6.31% 6.6e-9 % 

4 10 100 15.9 5.53% 1.4e-9 % 

4 10 200 7.8 5.22% 1.3e-9 % 

4 10 500 3.4 5.12% 1.9e-9 % 

Table 3.7: Results of the multi-scale problem of the simple square 
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Figure 3.11 : Load-displacement graphics for the resolution of the 

simple square multi-scale example using 4 to 15 elements 

 

Figure 3.12 : Load-displacement graphics for the resolution of the 

simple square multi-scale example using 4 to 15 elements - Zoom 
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Figure 3.13 : Load-displacement graphics for the resolution of the 

simple square multi-scale example using 25 to 500 elements 

 

Figure 3.14 : Load-displacement graphics for the resolution of the 

simple square multi-scale example using 25 to 500 elements – Zoom 
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The Figure 3.11 and Figure 3.12 enable to compare the macroscopic load-displacement 

graphics obtained using 4, 6, 10 and 15 elements in the hyper-reduction process of the 

micro-scale problem. The results for 25 to 500 elements used in the Gappy Data 

Reconstruction are presented in the Figure 3.13 and Figure 3.14. The notation HF refers 

to the classical Finite Element model and ROM to the multi-scale algorithm using the 

hyper-reduction procedure to solve the micro-scale problem. 

This procedure seems consistent; indeed as the number of elements used tends to the 

total number of element of the micro-cell the results tend to the exact response. But the 

utilization of 4 elements already ensures accurate results with an efficient decrease of 

the computational cost. 

This resolution of this simple multi-scale problem enables us to verify the performance 

of the algorithm before dealing with a more complicated mesh in the next paragraph. 

 

3.2.2 Beam bending 

The problem studied in this paragraph is the case of a beam of 192 elements submitted 

to a force F as shown in the Figure 3.15.  

 

Figure 3.15 : Mesh of the 192-element beam multi-scale example 

 

The final deformation of the beam is presented in the Figure 3.16. 
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Figure 3.16 : Deformation of the 192-element beam multi-scale 

example 

Similarly to the precedent example various values of the hyper-reduction parameter 

elem*n  are tested. The speed up and accuracy results are presented in the Table 3.8 and 

the macroscopic load-displacement graphics in the Figure 3.17 and Figure 3.18. The 

Figure 3.19 and Figure 3.20 compare the evolution of the stress versus the load applied 

for the various values of elem*n . 

The no convergence of the case of σ *û
4, 10 and 3elemn n n  

 
can be explained by 

the no respect of the relationship ( 66 ). Indeed the number of stress components used in 

here equal to σ* * x 3 9elemn n   which is smaller than the number σn of stress modes 

used.  

It can be notice that the load-displacement curves are really close to the exact one for 

whatever values of elem*n . The estimation of the error agrees with that. Indeed the 

displacement error varies between 3.11% and 5.89% for the hyper-reduction parameters 

studied. Contrary to the previous example there is no clear increase of the accuracy as 

the number of elements increases. It seems that using only 5 elements of the 1024-

element mesh in the hyper-reduction algorithm to solve the micro-scale problem is 

enough to obtain accurate results; the error made in this case is only 3.5% in 

displacement and 2.37% in stress. Moreover a speed up of 84 can be achieved with such 

hyper-reduction parameters. 
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û
n  σn  elem*n  Speed up 

Displacement 

Error 
Stress Error 

4 10 3 Not converged 

4 10 4 91.0 4.10% 7.78% 

4 10 5 84.5 3.50% 2.37% 

4 10 6 80.3 3.39% 1.78% 

4 10 7 77.7 3.11% 3.15% 

4 10 10 61.5 4.52% 2.88% 

4 10 20 43.9 3.48% 1.51% 

4 10 50 24.1 5.89% 2.25% 

4 10 100 13.1 5.28% 0.60% 

4 10 200 7.0 5.22% 0.47% 

4 10 500 2.9 4.86% 0.19% 

Table 3.8: Results of the multi-scale problem of the 192-element beam 

This second problem composed of 192 elements in the macroscopic mesh enables to 

point out the efficiency of the whole multi-scale algorithm elaborated during this thesis. 

Indeed without losing accuracy the computational time of the resolution has been 

reduced from more than 10 hours using the classical Finite Element model to less than 8 

minutes.  
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Figure 3.17 : Load-displacement graphics for the resolution of the 

192-element beam multi-scale example 

 

Figure 3.18 : Load-displacement graphics for the resolution of the 

192-element beam multi-scale example – Zoom  
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Figure 3.19 : Stress-Load graphics for the resolution of the 192-

element beam multi-scale example 

 

Figure 3.20 : Stress-Load graphics for the resolution of the 192-

element beam multi-scale example – Zoom  
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Conclusion  

This Master thesis is dedicated to reduce the computational cost of the multi-scale 

problems. It proposes to apply model order reduction techniques on the micro-scale 

problem in the homogenisation process.  

The hyper-reduction algorithm developed combines a model order reduction based on a 

POD-reduced displacement basis with a Gappy Data Reconstruction of the stress tensor. 

While a single reduction of the displacement space provides a speed up around 1.2 on 

the resolution of the micro-scale problem the whole hyper-reduction process achieves 

acceleration around 200 for a 1000-element microscopic mesh and until 400 for a 1600-

element mesh without losing accuracy.  

Introducing this hyper-reduction of the micro-scale problem in the resolution of a 

complete multi-scale problem the computational time can be divided by 80 with 

displacement and stress errors smaller than 10%. The efficiency of this algorithm is 

mainly due to the Gappy Data Reconstruction technique which enables to reduce the 

resolution of a 1000-element microscopic mesh to a judiciously selected set of 10 

elements.  

To go further with this model order reduction method others strategies of stress 

components selection should be studied to guarantee the stability of the resolution. In 

order to make it possible to solve macroscopic problems with non-zero boundary 
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conditions another research field would be to investigate how to apply such conditions 

to the microstructure. 
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