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Héctor G. Espinoza Román

CIMNE

Universitat Politècnica de Catalunya
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Abstract

In this work a novel edge-based finite element implementation applied to

specific equations is presented. It contains a full description on how we ob-

tained it for the diffusion equation, stabilized convection-diffusion equation

and stabilized Navier-Stokes equations. Additionally, classical benchmark

problems are solved to show the capabilities of the new implementation.

As the differential equations we are interested in represent conservation

statements, it would be desirable that the finite element approximation was

exactly conservative (at least globally) independently of the mesh used. The

present work revolves around that main objective.

The initial available edge-based approximation is not totally conservative.

Of course it becomes more and more conservative as the mesh is refined. It

has good h-convergence features and produces ’good solutions’ (in the sense

that the method does not introduces spurious oscillations and is numerically

stable).

On the other hand, the edge-based approximation proposed is exactly glob-

ally conservative. Additionally it has good h-convergence features and pro-

duces ’good solutions’.
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Chapter 1

Introduction

In this chapter we are going to cover, in a very simplified way, a variety of topics needed

to have a general idea to understand the edge-based finite element approximations

proposed.

1.1 Motivation

As stated in [2] the lack of conservation of the edge-based implementation led us to

implement ad-hoc approximations in order to alleviate this issue.

Some approximations are consistent but not conservative and work very well. Some

others are conservative but not consistent and do not work at all. We try to fulfil both

conditions using ad hoc approximations and corrections. In section 1.4 the concepts of

consistency and conservation are explained in more detail.

1.2 Objectives

The objectives are the following:

• Implement a conservative approximation for the diffusive term in the diffusion

equation.

• Implement a conservative approximation for the convective and stabilization terms

in the convection-diffusion equation.

1



1. INTRODUCTION

• Extend the results obtained from the convection-diffusion equation to Navier-

Stokes equations.

1.3 Element-Based and Edge-Based Implementations

Element-Based and Edge-Based can be described as methods to calculate the “stiffness

matrix” in a finite element code. The final objective is exactly the same and both

methods start with identical information. The difference is the flow of the calculations.

Let us assume we are solving a given problem in an arbitrary domain Ω with bound-

ary ∂Ω as shown in figure 1.1.

Figure 1.1: Arbitrary computational domain

The information which both methods start is: a partitioned domain denoted Ωe

with e ranging from 1 to the number of elements in which the domain is partitioned

and initial/prescribed values of the unknown(s). In figure 1.2 we can see the domain

from figure 1.1 discretized using various types of elements.

Let us suppose our generic unknown is u. We denote Ua to the approximate value

of the unknown at nodal point xa and u(xa) to the exact value of the unknown at the

nodal point xa. Now, looking at the discretization of the domain in figure 1.2, Ua is

defined in each of the nodal points; we denote uh(xa) to the approximate solution at

any point xa.

Using interpolation notation and labelling npts the number of nodal points in the

mesh, we have:

xi =

npts∑
a=1

Naxai u =

npts∑
a=1

NaUa (1.1)

2



1.3 Element-Based and Edge-Based Implementations

Figure 1.2: Discretized Domain into (a) linear quadrilaterals (Q1 elements, 4 nodes), (b)

linear triangles (P1 elements, 3 nodes), quadratic quadrilaterals (Q2 elements, 9 nodes)

and (d) quadratic triangles (P2 elements, 6 nodes)

where Na is a standard finite element interpolation function of given degree p defined

in each Ωe.

Additionally, we interpolate any material property in the same fashion. For example

kinematic viscosity ν:

ν =

npts∑
a

Naνa (1.2)

Element-based implementations perform a loop over elements, then a loop over inte-

gration points (gauss points) to calculate the element stiffness matrix; finally assemble

the element matrix into the global matrix.

On the other hand, edge-based implementations start with pre-assembled global

matrices dependent of just the geometry. Then perform a loop over all nodal points,

then a loop over the neighbours of the current nodal point and computes the contribu-

tion to the stiffness matrix directly, without referring to the elements. To do that, we

require to approximate the integrals of interest as a combination of geometry-dependent

integrals and nodal values of the properties.

For example, let us suppose we want to approximate the diffusive term in the

3



1. INTRODUCTION

following way:

∫
Ω

∇vh · ν∇uh dΩ ≈ ν
∫
Ω

∇vh · ∇uh dΩ (1.3)

where vh is a function (called test function), uh is the unknown (treated as a function)

and ν is the diffusion coefficient.

As you know, the diffusion coefficient ν is not always constant and can vary; so

the approximation done is not exact. The question that arises here is: Where do we

evaluate ν in order to be more or less exact? The answer is not very simple and we

will try to address that issue in the present work. Something similar happens with the

convective term and stabilization terms introduced later on.

In figure 1.3 we can see a model algorithm of element-based and edge-based imple-

mentations (Matlab syntax).

Figure 1.3: Element-based and Edge-based Algorithms

In non-linear problems, the global stiffness matrix is recalculated at each iteration

of non-linearity. This makes the element-based approach expensive and favours the

edge-based approach, because it uses just nodal values and the matrices are already

precomputed.

Edge-based implementations can perform better than element-based when no re-

meshing or mesh update is necessary. If the mesh changes, edge-based approach might

not be the best performing.

4



1.4 Consistency and Conservation

1.4 Consistency and Conservation

1.4.1 Consistency

Consistency means that the exact solution of the continuous problem are solutions of

the discrete one, provided they belong to the finite element space. the finite element.

For example, let us suppose we are using P1 (triangle) or Q1 (quadrilateral) ele-

ments. These elements are of order p = 1. An approximation is consistent in this sense

if any given discretization is able to reproduce exactly a linear varying (exact) solution.

In the present work we check consistency of the edge-based approximation for the

constants.

1.4.2 Conservation

An approximation is conservative if it “conserves” the quantities being transported or

diffused. In this sense, conservation means that the amount of the conserved vari-

able that goes into the computational domain is equal to what goes out plus what is

generated.

There are many physical magnitudes which follow conservation laws, for instance:

• Conservation of mass-energy

• Conservation of linear momentum

• Conservation of angular momentum

• Conservation of electric charge

• Conservation of mass (when no nuclear reactions happen)

• Conservation of energy (when no nuclear reactions happen)

As an example, let us think in fluid flow. Let us suppose there is one inlet and

one outlet in a tank. Additionally, let us suppose the process is steady state, there are

not nuclear reactions and velocities are small compared with the speed of light (non-

relativistic analysis). Therefore, the mass of fluid inside the tank is constant. As the

mass is the conserved quantity in this case, we can infer that the mass that goes into

5



1. INTRODUCTION

the domain is exactly equal to the mass that comes out. This is the intuitive idea of

conservation.

In figure 1.4 we can see the flow problem described before. Fluid enters the tank

in the upper-left corner and leaves the domain in the bottom-right corner. Inlet and

outlet are both the same size. The colours represent the velocity magnitude.

Figure 1.4: Tank Flow - Velocity Contours

As the velocity contours of figure 1.4 were obtained with the consistent implementa-

tion, conservation is not ensured. We can see that the outflow is lower than the inflow:

mass loss happens.

Conservation can be described in differential form and integral form. Additionally,

both descriptions can be related using the divergence theorem:

• Differential Form: in the continuous, conservation holds in any control volume.

Particularly in a control volume that tends to zero, hence it holds in a point, so

we can express a conservation statement in differential form:

i.e. mass conservation: ∇ · (ρu) = 0, where ρ is the mass density and u is the

velocity at any spatial point x.

6



1.5 Chapter Overview

This lead us to the concept of local conservation.

• Integral Form: normally a given discretization does not have enough points to

describe a complex solution exactly, hence conservation sometimes does not hold

exactly from point to point. A desired feature of a finite element formulation

would be “global conservation” and that is what we want with this work.

i.e. mass conservation
∫
∂Ω

u · n dΓ = 0 , where u is the velocity, n is the unit

outward-pointing normal to the boundary ∂Ω of the domain.

This lead us to the concept of global conservation, and this is actually what we

do in the code to check conservation: perform the surface integral.

1.5 Chapter Overview

In the first chapter, a general overview of finite elements, consistency and conservation

is given.

In the second, third and fourth chapters we propose some edge-based approxima-

tions for the diffusion, convection-diffusion and Navier-Stokes equations respectively.

First we start describing the model problem, then various approximations are proposed.

After that, we check and/or correct the approximations for consistency and conserva-

tion. Finally a convergence test is performed to determine whether optimal convergence

rate is obtained or not.

In the fifth chapter, various examples are solved with the best-performing proposed

approximations.

Finally, in the last chapter, general conclusions are drawn according to the results

obtained.

7
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Chapter 2

Diffusion Equation

2.1 Problem Statement

In this chapter we are going to consider the scalar steady-state diffusion equation. From

hereafter during this chapter, this equation will serve to model heat transfer by pure

conduction, consequently the terminology used for unknowns and boundary conditions

will have relation with heat transfer.

The equation that describes the problem is:

∇ · (−ν∇u) = f (2.1)

with the following boundary conditions:

u(x) = u(x) on ΓD

ν∇u · n = h(x) on ΓN

ΓD ∪ ΓN = ∂Ω

ΓD ∩ ΓN = ∅

(2.2)

to be solved over Ω ⊂ Rnsd , where nsd is the space dimension, u is the unknown

(temperature), f is the forcing term (heat source per unit volume), ν is the diffusion

coefficient (heat conductivity), u is a prescribed value of the solution, h is a prescribed

heat flow per unit area and n is the outward-pointing normal to the boundary.

The prescribed heat flow, h, is taken as positive when heat goes into the domain

through the boundary. Negative otherwise.

9



2. DIFFUSION EQUATION

The diffusion coefficient ν is always greater than zero. The forcing term f is taken

as positive when heat is added to the domain and negative when heat is extracted from

the domain.

In the general case, heat conductivity is not constant and can depend on space

coordinates (i.e. a domain composed by different materials) or on the solution itself

(i.e. ν(x, u)) In the present work constant, space dependant and solution dependant

diffusion coefficient has been considered to validate de formulation.

2.1.1 Properties of the Diffusion Equation

According to [3] the diffusion process has three basic properties: Conservation, Smooth-

ing and Invariance.

Conservation can be explained examining equation (2.1). Integrating in an arbitrary

domain Ω both members we have:∫
Ω

∇ · (−ν∇u) dΩ =

∫
Ω

f dΩ (2.3)

Using the divergence theorem, which relates the volume integral with a surface

integral we can write:∫
∂Ω

(−ν∇u) · ndΓ =

∫
Ω

f dΩ (2.4)

Equation (2.4) expresses that the net heat flow across the boundary of the domain

is equal to the heat generated into the domain. This explains the (energy) conservation

property of the diffusion equation.

The smoothing property of the diffusion equation tends to homogenize in time any

gradient of the unknown, hence making it smooth. For example, let us assume a 1D

problem with no force term and constant diffusion coefficient of equation (2.1).

∂u

∂t
= ν

∂2u

∂x2
(2.5)

Equation (2.5) can be interpreted in this way: the time variation of u ( ∂u
∂t ) is

directly proportional to the local curvature of u ( ∂2u
∂x2 ). Therefore, intervals where the

local curvature is positive (local minima) will have a positive time derivative, which

10



2.1 Problem Statement

means the values will tend to increase. Exactly the same happens in intervals where

the local curvature is negative. Consequently, the solution tends to be smooth.

Invariance under reflections and translations refers to the symmetry of the diffusion

process. In matrix form this invariance reflects in the symmetry of the diffusion matrix.

This can be easily explained using a change of variable. First, let us suppose u(x) is

the solution of a particular steady-state diffusion problem. Then, let us take x = −x as

a new reference system. Then u(x) is still solution of equation (2.1) because it involves

derivation twice, so using the chain rule for derivation the minus sing cancels out.

2.1.2 Thermal conductivity of solids

When analysing heat transfer, the diffusion coefficient ν refers to the heat conductivity.

Heat conductivity is the ability of a material to conduct heat energy through it due to

a gradient of temperature.

According to the magnitude of the thermal conductivity can be classified in two big

groups: conductors and insulators.

• Conductor materials are materials with a high thermal conductivity. They are

used to provide a physical barrier between to points and maintain the ability of

transferring heat. For example cooper is used in heat exchangers or aluminium

in heat-sinks to dissipate heat generated in electronic components.

• Insulator materials are materials with low thermal conductivity. They are used to

prevent heat transfer from one place to another. For example glass wool prevents

ambient heat entering inside the cold environment of a fridge. Elastomeric foams

prevent heat loss to the environment in hot water pipes.

2.1.3 Weak form of the problem

Let us define the following functional spaces:

V = {u(x) ∈ H1(Ω) | u = u on ΓD}

V0 = {u(x) ∈ H1(Ω) | u = 0 on ΓD}

After defining those spaces, the weak form of the problem reads as follows: Find

11



2. DIFFUSION EQUATION

u ∈ V such that:

∫
Ω

∇v · ν∇udΩ =

∫
Ω

vf dΩ +

∫
ΓN

vhdΓ (2.6)

for all test functions v ∈ V0

2.2 Numerical Approximation

Now we can approximate the weak form of the problem defined in (2.6) using finite

elements.

Let {Ωe} be a finite element partition of the domain Ω, with index e ranging from

1 to the number of elements nel. Let uh be the finite element approximation of the

unknown u; and, vh the test functions associated with {Ωe}.

Hence, the finite element problem reads: Find uh ∈ Vh such that:

∫
Ω

∇vh · ν∇uh dΩ =

∫
Ω

vhf dΩ +

∫
ΓN

vhhdΓ (2.7)

for all test functions vh ∈ V0,h

To obtain the algebraic version of the problem we need some definitions. Let npts

be the total number of nodes of the finite element mesh and let Na be the standard

finite element interpolation function associated to node a, where a = 1,...,npts.

The unknown is interpolated as:

uh =

npts∑
a=1

NaUa (2.8)

We use upper-case letters (i.e. Ua ) to denote the nodal value at node a of the

corresponding lower-case variable.

The test functions are taken as:

vh = N b, b = 1, ..., npts (2.9)

12



2.3 Node-Based Implementation

2.3 Node-Based Implementation

In this section, we are going to express the approximate problem in terms of solely

geometrical dependant integrals:∫
Ω

N bNa dΩ

∫
Ω

∂iN
b∂jN

a dΩ, i, j = 1, ..., nsd

(2.10)

for a, b = 1, ..., npts

With the integrals in (2.10) and taking vh = N b, we can approximate the diffusive

term in various forms:∫
Ω

∇vh · ν∇uh dΩ =

npts∑
a=1

νa

nsd∑
j=1

∫
Ω

∂jN
b∂jN

a dΩ

 Ua (2.11a)

∫
Ω

∇vh · ν∇uh dΩ =

npts∑
a=1

νb

nsd∑
j=1

∫
Ω

∂jN
b∂jN

a dΩ

 Ua (2.11b)

∫
Ω

∇vh · ν∇uh dΩ =

npts∑
a=1

νb + νa

2

nsd∑
j=1

∫
Ω

∂jN
b∂jN

a dΩ

 Ua (2.11c)

If we consider the matrix form of the problem, the system of equations to solve will

be:

L U = M F +B (2.12)

where double underline means a matrix and single underline means a column vector.

Therefore, the diffusion matrix L will be defined as one of this expressions:

Lba = νa
nsd∑
j=1

∫
Ω

∂jN
b∂jN

a dΩ (2.13a)

Lba = νb
nsd∑
j=1

∫
Ω

∂jN
b∂jN

a dΩ (2.13b)

Lba =
νb + νa

2

nsd∑
j=1

∫
Ω

∂jN
b∂jN

a dΩ (2.13c)
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2. DIFFUSION EQUATION

2.3.1 Consistency

For simplicity, let us consider problem (2.7) without forcing term. Additionally, let us

consider all the boundary conditions are of Dirichlet type: u = 1. Therefore, ΓN =

∅ ∧ ΓD = ∂Ω. In this situation the solution is constant and equal to 1 in all nodal

points.

This behaviour has to be reproduced exactly by the finite element solution because,

even with linear interpolation functions, the exact solution belongs to the finite element

space. Consequently, this condition has to hold:

npts∑
a

Lba = 0 ∀b = 1, ..., npts (2.14)

It can be readily observed that the evaluation method proposed in (2.13b) satisfies

this condition, but not the others. So here we propose a correction method to solve

this issue: evaluating the main diagonal term of the matrix as the negative of the sum

of the off-diagonal terms, so the final form of the matrix L will be any of the following:

Lba = νa
nsd∑
j=1

∫
Ω

∂jN
b∂jN

a dΩ ∀a 6= b (2.15a)

Lba = νb
nsd∑
j=1

∫
Ω

∂jN
b∂jN

a dΩ ∀a 6= b (2.15b)

Lba =
νb + νa

2

nsd∑
j=1

∫
Ω

∂jN
b∂jN

a dΩ ∀a 6= b (2.15c)

and

Lbb = −
npts∑
a6=b

Lba (2.15d)

With the definition provided in (2.15) the consistency condition (2.14) is satisfied

by any of the evaluation methods proposed.

Let us prove it.

npts∑
a

Lba = Lbb +

npts∑
a6=b

Lba ∀b = 1, ..., npts
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2.3 Node-Based Implementation

Replacing the definition of Lbb as in (2.15d)

npts∑
a

Lba = −
npts∑
a6=b

Lba +

npts∑
a6=b

Lba = 0 ∀b = 1, ..., npts

This demonstrates (2.14)

2.3.2 Conservation

For simplicity, let us consider problem (2.7) with all boundary conditions of Neumann

type (case in which the solution would not be unique). Furthermore, suppose we take

the test function vh constant. Hence, problem (2.7) imply:

−
∫
∂Ω

hdΓ =

∫
Ω

f dΩ (2.16)

which, in physical terms, represents that the net heat flow leaving the domain (heat out

minus heat in) is equal to what is generated inside it (remember that if f is positive,

heat energy is added to the domain). This is physically consistent.

However, equation (2.7) is not enforced for constant test functions vh but only for

test functions of the form vh = N b, b = 1, ..., npoin. Since the addition of all shape

functions N b is 1, equation (2.16) can also be obtained taking vh = N b in equation

(2.7) and adding up over b.

Then, in matrix form, the condition in (2.16) can be expressed as:∑
b

∑
a

LbaUa = 0 (2.17)

in order to have global conservation.

Now let us have a look to the consistent nodal formulations proposed in (2.15). It

can be observed that the only formulation that satisfies this condition is (2.15c): Using

(2.14) and the symmetry of (2.15c) we can say that
∑

b L
ba = 0, then:

∑
b

∑
a

LbaUa =
∑
a

(∑
b

Lba

)
Ua = 0

that demonstrates (2.17).

Anyway, in the following section, we will test the convergence of various formulations

mentioned in order to determine their convergence properties.
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2. DIFFUSION EQUATION

2.4 Convergence Test

Reference [6] shows two a priori error estimates for elliptic partial differential equations.

One of the error estimates is in H1-norm and the other in L2-norm. For simplicity, we

are going to use the error estimator in the L2-norm.

Let u ∈ V be the exact solution of the variational problem (2.6) and uh its ap-

proximation using finite elements of order p. Additionally, let u ∈ Hr+1(Ω) for a given

r > 0. Then, the following a priori error estimate in the L2-norm holds:

‖ u− uh ‖L2< Chs+1 | u |Hs+1 , s = min{p, r} (2.18)

where C is a constant independent of u and h.

A brief analysis of (2.18) shows that the minimum convergence rate expected in

the L2-norm for a degree p finite element interpolation and for a “sufficiently regular”

solution is hp+1. So, for linear elements (p = 1), we expect a convergence rate of order

h2.

To make programming even simpler, the L2-norm error (normalized) is computed

as:

E =

[npts∑
a=1

(Ua − u (xa))2

]1/2 [npts∑
a=1

u(xa)2

]−1/2

(2.19)

where u(xa) is the exact solution at xa.

In order to create the convergence plots of the proposed nodal approximations, an

specific problem with known solution is needed. We have selected a two dimensional

steady-state heat conduction problem. We take Ω as the unit square ([0,1]×[0,1]) and

the force term in a way such that u = x2y2(x− 1)2(y− 1)2 is solution of equation (2.1)

taking ν = 1 + x+ y + x2 + y2

We have used four finite element meshes with sizes h = 0.2, 0.10, 0.05 and 0.01

In table 2.1 we can see the values obtained and in figure 2.1 we can see the results

plotted.

We have denoted as “S” when no consistency correction is used, “C” when the

correction proposed in (2.15) is used; and, we use “a”, “b” or “(a+b)/2” to indicate

where the diffusion coefficient ν is evaluated.
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2.4 Convergence Test

h S-a S-b,C-b S-(a+b)/2 C-a C-(a+b)/2

0.200 1.2950 0.2436 0.2609 1.0018 0.2090

0.100 0.1349 0.1005 0.0949 0.0733 0.0522

0.050 0.1050 0.0790 0.0559 0.0719 0.0116

0.010 0.1004 0.0778 0.0414 0.0780 0.0004

Table 2.1: Diffusion Convergence Test

Figure 2.1: Diffusion Equation Convergence Test
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2. DIFFUSION EQUATION

As can be seen in figure 2.1, just when diffusion is evaluated in “(a+b)/2” and

corrected produces good results in terms of convergence. The other approximations do

not work well.

Just to conclude, let us write the final form of the approximation of the diffusive

term proposed:

Lba =
νb + νa

2

nsd∑
j=1

∫
Ω

∂jN
b∂jN

a dΩ ∀a 6= b (2.20a)

and

Lbb = −
npts∑
a6=b

Lba (2.20b)

Notice that, for a given node b, the evaluation of Lba does not require to loop over

all “a” nodes, it just requires to loop over the “a” nodes connected to node b.
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Chapter 3

Convection-Diffusion Equation

3.1 Problem Statement

In this chapter we are going to consider the steady-state convection-diffusion equation.

From hereafter during this chapter, this equation will serve to model heat transfer by

convection and conduction in an incompressible fluid media, consequently the terminol-

ogy used for unknowns and boundary conditions will have relation with heat transfer.

The equation that describes the problem is:

∇ · (ρ0 c0 ua) +∇ · (−ν∇u) = f (3.1)

with the following boundary conditions:

u(x) = u(x) on ΓD

ν∇u · n = h(x) on ΓN

ΓD ∪ ΓN = ∂Ω

ΓD ∩ ΓN = ∅

(3.2)

to be solved over Ω ⊂ Rnsd , where nsd is the space dimension, u (temperature) is the un-

known, f is the forcing term (heat source per unit volume), ν is the diffusion coefficient

(thermal conduction coefficient), a is the convection velocity, ρ0 is the mass density

(constant for our analysis), c0 is the specific heat capacity (constant for our analysis),

u is a prescribed value of the solution on the boundary, h is a prescribed conductive

heat flow per unit area and n is the outward-pointing normal to the boundary.
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3. CONVECTION-DIFFUSION EQUATION

The prescribed heat flow, h, is taken as positive when heat goes into the domain

through the boundary. Negative otherwise.

The diffusion coefficient ν, the mass density ρ0 and the specific heat capacity c0 are

considered always greater than zero. The forcing term f is taken as positive when heat

is added to the domain and negative when heat is extracted from the domain.

In the general case, the diffusion coefficient is not constant and can depend on space

coordinates (i.e. a domain composed by different materials) or on the solution itself

(i.e. ν(x, u)). In the present work constant, space dependant and solution dependant

diffusion coefficient has been considered to validate de formulation.

The specific heat capacity c0 of a material refers to the energy needed to raise the

temperature of a unit mass of the material in one temperature unit. In the general

case, heat capacity can vary depending on material or on the unknown u itself, but for

simplicity, we have considered it constant for our analysis. Specific heat capacity can

be referred as cp (heat capacity at constant pressure) or cv (heat capacity at constant

volume). In this case, as the flow is incompressible and the mesh is fixed, both heat

capacities are equal and that is why we refer to them as just specific heat capacity.

As we have mentioned before, we are modelling an incompressible fluid, then the

following condition holds:

∇ · a(x) = 0 ∀x ∈ Ω (3.3)

3.1.1 Properties of the Convective Term

In chapter 2 we described the properties of the diffusive term. Now we are going just

to explain the properties of the convective term.

Extending the concepts from chapter 2, the convection process has two basic prop-

erties: Conservation, Invariance to translations and Non-Invariance to reflections.

Conservation can be explained examining equation (3.1), taking ν = 0 and inte-

grating in an arbitrary domain Ω we have:∫
Ω

∇ · (ρ0 c0 ua) dΩ =

∫
Ω

f dΩ (3.4)

Using the divergence theorem, which relates the volume integral with a surface
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3.2 Numerical Approximation

integral we can re-write the first term of equation (3.4) as:∫
∂Ω

(ρ0 c0 ua) · ndΓ =

∫
Ω

f dΩ (3.5)

Equation (3.5) expresses that the net heat flow (
∫
∂Ω

(ρ0 c0 ua) · ndΓ) across the

boundary of the domain is equal to the heat generated into the domain. This explains

the (energy) conservation property of the convection term.

Invariance under translations can be explained using a change of variable. First, let

us suppose u(x) is the solution of a particular steady-state pure convection problem.

Then, let us take x = x+4x0 as a new reference system. Then u(x) is still solution of

equation (3.1) because it involves first derivatives, so using the chain rule for derivation

the constant value 4x0 cancels out.

Non-Invariance under reflections can be explained using a change of variable. First,

let us suppose u(x) is the solution of a particular steady-state pure convection problem.

Then, let us take x = −x as a new reference system. Then u(x) is not solution of

equation (3.1) because it involves first derivatives, so using the chain rule for derivation

the minus sign of the new reference system does not cancel out. This non-invariance

to reflections of the convective term reflects in the skew-symmetry of it.

3.1.2 Weak Form of the problem

Let us define the following functional spaces:

V = {u(x) ∈ H1(Ω) | u = u on ΓD}

V0 = {u(x) ∈ H1(Ω) | u = 0 on ΓD}
After defining those spaces, the weak form of the problem reads as follows: Find

u ∈ V such that:

ρ0 c0

∫
Ω

v (a · ∇u ) dΩ +

∫
Ω

∇v · ν∇udΩ =

∫
Ω

vf dΩ +

∫
ΓN

vhdΓ (3.6)

for all test functions v ∈ V0

3.2 Numerical Approximation

Now we can approximate the weak form of the problem defined in (3.6) using finite

elements.
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3. CONVECTION-DIFFUSION EQUATION

Let {Ωe} be a finite element partition of the domain Ω, with index e ranging from

1 to the number of elements nel. Let uh be the finite element approximation of the

unknown u; and, vh the test functions associated with {Ωe}.

Hence, the finite element problem reads: Find uh ∈ Vh such that:

ρ0 c0

∫
Ω

vh (a · ∇uh ) dΩ +

∫
Ω

∇vh · ν∇uh dΩ =

∫
Ω

vhf dΩ +

∫
ΓN

vhhdΓ (3.7)

for all test functions vh ∈ V0,h

To obtain the algebraic version of the problem we need some definitions. Let npts

be the total number of nodes of the finite element mesh and let Na be the standard

finite element interpolation function associated to node a, where a = 1,...,npts.

The unknown is interpolated as:

uh =

npts∑
a=1

NaUa (3.8)

We use upper-case letters (i.e. Ua ) to denote the nodal value at node a of the

corresponding lower-case variable.

The test functions are taken as:

vh = N b, b = 1, ..., npts (3.9)

One inconvenient that may arise when solving equation (3.7) is the appearance

of numerical instabilities. This happens when convection dominates diffusion. The

stability in 1D of the Galerkin approximation depends on the Peclet number defined

as:

Pe =
ρ0 c0 |a | h

2 ν
(3.10)

where h is the mesh size.

In figure 3.1 we can see how the Peclet number influences the numerical instabilities

that might appear in a 1D convection-diffusion problem:

According to [6], if Pe > 1, numerical instabilities may appear. So we have two

options: use a finer mesh (reduce h) or use a stabilization procedure. Here we are going

to follow the latter procedure.
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3.2 Numerical Approximation

Figure 3.1: Influence of Local Peclet number on numerical instabilities , according to [7]

According to [1], various stabilization methods have been developed over time,

such as Streamline Upwind Petrov-Galerking, Galerkin Least Squares, Subgrid Scale

Stabilization, Characteristic Galerkin and Taylor Galerkin.

We are going to use the Subgrid Scale Stabilization method. The reason of that

choice is because one of the aims of the edge-based conservative schemes is to be

applicable to Navier-Stokes Equations, and for Navier-Stokes we are going to work with

an equal velocity-pressure interpolation stabilized using the subgrid scale stabilization

method.

Taking:

Vh = {uh(x) ∈ H1(Ω) | uh = u on ΓD}

and

V0,h = {uh(x) ∈ H1(Ω) | uh = 0 on ΓD}

The weak form of the stabilized problem reads as follows: Find u ∈ V such that:

ρ0 c0

∫
Ω

vh (a · ∇uh ) dΩ +

∫
Ω

∇vh · ν∇uh dΩ +

∫
Ω

P(vh) τ R(uh) dΩ

=

∫
Ω

vhf dΩ +

∫
ΓN

vh hdΓ (3.11)

for all test functions v ∈ V0.
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3. CONVECTION-DIFFUSION EQUATION

Where R(u) is the residual of the equation defined as:

R(u) = L(u)− f = ∇ · (ρ0 c0 ua) +∇ · (−ν∇u)− f (3.12)

P(u) is the stabilization operator defined as:

P(u) = ∇ · (ρ0 c0 ua) +∇ · (ν∇u) (3.13)

and τ is the stabilization parameter.

As we are just using linear elements (p = 1), second derivatives are zero. Then, the

final equation becomes:

ρ0 c0

∫
Ω

vh (a · ∇uh ) dΩ +

∫
Ω

∇vh · ν∇uh dΩ + ρ2
0 c

2
0

∫
Ω

a · ∇vh τ a · ∇uh dΩ

=

∫
Ω

vhf dΩ +

∫
ΓN

vh hdΓ + ρ0 c0

∫
Ω

a · ∇vh τ f dΩ (3.14)

The stabilization parameter is taken as variable from point to point and is calculated

locally as:

τ =

[
4ν

h2
+

2 ρ0 c0 |a|
h

]−1

(3.15)

where h is the element size (for linear elements) when the mesh is uniform. If the mesh

is non-uniform, h is the maximum distance from the point into consideration to its

neighbours.

3.3 Node-Based Implementation

In this section, we are going to express the approximate problem in terms of solely

geometrical dependant integrals:∫
Ω

N bNa dΩ

∫
Ω

∂iN
b∂jN

a dΩ, i, j = 1, ..., nsd∫
Ω

N b∂jN
a dΩ, j = 1, ..., nsd∫

Ω

∂jN
bNa dΩ, j = 1, ..., nsd

(3.16)
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3.3 Node-Based Implementation

for a, b = 1, ..., npts

With the integrals in (3.16) and taking vh = N b, we can approximate each part of

equation (3.14) in various forms.

Notice that we have not written integrals with derivatives higher than first order

because just linear elements are analyzed.

To tackle the problem, we are going to divide the problem into a convective part,

diffusive part and stabilization part. The aim will be to obtain symmetry in the diffusive

and stabilization parts.

Let us consider the matrix form of the problem, the system of equations to solve

will be:

C U + LU + SU U = M F +B + SF F (3.17)

where double underline means a matrix and single underline means a column vector. C

is the convection matrix, L diffusion matrix and SU the stabilization matrix operating

over U , RF is the forcing term, B is the contribution from the Neumann boundary

conditions to the right hand side and SF F is the stabilization contribution to the

forcing vector.

We need to find expressions for the convection, diffusion and stabilization matrices.

The diffusion term is approximated according to the results obtained from chapter

2 as follows:

Lba =
νb + νa

2

nsd∑
j=1

∫
Ω

∂jN
b∂jN

a dΩ ∀a 6= b (3.18a)

and

Lbb = −
npts∑
a6=b

Lba (3.18b)

We have proven in chapter 2 that this evaluation of the diffusive term is consistent

and conservative, so we do not worry any more about that and centre our efforts in the

convective and stabilization terms.
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3. CONVECTION-DIFFUSION EQUATION

The convective term can be approximated as any of the following expressions:

Cba =

nsd∑
j=1

ρ0 c0A
a
j

∫
Ω

N b∂jN
a dΩ (3.19a)

Cba =

nsd∑
j=1

ρ0 c0A
b
j

∫
Ω

N b∂jN
a dΩ (3.19b)

Cba =

nsd∑
j=1

ρ0 c0

Aa
j +Ab

j

2

∫
Ω

N b∂jN
a dΩ (3.19c)

The stabilization term can be approximated as any of the following expressions:

Sba
U = ρ2

0c
2
0

nsd∑
i,j=1

[
τa Ab

i Aa
j

∫
Ω

∂iN
b∂jN

a dΩ

]
(3.20a)

Sba
U = ρ2

0c
2
0

nsd∑
i,j=1

[
τa Aa

i Ab
j

∫
Ω

∂iN
b∂jN

a dΩ

]
(3.20b)

Sba
U = ρ2

0c
2
0

nsd∑
i,j=1

[
τa

(
Aa

i +Ab
i

2

)(
Aa

j +Ab
j

2

) ∫
Ω

∂iN
b∂jN

a dΩ

]
(3.20c)

Sba
U = ρ2

0c
2
0

nsd∑
i,j=1

[
τ b Ab

i Aa
j

∫
Ω

∂iN
b∂jN

a dΩ

]
(3.20d)

Sba
U = ρ2

0c
2
0

nsd∑
i,j=1

[
τ b Aa

i Ab
j

∫
Ω

∂iN
b∂jN

a dΩ

]
(3.20e)

Sba
U = ρ2

0c
2
0

nsd∑
i,j=1

[
τ b

(
Aa

i +Ab
i

2

)(
Aa

j +Ab
j

2

) ∫
Ω

∂iN
b∂jN

a dΩ

]
(3.20f)

Sba
U = ρ2

0c
2
0

nsd∑
i,j=1

[
τa + τ b

2
Ab

i Aa
j

∫
Ω

∂iN
b∂jN

a dΩ

]
(3.20g)

Sba
U = ρ2

0c
2
0

nsd∑
i,j=1

[
τa + τ b

2
Aa

i Ab
j

∫
Ω

∂iN
b∂jN

a dΩ

]
(3.20h)

Sba
U = ρ2

0c
2
0

nsd∑
i,j=1

[
τa + τ b

2

(
Aa

i +Ab
i

2

)(
Aa

j +Ab
j

2

) ∫
Ω

∂iN
b∂jN

a dΩ

]
(3.20i)
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3.3 Node-Based Implementation

The stabilization contribution to the force term can be approximated as:

Sba
F = ρ0c0

npts∑
a

nsd∑
i=1

[
τa Ab

i

∫
Ω

∂iN
bNa dΩ

]
(3.21a)

Sba
F = ρ0c0

npts∑
a

nsd∑
i=1

[
τa Aa

i

∫
Ω

∂iN
bNa dΩ

]
(3.21b)

Sba
F = ρ0c0

npts∑
a

nsd∑
i=1

[
τa

Aa
i +Ab

i

2

∫
Ω

∂iN
bNa dΩ

]
(3.21c)

Sba
F = ρ0c0

npts∑
a

nsd∑
i=1

[
τ b Ab

i

∫
Ω

∂iN
bNa dΩ

]
(3.21d)

Sba
F = ρ0c0

npts∑
a

nsd∑
i=1

[
τ b Aa

i

∫
Ω

∂iN
bNa dΩ

]
(3.21e)

Sba
F = ρ0c0

npts∑
a

nsd∑
i=1

[
τ b

Aa
i +Ab

i

2

∫
Ω

∂iN
bNa dΩ

]
(3.21f)

Sba
F = ρ0c0

npts∑
a

nsd∑
i=1

[
τa + τ b

2
Ab

i

∫
Ω

∂iN
bNa dΩ

]
(3.21g)

Sba
F = ρ0c0

npts∑
a

nsd∑
i=1

[
τa + τ b

2
Aa

i

∫
Ω

∂iN
bNa dΩ

]
(3.21h)

Sba
F = ρ0c0

npts∑
a

nsd∑
i=1

[
τa + τ b

2

Aa
i +Ab

i

2

∫
Ω

∂iN
bNa dΩ

]
(3.21i)

3.3.1 Consistency

Let us consider problem (3.14) without forcing term. Additionally, let us consider all

the boundary conditions are of Dirichlet type: u = 1. Therefore, ΓN = ∅∧ΓD = ∂Ω. In

this situation the solution is constant and equal to 1 in all nodal points. Additionally,

recall that the convection velocity is divergence free (∇ · a).

This behaviour has to be reproduced exactly by the finite element solution because,

even with linear interpolation functions, the exact solution belongs to the finite element
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3. CONVECTION-DIFFUSION EQUATION

space. Consequently, the following conditions have to hold:

npts∑
a

Cba = 0 ∀b = 1, ..., npts (3.22a)

npts∑
a

Lba = 0 ∀b = 1, ..., npts (3.22b)

npts∑
a

Sba
U = 0 ∀b = 1, ..., npts (3.22c)

It can be readily observed that all the evaluation methods of the convective term

proposed in (3.19) satisfy this condition. Approximation (3.19a) satisfies this condition

because the sum over points a over spatial dimension j of Aa
j∂jN

a is ∇·a which is zero.

Approximation (3.19b) is consistent because we are taking the derivative ∂j
∑

aN
a

which is always zero. Finally, approximation (3.19c) is consistent because is a linear

combination of the previous two.

Additionally, for the stabilization term SU just (3.20d) satisfies the consistency

condition. So here we propose a correction method to solve this issue: evaluating

the main diagonal term of the stabilization matrix as the negative of the sum of the

off-diagonal terms, so the final form of the matrix SU will be any in (3.20) for the

off-diagonal terms and the diagonal terms will be calculated as:

Sbb
U = −

npts∑
a6=b

Sba
U (3.23)

Finally, for the stabilization contribution to the right hand side SF , as the forcing

term is zero, we can not say anything about it, so it keeps for now as defined in (3.21).

With the definitions provided in equations (3.19), (3.20) and (3.21) in combination

with (3.23) the consistency condition (3.22) is satisfied by any of the evaluation methods

proposed.

3.3.2 Conservation

For simplicity, let us consider the problem (3.14) with all boundary conditions of Neu-

mann type (case in which the solution would not be unique). Furthermore, suppose we

28



3.3 Node-Based Implementation

take the test function vh as constant. Hence, problem (3.14) imply:

∫
∂Ω

(
ρ0 c0 ua · n− h

)
dΓ =

∫
Ω

f dΩ (3.24)

which, in physical terms, represents that the net heat flow that goes out of the domain

through the boundary (by means of conduction and mass transport) is equal to the

heat added/generated inside the domain. This is physically consistent.

However, equation (3.14) is not enforced for constant test functions vh but only for

test functions of the form vh = N b, b = 1, ..., npoin. Since the addition of all shape

functions N b is 1, equation (3.24) can also be obtained taking vh = N b in equation

(3.14) and adding up over b.

Then, in matrix form, condition (3.24) can be expressed as:

∑
b

∑
a

(
Cba + Lba

)
Ua =

∫
Ω

f dΩ +

∫
∂Ω

hdΓ (3.25a)

∑
b

∑
a

Sba
U U

a =
∑
b

∑
a

Sba
F F

a (3.25b)

in order to have global conservation.

To be able to see clearly the conservation, we can rewrite the convective term by

means of integration by parts:

∫
Ω

vh∇ · (ρ0 c0 auh) dΩ =

= −ρ0c0

∫
Ω

(a · ∇vh )uh dΩ +

∫
∂Ω

vh ρ0 c0 uha · ndΓ (3.26)

With equation (3.26) inserted in (3.14) we recover the global conservation statement

presented in (3.24).

In a similar fashion, we can rewrite the approximations of the convective term
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3. CONVECTION-DIFFUSION EQUATION

proposed in (3.19):

Cba =ρ0c0

nsd∑
j=1

[
− Aa

j

∫
Ω

(∂jN
b)Na dΩ +

∫
∂Ω

N bNa Aa
jn

a
j dΓ

]
(3.27a)

Cba =ρ0c0

nsd∑
j=1

[
− Ab

j

∫
Ω

(∂jN
b)Na dΩ +

∫
∂Ω

N bNa Ab
jn

b
j dΓ

]
(3.27b)

Cba =ρ0c0

nsd∑
j=1

[
−
Aa

j +Ab
j

2

∫
Ω

(∂jN
b)Na dΩ

+

∫
∂Ω

N bNa
Aa

j +Ab
j

2

naj + nbj
2

dΓ
]

(3.27c)

As the approximations given in (3.27) are exactly equivalent to those given in (3.19),

we can see that the condition needed to fulfil (3.25), given that
∑

a L
ba = 0 and

Lba = Lab, is:

∑
b

∑
a

CbaUa =

∫
∂Ω

ρ0 c0 uha · ndΓ (3.28a)

∑
b

∑
a

Sba
U U

a =
∑
b

∑
a

Sba
F F

a (3.28b)

It can be clearly seen that condition (3.28a) is fulfilled by only the first form of

the convective term (3.27a). In practice what we are going to use is (3.19a) because is

equivalent and shorter to write and code.

For the stabilization part we can follow two paths to fulfil conservation. The first

path is less restrictive but more difficult to attain; it consists in comply directly with

condition (3.28b) (and without forgetting about the consistency condition). The second

path, more restrictive but easier to attain, consists in splitting condition (3.28b) into

two:

∑
b

∑
a

Sba
U U

a = 0 (3.29a)∑
b

∑
a

Sba
F F

a = 0 (3.29b)
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3.4 Convergence Test

The previous conditions can be rewritten as:∑
b

Sba
U = 0 (3.30a)∑

b

Sba
F = 0 (3.30b)

Notice that element-based finite element approximations comply with this condi-

tions too, so we are not making our conservative conditions over-restrictive.

From the approximations for SU with the respective correction for consistency, the

only ones that satisfy the requirement (3.30a) are (3.20g) - (3.20i). But to keep analogies

with the approximation of the convective term chosen (3.19a), we choose (3.20g).

Finally, for SF with the stabilization parameter evaluated as the average of nodal

points a and b (to keep the analogy with the approximation of SU chosen), condition

(3.30b) is not satisfied, so here we propose yet another correction method: evaluating

SF as (3.21g) for the off diagonal terms and the diagonal as the negative of the sum of

the off-diagonal terms:

Saa
F = −

∑
b 6=a

Sba
F ∀ a = 1, ..., npts (3.31)

Notice that the imposition of (3.30a) with the consistency condition produces a

symmetric matrix contributing to the non-stabilized main matrix.

Anyway, in the following section, we will test the convergence features of various

formulations mentioned in order to determine their convergence properties.

3.4 Convergence Test

Reference [5] shows an a priori error estimator for the stabilized convection-diffusion-

reaction equation. In order to calculate that error, we need to define the three bar

norm as:

||| u |||2:=‖ ν1/2 ∇u ‖2L2 + ‖ τ1/2 a · ∇u ‖2L2 (3.32)

We have introduced inside the norm evaluation the values of ν and τ because they

are taken as variable inside the domain.
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3. CONVECTION-DIFFUSION EQUATION

The error in the three bar norm is defined as:

e(h)2 :=||| u− uh |||2 (3.33)

The error estimator takes the following form:

e(h)2 ≤
(
ν

h2
+
| a |
h

)
h2(p+1) | u |2Hp+1 (3.34)

where h is the mesh size and p is the order of the polynomial used in the finite element

interpolation.

As we are interested in convection dominated situations, ν is very small compared

with | a |, then the error will be of order hp+1/2.

The error in our code is computed as:

E =

[ npts∑
a=1

(
||| Ua − u (xa) |||2

)]1/2 [ npts∑
a=1

(
τ̂ L̂2(p+1) | u(xa) |2Hp+1

)]−1/2

(3.35)

where u(xa) is the exact solution at xa, L̂ is the diameter of the computational

domain Ω and τ̂ is a normalization parameter defined as:

τ̂ :=
max{ν}
L̂2

+
max{| a |}

L̂
(3.36)

In order to create the convergence plots of the proposed nodal approximations, an

specific problem with known solution is needed. We have selected a two dimensional

steady-state problem. We take Ω as the unit square ([0,1]×[0,1]) and the force term in

a way such that u = x2y2(x−1)2(y−1)2 is solution of equation (3.1) taking ν = 0.0001,

ρ0 = 1, c0 = 1, a = (fg′,−f ′g), f(x) = x2 and g(y) = y2.

We have used four finite element meshes discretized with triangles with uniform

sizes of h = 0.2, 0.10, 0.05 and 0.01. In figure 3.2 you can see the meshes used.

We can combine all the approximations with each other and we will end up do-

ing 108 convergence tests. To simplify the process we will just present convergence

tests for those formulations that are conservative (and consistent or not consistent).

But, to have a reference start point, we will present a convergence test for a consistent

formulation that has been used with success many times within the code. This for-

mulation corresponds evaluating the convection velocity in the convective term as Aa
j ;
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3.4 Convergence Test

Figure 3.2: Triangle meshes for the convergence test
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Figure 3.3: Convection Diffusion Equation Reference Convergence Test

an analogous evaluation of the convective velocity in the stabilization terms; and, the

stabilization parameter as τ b in the left and right hand sides.

The results are presented in the following order: first we present the convergence

test with the left hand side stabilization parameter τ evaluated at nodal point a without

consistency correction. Then with τ evaluated as the average of the values at nodal

points a and b with consistency correction. We will denote them as “LHS S Tau a”

and “LHS C Tau ab”.

The previous left hand side evaluations will be combined with different ways of

approximating the convection velocity. First, convection velocity is evaluated at nodal

point a, then at nodal point b and finally as the average between a and b. We denote

them as “Aa”, “Ab” and “Aab”. Notice that, with the corresponding analogies, the

same evaluation of the convection velocity is used for the stabilization terms.

Finally, the force stabilization term is evaluated with τ at nodal point a without

conservation correction, then at point a with conservation correction, then at point b

with conservation correction and finally as the average between a and b with conserva-

tion correction. We thenote them as “RHS S Tau a”, “RHS C Tau a”, “RHS C Tau b”

and “RHS C Tau ab”.

So, in total we will have 6 plots: the combination of the evaluation of τ in the left

hand side and the evaluation of the convection velocity. In each of the plots, there will
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3.4 Convergence Test

be four curves corresponding to the evaluation of the right hand side stabilization term.

In figures 3.4 through 3.9 we can see the results obtained.

Figure 3.4: Convection Diffusion Equation Convergence Test - LHS S Tau a - Aa

Figure 3.5: Convection Diffusion Equation Convergence Test - LHS S Tau a - Ab

As can be seen in figures 3.4 through 3.9, the evaluation of the left hand side

stabilization parameter at node a without correction (LHS S Tau a) does not work

well. Evaluating the left hand side stabilization parameter as the average of the values

at nodes a and b with consistency correction (LHS C Tau ab) works very well.
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3. CONVECTION-DIFFUSION EQUATION

Figure 3.6: Convection Diffusion Equation Convergence Test - LHS S Tau a - Aa

Figure 3.7: Convection Diffusion Equation Convergence Test - LHS C Tau ab - Aa
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Figure 3.8: Convection Diffusion Equation Convergence Test - LHS C Tau ab - Ab

Figure 3.9: Convection Diffusion Equation Convergence Test - LHS C Tau ab - Aab
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Comparing figures 3.7 through 3.9, we can see that the evaluation of the convection

velocity as Aa works better than the other evaluations. We prefer this evaluation

because of those convergence results and because it represents the interpolation of the

product.

Now, we are in figure 3.7. All the evaluations of the right hand side stabilization pa-

rameter work pretty much the same. For uniformity, we choose RHS C Tau ab because

it uses the same stabilization parameter as the left hand side.

Let us write the final form of the consistent and conservative approximation pro-

posed:

Cba = ρ0 c0

nsd∑
j=1

Aa
j

∫
Ω

N b∂jN
a dΩ (3.37a)

Lba =
νb + νa

2

nsd∑
j=1

∫
Ω

∂jN
b∂jN

a dΩ ∀a 6= b (3.37b)

Lbb = −
npts∑
a6=b

Lba (3.37c)

Sba
U = ρ2

0c
2
0

nsd∑
i,j=1

[
τa + τ b

2
Ab

iA
a
j

∫
Ω

∂iN
b∂jN

a dΩ

]
∀a 6= b (3.37d)

Sbb
U = −

npts∑
a6=b

Sba
U (3.37e)

M baF a =
∑
a

∫
Ω

N bNa dΩF a (3.37f)

Bb =
∑
a

∫
ΓN

N bNa dΓHa (3.37g)

Sba
F = ρ0c0

nsd∑
i=1

[
τa + τ b

2
Ab

i

∫
Ω

∂iN
bNa dΩ

]
∀b 6= a (3.37h)

Saa
F = −

npts∑
b 6=a

Sba
F (3.37i)

Notice that, for a given node b, the evaluation of the elements of a matrix (i.e. Lba )

does not require to loop over all a nodes, it just requires to loop over the a nodes

connected to node b.
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3.4 Convergence Test

Let us remark the implications of the proposed edge-based approximation for the

convective term.

The convective term ρ0 c0∇ · (ua) is written normally as ρ0 c0 (a · ∇)u because the

convection velocity a is divergence-free. The approximation of the convective term

proposed was:

ρ0 c0

∫
Ω

v (a · ∇u ) dΩ = ρ0 c0

npts∑
a=1

nsd∑
j=1

Aa
j

∫
Ω

N b∂jN
a dΩ Ua (3.38)

It can be seen as the approximation of the product ua. In other words, the approx-

imation proposed resembles the approximation of ua instead of just u. This reasoning

opens new opportunities for compressible flow with non-constant specific heat capacity.

Hence, the general convective part can be written as:∫
Ω

v∇ · (ρ c ua) dΩ =

npts∑
a=1

nsd∑
j=1

ρa ca0 A
a
j

∫
Ω

N b∂jN
a dΩ Ua (3.39)

maintaining the consistency and conservation features of this approximation.

Just to finish, special attention should be put into the variation of a material prop-

erty as function of another (i.e. temperature dependent diffusivity) because all the

variations should be thermodynamically feasible. In other words, the relationships be-

tween one variable and another should not violate any of the laws of thermodynamic.

This complicates the analysis, but restricts it at the same time, because we cannot

assume (or require) that a property can variate arbitrarily when keeping other as con-

stant.
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Chapter 4

Navier-Stokes Equations

4.1 Problem Statement

In this chapter we are going to consider the steady-state Navier-Stokes equations. From

hereafter during this chapter, this equation will serve to model laminar flow of an

incompressible fluid coupled with thermal effects through the Boussinesq assumption,

consequently the terminology used for unknowns and boundary conditions will have

relation with fluid flow.

The equations that describe the problem are:

u · ∇u− 2∇ ·
[
νε(u)

]
+∇p+ βgϑ = f (4.1a)

∇ · u = 0 (4.1b)

with the following boundary conditions:

u(x) = u(x) on ΓD

n · σ = t(x) on ΓN

ΓD ∪ ΓN = ∂Ω

ΓD ∩ ΓN = ∅

(4.2)

to be solved over Ω ⊂ Rnsd , where nsd is the space dimension, u is the fluid velocity, p

is the kinematic pressure (pressure divided by the density), ε(u) is the symmetric part

of the velocity gradient, f is the forcing term (force per unit mass), ν is the kinematic

viscosity, ρ0 is the mass density (constant for our analysis), β is the volumetric thermal
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expansion coefficient, ϑ is the temperature, u is a prescribed value of the solution on

the boundary, t is a prescribed traction (force per unit area), σ is the Cauchy stress

tensor divided by the density ( −pI + 2νε ) and n is the outward-pointing normal to

the boundary.

The forcing term may contain gravity forces and the reference temperature for the

buoyancy forces coming from the Boussinesq assumption:

f = g (1 + β ϑ0) (4.3)

The thermal expansion coefficient β is taken as positive when the fluid expands due

to an increment of temperature.

The kinematic viscosity ν and the mass density ρ0 are considered always greater

than zero.

In the general case, kinematic viscosity is not constant and can depend on space

coordinates (i.e. a domain composed by different materials) or on the solution itself

(i.e. ν(x, u)) In the present work constant and solution dependant diffusion coefficient

has been considered to validate de formulation. In particular, the power-law rheological

behaviour has been implemented in the code:

ν = ρ−1
0 K0 [4I2(ε)](n−1)/2 (4.4)

where K0 is the material consistency, n is the rate sensitivity and I2(ε) is the second

invariant of the strain rate tensor defined as:

I2(ε) =
1

2
ε : ε (4.5)

4.1.1 Properties of the Navier-Stokes Equation

In this section we highlight the conservation properties of the Navier-Stokes equations.

These equations conserve mass and conserve linear momentum in all space directions.

Equation (4.1b) expresses mass conservation. It can be integrated over all the

domain Ω, rewritten in the following way and converted using the divergence theorem:∫
Ω

∇ · (ρ0u) dΩ =

∫
Ω

0 dΩ

∫
∂Ω

ρ0u · ndΓ = 0 (4.6)
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Equation (4.6) means that the mass flux across the boundary of the domain is null.

This makes physical sense because there are not mass sources or sinks in the domain

(this does not hold if there are nuclear reactions, but is not the case of our analysis).

Equation (4.1a) is a linear momentum conservation statement at the continuous

level. In the same way as we did with the mass conservation equation, it can be

integrated in the domain and we obtain:∫
∂Ω

(ρ0u)(u · n) dΓ =

∫
Ω

ρ0 gdΩ−
∫
Ω

ρ0∇p dΩ−
∫
Ω

ρ0 β g (ϑ− ϑ0) dΩ

+

∫
Ω

ρ0 (2∇ · (νε(u)) dΩ (4.7)

Equation (4.7) states that the net flow of linear momentum across the boundary

is equal to the gravitational forces, pressure forces, buoyancy forces and viscous forces

acting over each particle of the domain.

4.1.2 Weak Form of the problem

Let us define the following functional spaces:

V = {u(x) ∈ H1(Ω)nsd | u = u on Γdv}

V0 = {u(x) ∈ H1(Ω)nsd | u = 0 on Γdv}

Q = {q(x) ∈ L2(Ω)nsd |
∫

Ω
q dΩ = 0 if Γnv = ∅}

After defining those spaces, the weak form of the problem reads as follows: Find

u ∈ V , ϑ ∈ Ψ and p ∈ Q such that:∫
Ω

v · [u · ∇u + gβ ϑ] dΩ +

∫
Ω

2∇v : ν ε(u) dΩ−
∫
Ω

p∇ · vdΩ =

∫
Ω

v · f dΩ +

∫
Γnv

v · tdΓ (4.8a)

∫
Ω
q∇ · udΩ = 0 (4.8b)

for all test functions v ∈ V0 and q ∈ Q.
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4.1.3 Linearization

Problem (4.1) has two sources of non-linearity: the convective term and the viscous

term (viscosity depends on u through (4.4)). To linearize the problem we use the Picard

method, so the convective term is computed as:

u · ∇u = ui · ∇ui+1 (4.9)

i is the iteration counter. ui means velocity evaluated with available velocity data and

ui+1 means new velocity data.

To linearize viscosity, we use a Picard-like strategy and evaluate the viscous term

as:

ν(u) ε(u) = ν(ui) ε(ui+1) (4.10)

Temperature is taken as something known. If we want to solve Navier-Stokes equa-

tions fully coupled with the temperature equation described in chapter 3, we will use an

iterative scheme, solving first for temperature, then Navier-Stokes, again temperature

and so on. So it is not even needed to linearize the convective part in the temperature

equation.

4.2 Numerical Approximation

Now we can approximate the weak form of the problem defined in (4.8) using finite

elements and taking into account the linearization defined in (4.9) and (4.10).

Let {Ωe} be a finite element partition of the domain Ω, with index e ranging from

1 to the number of elements nel. Let uh be the finite element approximation of the

unknown u; and, vh the test functions associated with {Ωe}.

Here we need to introduce the stabilization concept. As we are going to use equal in-

terpolation for all the unknowns (u and p), stabilization is not only needed to overcome

the numerical instabilities arising when convection is dominant, but also to circumvent

the well known inf-sup condition required for the velocity-pressure finite element spaces

in order to have pressure stability. Therefore, we are going to use the sub-grid scale

stabilized formulation presented in [2].
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Hence, the finite element problem reads: Find ui+1
h ∈ Vh and pi+1 ∈ Qh such that:∫

Ω

vh ·
[
ui
h · ∇ui+1

h + gβ ϑi
]

dΩ +

∫
Ω

2∇vh : νi ε(ui+1
h ) dΩ−

∫
Ω

pi+1
h ∇ · vh dΩ

+

∫
Ω

τ P1 · R dΩ =

∫
Ω

vh · f dΩ +

∫
Γnv

vh · tdΓ (4.11a)

∫
Ω
qh∇ · ui+1

h dΩ +

∫
Ω
τ P2 · R dΩ = 0 (4.11b)

for all test functions vh ∈ V0,h and qh ∈ Qh, where

R = ui
h · ∇ui+1

h + gβ ϑi − 2∇ ·
[
νi ε(ui+1

h )
]

+∇pi+1 − f (4.12)

P1 = ui
h · ∇vh + 2∇ ·

[
νi ε(vh)

]
(4.13)

P2 = ∇qh (4.14)

τ =

[
4νi

h2
+

2|ui
h|
h

]−1

(4.15)

To obtain the algebraic version of the problem we need some definitions. Let npts

be the total number of nodes of the finite element mesh and let Na be the standard

finite element interpolation function associated to node a, where a = 1,...,npts.

The unknowns are interpolated as:

uh,l =

npts∑
a=1

NaUa
l (4.16a)

ph =

npts∑
a=1

NaP a (4.16b)

We use upper-case letters (i.e. Ua
l , P

a ) to denote the nodal value at node a of the

corresponding lower-case variable.
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The test functions are taken as:

vh,l = δklN
b, b = 1, ..., npts , k = 1, ..., nsd (4.17a)

qh = N b , b = 1, ..., npts (4.17b)

where δkl is the Kronecker delta, equal to 1 for k = l and 0 otherwise.

From hereafter, we will denote as a to the velocity in the previous linearization

iteration (ui) and as u to the velocity in the current linearization iteration (ui+1).

4.3 Node-Based Implementation

In this section, we are going to express the approximate problem in terms of solely

geometrical dependant integrals:∫
Ω

N bNa dΩ

∫
Ω

∂iN
b∂jN

a dΩ, i, j = 1, ..., nsd∫
Ω

N b∂jN
a dΩ, j = 1, ..., nsd∫

Ω

∂jN
bNa dΩ, j = 1, ..., nsd

(4.18)

for a, b = 1, ..., npts

With the integrals in (4.18) and taking vh,l = δklN
b and qh = N b, we can approxi-

mate each part of problem (4.11) in various forms.

Notice that we have not written integrals with derivatives higher than first order

because just linear elements are analyzed.

To tackle the problem, we are going to divide it in a convective part, diffusive part

and stabilization part. We are going to apply, with the corresponding modifications,

the approximations developed in chapters 2 and 3.

Let us consider the matrix form of the problem, the system of equations to solve

will be:[
C + L G

D 0

][
U

P

]
+

S1,U S1,P

S2,U S2,P

[U
P

]
=

[
F1

0

]
+

S1,F 0

S2,F 0

[F1

0

]
(4.19)
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where double underline means a matrix and single underline means a column vector.

C is the convection matrix, L the viscous matrix, S the stabilization matrices, D is the

divergence matrix and G is the gradient matrix.

We need to find expressions for the convection, viscous and stabilization matrices.

Divergence and gradient matrices do not represent any difficulty because the node-based

implementation is equivalent to the element-based.

To begin, let us define which part of the equation corresponds to the matrix repre-

sentation.

C −→
∫

Ω
vh ·

(
ah · ∇uh

)
dΩ

L −→
∫
Ω

2 ε(vh) : ν ε(uh) dΩ

G −→ −
∫
Ω

ph∇ · vh dΩ

D −→
∫

Ω
qh∇ · uh dΩ

S1,U −→
∫

Ω
τ [(ah · ∇)vh] · [(ah · ∇)uh] dΩ

S1,P −→
∫

Ω
τ [(ah · ∇)vh] · [∇ph] dΩ

S1,F −→
∫

Ω
τ [(ah ·∇)vh] · [f− gβϑh] dΩ

S2,U −→
∫

Ω
τ [∇qh] · [(ah · ∇)uh] dΩ

S2,P −→
∫

Ω
τ [∇qh] · [∇ph] dΩ

S2,F −→
∫

Ω
τ [∇qh] · [f− gβϑh] dΩ

Let us denote Lba
kl to the element in row b and column a of matrix L corresponding

to the k-th moment equation and l-th velocity component.

The viscous term is approximated according to the results obtained from chapter 2.

Taking vh = N bek with k fixed with any value from 1, ..., nsd we approximate the
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viscous term as:

Lba
kl =

νa + νb

2

[
δkl

nsd∑
i=1

∫
Ω

∂iN
b∂iN

a dΩ +

∫
Ω

∂lN
b∂kN

a dΩ

]
∀ b 6= a (4.20a)

Lbb
kl = −

npts∑
a6=b

Lba
kl ∀ k, l = 1, ..., nsd (4.20b)

We have proven in chapter 2 that this way of evaluation of the viscous term is

consistent and conservative. But this specific expression of the viscous term is not

totally symmetric (due to the symmetric velocity gradient) as it was in chapter 2, so

some more modifications will be required.

The convective term can be approximated in a similar way as we did in 3. With

the appropriate adaptations and taking vh = N bek we have:

Cba
kl = δkl

nsd∑
j=1

Aa
j

∫
Ω

N b∂jN
a dΩ (4.21a)

In chapter 3 we have proven that this evaluation of the convective term is consistent

and conservative.

As we are interested in symmetric forms of the stabilization terms on the main

diagonal to be able to fulfil both consistency and conservation at the same time, we are

going just to consider the cases when the stabilization parameter τ is evaluated as the

average of the values at nodal points a and b.

Assuming we are using just linear elements (P1 or Q1), taking vh = N bek and

qh = N b, the stabilization terms can be approximated as:

Sba
1,U,kl =

τa + τ b

2
δkl

nsd∑
i,j

Ab
iA

a
j

∫
Ω
∂iN

b∂jN
a dΩ (4.22a)

Sba
1,P,k =

τa + τ b

2

nsd∑
i

Ab
i

∫
Ω
∂iN

b∂kN
a dΩ (4.22b)

Sba
1,F,kl =

τa + τ b

2
δkl

nsd∑
i

Ab
i

∫
Ω
∂iN

bNa dΩ (4.22c)
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4.3 Node-Based Implementation

Sba
2,U,l =

τa + τ b

2

nsd∑
j

Aa
j

∫
Ω
∂lN

b∂jN
a dΩ (4.22d)

Sba
2,P =

τa + τ b

2

nsd∑
i

∫
Ω
∂iN

b∂iN
a dΩ (4.22e)

Sba
2,F,l =

τa + τ b

2

∫
Ω
∂lN

bNa dΩ (4.22f)

4.3.1 Consistency

Let us consider problem (4.11) without forcing term. Additionally, let us consider all

the boundary conditions are of Dirichlet type: u = el for any l = 1, ..., nsd. Therefore,

ΓN = ∅ ∧ ΓD = ∂Ω. Furthermore, let us assume pressure is zero everywhere in the

domain. In this situation the solution is constant and equal to ek in all nodal points.

This behaviour has to be reproduced exactly by the finite element solution because,

even with linear interpolation functions, the exact solution belongs to the finite element

space. Consequently, the following conditions have to hold:

npts∑
a

Cba
kl + Lba

kl + Sba
1,U,kl = 0 ∀ b = 1, ..., npts, ∀ k, l = 1, ...nsd (4.23a)

npts∑
a

Dba
l + Sba

2,U,l = 0 ∀ b = 1, ..., npts, ∀ l = 1, ...nsd (4.23b)

Summing over a, some of the terms are instantly zero. This is the case for Dba, Lba

(with consistency correction as presented in (4.20)), Cba (as demonstrated in chapter

3). Hence the conditions (4.23) convert in:

npts∑
a

Sba
1,U,kl = 0 ∀ b = 1, ..., npts, ∀ k, l = 1, ...nsd (4.24a)

npts∑
a

Sba
2,U,l = 0 ∀ b = 1, ..., npts, ∀ l = 1, ...nsd (4.24b)

Conditions (4.24) can be easily attained correcting the diagonal term as the sum of
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the off-diagonal terms. So, we have:

Sbb
1,U,kl = −

npts∑
a6=b

Sba
1,U,kl = 0 ∀ k, l = 1, ...nsd (4.25a)

Sbb
2,U,l = −

npts∑
a6=b

Sba
2,U,l = 0 ∀ l = 1, ...nsd (4.25b)

Now, let us consider problem (4.11) without forcing term. Additionally, let us

consider all the boundary conditions are of Dirichlet type: u = 1. Therefore, ΓN =

∅ ∧ ΓD = ∂Ω. Furthermore, let us assume that velocity is constant and equal to one

in each of its components everywhere in the domain. In this situation the pressure

solution is constant in all nodal points.

This behaviour has to be reproduced exactly by the finite element solution because,

even with linear interpolation functions, the exact solution belongs to the finite element

space. Assuming conditions (4.23) already hold, the following conditions have to hold:

npts∑
a

Gba
k + Sba

1,P,k = 0 ∀ b = 1, ..., npts, ∀ k = 1, ...nsd (4.26a)

npts∑
a

Sba
2,P = 0 ∀ b = 1, ..., npts (4.26b)

Summing over a, some of the terms are instantly zero. This is the case for Gba with

its corresponding contribution on the boundary. Hence conditions 4.26 convert in:

npts∑
a

Sba
1,P,k = 0 ∀ b = 1, ..., npts, ∀ k = 1, ...nsd (4.27a)

npts∑
a

Sba
2,P = 0 ∀ b = 1, ..., npts (4.27b)

Conditions (4.24) can be easily attained correcting the diagonal term as the sum of

the off-diagonal terms. So, we have:

Sbb
1,P,k = −

npts∑
a6=b

Sba
1,P,k = 0 ∀ b = 1, ..., npts, ∀ k = 1, ...nsd (4.28a)

Sbb
2,P = −

npts∑
a6=b

Sba
2,P = 0 ∀ b = 1, ..., npts (4.28b)
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Finally, we can not say anything about the stabilization contribution to the forcing

term because force is zero.

4.3.2 Conservation

For simplicity, let us consider the problem (4.11) with all boundary conditions of Neu-

mann type (case in which the solution would not be unique). Furthermore, suppose we

take the test functions vh, qh as constant. Hence, problem (4.11) imply:∫
∂Ω

(ρ0u)(u · n) dΓ =

∫
Ω

ρ0 gdΩ−
∫
Ω

ρ0∇pdΩ−
∫
Ω

ρ0 β g (ϑ− ϑ0) dΩ

+

∫
Ω

ρ0

[
2∇ · (νε(u))

]
dΩ (4.29a)

∫
∂Ω

ρ0u · ndΓ = 0 (4.29b)

which, in physical terms, represent linear momentum and mass conservation. This is

physically consistent.

However, equations (4.11) are not enforced for constant test functions vh, qh but

only for test functions of the form vh = N bek, qh = N b b = 1, ..., npoin, with k fixed.

Since the addition of all shape functions N b is 1, equations (4.29) can also be obtained

taking vh = N b in equation (4.11) and adding up over b.

As we have demonstrated in previous chapters, the non-stabilized part of the

edge-based approximations represent the conservation statements presented in (4.29).

Then, we are just going to focus on the stabilization part. Hence, in matrix form,

condition (4.29) can be expressed as:∑
b

∑
a

∑
l

[
Sba

1,U,klU
a
l + Sba

1,P,kP
a
]

=
∑
b

∑
a

∑
l

Sba
1,F,klF

a
l ∀ k = 1, ..., nsd

(4.30a)∑
b

∑
a

∑
l

[
Sba

2,U,lU
a
l + Sba

2,PP
a
]

=
∑
b

∑
a

∑
l

Sba
2,F,lF

a
l (4.30b)

in order to have global conservation.

Now, we have two options: enforcing (4.30) directly or splitting it to make it easier.

As element-based finite elements have this property too, we do not see it as over-

constraining the approximations but just as trying them to be as similar as the ones
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obtained from element-based finite element approximations. Then condition (4.30) will

become:∑
b

∑
a

∑
l

[
Sba

1,U,klU
a
l + Sba

1,P,kP
a
]

= 0 ∀ k = 1, ..., nsd (4.31a)∑
b

∑
a

∑
l

Sba
1,F,klF

a
l = 0 ∀ k = 1, ..., nsd (4.31b)

∑
b

∑
a

∑
l

[
Sba

2,U,lU
a
l + Sba

2,PP
a
]

= 0 (4.31c)∑
b

∑
a

∑
l

Sba
2,F,lF

a
l = 0 (4.31d)

As S1,U and S2,P are symmetric and because they were corrected for consistency,

the sum of them over b is zero. Hence condition (4.31) becomes:∑
b

∑
a

Sba
1,P,kP

a = 0 ∀ k = 1, ..., nsd (4.32a)∑
b

∑
a

∑
l

Sba
1,F,klF

a
l = 0 ∀ k = 1, ..., nsd (4.32b)∑

b

∑
a

∑
l

Sba
2,U,lU

a
l = 0 (4.32c)∑

b

∑
a

∑
l

Sba
2,F,lF

a
l = 0 (4.32d)

To avoid dealing with the sum over a because it involves the values of the unknowns,

we express condition (4.32) as:∑
b

Sba
1,P,k = 0 ∀ k = 1, ..., nsd (4.33a)∑

b

Sba
1,F,kl = 0 ∀ k, l = 1, ..., nsd (4.33b)∑

b

Sba
2,U,l = 0 ∀ l = 1, ..., nsd (4.33c)∑

b

Sba
2,F,l = 0 ∀ l = 1, ..., nsd (4.33d)

Again, condition (4.33) is not over-restrictive because element-based formulations

have this property too.

Notice that, even with consistency correction, condition (4.33) does not hold because

the matrices are neither symmetric nor skew-symmetric. Therefore something should

be done.
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Let us focus on Sba
1,P . We can interpolate p as we presented in (4.22b) and we will

require the consistency condition or we can interpolate ∇p and treat it as an external

force evaluated at the previous iteration. So, Sba
1,P will be calculated as:

Sba
1,P,kl = δkl

τa + τ b

2

nsd∑
i

Ab
i

∫
Ω
∂iN

bNa dΩ (4.34)

and corrected to ensure conservation:

Saa
1,P,kl = −

∑
b 6=a

Sba
1,P,kl ∀ a = 1, ..., npts, ∀ k = 1, ..., nsd (4.35)

As the gradients of the solution are undefined on the nodes because we are using

linear elements, we will use a standard least-square smoothing from the elemental

values. Denoting Gpai to the component i of the gradient of the pressure at node a

((∇p)ai ), we can obtain Gpai solving the following system of equations:

npts∑
a=1

(∫
Ω
N bNa

)
Gpal =

npts∑
a=1

(∫
Ω
N b∂lN

a

)
P a, b = 1, ..., npts (4.36)

Additionally, to avoid solving (4.36), because it is a big system of equations com-

pared with the final system of equations to solve, we are going to use a lumped mass

matrix and the system solves explicitly.

Now, let us focus on Sba
2,U . As we pointed out before, the matrix is not purely sym-

metric or purely skew-symmetric. Therefore consistency does not implies conservation.

We will follow a similar approach as we did with Sba
1,P . The part (a · ∇)u will be con-

sidered as a force term. Nodal values will be obtained using an analogous procedure as

we presented in (4.36). Hence, it will be calculated as:

Sba
2,U,l =

τa + τ b

2

∫
Ω
∂lN

bNa dΩ, ∀ b 6= a (4.37)

with the corresponding conservation correction:

Saa
2,U,l = −

∑
b6=a

Sba
2,U,l ∀ a = 1, ..., npts, ∀ k = l, ..., nsd (4.38)

For the viscous matrix L we have followed a similar procedure in order to satisfy

the consistency and conservation conditions because it is not strictly symmetric.

53



4. NAVIER-STOKES EQUATIONS

Now, let us have a look to the stabilization contribution to the forcing term: S1,F

and S2,F . In order to satisfy condition (4.33), we are going do a correction: the off

diagonal terms will be calculated as stated before and the diagonal terms will be cal-

culated as the negative of the sum of the off-diagonal terms in the same column. So:

Saa
1,F,kl = −

∑
b 6=a

Sba
1,F,kl ∀ a = 1, ..., npts, ∀ k, l = 1, ..., nsd (4.39a)

Saa
2,F,l = −

∑
b 6=a

Sba
2,F,l ∀ a = 1, ..., npts, ∀ l = 1, ..., nsd (4.39b)

In the following section we are going to test the approximation proposed in order

to determine its convergence properties.

4.4 Convergence Test

In order to produce a convergence test, we need to important elements: a reference

norm and a model problem solved over different meshes.

For simplicity, the working norm chosen is the L2 norm. We could have chosen

a norm associated to the problem and stabilization method used, but as we get good

results in that norm, we stick to it. To make programming simpler, the L2-norm error

(normalized) is computed as:

E =

[npts∑
a=1

nsd∑
i=1

(Ua
i − ui (xa))2

]1/2 [npts∑
a=1

nsd∑
i=1

ui(x
a)2

]−1/2

(4.40)

where u(xa) is the exact solution at xa.

In order to create the convergence plots of the proposed nodal approximations, an

specific problem with known solution is needed. We have selected a two dimensional

steady-state problem. Variable viscosity is not our main target because it is not present

in the stabilization terms for linear elements, so we consider constant viscosity. Addi-

tionally, as we are interested in convection dominated flows, we take a small viscosity,

then ν = 0.001. We take Ω as the unit square ([0,1]×[0,1]) and the force term in a way

such that u = (f(x)g′(y),−f ′(x)g(y)) and p = 0 is solution of equation (4.1) taking

ρ0 = 1, f(x) = x2(1− x)2 and g(y) = y2(1− y)2.
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We have used four finite element meshes discretized with triangles with uniform

sizes of h = 0.2, 0.10, 0.05 and 0.01. Meshes are completely unstructured.

In table 4.1 we can see the values obtained and in figure 4.1 we can see the results

plotted.

h 0.20 0.10 0.05 0.01

Conservative 0.17405 0.04372 0.010494 0.00048

Only Consistent 0.14788 0.03601 0.010269 0.00048

Table 4.1: Navier Stokes Convergence Test (L2-Error of the velocity)

Figure 4.1: Navier Stokes Convergence Test

As can be seen in figure 4.1, the approximations proposed work fine and are consis-

tent and conservative. The convergence rate in L2-norm for linear elements (p1 or q1)

is approximately h1.93.

Just to conclude, let us write the final form of the final consistent and conservative

55



4. NAVIER-STOKES EQUATIONS

approximation proposed:[
C + L G

D 0

][
U

P

]
+

S1,U 0

0 S2,P

[U
P

]
=

[
F1

0

]
+

S1,F 0

S2,F 0

[F1

0

]

−

[
Loff S1,P

0 0

][
∇u

∇p

]
−

 0 0

S2,U 0

[ (a · ∇)u

0

]
(4.41)

Lba
kl = δkl

νa + νb

2

[
nsd∑
i=1

∫
Ω

∂iN
b∂iN

a dΩ +

∫
Ω

∂kN
b∂lN

a dΩ

]
(4.42a)

Lba
off,kl = (1− δkl)

νa + νb

2

∫
Ω

∂kN
bNa dΩ (4.42b)

Cba
kl = δkl

nsd∑
j=1

Aa
j

∫
Ω

N b∂jN
a dΩ (4.42c)

Sba
1,U,kl = δkl

τa + τ b

2

nsd∑
i,j

Ab
iA

a
j

∫
Ω
∂iN

b∂jN
a dΩ ∀ a 6= b (4.42d)

Sbb
1,U,kl = −

npts∑
a6=b

Sba
1,U,kl (4.42e)

Sba
2,P =

τa + τ b

2

nsd∑
i

∫
Ω
∂iN

b∂iN
a dΩ ∀ a 6= b (4.42f)

Sbb
2,P = −

npts∑
a6=b

Sba
2,P (4.42g)

Sba
1,P,kl = δkl

τa + τ b

2

nsd∑
i

Ab
i

∫
Ω
∂iN

bNa dΩ ∀ b 6= a (4.42h)

Saa
1,P,kl = −

npts∑
b 6=a

Sba
1,P,kl (4.42i)

Sba
2,U,l =

τa + τ b

2

∫
Ω
∂lN

bNa dΩ ∀ b 6= a (4.42j)

Saa
2,U,l = −

npts∑
b 6=a

Sba
2,U,l (4.42k)
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Sba
1,F,kl = δkl

τa + τ b

2

nsd∑
i

Ab
i

∫
Ω
∂iN

bNa dΩ ∀ b 6= a (4.42l)

Saa
1,F,kl = −

npts∑
b 6=a

Sba
1,F,kl (4.42m)

Sba
2,F,l =

τa + τ b

2

∫
Ω
∂lN

bNa dΩ ∀ b 6= a (4.42n)

Saa
2,F,l = −

npts∑
b 6=a

Sba
2,F,l (4.42o)

Notice that, for a given node b, the evaluation of the matrices does not require to

loop over all a nodes, it just requires to loop over the a nodes connected to node b.
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Chapter 5

Applications

5.1 Laminar Flow over a Forward-facing step of a Non-

Newtonian fluid

5.1.1 Problem Description

The problem consists in a 4:1 plane extrusion problem. We are going to use the sym-

metry of the problem, so we solve just half of it. The computational domain chosen

is [0, 16]× [0, 4] ∪ [16, 32]× [3, 4]. Fluid enters from the left (see figure 5.1) and leaves

through the right.

Figure 5.1: Example 1 Domain

The fluid is non-newtonian, its viscosity is not constant a varies according to the

power law described in (4.4). The values of the physical constants used for this problem

are: K0 = 106, n = 0.4, ρ0 = 1200. Since for this value of n viscosity varies considerably

and viscosity tends to infinity when I2(ε) tends to zero, a cut-off value of µc = 1012

has been used.
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5.1.2 Boundary Conditions

Fluid enters with a prescribed velocity (f(y), 0), where f(y) is a parabolic profile with

maximum value of 1 at y = 4 and minimum value of 0 at y = 0. On the walls, the non-

slip boundary condition is prescribed u = (0, 0). On the symmetry line, velocity is left

free in the x-direction and velocity is prescribed as zero in the y-direction. Finally, the

outlet is left free in the x-direction and velocity is prescribed as zero in the y-direction.

In figure 5.2 you can see clearly the boundary conditions.

Figure 5.2: Example 1 Boundary Conditions

5.1.3 Meshing

The domain was discretized using 2016 linear quadrilaterals (q1) and 2119 nodal points.

The mesh can be seen in 5.3

Figure 5.3: Example 1 Mesh

5.1.4 Results

In figure 5.4 you can see the velocity magnitude contour fill. In figure 5.5 you can see

the pressure contour fill. In figure 5.6 you can see the streamlines.

As can be seen in the results, the mesh seems too coarse in some zones and the

solution is not captured very well. Despite of that, the mass flow entering the domain

is the same going out of it, so mass is conserved.
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Figure 5.4: Example 1 velocity contour fill

Figure 5.5: Example 1 pressure contour fill

Figure 5.6: Example 1 streamlines
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Just to finish, we have solved the same problem with a finer mesh of 25000 quadri-

laterals and 25401 nodal points and the pressure obtained is shown in figure 5.7

Figure 5.7: Example 1 Pressure Contour Fill with finer mesh

Now it can be seen how the results are much better. We do not show velocity

contour or streamlines because are very similar to the ones shown before.
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5.2 Thermally coupled flow in a cavity

5.2.1 Problem Description

The problem consists in fluid flow in a square cavity due to thermal effects (natural

convection). The computational domain chosen is [0, 1] × [0, 1]. Fluid is inside the

cavity and due to the temperature gradient starts to move.

The fluid has constant viscosity µ. Physical properties have been chosen in a way to

have a unique and stationary solution. The fluid flow problem and the thermal problem

are coupled through the Boussinesq assumption.

Let us denote as L to the characteristic lenght of the problem and as Gϑ to the

characteristic temperature gradient. Additionally, let us define the Grashof number Gr

and Prandtl number Pr:

Gr =
β|g|L3Gϑ

ν
Pr =

ρ0c0ν

k

Where β is the thermal expansion coefficient, g is the gravity, ν is the kinematic

viscosity, ρ is the density and c is the specific heat capacity.

Taking L = 1 and Gϑ = 1, physical properties have been chosen in order to have

Pr = 1 and Gr = 1(10)3. For this combination of Prandtl and Grashof numbers there

is a stable stationary solution, so we can solve the problem in steady-state mode.

5.2.2 Boundary Conditions

Here we need to specify two sets of boundary conditions: Navier-Stokes boundary con-

ditions and thermal boundary conditions. For Navier-Stokes, the non-slip boundary

condition has been chosen on all the boundary. For the temperature problem, temper-

ature is prescribed as 1 on x = 0 and 0 on x = 1. Top and bottom walls have Neumann

boundaries with h = 0 (perfect thermal insulation). In figure 5.8 and 5.9 you can see

the boundary conditions.

5.2.3 Meshing

The domain was discretized using 2704 linear quadrilaterals (q1) and 2809 nodal points.

Mesh was refined near the boundaries to capture the velocity gradients appearing there.

The mesh can be seen in figure 5.10.
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Figure 5.8: Example 2 Velocity Boundary Conditions

Figure 5.9: Example 2 Temperature Boundary Conditions
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5.2 Thermally coupled flow in a cavity

Figure 5.10: Example 2 Mesh

5.2.4 Results

In figure 5.11 you can see the velocity magnitude contour fill. In figure 5.12 you can

see the pressure contour fill. In figure 5.13 you can see the streamlines. In figure 5.14

you can see the temperature contour fill.

As can be seen in the results, there are no velocity or pressure instabilities. Addition-

ally, the results obtained are very similar to the ones obtained using an element-based

finite element code.
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Figure 5.11: Example 2 Velocity Contour Fill

Figure 5.12: Example 2 Pressure Contour Fill
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5.2 Thermally coupled flow in a cavity

Figure 5.13: Example 2 Streamlines

Figure 5.14: Example 2 Temperature Contour Fill
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5.3 Flow over a cylinder

5.3.1 Problem Description

The problem consists in a fluid around an infinite cylinder. The computational domain

chosen is [0, 16]× [0, 8]\D, where D is the cylinder diameter taken as 1. The fluid has

constant viscosity µ.

5.3.2 Boundary Conditions

At x = 0 a prescribed velocity of (1, 0) is imposed. On the cylinder surface, the non-slip

boundary condition is prescribed u = (0, 0). On y = 0 and y = 8 velocity is left free in

the x-direction and velocity is prescribed as zero in the y-direction. Finally, the outlet

(x = 16) is left free in the x-direction and y-direction. In figure 5.15 you can see the

boundary conditions.

Figure 5.15: Example 3 Boundary Conditions

5.3.3 Meshing

The domain was discretized using 7182 linear triangles (p1) and 3844 nodal points. The

mesh was refined near the cylinder to capture the velocity gradients appearing there.

The mesh can be seen in figure 5.16.

68



5.3 Flow over a cylinder

Figure 5.16: Example 3 Mesh

5.3.4 Results

In figure 5.17 we can see the streamlines at given time step. There it can be seen the

characteristic vortex shedding.

Figure 5.17: Example 3 Streamlines

The period of the oscillations found was 6.1 time units. In the same case, [2]

reported a period of 5.9 time units.

In figures 5.18 and 5.19 we can see a velocity and pressure contours at the same
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5. APPLICATIONS

time step as figure 5.17

Figure 5.18: Example 3 Velocity Contour Fill

Figure 5.19: Example 3 Pressure Contour Fill
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5.4 3D Lid Driven Cavity Flow

5.4 3D Lid Driven Cavity Flow

5.4.1 Problem Description

Here a classical 3D benchmark problem is addressed. It consists in a fluid enclosed in

a cavity of cross sectional aspect ratio Γ = 1 and span aspect ratio Λ = 1. The domain

chosen is [0, L]× [0, L]× [0, L], L = 1.

The fluid into consideration has constant viscosity µ = 0.01 and constant density

ρ0 = 1.

The Reynolds number is defined as:

Re =
ρ0U0L

µ
(5.1)

where U0 is the characteristic velocity and L is the characteristic length. We are going

to show the results for a unsteady solution at Re = 100.

5.4.2 Boundary Conditions

Fluid motion is induced by a prescribed movement of the wall y = L. All the other

boundary surfaces have a prescribed velocity u = (0, 0, 0). In figure 5.20 you can see

the boundary conditions.

The velocity boundary condition U was defined in the same way as [4] did. They

define the velocity U as:

U = U0

(
1−

(x
L

)18
)2(

1−
( z
L

)18
)2

(5.2)

to avoid discontinuity on the boundary conditions.

5.4.3 Meshing

The domain was discretized using linear hexahedral elements (8-node elements) using

Nx = 24 divisions in the x-direction, Ny = 24 divisions in the y-direction and Nz = 16

divisions in the z-direction.

The mesh obtained can be seen in figure 5.21
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5. APPLICATIONS

Figure 5.20: Example 4 Boundary Conditions

Figure 5.21: Example 4 Mesh
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5.4 3D Lid Driven Cavity Flow

5.4.4 Results

In figure 5.22 we can see a y-velocity profile along a line compared with the results

obtained from an element-based implementation. In figure 5.23 we can see a x-velocity

profile along a line compared with the results obtained from an element-based imple-

mentation.

Figure 5.22: Example 4 y-velocity on a line passing trough points (0.0,0.5,0.5) and

(1.0,0.5,0.5)

As can be seen in figures 5.22 and 5.23 the proposed approximations produce results

very similar to the element-based results.
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5. APPLICATIONS

Figure 5.23: Example 4 x-velocity on a line passing trough points (0.5,0.00,0.5) and

(0.5,1.0,0.5)
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Chapter 6

Conclusions

6.1 Conclusions

An exactly global-conservative edge-based approximation was implemented for the dif-

fusion equation. The developments were made for linear elements ( p1 and q1). It

handles very well variable diffusivity. Additionally, it converges with optimal rate for

linear elements in its respective norm.

Additionally, the convection-diffusion equation was considered. It is stabilized using

the sub-grid scale concept. The edge-based finite element method proposed is exactly

conservative (globally) and has optimal convergence rate for linear elements in the

respective working norm.

Finally, Navier-Stokes equations were considered. The stabilized formulation allows

using an equal velocity-pressure interpolation, so it suits very well the edge-based im-

plementation. An exactly global conservative implementation was proposed: conserves

mass and conserves linear momentum. Several numerical examples were solved with the

current implementation to illustrate its capabilities and to verify it works as expected.

Notice that the edge-based implementation proposed is globally conservative even

for coarse meshes. Coarse meshes are not practical because when we solve a problem,

we want a reasonable accuracy in each point of the domain (and we require a fine

enough mesh as a consequence). Anyway, we consider that being globally conservative

is a plus because the equations solved are conservation statements.

Furthermore, observe that the consistency/conservation corrections were made as
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simple as possible to avoid adding too much computational cost to accomplish conser-

vation.

6.2 Future Research

For the Navier-Stokes equations we used a very simple linearization method: Picard

Method. Newton-Rapson linearization method can be implemented to improve the

non-linear convergence.

The approach followed to develop the conservative edge-based implementations can

be extended to quadratic elements (p2 or q2) or even higher order elements. Special

attention should be put in the second-order derivatives that will appear when using

higher order elements.

Additionally, improved corrections might be developed to ensure consistency not

only for a constant solution, but for a linear solution.
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