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ABSTRACT

Simplification of Surface Mesh Using Hausdorff Distance

Sébastien Terrana

In this Master Thesis, we implement and and improve a new method for surface mesh simplification
based on the utilisation of the Hausdorff distance introduced by the article {(Borouchaki and Frey,
2005). The objective is to reduce the number of triangles of an initial surface mesh while preserving
the geometry represented by the initial mesh as well as the shape quality of the resulting mesh. Two
tolerance parameters with respect to the reference mesh will be introduced in order to preserve the
geometry of the surface throughout the simplification process. The reference mesh is then simplified
and optimized so that the resulting mesh respects these tolerances parameters.

The algorithm of this simplification method will be described first, then we will highlight the main
improvements that we add to the initial method of (Borouchaki and Frey, 2005). Because we im-
plemented this method using two diferents langages, we will discuss some problem raised by that
double implementation. Several examples of surface meshes will be finaly provided regarding different

application areas in order to assess the efliciency of our simplification method.
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Chapter 1

Problem statement

1.1 Importance of mesh coarsening

Surfaces can be defined essentially in three different ways for geometric modeling of objects de-
pending on the application foreseen: computer graphics, finite element computations, and physical
iso-surfaces.

The first way, mostly used in CAD modelers, consists in defining a set of conformal parametric
patches, a complex object then requires a large number of such patches to be accurately described.
In most cases, a patch dependent algorithm will preserve the contours of each patch. For finite
element computation however, it is often desirable to eliminate redundant information as well as
small geometric features of the object, either from the CAD model or directly from the mesh.

The second way consists in defining the surface via a triangulation. Then a mesh is created using a
reconstruction method based on a set of sampled surface points (e.g. provided by sensing devices)
or on volumetric data (e.g. provided by scanning devices). Obviously, the accurate definition of
a complex object requires a high-accuracy data acquisition, thus leading to an unnecessary large
mumber of mesh elements. Typically modern data acquisition techniques lead to meshes containing
of about several millions of elements. Finally, the third way consist in getting a mesh from a previous
computation of an iso-surface obtained after a langrangian computation. Indeed, an iso-surface is
computed from cartesian grid cutted according to the concentrations of the neighbouring cells. In
that case, the elements of that iso-surface may be very flat and have a poor quality, according to
the angle the interface meets the grid. Moreover, the previous step may have needed a very impor-
tant number of elements, which is no longer necessary for the the modelization of the surface itself,

therefore a coarsening is needed.



2 PROBLEM STATEMENT

1.2 Main challenges

As stated above, it is usually desirable to significantly reduce the complexity of the discrete surface
representation (i.e., the mesh size) while preserving, as much as possible, the geometry of the object.
In other words, the challenge is to eliminate the geometric redundancies while not altering the
geometric properties of the model.

Modern mesh simplification methods attempt to answer these two requirements. Actually, they
are mostly based on the optimization of geometric criteria. The applications potentially concerned
range from computer graphic to numerical simulations (e.g. finite element computations), including
sclentific visualisation, data compression, etc...

A gsurface mesh (where element nodes are considered to belong to the surface) is considered as

geometrically suitable if the two following conditions are satisfied:

e all mesh elements should be close to the surface. That proximity property allows to bound
the gap between the elements and the surface. This gap is the measure of the largest distance

between any point of an element and the surface.

e each mesh element should be close to the tangent plane of the surface at its nodes. That
second smoothness property ensures that the surface is locally C! continuous. Hence, the

angular deviation between the element and the tangent plane at its vertices shall be bounded.

Moreover we can state what is an optimal surface mesh. It is a mesh such that the elements are

close to regular or equilateral (which is an essential requisite for most numerical applications).

1.3 A new approach of mesh coarsening

The particularity of this approach is that we do not coarse a mesh with the knowledge of any un-
derlying analytic geometry. We just know the initial mesh and we try to coarse it without having
idea of the exact geometry, and then witout having any idea of how far we can be from the exact
geometry during the collapse process.

This is actually an important difference, with the traditional approach because it is usually very
easy to define a distance or a measurement from a mesh to an analytical geometry. Indeed once
the analytical geometry is known, the distance from the mesh’s nodes to the geometry is known,
as the difference between the exact normal at one point and the normal of the neighbouring, then
a measurement of the difference between the 2 configurations can be established. This traditionnal
approach has Been widely developped by (Frey and Borouchaki, 1997) and as a part of the mesh
optimization process in the article (Hoppe et al., 1993).

It become more complicated on our situation when the analytical geometry is unknown. How to

define and measure these differences? Moreover, this measurements have to be able to capture the



1.4 General scheme of the simplification method

defects of any unwanted coarsed mesh (for exemple spurious variations produced by the collapse).
Then how these deffects can be measured?

To answer these questions, we will use for our Master Thesis the solution presented by the pa-
per (Borouchaki and Frey, 2005) as a theoretical basis for the implementation of a mesh simplifica-
tion algorithm. The main idea of H. Borouchaki and P. Frey is that the Hausdorff distance can be
used as a way to measure and control the evolution of the mesh during the simplification process.
The Hausdorff distance is a pure geometrical way of controling the degeneration of the mesh. Several
methods quite fast has been developped using geometric controls, for instance (Hamann, 1994) uses

polynomials approximations neighbourhood of the triangles suppressed.

1.4 General scheme of the simplification method

In this thesis, we present a new mesh simplification method based on the discrete evaluation of the
Hausdorff distance between two meshes, notably inspired by the ideas developed in (Cohen et al.,
1996) and in {Borouchaki and Frey, 2005). Schematically, it consists in three stages. At first, a
global tolerance envelope is defined around the surface as well as a local tolerance cone centered at
each node of the reference surface mesh. Then, the edges of the initial surface mesh are iteratively
analyzed and eventually removed if the resulting elements do not violate the tolerance requirements.
Actually, the tolerance areas are introduced to enforce the proximity and the smoothness properties
introduced hercabove. Finally, after each node or edge removal operation, the current mesh quality
is optimized with respect to the element shape measure using edge flipping and point relocation

procedures, provided the geometric accuracy is preserved.



COCO(C

COCOCOQQOCCOCOOC0




Chapter 2

Description of the method

In ths part we will assume (without any lack of generality) that the initial reference mesh is only
defined by the list of its nodes’ coordinates and the list of its triangular elements. The mesh sim-
plification procedure will now be described as it was exposed by (Borouchaki and Frey, 2005) in the
case of smooth surfaces (i.e. with a sufficient geometric continuity order). In particular, the general
scheme of the method is explained in details and the extension to the case of surfaces presenting

geometric non-smooth (first spatial derivatives discontinuous) will be discussed in the chapter 3.

2.1 Control parameters

2.1.1 Importance of the control parameters

Before introducing the method itself, it is quite important to define the parameters used by our
method. The proposed method enables to obtain a simplified mesh, associated with a given set of
control parameters that allows to quantify, on the one hand, the desired level of geometric approx-
imation and, on the other hand, the allowable mesh quality degradation. In order to control the
progressive coarsening of the mesh, and in order to allow the creation of bigger clements, three main

control parameters will be used:
e the authorized Hausdorff distance &
e the angle of tolerance cone at each of the nodes
e the authorized degradation of the qualities of the triangles 3

The basic idea of the theory developped by P. Frey and H. Borouchaki is that the elements can be
collapsed as long as the suppressions satisfy the three control parameters. The parameters (9, 8)

usually are increased step by step while 8 remains constant.



6 DESCRIPTION OF THE METHOD

2.1.2 Mathematical definiton of the Hausdorff distance

As explained in the previous section, the control of the simplification process should rely on a local
tolerance property about the prozimity between the current simplified mesh and the reference mesh.
The main problem is then how to define a distance between two meshes. And the clever answer
given by (Borouchaki and Frey, 2005) is to use the Hausdorfl distance to evaluate that distance.
To introduce this new distance, let us first recall the definition of a distance d(X, F') from a point X
in R? to a closed bounded set F' in R :

d(X,F) = inf d(X.Y) (2.1)

where d(.,.) denotes the usual Euclidean distance. Let F; and F be two closed bounded sets in R®
and let denote p(F}, F2) the quantity:

p(Fl1F2) = sup d(X: FQ)
Xemn

then, the Hausdorff distance dy (Fy, F2) between Fy and F» will be defined as:
du(F1, Fp) = max (p(F1, Fa), p(Fa, F1)) (2.2)

This distance is especially designed for set of points, which is a more basic structure than a real
mesh, but we will see later that this distance is actually perfectly relevant for meshes as well.

Once this distance is defined, a global tolerance region can be defined around the reference surface
mesh 77 at a given distance § on both sides of the reference surface. Thus, giving a tolerance
distance § is geometrically like giving a tolerance layer (i.e. an enveloppe) of width 2§ around the
initial surface and centered on that surface. This distance 4 can be expressed in percentage of the
minimal bounding box size containing the initial mesh.

Now we can state that each triangle K resulting from any mesh modification of the reference mesh

Zf must belong to that proximity envelope, that is expressed by the following formula :

dy(K, ™) < § (2.3)

This statement makes the parameter § a control parameter of the proximity between .7 and the
current modified mesh .

We shall notice that the exact computation of the Hausdorff distance dp(K, 77f); is extremely
costly. Indeed, the Hausdorff distance needs the computations of all the distances between the nodes
of K and all the nodes of the mesh Zf, which is very expensive. We will see in the section 2.4 that

a very cheap local approximation (actually an upper bound) of this quantity can be computed.
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2.1 Control parameters

The figure 2.1 is an attempt to visualize geometrically the Hausdorff distance. The figure (a) repre-
sents what would be the Hausdorff distance dg (M1, M2) between two simple meshes : M and Mo,
One can see that both meshes are quite flat and parallel, but M> has something like a peak. The
maximum distance between the two meshes will be then the distance between a node on the peak of
M, and its closest node on the mesh M. The figure (b) represents the Hausdorff tolerance layer of

thickness 24 around a mesh. Note that the layer is of course centered on that mesh.

Figure 2.1: (a) is a representation of the Hausdorff distance between two meshes and (b) is a
representation of the tolerance layer around an initial mesh.

2.1.3 Advantages and drawbacks of the Hausdorff distance

The use of a method using the Hausdorff distance is particularly appropriated to the mesh coarsening.
Indeed, the Hausdorff distance can be computed iteratively quite easily, which allows the users to
follow the mesh degeneration during the process and to bound the coarsed mesh between a layer
of thickness 26 centered on the initial mesh. Nevertheless, the Hausdorff enveloppe is unable to
prevent our algorithm to produce some crappy situation with the elements placed like stairs. Indeed,
the HausdorfT criterion is a pure distance mesure, and it does not impose any constraint on the
orientation of the elements, which then can be completely discontinuous. This dificulty is illustrated
by figure 2.2. On this 1D-mesh example, the initial configuration on the left hand side is drawn with
the Hausdorff envelop. On the middle, a mesh collapsed (and relocalized) whith elements inside the
HausdorfT layer and with some smoothness for the direction of the elements. On the right hand side,
another mesh collapsed also inside the Hausdorff layer but with irregularities in the direction of the
elements. This last mesh is, obviously, unacceptable, but it satisfies the Hausdorff criterion. This
leads to the necessity of another criterion on controlling the orientation of the elements of the mesh.

This control is the tolerance angle 8 described in the following section.
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(@) (b) (c)

Figure 2.2: (a) Mesh before collapse; (b) a smooth collapsed mesh; (¢) a sharp collapsed mesh.

2.1.4 Tolerance angle

The angular tolerance is specially designed to enforce the smoothness, or the reqularity property of
the mesh. Geometrically, this tolerance angle can be represented by local cones centered at each
node of the mesh and with an aperture # as drawn in figure 2.1.4. The normals of the nodes, called
pseudo-normals are computed as described in section 2.4.4 from the normals of the adjacent triangles.
That pseudo-normal is computed in the initial configuration, and defines the principal axis of this

cone. The aperture angle # of that cone is given by the user.

npsw.'do] n

n psendol

n pseido?

Figure 2.3: Tolerance cones around the pseudo-normals. The normals of the triangles are represented
in blue.

The pseudo-normal represents the normal of the geometry at the considered node, and therefore this
is a representation of the tangent plane of the geometry at that node. This angular control ensures
that the modified triangles remain close to the tangent planes at each of its three vertices. The

mathematical expression of that constraint on all the triangles X of the mesh is:

| (Npseudo—k(K),n(K)) > cosf  Vk (2.4)




2.1 Control parameters

Where n(K) denotes the unit normal to triangle K (drawn in blue on the figure) and npseudo—k(K)
denotes the pseudo-normal to the surface at the k™ node of K. ({.,.) is the standard scalar product

in R3).

2.1.5 Authorized degradation

The control parameter § which controls the authorized degradation of the mesh’s triangles is not
a pure geometrical control of the modified mesh unlike & and 8 are. If is more a parameter that
controls the shape quality of the triangles, independently from the geometry of the initial mesh.
The expression of quality ¢(.) choosen in this thesis is a monotonous shape quality measure whose

expression, for a triangle K is given by:

LK) (2.5)

WE) = e B (o))

With S(XK) being the measure of the surface of K, e(K) is an edge of K, I(e(K)) is the euclidean
length of edge e(K) and ¢ = 44/3 is a coefficient designed to have a quality equal to one (resp. zero)
for an equilateral (resp. flat) triangle. With this mesure of the quality, we will have g(K) € [0;1]
with the maximum obtained for an equilateral confugation. Figure 2.1.5 represents some examples

of triangular shapes and the quality related.

Figure 2.4: From left to right, the related qualities are g =1, ¢ =0.7, ¢ = 0.5, ¢ = 0.2 and ¢ = 0.1

The idea of controling the authorized degradation is that the new triangles created or modified
during the modification of the mesh should keep a quite good quality compared too the triangles

of the reference mesh K,.r. That can be translated by the condition on the quality of the newly

created triangle g(Kpew):
G(Knew) < JBQ(KTEJ") VK pew (26)

This condition will be implemented and developped with more details by the section 2.4.2.
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2.1.6 Tolerance incrementation

To summarize, the two tolerance parameters § and 8, define two tolerance regions (cone and layer)
which allow to control the prozimity of the surfaces between the initial mesh and the simplified
mesh as well as to ensure the geometric regularity (or smoothness) of the resulting mesh. The last
tolerance parameter 3 keeps the guality in a good shape.

Thus, the nodes are suppressed as long as the two first conditions on the mesh 2.3 and 2.4 are
satisfied. That means that, any triangle K resulting from the modification of 7" must comply

with the two following relations throughout all the modifications:

{ dg(K, T <5 @7

{ng(K),n(K)) > cosd Yk

With ng(K) is the light notation for the pseudo-normal npseudor computed at the node & of the
triangle K. ((.,.) is the usual standard scalar product in R3).

The suppression/modification of the mesh continues as long as the triangles can be suppressed while
respecting the two precedent conditions. Once the modifications can no longer occur, the tolerances
are relaxed and the control parameters increase : § becomes § + Ad and # becomes § + Af. A new
step of suppression and modification occurs and then the tolerance parameters are incremented again
ete... until the maximum values 6,42 and O, are reached.

Now we have the main idea that constitutes the skeleton of the algorithm of our programm which is

presented in the following section.

2.2 Overview of the general algorithm

2.2.1 General algorithm

From a practical point of view, we consider a relaxation of the first two parameters and we carry out
the mesh modifications in an iterative manner. The mesh simplification algorithm can be described
as following;:

The proposed method mainly consists in iteratively removing and optimizing all mesh edges until
the modifications can no longer occur. To this end, two local mesh modification operations are
involved: the node identification (the two endpoints of an edge are merged together) and the edge
flip. The first procedure, while simple to describe, is rather efficient to carry out on mesh edges, as
the two properties (i.e., proximity and regularity) can be explicitly checked a priori, without actually
doing the modification on the mesh structure. During the procedure of removal, a mesh edge is
removed and a new mesh (known a priori) is locally constructed. The operation is carried out if, on

the one hand, the new mesh preserves the geometry of the surface and, on the other hand, if the
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Algorithm 2.1 Global Algorithm of the method

1: pI'OCEdu.re Algorithm(ﬁuémnm:ﬁm.n.mzN‘iter)

2 Set consistancy in the orientation of all the triangles of .7t > Pretreatment
3 Get boundary nodes and sharp nodes. > Pretreatment
4: Edge swap and node relocation. > Pretreatment
5: Set A = Smaz/Niter and Al = 000 /Niger. Set § = Ad and 8 = Af.

6 for i = 1 to Nje, do B Nt is choosen by the user
7 while Elements of . are suppressed do

8 if the geometry (4, 0) and the degradation 3 are preserved then

9 Remove and optimize all edges in .7

10: end if

11: Optimize the edges using the edge swap.
12: end while

13: if the geometry (4, 0) is preserved then

14: Relocate the nodes of &

15: end if

16: Increment § = & + Ad and § =0 + A

17 end for
18: end procedure

shape quality of the mesh elements is not too much degraded. When all the mesh edges have been
removed, the second procedure (edge swap) is checked with each mesh edge and eventually applied
if the mesh quality is improved. These steps (edge collapse and edge swap) are finally followed by a
node relocation procedure to optimize the elements shape quality.

The user gives only the parameters 6,42, &maz, 5 and the number of iterations Nje, to the program.

Then at each iteration the tolerance parameters ¢ and @ are incremented (line 16) until they reach

5’”’!,(11: a“nd Hmam

2.2.2 Order of the operations

Even if it is not formally required, it is very usefull to sort all the edges according to their quality so
that the worst edges, in term of quality are deleted first. Note that the gquality of an edge is simply
given by the minimum quality of the two triangles sharing that edge, because an edge itself cannot
have a quality shape.

The edge removal (or edge suppression) is made first. During that part of the algorithm, the quality
of the triangles surrounding the suppressed edges are very deteriorated. The edge swap and the
node relocation are made after that step of suppression in order to finally increase the quality shape.
We have choosed to perform the collapse and the swap separately (the swap start once the collapse
procedure is finished) and not at the same time as it is suggested by (Borouchaki and Frey, 2005).
Indeed, if the two operations are performed simultaneously, the computational cost is decreased but

then some swap that would be necessary are not performed because they are not in the scope of the

local operation of collapse.
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2.3 Edge collapse

The Edge Collapse procedure is the key part of the Algorithm because in this part is done why the
whole program is made for: suppressing edges. But here is also the most sensitive part because
the removable edges have to be choosen carefully in order to keep the mesh as close to the initial

geometry as possible.

2.3.1 Overview of the edge collapse principles

In this section, we will deal only with smooth surfaces (non-smooth geometry will be treated in
section 3.2), i.e a surface such that the tangent plane at each point is continuous. Typically, at each
point of the surface, an unique normal vector is defined, that characterizes the tangent plane to the
surface at this point. Let first consider an initial reference mesh 7 of such a surface. We are going

to simplify 77 using the algorithm defined above.

- 20 B(P)

Figure 2.5: On the left, the balls of triangles #(P) and #(Q) before the collapse and on the right,
the region %(Q) after P collapsed.

Let us follow the local modifications of the mesh after en edge collapse with figure 2.3.1. Let PQ
be an edge in the modified mesh J between two nodes P and Q. Let #B(P) = (Jg-p K be the
ball of triangles K sharing the vertex P. The collapse of P towards ) (that means the removal of
the edge PQ) consists in replacing the triangles | J;,5p K connected to P by a new set of triangles
UK'aQ K’ defining the new region %£(Q) around the node ). By doing the identification of P with
@, the geometry is preserved if each newly created triangle K’ € 4(Q) complies the two following
properties inequalities, introduced by the equation 2.7. These inequalities translated in this local
situation, the local reference mesh 77 becomes the union of Z(P) and %(Q), and the new local
simplified mesh & becomes Z(Q). In this local situation, the equations 2.7 lead to :

{ dp(K', BP)UBQ) <6 VK €R(Q) (2.8)

(ni(K"), n(K")) > cosd Vk € B(Q)
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We owe some explanations about how the first line of 2.7 becomes the first line of 2.8. If we follow
exactly the conditions of 2.7, it is actually very difficult to compute dg(K’, ) because in order
to do that, all the distances between the nodes of K’ and the full set of nodes of 7 should be
computed, which is extremely expensive in term of computation, especially if the mesh is big.

The first idea is then to compare the distances between K’ and the vertexes of its local neighbouring
elements in the reference configuration 7. This seems to solve partially the problem because we

reduce then the global computation of dz to a local one, but then two problems appear:

o After several iterations, as the triangles K’ may have changed a lot, it become then irrelevant
to compare the distances between K’ and the local reference patch of 7L, It becomes even
very difficult to find the part of the reference mesh .F™f which is in the vicinity of a new

triangle K’ alter a significant number of collapses and relocations.

o If we want to compare the distances with the reference mesh, that implies the storage in the

memory of the datas of F'f, which may be undesirable.

To solve this problem, it can be choosen to make the comparaison between the triangles K’ € Z(Q)
and the region of J around K’ in the configaration just before the collapse. What is this region?
It is actually the union #(P)U %B(Q) which is the ball of triangles around the edge [PQ] before the
collapse happens. That gives to us the explanation of the first line of 2.8,

However, a last improvement needs to be implemented. Indeed, if we use the method described above,
then the Hausdorff distance is computed only with respect to the immediate precedent configuration,
and not with respect to the initial reference mesh. Therefore the HausdorfT distance of an element of
& should be computed and then stored. And then each time a new Hausdorff distance is computed
with our method (i.e with respect to the precedent configuration) it is added with the old distance
stored for the corresponding elements to find the real total Hausdorff distance.

Hence, knowing the Hausdorff distances of the triangles created at iteration j to the reference mesh,
it is possible to know, or at least bound the distances of the new triangles, created at iteration j+ 1.
With each triangle K in  is associated an approximation (actualy an upper bound) h(K) of its
Hausdorff distance to the reference mesh Zf). For any newly created triangle K’ of the mesh, it

can be proved (see (Borouchaki and Frey, 2005), p.4869) that we have:
h(K')=d f 2.
(K') = du(K', B(P)) + maxe_ h(K) (2.9)

This relation, which is very important, allows us to compute practically the new approximation of
the Hausdorff distance, knowing the one at the previous iteration, and computing a real Hausdorff
distance only with respect to the local triangles. Thus, with that relation, the computation of Hd

is local instead of being global, and computed with respect to the last previous step instead of the
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reference configuration. Then the set of inequalities 2.8 finaly becomes:

{ AK') <6 (2.10)

{ve(K"),v(K")} > cosf vk

2.3.2 Edge collapse algorithm

Above is the detailed algorithm of the Edge Collapse procedure:

‘We add some precisions about this algorithm for a better comprehension:

e The lines 10, 12, 14, 24, 26 and 28 are if conditions. Of course, if just one of these conditions

is not satisfied, the corresponding node is not collapsed and then another node is considered.

e The order of the condition checked is not made randomly. The condition the most likely to
be rejected (quality degradation) are checked first and then the more plausible criterion are
checked.

e The lines 20 to 33 are the repetition of the lines 6 to 19 but this time collapsing ¢ instead of
P. Indeed, there is two possibilities to collapse an edge [PQ] : sending P - Q or @ — P

e Then the algorithm chooses which node to collapse if both nodes are able to be collapsed (lines
35 to 42).

e This algorithm is basically the same whatever the language of programmation used (MATLAB
or C++). But an important change happens lines 39 and 41 because the way the nodes/edges/-

triangles are suppressed depends on how the datas are stored.

In this algorithm, we will not give more details on how exactly the elements of the mesh are sup- .
pressed. It will be explained more precisely in section 4.3.1. But in the following subsection, we will

get into the problem of updating the elements of the mesh surrounding the suppressed elements.
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Algorithm 2.2 Algorithm of the edge collapse

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

43:

44:
45:
46:

procedure CollapseEdge(d, &)
for j=1 to number of edges do
if the j** Edge has not been already suppressed then

Compute the Balls of triangles : %#(P) and 2(Q)
Remove the 2 common triangles
if P is not on boundary or(P and @) on boundary then
P is collapsed virtually
Compute: old ¢(#(F)), new ¢(Z(Q))
Check Orientations of the new triangles
if g(#(Q)) < Bg(PB(P)) and the orientation is good then
Check Conditions on the Normals
if the conditions on the Normals are okay then
Check Conditions on Hy
if the Hy condition is satisfied then
bool IsPremovable = true
end if
end if
end if
end if
if @ is not on boundary or(P and @) on boundary then
() is collapsed virtually
Compute: old ¢(#(Q)), new g(Z%(P))
Check Orientations of the new triangles
if q(Z(P)) < Bq(B(Q)) and the orientation is good then
Check Conditions on the Normals
if the conditions on the Normals are okay then
Check Conditions on Hy
if the H, condition is satisfied then
bool IsQremovable = true
end if
end if
end if

end if

> Comment Nol

If the two config are possible, we choose the one that gives the best quality :

if IsPremovable = true and IsQremovable = true then
Grax = 1IN Q(‘%(Q))a Q('%(P))
if Gmaz > ﬁ%ld then

if gmes = ¢(Z(Q)) then
P is really collapsed, colnode=P and fixnode=P

else
@ is really collapsed, colnode=@ and fixnode=P
end if
end if
end if

end if
end for

47: end procedure
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2.3.3 How to update the region after an edge suppression?

For more explanations about the organization of the datas and the links between the differents
elements of the mesh, please consult the section 4.2. Let us focus on the situation described by
figure 2.3.3. On these pictures, you can observ the edge e which will be suppressed is drawn in red,
the two adjacents triangles T'r; and T'ra, the two corresponding fixed edges e; and ea, the collapsed
edges eco1 and egop2, and finally the two nodes of e : ngy and nji,.

For a better visualization of the situation, please see figure 2.3.3 which is a fragmented view of the
precedent figure. You can remark the opposite nodes oppnode; and oppnodes (they are opposite
because they are opposed to the edge e) and you can also observ the two triangles Tryeq1 and

T'rhew2 Which share the edges e.o;1 and egoo with Try and Trs.

Figure 2.6: The edge e is collapsed: the node m is sent on the node nyiy

® opprode;

Figure 2.7: The edge e is collapsed: the node 7. is sent on the node ny;y
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The collapse process described in 2.3.3 will lead to the suppression of the following geometric objects

drawn in red in figure 2.3.3:
e the node n.,;
e the edge e and the two lateral edges eqop1 and egop2;

e the two triangles T'r; and Trs.

The collapse will also lead to some updates in the geometrical objects around the suppressed edge
e. These objects (drawn in blue in figure 2.3.3) are not suppressed but their neighbours will change

during the collapse process, so the program has to inform these objects that they have new neighbours

in the following way :

e the node nyi; will replace the triangles 77y and T'ro which was its neighbours by its new
neighbours Trpew1 and Trpews;

e the node oppnode; will remove T'ry as a neighbour and oppnodey will remove T'ro;

e the edge e; will replace its former neighbour T'ry for Trye. and similarly, e; will change its
neighbour T'rq for Tryewe;

e the two triangles Trpeq, will change its edge ecoin — €1 and the triangle T'r,, .2 will change
€col2 — €2;

e all the triangles drawn in dark or clear blue will change their vertex nco — njiz;

e the node 7., will also have all the clear blue triangles as new neighbours.

2.4 Conditions for edge collapsing

The set and the order of conditions to be tested before collapsing an edge are very important.
Indeed, the edge collapse is the main cause of degeneration of the mesh because some geometrical
informations are suppressed during the collapsed. Then the aim of these conditions is to decide which
of the nodes can be suppressed without loosing to much usefull information on the mesh. Moreover
these conditions should preserve the mesh from overlapping of elements, inversion of orientation,
degradation of quality, apparition of sharp geometries etc. in order to obtain a mesh usefull for a

possible utilisation in a numerical simulation.

2.4.1 Condition of geometric compatibility

This condition should prevent the formation of overlapped elements, and the change of orientation of

the triangles of the mesh. Indeed all the triangles of the reference mesh .7™f) are oriented the same
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Figure 2.8: Collapsing of the node ny onto ns producing an overlap and an inversion of orientation.

n3(x5,13.2;)

(%5,

ny(x,¥,,2;)

Figure 2.9: Triangle with its coordinates.

way i.e for each triangles, the 3 nodes are stored in an order such that the normal of the triangle
computed from these 3 nodes is an outward normal. We have impemented a pretreatment that
ensure that all the elements are consistently well oriented. It is very important to keep consistant
this orientation all along the process of coarsening because the orientation of the normal is usefull
for both our programm and also for the use of the surface mesh to compute fluxes in a numerical
simulation. Figure 2.8 represents a case of edge collapse that produces an inversion of orientation
of the element painted in grey, and moreover, this element overlaps its neighbor painted with a grid.
This configuration should be avoided, using a cheap criterion on the orientation of the newly created

triangles. Thus the following condition is used :

For each of the elements surrounding the edge e, after the collapse of that edge, a matrix of principal

vectors is computed. Figure 2.9 represents the current triangle whose matrix will be calculated. M
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is defined such as :
o — X1 Iz — Xag 1
M= ys—y1 ys—y2 1 (2.11)

22 — 21 z3 — 22 1

Then the determinent det(M) is computed and its sign gives us the orientation of the triangle. If all
the determinants of the triangles around e have the same sign (i.e. all the triangles have the same

orientation) then the condition is satisfied.

2.4.2 Condition of reasonable degradation of element’s qualities

With this tool to evaluate the elements quality, their degeneration can be controlled during the edge
collapse. Even if the procedures of edge swapp and node relocation will later increase the quality of
the elements, it is good to have such a control on the quality degradation inside the edge collapse
procedure. Indeed, the collapse of one edge usually reduces the quality of the neighbouring elements,
therefore, after several edge collapses in the same neighbourood, the quality in this area become
unwelcoming poor. It is asked then, before each edge colapse, to check if the qualities obtained after
an edge collapse will be not too much degenerated. How? The minimum quality of the set ball #(P)
(before edge collpase) should not be to much degenerated compared with the minimum quality of
the ball #(Q) (after edge collpase), which means formally that:

2y 1) 2 8 By 10 (213)
The coefficient 3 is the coefficient of quality degradation. 8 € [0;1] and on a practical point of vue
a relevant value is g = 0.85. By decreasing this coefficient, we allow the Edge removal procedure to
supress more elements in one iteration, but with the risk to obtain worse quality elements. Usually
this coefficient should not be modified during the whole computation. The choice of 5 has to be made
very carefully: for instance in the case of quite plane areas initially populated with a very fine (and
then unusefull) mesh, one can be tempted to choose a very small value for 3 in order to supress a big
number of elements during each of the iterations (and then reducing the number of iterations). But
this choice can be catastrophical for the MATLAB implementation because then some of the nodes
will have a huge number of neighbours (more than 15) and the matrix of neighbouring elements may
become overfilled. I have introduced a method which can handle such problems, sending the extra
neighbours in another lines of that matrix, but this method can not handle the situation if there are

too much nodes with a large number of neighbouring triangles.
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2.4.3 Condition on the Hausdorff envelop

This condition is the key of the Hausdorff Simplification method. The distance between the initial
and the coarsened meshes is computed only here. The basic idea is to associate a value A(T") to each
of the triangle 7" of the mesh. This value will represent a bound of the Hausdorff distance of that
triangle to the initial mesh. Of course at the beginning, each of these Hausdorff values are zero, but
throughout the simplifications, they will be updated according to the equation 2.9.

Of course the node collapse must be prevented in the case the elements modified by the collapsed
are (at least partially) outside the Hausdorff tolerance layer. In case they are not, the collapse is
allowed and the Hausdorff values are just updated. The node collapse should satisfy the Hausdorff
criterion which has been implemented in a separated function that returns either TRUE or FALSE.
Therefore that criterion is implemented that way:

Notice that 2(n) is the ball of elements around the node n before the collapse whereas Byeq(n) is

Algorithm 2.3 Algorithm of the Hausdorff crterion

procedure CheckHausdorff(4) > 4 is the maximum distance authorized
set hunazr = max h(T) © Initialization of hpax
TeB(n)

for all triangles T' € %0 (n) do
Compute the euclidian distances d(n,T), d(nsiz, T) and d(n,nyiz)
Compute dy (T, Z(n)) = max(d(n,T), d(ngiz, T), d(n,nyiz))
Compute h(T) = dp (T, %(n)) + Trélgg.z; ) h(T)
if h(T) > & then > Triangle outside tolerance

return FALSE
end if
10: end for
Update A(T) for each T' € HBpew(n)
return TRUE
end procedure

the ball around n after the virtual collapse of that node on another node named n f;,.

2.4.4 Condition on the normals

This condition is very important and it is also the last to be verified. Indeed, it is the most expensive
condition, and therefore the last to be checked in order to save computational time. To understand
the method used to check the conformity of the normal, I have to introduce the so called pseudo-
normal. A pseudo-normal is a normal computed at one node using a weighted association of the
normals of the triangles surrounding this point. On figure 2.10 the pseudo normal drawn at the
node n in red is computed from a weighted sum of the normals of the surrounding elements of the
node n. There is an unique way to compute the normal of a triangle, however there are actually

several ways to build the pseudo normal according to the way the weight are defined. We will use
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rz]).ﬂ'.'l:."r)

Figure 2.10: In red, pseudo-normal at the node n, computed from the normals in blue

n SEI[dO]
& np seudo2 psezfdo2

Figure 2.11: Normals and pseudo-normals before and after a collapse.

the method defined in (Roca and Sarrate, 2005) which is probably the most commonly used method
in the mesh community. This method defines the pseudo-normal ﬁpsmdo computed at the node n
from the triangles T belonging to #(n) (#(n) is the set, or the ball of triangles sharing the node n)

using the following formula:
ﬁpseudo == Z ATA?T (2.13)

Te%(n)
With Ap the area of the triangle T', and N the normal of the same triangle. Of course that resulting
pseudo-normal has to be normalized in order to be compared with the other surrounding normals.
Now, let us introduce the normal criterion. Basicaly, it consists in comparing the angle between
the pseudo-normal and the normals of each of the triangle of 98(n). If just one of the normals is not
inside the folerence cone of the pseudo-normal, the condition is not satisfied and the collapse is not
performed.

Remark : there are two different ways to implement that for the edge collapse as it is described in

the figure 2.4.4:

e The first way is to compare two series of normals : the pseudo-normals fipseudot 80d Rpseudo2

with the normals of their respective balls. All that before the collapse of the edge e.
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e The second way is to make a provisory collapse of the edge e and then compute the differences

between the normals. Therefore the test is made after the edge has been collapsed.

These two methods lead to results slightly differents but the both can prevent a suppression in a
sharp area and the formation of unwelcomed sharp elements. We have chosen the first one in order

to avoid the provisory collapse.

2.5 Edge swap

The Edge Swap is the simplest and the cheapest way to increase the qualities of the triangles of the
mesh. The basic Idea is to loop on all the edges of the mesh, getting the two neighbouring triangles

and checking if the swap of that edge would increase or not the quality of these two elements.

Figure 2.12: Example of edge swap

2.5.1 Enforcing a standard local configuration

Before swapping the edge, it is very important to enforce a standard local configuration, in order to
make the operations as general as possible. Let us consider a set of two triangle which need to be
swapped. In order to keep the modification local, we have to wonder which of the objects of the mesh
will be updated. Actually, the choice of our datas structure is such that the neighbouring triangles
won’t be affected, which is a good thing in terms of computational cost and in term of readability

of the code.

So let us consider the following local mesh around an edge swap on Figure 2.12. Let us concentrate
on the objects of the mesh direcly related with these two triangles (we will see in section 4.2 that
the triangles do not know the triangles that surround them).

Let us draw a fragmentation of these objects in order to see what need to be updated on Figure 2.13.

It appears that, after the edge swapp, the following objects will be updated :
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Figure 2.13: Elements of the mesh which will be updated after the swap

e the edge e which will change its extremity nodes from n; and ns to ng and ng
e the triangles Tr; and Try will have new edges and new nodes

o the edges ej3 and eay will change of neighbouring triangle (notice that el4 and €23 are not

updated)
e the nodes 1, ng, ng and ny will have some changes in their set of neighbour triangles

Note that, with this method for the swapping, there is not any creation or destruction of any object
of the mesh. We just have to update the relations between the objects. This is a very good point

for the use of the memory of our program, as well for the computational time.

2.5.2 Overview of the edge swap algorithm

As for the edge collapse procedure, we need to satisfy some conditions before swapping the edge. If
you see our algorithm 2.4 of edge swap on the next page, you will see that the boundary edges are

not treated (line 7) and the swapped edges should satisfy two conditions :

e The quality of the new configuration gpe., should be greater that the guality of the old config-

uration geg (line 16) else there is no interest in swapping the edge.

e The angle between the normals 7] and 75 should not be greater than a certain tolerance tol.
That tolerance could be the same that the parameter § or something smaller. But it is a

nonsense to choose tol > 6.

e Finally the orientation of the newly created triangles must be checked. Actually, most of the
time this condition is satisfied. Only in case the mesh is very degenerated this condition can

be usefull. So for a quite regular mesh, this condition can be forgotten.
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Algorithm 2.4 Edge Swap
procedure EdgeSwap(X, T, DatasEdges)
Sort the Edges according to the quality
Initialize n,0p and define the tolerance angle tol

1:
2
3
4: while njq.p < Nmazieep or a significant nb of node is swapped do
5: for i = 1 to NbEdges do
6
7
8
9

the current edge Edge(i) has two neighbouring triangles: tril and tri2
if Edge(i) is not on the boundary then
Check the current configuration of the triangles
: if The configuration is not standard then
10: Re-number the triangles in a standard configuration

11: end if

12: Compute gyiq the old quality of Edge(i)

13: Compute gneq the new quality as if Edge(i) was swapped

14: Compute n; and ng the normals of tril and tri2

15: Compute the new orientation as if Edge(i) was swapped

16: if angle(ni,n3) > tol and ¢new > goig and the orientation is conserved then
17: Do the Swapping, which contains the following operations:
18: Update the datas of the swapped edges in DatasEdges

19: Update the verteces and the connectivities of tril and tri2
20: Update the datas of all the other edges of tril and tri2

21: end if

22: end if

23: end for

24 Noop = Moop + 1

25: end while

26: end procedure

2.6 Node relocation

2.6.1 Overview of the method

After the suppression of edges, the quality of the elements has globaly decreased and the mesh has
become sharper. Then, after the edge swapping, the node relocation is the second part of the process
of improvement of the quality mesh.

Moving a mesh node P consists in relocating this node towards an optimal point location. Such a
point corresponds to a configuration of optimally shaped (equilateral) triangles. To this end, at each
mesh node, the surface can be locally approached by a quadric function passing at best through all
neighboring nodes following an idea suggested by (Hamann, 1993) and explicited by (Borouchaki and
Frey, 2005). Once the equation of that quadric is known, a position P* that maximizes the quality
of the neighbouring triangles is computed. Finally the point P~ is projected on the quadric and that
projection is the new optimal point location for P. We will now start describing how to compute the

quadric approximation.
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2.6.2 Method of local quadric approximation

Let P be a mesh vertex, v(P) be the unit normal to the surface at P and let (r1(P), 72(P)) be an or-
thonormal basis in the tangent plane to the surface at P, such that (71(P), 2(P), v(P)) forms a direct
basis in R®. This is then a local basis at the point P. Let consider the frame (P, 71(P), 72(P), v(P))
in R? and let define in this frame the quadric surface that locally approaches the surface at P. This
quadric surface is then centered at P = (0,0, 0) in the local coordinates, thus any point (z,y,z) of

Z(P) is such that:
F(z,y4,2) =z — ax® — 2bzy —cy* =0 (2.14)

where a, b and ¢ are the quadric coefficients that have to be numerically determined. The true surface
is locally approached by a quadric surface, thus meaning that the neighboring vertices P; = (z4, y:, 2:)
of P shall be long at best to the quadric. This is equivalent to minimizing the squared distance of
these points to the quadric surface. The coeficients a, b and ¢ are then solutions of the following

minimisation problem:
minz ((m:? + 2bx;y; + cyf - zi)z (2.15)

T

This problem has the same solution as the following linear system:

2
Ei T2y

Eirzf Eﬁ:}:?yi Eza:fyf a
Ti22%y;  Yidxty?  T2z0 b| =1 52z (2.16)
Tartyl D2zl Dyl c Sy

The quadric surface 2(P) locally defined at vertex P will be used as geometric support to find the

optimal position of P.

2.6.3 Computation of the point P*

The quadric is computed to keep the geometry’s information througout the relocation process. Now
we are going to introduce the point P* which is an optimal configuration with respect to the shape
quality of the triangles of (P} (the ball of triangles surounding P). The computation of P*
introduces the notion of best quality into the relocation, that is why the way that computation is
done is very important.

The basic idea is that P* is the average location of the optimal points corresponding to equilateral
triangles based on the boundary edges of #(P). The differents steps of that computation are
explained by Fgure 2.14. Let us consider the point P with its ball of adjacent triangles Z(P)
(picture (a)). Now, on each of these triangles, we consider the edge opposite to P and we build
an equilateral triangle based on that edge in the plane of the original triangle. These new triangles

are drawn in blue on picture (b) and the new nodes created are the F;. Finally, P* is the average
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location of these points P; as represented on picture (c).
Now the last step on the relocation is to project this optimal point P* on the local approximation

of the geometry.

P

Figure 2.14: Steps of the P* computation.

2.6.4 Computation of the optimal position by projection on the quadric

The projection of P* on the quadric surface 2(P) is the solution of the optimisation problem:

L2
find _min HXP* (2.17)

Xea(P)

That equation can be reduced to the solving a polynomial of order 5. This equation always has a
real solution and, among the real solutions, we consider the closest to P*. From a practical point of
view, we use the Newton method for finding an approximation of the projection of P* on the quadric
surface. The corresponding algorithm can be written as :

At the end of that algorithm, the projection of P* on the quadric surface is then the point Ugiq.
An important task is to update the Hausdorfl values associated to each of the triangles connected
to the relocated point P. Of course, these values has to be computed as in the section 2.4.3. In
particular, the approximation of the Hausdorff distance can be applied according to the relation 2.9

where () represents the new position (after the point has moved) of P.

2.6.5 Possible improvements of that relocation

We can cither decide that the node relocation is fundamentally acceptable or that there should be
some criterion that controls if the relocation is desirable or not. We will develop this improvement

later in my internship.
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Algorithm 2.5 Approximation of the projection of P* on the quadric surface

procedure Projection(argl, arg2) > The projection of P* on the quadric
for all triangles do
3: set Uy to P* > Initialization

while ||Ugy1 — Uyg|| is not sufficiently small do
Apply the newton step to the function F'(Uy + tVF(Ug)):

6: Uk+1 = Uk o WFF—%IL))-HTVF(U]C)
k=k+1
end while
9: return Uy b > Coordinates of the projected Point
end for

end procedure

Another possible improvement is the way the local approximation of the surface is computed. Fol-
lowing (Borouchaki and Frey, 2005) we have choosen a quadric representation of the vicinity that
needs the computation of only 3 coeflicients. The quadric is a quite cheap modelization. Moreover it
is actually very well adapted to the relocation of a node with a very few number of triangles neigh-
bours (3 or 4) or if the geometry is very smooth. For a more complex geometry, or for an higher
number of connexions, it becomes then relevant to choose a representation with an higher number
of coeflicients or with an higher polynomial degree. The following modelization for instance would

add two coefficients d and e, and could be used for a better representation of the local surface:

F(z,y,2) =2 —az® — 2bay —cy* +dz +ey =0 (2.18)
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Chapter 3

Improvements of the method

The extension of the method to the surfaces presenting geometric discontinuities consists in taking
into account the interface curves (between two smooth pieces) as well as curves traced onto the
surface. Notice that, in the first case, the variation of the normal to the surface is not continuous
throughout the segments of interface curves. These critical curves are known in a discrete manner
and are composed of edges of the reference mesh. To enforce the proximity and regularity properties
of the mesh with respect to the critical curves, two other tolerance regions are added to the already
defined regions. The first region is a cylinder related to the global proximity, its principal axis
corresponds to the critical curve and its radius is equal to a prescribed Hausdorff distance §. The
second property is enforced using another cone of regularity centered at cach vertex of the critical
curve in the reference mesh, its principal axis is given by the principal normal to the critical curve
at this vertex and of (prescribed) aperture angle 8. The deletion of an edge located along a critical

curve I' is geometrically validated if:

e the resulting configuration (i.e., the set of triangles) is at a Hausdorfl distance d from the

reference mesh and the new critical edge (along I') is at a Hausdorff distance § from T

e the normal to the new triangles are contained within the regularity cones at the vertices and

the normal to the critical edge is contained within the cones associated with the edge endpoints.

Techniques close to the one described in the previous section can also be used to compute the
Hausdorfl distances with respect to a critical curve. Relocating a vertex along a critical curve
consists in moving this vertex, step by step, toward an oplimal point location, i.e., resulting in a
configuration of optimal triangles. The new location is computed using a local approximation of
the curve with a quadric curve passing at best through the adjacent vertices. As usual, the node is

moved if the geometric approximation is preserved.

29
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3.1 Open surfaces: special treatment for the boundaries

3.1.1 Suppressions allowed on the boundary

An open surface is a surface with one or sveral boundary line(s). The suppression of the nodes on
the boundary lines should be made very carefully in order to preserve the geometry of the boundary
lines. The figure 3.1 shows what kind of suppression are allowed and what is not allowed around a

boundary. On these figures, the boundary is drawn in blue. We can make several remarks:

;i
&

i
&

Figure 3.1: The collapses (b) and (c) are allowed, but (a) is not allowed

e for an edge whom both nodes do not belong to the boundary, the boundary is not affected,

therefore this edge is treated as usual.

o for an edge whom only one among the two nodes belongs to the boundary, that edge can accept
the collapse of the non-boundary node on the boundary node (figure 3.1:(b)). But the other

direction of the collapse (boundary node towards non-boundary node) is not accepted because
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(see the case (a)) the boundary line is then considerably modified.

e finally, for an edge which is fully on the boundary line, both nodes can be collapsed, as it is
drawn in the case (c). Therefore the edges have to be marked to enter in one of these three

categories in order to deal with these edges appropriately.

Please notice that for a collapse like (b), the usual conditions defined in the section 2.3 have to
be checked. But for the collapses of the second case : like (c), another specific condition for the

boundary has to be checked, and that is what we are going to introduce.

3.1.2 Special condition for collapsing on the boundary

This condition has to be checked before to collapse a boundary node n,; on another boundary node
Nip. This condition does not replace the other criterions defined in the section 2.3 but it is added
to them and it is the last to be checked. So the algorithm of the edge collapse has to be slightly
modified and the new algorithm obtained is given in the first annex.

The main idea of that special condition is to compare the direction of two vectors V(; © and Vic of the
current boundary edge e with the vector obtained after the collapse Vir. For a best understanding,
see Figure 3.2. Therefore an angular tolerance fygundary has to be defined, which is different from the
parameter £ described in the precedent chapter. We can either choose a value constant throughout
the simplification process or a value incremented the same way that # and §. Practically we choosed

a constant fpoundary € [10;15]. Thus the edge collapse is accepted if the two following relations are

satisfied:

cos (Vor, Vir ) = co8(Bboundary) @)

cos VLC: VLF 2 COS(Bboundary)

Figure 3.2: Condition for collapsing a boundary node.
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3.1.3 Relocation of the nodes on the boundary

The main idea of the relocation is to make an approximation of the local boundary line using a
circular curve, and then move the point we want to relocate along that curve towards the optimal
position. Figure 3.3 is a representaton of the relocation of the node we want to move nmoued. That
node has two neighbours on the boundary curve: n,e1 and nyine2. From these three points a unique
circular curve can be computed. Once that curve is known, it is divided into small arcs and the
node Npgved is virtually placed in each of these small arcs and for each position the quality shapes
are computed. The position that leads to the best quality shapes is then the optimal position for
Nmoved-

Another possibility for the node relocation would be something similar to the relocation described
in section 2.6 with the curve replacing the quadric. But then the problem comes from the projection

of an optimal point P* on the curve, which is a little bit tricky.

-

et

Moved Hioio2 o Mnovec ny; 9‘-
e 2 mes

Figure 3.3: Condition for collapsing a boundary node.

3.2 Special treatment for the critical curves

3.2.1 Definitions of the critical curves

The critical curves are special lines of the geometry that are particularly important for the geometry
or that are delimitations of two surfaces or they represent the sharp lines of the geometry. An
example is represented on figure 3.4 with the critical curve drawn in blue. These curves can be
defined and given by the user, or they can be found automatically by a preprocessing that finds
automatically the sharp lines. The automatic recognition works quite well, but the problem is that
the problem may mark some spurious irregularies of the initial mesh as critical curves. And then,

these spurious artefacts would be conserved instead of being cleaned by the program.
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Figure 3.4: Condition for collapsing a boundary node.

3.2.2 Suppressions allowed on the critical curves

Again, as it was defined for the boundary line, only a special kind of collapse is allowed. The basic
idea is that a node of the critical curve can only be collapsed on another node of the critical curve.

Thus, as it is shown in the figure 3.5, the configuration (b) is allowed but (a) is not.

Figure 3.5: The collapse (b) is allowed, but (a) is not allowed
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We can transpose the remarks that we have done for the boundary lines :

e [or an edge whom both nodes do not belong to the critical curve, the curve is not affected,

therefore this edge is treated as usual.

e for an edge whom only one among the two nodes belongs to the curve, that edge can accept the
collapse of the non-curve node on the boundary node (figure 3.1:(b)). But the other direction
of the collapse (curve node towards non-curve node) is not accepted because the boundary line

is then considerably modified (see the case (a)).

e finally, for an edge which is fully on the boundary line, both nodes can be collapsed, as it is

drawn in the case (b).

e in the case a node belongs to both a critical curve and a boundary line, or belongs to two
diferents critical curves, then this point is neither suppressed or moved. Therefore the edges
has to be marked, with another mark that the boundary one, in order to deal with the edges
appropriately.

3.2.3 Special condition for collapsing on the critical curve

This condition has to be checked before to collapse a curve node ny on another curve node ny;,.
This condition does not replace the other criterions of the section 2.3 but it these conditions will be
modified. Finally, added to these conditions and it is the last to be checked.

The main idea is to compare the direction of the vector of the current boundary edge e with the two

neighbouring vectors directions.

Figure 3.6: Condition for collapsing a curve node.



- e e e S -

o e e

- e e e W e

3.2 Special treatment for the critical curves 35

3.2.4 Modifications of the normals criterion

As we have explained above, when an edge belongs to a critical curve, the criterions defined in the
section 2.3 remain the same, but the nomal criterion hat to be slightly modified.

The basic idea is that the critical curve splits the mesh in two parts. On each of these parts, the
usual condition on the normals of the section 2.3 will be checked separately, and if all the criterions
on the both parts are satisfied, the collapse can happen.

Therefore the ball of triangles around 7., has to be divided in two balls %1(n..) and B2(ne)

separated by the critical curve. This configuration is represented on the figure 3.7 :

’L"*‘J ﬂ 2 ﬁ"‘cu.f)
g—’) ﬁ?cal’)

Figure 3.8: Condition for collapsing a curve node.

For that purpose, we need first to create a program GetHalfBalls that builds the two balls of tri-
angles and that finds the following node on the sharp line nyy,.. In order to do that, the program
will turn around the node n., and first store the triangles inside %#1(ng). Then, when the pro-

gram meets a node on the sharp line, it calls this node ny,. and store the following triangles in the
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second half-ball until all the triangles arround n.,; are parsed. This procedure is developped by the
algorithm 3.1. Once these two half-balls are created we can compute the two related pseudo-normals
which are computed at the node nget @ fipsendot and Tipgeudoz. Then the normal criterion as defined
in section 2.4.4 will be checked two times : once for %1 using fipsendo1, and another time for %2

with 7lpseudoz. That configuration is represented on the figure 3.8.

Algorithm 3.1 Algorithm for the creation of the 2 balls
procedure GetHalfBalls(7eor, 7 fix) > Coordinates and Connectivities
Initialize 481,982 and set Nbyas = 1
Get the triangle T' whih has nge and nyg, as verteces
Get the third node of T : n,eq:
Store this triangle in %1
Set r%c:u.rrent = %1
while n,ep # Nigor do

Neurrent = Mnext

Get the triangle T whih has nf;, and ngyrrent 8s verteces
Get the third node of T : Npext

if Npex is marked as sharp then

if Nbpans > 2 then & If ngep is the junction of 2 lines
ReSet Boyrrent as empty and Break > The collapse is stopped
end if

Nine = Mnext
%cu.?‘rent = %2
Nbyagis = Nbpaps + 1
end if
Store the triangle T in Zeyrrent
end while
return £1, Z2 and nyine.
end procedure

3.2.5 Relocation of nodes on a sharp line

The relocation of the nodes belonging to a critical curve follows the same pattern that the one defined
for the boundary nodes in the section 3.1.3. The only diference is that the procedure of relocation

is automatically stopped if the node belongs to two diferents sharp-lines.



Chapter 4

Implementation Details

4.1 Introduction

For the implementation, I had the chance to use two completely differents environments: Matlab
and C++. If the algorithms themselves that has been described in the precedent parts of this thesis

was the same, the way to implement them was completely differents according o the language used.

4.2 Relations between the cells of the mesh

Nevertheless, the both will use the same pattern for the data. Indeed the relations of knowledge
between the cells is the same. By cells we designate the objects of 0, 1, 2 or 3 dimentions that form
together a mesh. In our case, the cells are divided in 3 types : the triangles, the edges and the
nodes. Of course, we won't have 3D cells like tetrahedrons or hexahedrons, because we just deal
with surface meshes. Each of these cells have a knowledge of some other cells around it. For instance
the triangles know obviously the 3 nodes that form their 3 verteces, they may also know (but it is
not compulsory) their egdes or the triangles that surround them. Equally, the edges have to know
the nodes of their extremities, but they may know or not the adjacents triangles.

So it is clear that the organization of the data is a choice from the programmer, according to the
kind of local operation needed in the treatment of the mesh. So the problem is how to choose the
relations between the cells. The basic idea for this choice is that the program should never loop on
all the cells of the mesh to find a neighbouring cell. All the neighbouring cells have to be accessible
very quickly. But we also have to keep in mind that our meshes may be very big, and then the
storage of too much relations may become really unmanageable. The Figure 4.1 represent our final
choice, which is of course a compromise between the speed and the memory used.

On this figure, the arrow — means know or have access to. For instance the relation Edges—Nodes

37
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Figure 4.1: Elements of the mesh which will be updated after the swap

means that for any Edge, the two nodes of its extremities are stored.

This choice is also questionable: we could replace the relation Nodes—Triangle by the relation
Nodes—Edge. In one hand, this change would increase the operations of node relocation but in
another hand, it would slow down the computation of the pseudo-normal. We could also add some
relations wich would increase considerably the speed of some operations. For instance the relation
Nodes—Nodes is an improvement for the relocation, but it is also a huge amount of extra information

(usually the nodes are connected to more than 3 nodes) that has to be stored and updated.

4.3 Static memory implementation - matlab

All MATLAB built-in datatypes are passed by value. Therefore, all input parameters are usually
copied to be used in the functions and subfunctions of the program. That can often saturate the
memory aviable in the case the mesh is big. Thus, with an usual personal computer, a mesh with

more than 3000 nodes become very slow to be treated.

4.3.1 Why the MATLAB static memory is a problem?

All the variables in MATLAB are static arrays, or matrices. In our code, there is a lot of suppressions
of elements, that means that all the matrices of connectivities (relations) has to be resized regularly.
That implies that the static arrays have to be resized, which is a big problem because in that case
we have to create a completly new array, with a smaller size and copy all the data in the new

array. Below the equation 4.1 represents a suppression of the i** triangle in the connectivity matrix
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Triangles—Nodes.
{ 11 12 n13
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4.3.2 Solution to this problem: use of pointers
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(4.1)

A solution for this problem is to update all the matrices of connectivities once for all at the end

of the programm. Therefore during all the programm, not even one node will be suppressed, but a

vector of redirection pX, which is not formally a pointer, will send the collapsed node on the fixed

node, another vector of redirection pE will send the collapsed edges on the corresponding fixed ones,

and another vector pT" will take te value —1 for the elements that are suppressed. Let us come back

to the standard configuration for the collapse of edges drawn on the figure 4.2:

Py

VA

o —

JAvavi

Figure 4.2: Elements of the mesh which will be updated after the swap

As we already seen in the section ?7, the edges e, e.oi1 and ego2 will be suppressed, as well as the

node 7., and the edge e and the triangles T'r; and Trs. Thus, an operation like the one described

on 4.1 should be performed six times for each edge collapse. This is of course too much costly, so

the other solution is to keep untouched the data themselves, but we will use vectors of redirection

as filters to redirect the elements collapsed and to mark the elements suppressed.

e redirect node n.ol on nyizx using the vector pX

o redirect edges eqoi1 and eqop2 respectivelly on edges efizi and efize using the vector pFE

e mark edge e as 'to be suppressed’ using the vector pFE
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e mark triangles Try and Try as "to be suppressed’ using the vector pT'r.

€1

1 nq T’l"l T'f’l

e

€1 i
: : : :
: : Tr:
pX=| ¢ | —| : |; pE= — ; pTr=1| @ | — | 1|

N fix N fix

Tom, Nn : : Trm Trm

€m €

(4.2)

4.3.3 Suppression of the data at the end of the programm

At the end of the program, all the data will be completely updated, that means that all the cells
which have been suppressed by the algorithm, or the one. That means in practical terms that for all

the pointers, we check : if pX (i) # n; = n; is suppressed

4.3.4 Recursivity for updating of the data structure

Let us imagine the following situation represented by the figure 4.3 :

e SR

DR I

) T~

)\

Figure 4.3: Two successives suppression of nodes

The problem is that first, we do the redirection of ny —+ nga, that means that pX(n;) = na and then
we do the second redirection ny — n3 wich is concretized by pX(ns) = nz. That means that, each
time someone will want to have access to na, he will find na, but if someone wants to have access to
n1, he will find... ny which no longer exists! The problem is then to track the differents redirections

to finally redirect all the precedents nodes to the final node. Let us imagine the following scheme of
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node suppression (operations of redirections are performed from the left to the right):

1y — Na

ng —+ T4 p >N TNy (4.3)
5
It is obvious that when the node ng is sent on ny, all the nodes ny,no, ..., ng should be redirected

towards ny as well. To do that, we have to build an antecedent matrix as follow : for each collapse
of a node n; on the node n;, a node n; is added at the 5" line of the antecedent matrix. By the way,
antecedent Matrix means that for each line I, all the antecedents of the nodes n; appear. Therefore,

the scheme 4.3 will lead to the following antecedents matrix :

ny

g |1

ng

ng |n3 (4.4)
ns

Tig Mg Ny N5

iy [Tig

Therefore the idea is to parse all the modes that have been modified in order to redirect them towards
the good node. As each of the antecedents can have themselves one or several nodes antecedants,
the best way to deal with this situation is using a recursive approach as explicited on the algorithm
above. Of course, the same method can be applied for the redirection vector pE with its appropriate

antecedents Matrix.

Algorithm 4.1 Alogrithm : updating the pointer by recursivity
procedure UpdatepX(Mons, pX, Nicol, T fiz) > fixed and collapsed nodes
change pX (ngu) = nfip
Mani(l, end) = g
Set line [ as the line of n.y
for all the nodes n; of the line ! of the matrix M,,; do
Neol = T
UpdatepX (Mane, PX, Neols T fiz) > Recursivity
end for
end procedure
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4.3.5 Post-processing requirements

At the end of the whole suppresion/redirection process, we have to really delete all the clements. In
that purpose, we have to loop on all the nodes, and then on all the elements in order to finally get

the untouched cells and free the memory.

4.3.6 MATLAB advantages

But using MATLAB has also advantages. The point using MATLAB is the easiness to deal with
vectors and matrices operations. All the tools of linear algebra are already implemented and are
quite fast. MATLAB is particularly fast in inverting the matrices and solving the linear systems.
Moreover it has interesting features in storing and handling sparse matrices, which is quite usefull

for storing the antecedent matrices.

4.4 Dynamic memory implementation with C+4+-

The dynamic memory used in C++, (vectors and co) is much more relevant for our problem that
the MATLAB approach because of the problems that we raised before. In this present section, we
will consider the mesh structures developed with C++ from a general point of view. Therefore the

following notions have to be introduced :

e 3 cell is an abstract geometrical object which can be 1D (node), 2D (triangle, quadrilateral
etc...) or even 3D (hexahedron, tetrahedron etc...). A cell is actually an abstract class which
is the mother of all the other classes of geometrical objects used with an object-oriented pro-

gramm.

e a face is an abstract geometrical object which is 2D (triangle, quadrilateral etc...). The class
face is actually an abstract class which is the mother of all the other classes of geometrical 2D

as the triangles that we used for our implementation.

e aregion is an abstract geometrical object which is 3D (tetrahedrons, hexahedrons, pyramids).
The class region is actually an abstract class which is the mother of all the other classes of
geometrical 3D. Because in the context of our problem, the mesh we deal with is always surfacic,

then we will not deal with any region.

The relations between these classes (and some other ones) will be explained below. For an overview
you can see the figure 4.4.

The development of an appropriated mesh data structure is a decisive point that needs to be rightly
balanced between memory consumption and speed performances. For the C++ programmation, we
had to follow the structurc developped by the CEA that we are going to present in the following

section.
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4.4.1 Presentation of the mesh data structure GMDS

Several years ago, the CEA has decided to create their own structure named GMDS for Generic
Mesh Data Structure which is able to fit with diferents application field. This structure has been
presented in depth by the article (Ledoux et al., 2009) and this section is just an overview of that
paper.

The compatibility of the data structure to a large range of mesh and mesh algorithm is very important
for the CEA. Indeed, the underlying mesh data structure must handle and must provide different
kinds of cells and connections. For instance, a simple geometric smoothing algorithm may just need
to know the elements and the nodes composing the mesh and the connections from the elements to
their nodes while a 3D advancing-front algorithm generating a tetrahedron mesh from a boundary
surface may require to know the mesh faces and the connections from the tetrahedron to the faces
and vice-versa. In fact, there always exists a particular mesh data structure that better fits the
requirements of an algorithm, and GMDS is designed to produce always the best data structure.
The word Generic in GMDS has actually two meanings:

o first, this data structure can handle any mesh model and any cell type(quadrilateral, triangles,

polygons, hexahedra, tetrahedral, pyramids, etc)

e it is based on the generic programming . The use of generic programming in order to optimize
memory consumption and not to increase speed performances. to define generic containers or
generic algorithms which are independent of the objects they deal with. In numerical simulation
codes, generic programming is also used to improve speed performances by performing math-
ematical computation at compile-time. But in our case, the generic programming is mainly

used to get a tailored memory occupation for a mesh model.

4.4.2 The cellular mesh components of GMDS

As it was explained previously, the priority is given to the memory consumption and ease of use.
The figure 4.4 shows a simplified class diagram, which gives a structural view of the cellular mesh

component. Classes can be split into three categories:

e The API interfaces' are Node, Edge, Face, Region, Cell and Mesh classes. They give a
user-friendly access to mesh concepts without dealing with the template parameters (except

for the mesh class) ;

e The internal mesh classes are TNode, TEdge, TFace, TRegion and TCell classes. They use

generic programming to optimize memory consumption ;

LAn interface is an abstract clas providing an interface made of abstract functions and having no attributes.
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e The allocation classes which are not represented in figure 4.4 but are essential. They manage

memory allocation to improve memory allocation performances.

el
. 4 Region !< -- { TRegionj’@

Figure 4.4: Class Diagramm of the GMDS cellular mesh module.
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A very important notion introduced to generalise the mesh structure is the so called model mask.
A model mask defines the available cells and connections in the mesh model. In our design, every
internal mesh class has a corresponding parameter TMask. For instance, the mask of the model M1
(see figure 4.5) is Dim3|N|R|R2N|N2R. It means it is a 3-dimentional mesh (Dim3) represented by
nodes (N) and regions (R) where connections are Regions—Nodes (R2N) and Nodes—Regions (N2R)
are stored. Internal classes but Mesh class have also an extra parameter defining the type of cell
they represent. For instance, for a face, it values GMDS_QUAD, GMDS_TRIANGLE or GMDS_POLYGON. These
parameters are used to specialize memory consumption and cell behavior. Each internal cell class
implements an API interface and inherits from the TCell class. From a developer /user point of view,
internal classes and allocation classes are hidden. Developers only use API classes and the Mesh
class. This design provides flexibility and a developer-friendly interface.

The figure 4.5 provides a selection of several model masks used by the CEA for differents pur-
poses (mesh generation, mesh optimization, mesch refinement etc...). The mask M8 framed in red
is the one that we used for oﬁr simplification algorithm. It is the same that the diagram of fig-
ure 4.1 but with the general notation Face instead of Triangle. Then the corresponding mask is
Dim3|F|E|N]F2N|E2N|F2E|E2F | N2F.

4.5 Main differences in programming between MATLAB and
C++GMDS

Even if we will not mention here the differences of syntax and the unavoidable differences between
an object-oriented programm and a MATLAB, there are some other specificity that we have to

highlight:
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Face Edge Node M8

Figure 4.5: Samples of mesh models.

e The C++ language does not have a ready-made class for vector and matrices in the mathematic
sense of that terms. GMDS has a templated geometric vector class named Vector.tpp which
provides a tailored process for building a vector and doing some mathematical operations. But
the problem with this template structure is that the size of the the vectors should be known
at the compilation. But with our algorithm, mainly in the relocation part of the algorithm, we
create vectors whose size is not known a priori during the compilation. Therefore the existing
classes of GMDS are unusefull. That is why we decided to create new classes of dynamic vectors
DynVector.cpp and dynamic matrices DynMatrix.cpp. In these classes we had to define as

well all the kind of mathematical operations between scalars, vectors and matrices.

e Our simplification alorithm was itself a class AlgoSimplification.cpp and the differents
subfunctions of that algorithm (edge removal, relocalization, edge swap, pretreatment etc...)
are implemented as methods of that class. Note that the model mask and the vector Hy
that stores for each trangles the distance between a triangle and the initial referance mesh are
private attributes. The only argument given to the constructor of AlgoSimplification is a

pointer to the reference mesh 7 itself.

e We have built another class ComputeHausdorff.cpp which computes the Hausdorff distances
between the initial mesh and the final mesh after all the process of simplification in order to
verify the result given by the simplification algorithm. These distances are computed with
the method developed at the end of the article (Borouchaki and Frey, 2005) This distance
can not be computed by a method in AlgoSimplification because it needs the data of the
initial mesh wich are progressively modified by AlgoSimplification. Indeed, constructor
of ComputeHausdorff needs not only the final mesh given by AlgoSimplification but also

Zrf and with a lighter model mask. Therefore the algorithm of verification of the Hausdorff
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distance needs to be in a separated class.

e For the implementation of the C++ model, unlike the MATLAB implementation, there is no
need of post-treatment of the data in the sense of the section 4.3.5. Indeed, the elements are
suppressed in the memory instantaeously and there is not any redircetion of a cell to another
one. Therefore the GMDS code is faster.



Chapter 5

Results and numerical exemples

5.1 Results for some standard tests

The following tests have been performed in order to highlight the effect of several particular points
of our algorithm. Because these tests involve a quite small number of elements, they have been

performed with MATLAB.

5.1.1 The peak test
This first test has been designed to show the accuracy of the pseudo-normals’ computation. This
mesh is a regular plane triangular mesh mapped by the peak function :

z(z,y) = exp [—a (3 + y?)] (5.1)

With a a positive coefficient. The idea of this test is to compute at each node of the mesh the
pseudo-normal, and to compare that pseudo-normal with the exact normal of the surface at this
point. Indeed we have access to the exact normal 7i(z,y, 2) at that point which is given by the

partial derivatives of the function 2(z,y) in that way :

20xz
fi(z,y,2) = | 2ays (5.2)
1

Then for each node of the mesh, once 7i(x,y, z) is computed and normalized, it is compared with the

pseudo normal #ipseudo(, ¥, 2) and the error e is computed that way :
E(I:y:z) = ”ﬁ(mz'yjz) - ﬁpssudn(ma y:z)” (53)
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It is then very interesting to plot that error according of (z, y) and we can see if the computation of the
pseudo-normal is accurate or not. In the figures 5.1 below, the same peak is meshed two times with
a fine mesh (al) and a coarser mesh (bl). The pictures (a2) and (b2) represents the corresponding
errors. As expected, the error is bigger for the coarse mesh, but it remains reasonnable, always less
than 7% even on the regions surrounding the peak where the curvature is the most complex. It

appears then that the way we have defined the psendo-normals is quite reliable.

Figure 5.1: Peak test
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5.1.2 The two planes test

The next test has been implemented in order to check the behaviour of the tolerance angle criterion.
The idea is very simple : two planes with an inclination of 30 degrees are meshed and that mesh is
simplified. The simplification occurs with a progressively increasing tolerance angle . As expected,
while & < 30 the common line between the two planes is preserved, but when 0 > 30, some collapses
happen across this line and the geometry of th intersection is no longer respected. Note that the
recognition of sharp edges has been desactivated and the Hausdorff tolerance has been relaxed in

order to isolate the effect of the angular criterion. The result below shows that our code has passed

the test successfully.
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Figure 5.2: two planes Test

5.1.3 The spiders test

This test has been designed to show the necessity of refining the boundaries. Indeed, in the case the
boundary are not simplified, all the boundary nodes join together with some interiors nodes and that
makes some spiders nodes which in the sense that they have a lot of neighbours elements. Then of
course the elements qualities are quite bad and the propagation of the suppression of elements inside
the surface is stopped.

The following figure 5.3 shows the interest of the boundary coarsening. The picture (a) is the initial
mesh composed of 1682 triangles which will be coarsened. The picture (b) is a simplification that
does not deal with boundary nodes. 350 nodes remains after the 3 iterations of simplification. The
pictures (¢) and (d) shows the results if the boundary nodes are treated as described in section 3.1.
(¢) is the resulting mesh after one iteration, and (d) is the mesh after 3 iterations. In that last case,

only 213 elements remain.
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Figure 5.3: Peak test

5.2 Some results obtained with MATLAB

Before exposing the most complex examples performed with our C++ implementation, we will
describe some results obtained with our MATLAB code.

5.2.1 Donut shape

The first set of exemples are the cases of closed surfaces, which are quite simple because they do
not have boundary lines or sharp lines. The pictures above represents the results obtained after a
simplification of a Donut shape. The number of elements has been reduced from 2200 to 825, that

means a rate of suppression of 62.5%. The average quality has also been increased from 0.76 to 0.87.
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Before simplification After simplification

Figure 5.4: Results for a Donut shape.

5.2.2 Mushroom shape

This exemple which is much more interesting is a mesh representing a mushroom which shows the
interest in refining the sharp line. We will focus our attention on the boundary line (at the basis
of the mushroom) and on the sharp line as well. The first picture of 5.5 is the initial mesh (1450
triangles). The second one is the simplified mesh obtained without the special procedure described
in the section 3.2. Therefore the nodes of the sharp line (which is actually a circle) have not been
suppressed, contrary to the boundary nodes. That left a region around the mushroom’s ring, which
is needlessly finely meshed and the suppression rate reaches only 35%. The third picture is the result
with the suppression of sharp edges. The result is obviously more homogeneous and more elements
has been suppressed (around 60%).

It can be noticed that the nodes of the critical line have been sent on other nodes of the same critical
line. Therefore the sharp curve has been preserved. After the suppression, the relocation of the

nodes has made their distribution more regular on the sharp line.
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Figure 5.5: Results for a mushroom shape.




- e e e e e

o e e e e

5.3 Results for some open surfaces

5.3 Results for some open surfaces

The main interest of the open surfaces is to observe how the program works on the surface’s bound-
aries. Some of the following tests are applied on surface meshes designed by the INRIA (french
National Research Institute in Computational Sciences and Automatic). These meshes can be down-

loaded from their webpage : http://www-roc.inria.fr/gamma/gamma/download/download .php.

5.3.1 Mesh of a human face

Below is the result obtained after the traitment of the surface mesh of a face (nose and mouth). This
mesh contains 11903 nodes. After the coarsening, 4923 elements will be suppressed. The parameters

given by the user are: (maz = 10%, Oy = 25,3 = 0.85) and the number of iterations Nbje, = 5.

Figure 5.6: Nose and a zoom on the right region. On the left, the pictures before simplification. On
the right, after simplification.
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With these parameters, the rate of suppression is near 41.4%. On the left hand side are the pictures
from the initial mesh, and on the right hand side the pictures of the mesh after simplification. On
the figures 5.6 (al) and (a2), the effects of the coarsening is not obvious, but we can see that the
mesh is particularly refined in some regions (then mouth corners and the mostrils). The pictures
(b1) and (b2) are a zoom in the nostril. Then the high rate of suppression can be easily observed in
this area.

On the figure 5.7 it is interresting to zoom in the mouth corner area. Due to the curvature of the
geometry at that point, there is a huge concentration of elements in this area in the initial mesh
(cl). The coarsening can be noticed on the picture (¢2). Finally the pictures (d1) and (d2) point the
coarsening process at the upper boundary of the mesh. The preservation of the boundary is quite

clear on these pictures.

Figure 5.7: Zooms on the regions of the lips and on the upper boundary.
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5.3.2 Shape coming from an iso-surface

The example treated below is a typical mesh used by the CEA, obtained by an identification of an
iso-surface after cutting a cartesian grid. That kind of meshes has very poor quality and are usually
over-rafined. Therefore the coarsening process has a double interest for these meshes. Our example
mesh is initially made of 356 nodes and 708 triangles (see figure 5.8 (a)). The picture (b) shows
the same mesh after the relocation procedure, without any suppression of node. The gain of quality
is obvious : the average measure of quality increases from 0.42 to 0.74. After a first iteration of
coarsening, only 283 nodes remain (see picture (c)). The suppression rate is then 20.5% with the pa-
rameters (6maz = 5%, Omaz = 10, 8 = 0.85). Most of the bad quality elements have been suppressed,

therefore the average quality of the mesh have been increased to 0.89.

Figure 5.8: Coarsening of a quarter of a sphere obtained from an iso-surface.
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The picture (d) represents the resulting mesh after 3 iterations. At that stage the tolerance pa-
rameters have reached : (Smax = 15%, Omes = 30,8 = 0.85). With these parameters, the rate of
suppression is 50.1%. We can see with this exemple that our code works quite well even for meshes
with very bad a;spect ralios. (i.e. triangles very longs are adjacents to very small triangles) and for

very flat triangles. So the initial quality of our mesh has no impact on the code efficiency.

5.4 Results some close surfaces

For the closed surfaces, there is no boundary lines by definition. But there are still the sharp edges
and the sharp curves on which our algorithm can be checked. We will then mainly focuss on the

treatment of the initial mesh’s geometrical features in this part.

5.4.1 Mesh coming from a CAD file

Below is the result obtained after simplifying a mesh obtained from a CAD file. This mesh represents
a geometry of a half-ball drilled with an small hole and with a notch on its side. It is made of 19779
nodes. This mesh presents two points of interest : the area around the hole and the one around the
notch. We will then present the results of the global mesh, and then we will zoom in the two areas
of interest. You will find on the left hand side the pictures of the reference mesh drawn in maroon,
on the center the pictures of the simplified mesh after two iterations and on the right hand side, the
same mesh after 4 iterations.

After two iterations, 51% of the elements are suppressed, and using tolerance parameters (dmas =
10%, Omaz = 10, 8 = 0.82). After 4 iterations, 79.7% of the elements are suppressed. The parameters
given by the user are: (Smaz = 20%, Omaz = 20, 8 = 0.82).

(a2)

Figure 5.9: CAD model refined
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On the first row of pictures, one can see that only some areas of the mesh are refined : precisely
the ones around the two iregularities mentionned above. The areas made of big triangles remains
untouched.

Now, let us zoom in the area of the hole. It is first very interesting to notice that the decimation
rate in this region is extremely high, even for a global rate of 51% elements suppressed (b2). Even if
a large number of triangles are suppressed, the geometry of the hole is preserved (b2) and (b3) and
the triangles sharing an edge with the hole remain quite small. This is due to the special treatment

of the sharp edges.
If we zoom in the area of the notch, we will see that the geometry of that notch is quite well respected

at the beginning, but if the anular tolerance is to high, then the geometry is no longer respected.
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Figure 5.10: CAD model refined
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5.4.2 Test with an Adam Kraft statue

In this subsection, we give the results of the most important test that we have performed with our
algorithm. The test mesh contains 70072 nodes and 140140 triangles. It represents a statue of Moses
made by the great German gothic sculptor Adam Kraft (1455-1508). This mesh has been choosen
for the complexity of its geometry and for the high number of elements that allow a quite high

suppression rate without damaging to much the geometry.

Three different simplifications has been performed using the parameters reported by the table below

with a maximal simplification of 58.5% elements for 10 iterations.

Reference Mesh | Simplified Mesh 1 | Simplified Mesh 2 | Simplified Mesh 3
Bin - 5% 20% 25%
Omaz - 10 25 35
B8 - 0.85 0.85 0.85
Niter 0 2 5 10
Nb Sharp nodes 27906 27906 27906 5410
Nodes Suppressed | 0 9945 31504 40957
Suppression Rate | 0% 14.2% 45% 58.5%
Three different simplifications has been performed using the parameters reported by that table with

a maximal simplification of 58.5% elements for 10 iterations. A preliminary remark is that, in order
to enforce a greater suppression rate, the treatment of the sharp edges has been relaxed for the
simplified mesh 3. Thereore for this mesh, the pre-treatment has recognised a smaller number of
Sharp Nodes (5410 instead of 27906) and then the nodes that are no longer marked as sharp could
have been suppressed more easily.

In all the following set of pictures, the initial reference mesh will be printed in maroon and the

simplified ones in blue.
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Figure 5.11: General view of Adam Kraft’s statue.

On this global view of the statue, it is interesting to notice which regions has been specialy coarsened
by the program. It can be remarked that the forehead, the hat, the shoulders and the scarf have

been particularly simplified whereas some more iregular regions like the bear or the hair remain very

refined.
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Figure 5.12: Zoom on the book.

The figures 5.12 are a zoom in the area of the book hold by the statue. It is interesting to watch
the preservation of the book’s cover. If this cover is quite well respected by the simplifications 2
and 3 (pictures (b) and (c)), it is not the case for the third simplification (picture (d)). Indeed in
this exemple, the effect of the laxity in the treatment of the sharp lines/edges/nodes is particularly
obvious : the program no longer recognize the boundaries of the book’s cover as a special geometrical
feature to be preserved. Then the consequence is the melting of the book’s cover and the fusion of

the Moses’thumb with the book.



5.4 Results some close surfaces 61

s
i
Al

LA
ﬂ'-‘ & ohT

AR

s

Figure 5.13: Zoom on the statue’s face.

The figures 5.13 are a zoom in the area of the statue’s face. It is interesting to watch the delimitation
between the forechead and the hat. In this case the same precedent remark can be done: there is a
fusion between the forehead and the hat after the simplification 3 (picture (d)) baecause of the sharp
edges’ treatment. Nevertheless some other regions are quite well preserved like the hair and the left
eye. Another remark that can be done is the deterioration of the geometry of the cheeks an of the

right eye. This deterioration starts with the second simplification (c¢) and continues with the third
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Figure 5.14: Zoom on the statue’s bear.

one (d). So it is not due to the sharp line treatment but simply to the tolerance parameters which
are to much permissive.

The figures 5.14 are a zoom in the area of the statue’s beard. Unlike the precedent exemples,

in this region the corsening respect very well the initial geometry of the bear, even for the third
simplification. There is no flatening or fusion of the diferent parts of the beard. The reason is

probably that the programm has well recognized the geometrical features of the beard during the
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pre-treatment part.
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Chapter 6

Concluding Remarks and Future
Work

6.1 What needs to be done to go further

This repport has described what we obtained and the objectives we have reached after five months
of work on the surface simplification problem. But our work is still in progress and one last month
of internship with the CEA remains to be done. That is why we are going to explore two axes of
improvements under the direction of the Profesors J. Sarrate and F. Ledoux.

The first improvement of our method could be the implementation of a volume control. Indeed,
for some physical reasons, it appears that the preservation of the total inner volume of a surface
mesh is a very important criterion for the CEA because of the mass conservation. However it seems
that so far our simplification algorithm may not respect that criterion with the wished precision.
That is why we are going to try to develop a tool that control the volume degradation. The main
challenge is that the controled value (the global volume) is global whereas the implementation of
all the criterions is local. So we have find the appropriated local control degradation of the volume,
which may not be an easy task.

The second possible improvement could be a change in the way the nodes are relocated. Indeed the
quadric used for the present relocation is quite rustic, and is not able to capture the surrounding
geometry in the case the node is in a distorted area or if the node has a important number of
neighbours. Then the programm should be able to detect this kind of nodes and relocate them using

a more complex geometric surface whereas the others nodes would keep their rustic quadric.
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6.2 Conclusion

It was a big challenge for me to do this master thesis in a very exciting environment (CEA and
UPCQC). It was also a big challenge because I did not have deep knowledges in meshing science before
this year. I actually learned a lot in term of programming in object-oriented language. I did not
really know how to programm in C++ before and I was not enough sensible to data storage and
computational efficiency problems.

Our programm has still some imperfections as you can have noticed reading the part 5 of this repport.
But it works quite well for reasonnable tolerances and some significant improvements has been made
from the original work of (Borouchaki and Frey, 2005). That is why I am globally proud to have

done this thesis.



Chapter 7

Annex: algorithms

Algorithm 7.1 Global Algorithm of the method

1: procedure Algorithm(X,T) > Coordinates and Connectivities
2 Discriminate nodes on the boundary nodes and on the special curves

3 Store these nodes in pBC

4: Create a data structure for the edges : DatasEdges

5: set dp < & and g < 0 > Tolerances Hausdorf et angulaire
6 for n iteration do .

7 Sort the edges according to their qualities

8 (X, T) = EdgeRemoval(X, T, DatasEdges, pBC) > Edge Collapse
9: (T) = EdgeSwapp(X, T,DatasEdges) > Edge Swapp
10: (X) = EdgeRelocalization(X, T, pBC) > Edge Relocalization
11: increment A and ©

12: end for

13: end procedure
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Algorithm 7.2 Algorithm of the EDGE COLLAPSE

2

10:

12:

14:

16:

18:

20:

22:

24

26:

28:

30:

32:

34:

36:

38:

40:

42:

44:

46:

48:

50:

52:

54:

b6:

procedure EdgeRemoval(X, T, DalasEdges, pBC)
Compute (N) = Neighbours(T) > Matrix of neighbouring elem for each node
Initialize the pointers : pX, pE and pT
for j=1 to number of edges do
if the 5" Edge has not been already suppressed then

Compute the Balls of triangles : $(P) and %#(Q)
Remove the 2 common triangles
if P on boundary or(P and @) on boundary then
P is collapsed virtually
Compute: old g(#(P)), new q(Z(Q))
Check Orientations of the new triangles
if the degradation from q(#(P)) to g(%(Q)) is okay and the direction is okay then
Check Conditions on the Normals
if the conditions on the Normals are okay then
Check Conditions on Hy
end if
end if
end if
if @ on boundary or(P and @) on boundary then
@ is collapsed virtually
Compute: old ¢(#(Q)), new g(Z(P))
Check Orientations of the new triangles
if the degradation from g(%(R)) to g(#(P)) is okay and the direction is okay then
Check Conditions on the Normals
if the conditions on the Normals are okay then
Check Conditions on Hy
end if
end if
end if
If the two config are possible, we choose the one that gives the best quality
Omex — min Q('@(Q)): q(‘%(P))
if Gmoz 2 ,BQOEd then
if gmax = g(#Z(Q)) then
P is collapsed, colnode=P and fixnode=P
else
@ is collapsed, colnode=@Q and fixnode=P
end if
end if
if a node is collapsed then
if The Edge is not on the Boundary then
Put the 2 triangles in a standard config.
else if The Edge is part of the Boundary
Check the Condition on Boundary edges.
end if
if The Edge is not on the Boundary then
Find the 2 collapsed and the 2 receiving edges
Update the matrix N, the pointer pT and the distance Hyq
Update the pointers : pX and pE using recursivity.
else if the Boundary Condition is okay
Find the unique collapsed and the unique receiving edge
Update the matrix N, the pointer pT and the distance Hq
Update the pointers : pX and pE using recursivity.
end if
end if

end if
end for
Update the Real datas X, T, pBC and DatasEdges using the pointers

58: end procedure
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Algorithm 7.3 Edge Swap

1: procedure EdgeSwap(X, T, DatasEdges)

2 Sort the Edges according to the quality

3 Initialize nyo0p and define the tolerance angle tol

4: while njep < NMazieep or a significant nb of node is swapped do

5: for i =1 to NbEdges do

6 the current edge Edge(i) has two neighbouring triangles: tril and tri2
7 if Edge(i) is not on the boundary then

8 Check the current configuration of the triangles

9 if The configuration is not standard then

10: Re-number the triangles in a standard configuration

11: end if

12: Compute goiq the old quality of Edge(i)

13: Compute gnew the new quality as if Edge(i) was swapped

14: Compute n; and ng the normals of tril and tri2

15: Compute the new orientation as if Edge(i) was swapped

16: if angle(ri, n2) > tol and gpeyw > goig and the orientation is conserved then
17: Do the Swapping, which contains the following operations:
18: Update the datas of the swapped edges in DatasEdges

19: Update the verteces and the connectivities of tril and tri2
20: Update the datas of all the other edges of tril and tri2

21:

22: end if

23: end if

24: end for

25: Noop = Noop +1

26: end while

27: end procedure
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Algorithm 7.4 Relocalization of the nodes

1: procedure Relocalization(X, T, pBC)

2 for ¢ =1 to nb of nodes do

3 Current node : n;

4 if node(i) is neither on the boundary or on a critical curve then
5: Get %(n;) the ball of elements connected to node(i)
6
7
8
9

Get the coordinates of the points of %(n;)
Compute 7iysendo the pseudoNormal at n;
Compute the vectors of the local basis at n; : (flpseudo, €1, €2)
: Compute the Transformation matrix .# from the global to the local basis
10: [a, b, ¢| = getCoeffs(HB(n;)) > Get the equation of the Quadric

11: Compute the coordinates of Px > Edge Swapp
12: Projection of P+ on the quadric:

13: for all triangles belonging to %(node;) do

14: set Upto P*, k=10 > Initializations
15: while ||Ug+1 — Ug|| is not sufficiently small do

16: Apply the newton step to the function F (U + tVF(U)):

17: Uk+1 =U — "?‘FTF%EVF(U.&)

18: E=k+1

19: end while

20: return Upyq > Coordinates of the projected Point
21: end for

22: end if

23: end for

24: end procedure
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