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ABSTRACT

Computational Dynamic Simulation of
Biological Membranes

Behrooz Hashemian

Biological membranes made out of lipid bilayers are the fundamental separation
structure in cells and are crucial to maintain life. Many physiological processes rely
on dramatic shape and topological changes (e.g. fusion, fission) of fluid membrane
systems. Fluidity is key to the versatility and constant reorganization of lipid bilayers.
Although the membrane intrinsic viscosity plays an important role in the dynamics
of morphological changes of fluid vesicles, in the large vesicles, ambient bulk viscosity
is dominant driving and dissipative mechanisms.

Here, a novel numerical technique is introduced in order to simulate the dynamic
behavior of biological membranes immersed in a viscous, incompressible, Newtonian
fluid. This method utilizes Finite Element Immersed Boundary (FEIB) method in
combination with B-Spline curve representation and unlike the immersed boundary
(IB) method consists of a variational formulation. The relaxation dynamics of fluid
vesicles put in an out-of-equilibrium state is considered, and simulation is carried out
regarding the kinetics of configuration changes in the membrane. Moreover, a special
formulation, in which bulk dissipation matrix is derived, allows us to combine bulk

dissipation with other dissipation mechanisms.

Keywords: Biological membranes; Fluid membranes; Finite Element Immersed Boundary (FEIB)

method; B-Spline curve representation; Fluid-structure interaction; Helfrich-Canham functional.
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Chapter 1

Introduction

1.1 Motivation

In the past few decades, numerous research efforts have been directed to method devel-
opment for the modeling of fluid-structure interaction for biological systems (Liu et al.,
2006). Numerical investigations of fluid-structure interaction problems require reli-
able numerical modeling and simulation tools (Belytschko, 1980; Liu et al., 1986). An
efficient and robust modeling technique is essential in the study of complicated phys-
ical phenomena, especially in bioscience and biomedical fields. Biological membranes
are crucial to the life of the cell and all biomembranes have the same basic phospho-
lipid bilayer structure and certain common functions. These amphiphilic membranes
are self-assembled structures made out of lipids or other amphiphilic molecules such
as diblock co-polymers. Above a transition temperature, these membranes are fluid
within the membrane surface, while they retain the transversal order, which confers
them with bending rigidity. The membrane fluidity is essential for many biochemical
processes involving membrane proteins (Saffman and Delbruck, 1975). It has been
computationally and experimentally shown that even at very small scales, the motion
of the amphiphilic molecules is due to collective two-dimensional flows rather than
molecular diffusion (Shillcock and Lipowsky, 2006).

A number of theoretical models and simulation methods have been used to study

fluid membranes (Arroyo and DeSimone, 2009). Atomistic molecular dynamics (MD)

d



2 Introduction

simulations have been very useful in this and other respects, but remain limited to
small membrane patches due to the prohibitive number of atoms involved in closed
vesicles and the slow equilibration times of membrane systems (Gurtovenko and Vat-
tulainen, 2005). Coarse-grained MD allows us to reach small closed vesicles, but
suffers from the same fundamental difficulties (Shillcock and Lipowsky, 2006; Cooke
et al., 2005; Reynwar et al., 2007). Continuum mechanics has proven very effective in
describing the mechanics of membrane systems and reproducing both experimental

and atomistic results (Danov et al., 2000; Dimova et al., 2006).

Among the computational methods developed for fluid-structure interactions, one
of the most noticeable contributions is the immersed boundary (IB) method which
was originally developed by Peskin for the computation of blood flows interacting
with the heart and heart valves (Peskin, 1972). The mathematical formulation of
the IB method employs a mixture of Eulerian and Lagrangian descriptions for fluid
and solid domains. The interaction between fluid and solid domains is accomplished
by distributing nodal forces and interpolating nodal velocities between Eulerian fluid
and Lagrangian solid domains. The advantage of the IB method is that the fluid-
structure interface is automatically tracked, which circumvents costly mesh updating

algorithms.

Here, we are going to utilize a novel numerical method, named Finite Element
Immersed Boundary (FEIB) Method (Heltai, 2008; Boffi et al., 2005), in combination
with B-Spline curve representing geometry (Hughes et al., 2005) in order to simulate
the behavior of a biological membrane immersed in a bulk fluid. This method is
built based on the fundamental concepts of IB method, but eliminated the critical
drawbacks of the IB method. Unlike the Dirac delta functions in the IB method
which yield C! continuity (Peskin, 2003; Mittal and Iaccarino, 2005), the discretized
delta function in IFEM is the C™ shape function. Another important feature of the

presented numerical method is using the variational formulation.

Despite the morphology of fluid biomembrane systems is very dynamic, both in
the cell and in synthetic systems, most continuum studies have concentrated on the

equilibrium shapes and phase diagrams of vesicles. When studying the dynamics
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with continuum mechanics models, the membrane viscosity has been traditionally
disregarded or neglected. An important obstacle to bring into account the mem-
brane dissipation mechanisms has been the complexity of the equations describing
the viscous two-dimensional fluid flow of the amphiphiles on a curved time-evolving
geometry. Here, we present the calculations coupling the two-dimensional flow of the
amphiphiles on the membrane with the shape changes driven by curvature elasticity.
These calculations are based on a finite element B-Spline approximation for both the

shape and the membrane fluid flow equations.

1.2 Outline

In the next chapter (Chapter 2), the biological membranes are explained from the
molecular biology point of view. Their basic biological composition and structure are
discussed, and the physical role of lipids on fluidity and bilayer formation are argued.

In Chapter 3, a continuum model is introduced for the biological membranes. The
biological membrane is considered as an inextensible fluid membrane with curvature
elasticity immersed in a viscous, incompressible, Newtonian fluid. Different dissipation
models are described and finally Helfrich-Canhm curvature energy is discussed and
its derivatives are derived.

In Chapter 4 a combined method using finite element immersed boundary method
(FEIB) and B-Spline curves representation is introduced. A special semi-discretization
is described and the bulk dissipation matrix is calculated. At last, an effective re-
parametrization method in order to increase the accuracy of geometry and avoid
undesirable clustering of control points is introduced.

Chapter 5 is devoted to show the final dynamic simulation results of biological
membranes as well as verifying the numerical method with analytical solution of the

most important example of an asymmetrical flow (Happel and Brenner, 1983).
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Chapter 2

Biological Membranes

2.1 Introduction

Biological membranes are crucial to the life of the cell. Although all biomembranes
have the same basic phospholipid bilayer structure and certain common functions,
each type of cellular membranes also has certain distinctive activities determined
largely by the unique set of proteins associated with that membrane (Lodish et al.,
2003). In this chapter, we, first, discuss the basic biological composition and structure
of all biological membranes with emphasis on the lipid bilayers. Next, we outline
functions of the plasma membrane in cell organisms, and then argue the physical role

of lipids on fluidity and bilayer formation.

2.2 Biological Composition and Structure

Biomembranes enclose the cell, define its boundaries, and maintain the essential dif-
ferences between the cytosol and the extracellular environment, see figure 2.1. Despite
their differing functions, all biological membranes have a common general structure:
each is very thin film of lipid and protein molecules, held together mainly by non-
covalent interactions. Biological membranes are dynamics, fluid structures, and most
of their molecules move about in the plane of the membrane. The lipid molecules are

arranged as a continuous double layer about 5nm thick. This lipid bilayer provides the

5
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Figure 2.1: The bilayer structure of biomembranes. (a) Electron micrograph of a
thin section through an erythrocyte membrane. The characteristic “railroad track”
appearance of the membrane indicates the presence of two polar layers, consistent with
the bilayer structure for phospholipid membranes. (b) Schematic interpretation of the
phospholipid bilayer in which polar groups face outward to shield the hydrophobic tails
from water. The hydrophobic effect and van der Waals interactions between the tails
drive the assembly of the bilayer (Lodish et al., 2003)

basic fluid structure of the membrane and serves as a relatively impermeable barrier

to the passage of most water-soluble molecules.
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2.2.1 The Lipid Bilayer

The lipid bilayer provides the basic structure for all biomembranes and has two impor-
tant properties. First, the hydrophobic core is an impermeable barrier that prevents
the diffusion of water-soluble (hydrophilic) solutes across the membrane. Importantly,
this simple barrier function is modulated by the presence of membrane proteins that
mediate the transport of specific molecules across this otherwise impermeable bilayer.
The second property of the bilayer is its stability and its structure is maintained by
hydrophobic and van der Waals interactions between the lipid chains. Even though
the exterior aqueous environment can vary widely in ionic strength and pH, the bilayer
has the strength to retain its characteristic architecture.

Three major classes of lipids can be found in a typical biomembrane: phosphoglyc-
erides, sphingolipids, and steroids. All of them are amphipathic molecules having a
polar (hydrophilic) head group and hydrophobic tail. The hydrophobic effect and van
der Waals interactions cause the tail groups to self-associate into a bilayer with the
polar head groups oriented toward water (figure 2.1). Although the common mem-
brane lipids have this amphipathic character in common, they differ in their chemical
structures, abundance, and functions in the membrane.

Phosphoglycerides, the most abundant class of lipids in most membranes, are
derivatives of glycerol 3-phosphate (figures 2.2 and 2.3a). A typical phosphoglyceride
molecule consists of a hydrophobic tail composed of two fatty acyl chains esterified to
the two hydroxyl groups in glycerol phosphate and a polar head group attached to the
phosphate group. The two fatty acyl chains may differ in the number of carbons that
they contain (commonly 16 or 18) and their degree of saturation (0, 1, or 2 double
bonds). A phosphoglyceride is classified according to the nature of its head group. In
phosphatidylcholines, the most abundant phospholipids in the plasma membrane, the
head group consists of choline, a positively charged alcohol, esterified to the negatively
charged phosphate. In other phosphoglycerides, an OH-containing molecule such as
serine, ethanolamine, and the sugar derivative inositol is linked to the phosphate
group. The negatively charged phosphate group and the positively charged groups or
the hydroxyl groups on the head group interact strongly with water.
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Figure 2.2: The parts of a phosphoglyceride molecule. (A) Schematically, (B)by a
formula, (C)as a space-filling model, and (D)as a symbol (Alberts, 1998).

A second class of membrane lipid is the sphingolipids. In sphingomyelin, the
most abundant sphingolipid, phosphocholine is attached to the terminal hydroxyl
group of sphingosine (Figure 2.3b). Thus sphingomyelin is a phospholipid, and its
overall structure is quite similar to that of phosphatidylcholine. Glucosylcerebroside,
the simplest glycosphingolipid, contains a single glucose unit attached to sphingosine.
In the complex glycosphingolipids called gangliosides, one or two branched sugar
chains containing sialic acid groups are attached to sphingosine. Glycolipids constitute
2-10 percent of the total lipid in plasma membranes; they are most abundant in

nervous tissue.

Cholesterol and its derivatives constitute the third important class of membrane
lipids, the steroids. The basic structure of steroids is a four-ring hydrocarbon.
Cholesterol, the major steroidal constituent of animal tissues, has a hydroxyl sub-
stituent on one ring (figure 2.3c). Although cholesterol is almost entirely hydrocarbon
in composition, it is amphipathic because its hydroxyl group can interact with water.
Cholesterol is especially abundant in the plasma membranes of mammalian cells but

is absent from most prokaryotic cells.
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Figure 2.3: Three classes of membrane lipids. (a) Most phosphoglycerides are deriva-
tives of glycerol 3-phosphate (red) containing two esterified fatty acyl chains, con-
stituting the hydrophobic tail and a polar head group esterified to the phosphate.
(b) Sphingolipids are derivatives of sphingosine (red), an amino alcohol with a long
hydrocarbon chain. (c¢) Like other membrane lipids, the steroid cholesterol is amphi-
pathic. Its single hydroxyl group is equivalent to the polar head group in other lipids;
the conjugated ring and short hydrocarbon chain form the hydrophobic tail(Sprong

et al., 2001).
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2.2.2 Functionality of the Plasma Membrane

In all cells, the plasma membrane has several essential functions. These include trans-
porting nutrients into and metabolic wastes out of the cell; preventing unwanted ma-
terials in the extracellular milieu from entering the cell; preventing loss of needed
metabolites and maintaining the proper ionic composition, pH, and osmotic pressure
of the cytosol. To carry out these functions, the plasma membrane contains specific

transport proteins that permit the passage of certain small molecules but not others.

Natural membranes from different cell types exhibit a variety of shapes, which
complement a cell’s function (Figure 2.4). The smooth flexible surface of the erythro-
cyte plasma membrane allows the cell to squeeze through narrow blood capillaries.
Some cells have a long, slender extension of the plasma membrane, called a cilium
or flagellum, which beats in a whip-like manner. This motion causes fluid to flow
across the surface of an epithelium or a sperm cell to swim through the medium. The
axons of many neurons are encased by multiple layers of modified plasma membrane
called the myelin sheath. This membranous structure is elaborated by an adjacent

supportive cell and facilitates the conduction of nerve impulses over long distances.

In addition to these universal functions, the plasma membrane has other critical
roles in multicellular organisms. Few of the cells in multicellular plants and animals
exist as isolated entities; rather, groups of cells with related specializations combined
to form tissues. Specialized areas of the plasma membrane contain proteins and glycol-
ipids that form specific contacts and junctions between cells to strengthen tissues and
to allow the exchange of metabolites between cells. Proteins in the plasma membrane
anchor cells to many of the matrix components, adding to the strength and rigidity of
many tissues. In addition, enzymes bound to the plasma membrane catalyze reactions
that would occur with difficulty in an aqueous environment. The plasma membrane
of many types of eukaryotic cells also contains receptor proteins that bind specific
signaling molecules (e.g. hormones, growth factors, and neurotransmitters), leading

to various cellular responses.
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Figure 2.4: Variation in biomembranes in different cell types. (a) A smooth, flexible
membrane covers the surface of the discoid erythrocyte cell. (b) Tufts of cilia (Ci)
project from the ependymal cells that line the brain ventricles. (¢) Many nerve axons
are enveloped in a myelin sheath composed of multiple layers of modified plasma

membrane. [Parts (a) and (b) from Kessel and Kardon (1979), and (c) from Cross

and Mercer (1993)]

2.3 Physical Role of Lipids

The ability of individual lipid molecules to diffuse freely within lipid bilayers results
the fluidity of bilayers. Despite this fluidity, lipid bilayers can form domain of different
compositions. However not all lipids can form bilayers while the formation depends

on the solubility and the shape of lipid molecules.
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2.3.1 Fluidity

The ability of lipids to diffuse laterally in a bilayer indicates that it can act as a
fluid. The degree of bilayer fluidity depends on the lipid composition, structure of
the phospholipid hydrophobic tails, and temperature. Van der Waals interactions
and the hydrophobic effect cause the nonpolar tails of phospholipids to aggregate.
Long, saturated fatty acyl chains have the greatest tendency to aggregate, packing
tightly together into a gel-like state. Phospholipids with short fatty acyl chains,
which have less surface area for interaction, form more fluid bilayers. Likewise, the
links in unsaturated fatty acyl chains result in their forming less stable van der Waals
interactions with other lipids than do saturated chains and hence more fluid bilayers.

As shown in figure 2.5 when a highly ordered, gel-like bilayer is heated, the increased

oY

il ﬁ

!L!a lg (I

molecular motions of the fatty acyl tails cause it to undergo a transition to a more

fluid, disordered state.
3\ e [N Vi
e / \ I/'y i \ |

f D

Gel-like consistency Fluidlike consistency

Figure 2.5: Gel and fluid forms of the phospholipid bilayer. Heat disorders the non-
polar tails and induces a transition from a gel to a fluid within a temperature range

of only a few degrees. (Alberts et al., 2007).

2.3.2 Bilayer Formation

Two factors primarily govern whether a lipid will form a bilayer or not: solubility
and shape. For a self-assembled structure such as a bilayer to form, the lipid should
have a low solubility in water, which can determined by critical micelle concentration
(CMC) (Israelachvili, 1991). Above the CMC, molecules will aggregate and form

larger structures such as bilayers, micelles or inverted micelles.
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Figure 2.6: The molecular shape of lipids (Sprong et al., 2001).

The shape of a membrane lipid depends on the relative size of its polar headgroup
and apolar tails (Cullis et al., 1986). As shown in figure 2.6, the molecular shape
of lipids determines the physical properties of membranes. In cases in which the
headgroup and lipid backbone have similar cross-sectional areas, the molecule has
a cylindrical shape (phosphatidylcholine (PC)). Lipids with a small headgroup like
phosphatidylethanolamine (PE) are cone-shaped. By contrast, when the hydrophobic
part occupies a relatively smaller surface area, the molecule has the shape of an
inverted cone (lysophosphatidylcholine (LPC)). The relative size of polar headgroup
to apolar tails can be used to define so-called intrinsic curvature. For two-tailed
PC lipids, this ratio is nearly one so the intrinsic curvature is nearly zero. PE lipids
are smaller and the resulting diacyl (two-tailed) lipids thus have negative intrinsic
curvature. LPC lipids tend to have positive spontaneous curvature because they have
one (rather than two) alkyl chain in the tail region. If a particular lipid has too large

deviation from zero intrinsic curvature, it will not form a bilayer.
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Chapter 3

Mathematical Formulation

3.1 Introduction

In this chapter, a continuum model is introduced for the biological membranes; this
model considers a biological membrane as an inextensible fluid membrane with cur-
vature elasticity immersed in a viscous, incompressible, Newtonian fluid. The inertial
forces are ignored and the biomembrane is modeled as a Newtonian two-dimensional
fluid, in agreement with coarse-grained molecular dynamics simulations (den Otter
and Shkulipa, 2007) and experimental observations (Danov et al., 2000; Dimova et al.,
2006; Cicuta et al., 2007). Here, first we describe the kinematics which is in a La-

grangian system and then discuss the dissipation energies and curvature elasticity.

3.2 Kinematics

We describe parametrically axisymmetric vesicles in terms of the generating curve,

i.e. the vesicle surface I'; at a given instant ¢ is given by
x(u,0;t) = {r(u;t) cosd,r(u;t)sinb, z(u;t)}, wue€l0,1], 6 € [0,2n],

where
c(u;t) = {r(u;?), 2(w;1)}, wel0,1],

15



16 Mathematical Formulation

is the parametric description of the generating curve at the instant ¢, €;. We consider

closed surfaces with continuous tangents, hence we require

r0)=r(1)=0, #(0)=2(1)=0, (3.1)

where (-)’ denotes partial differentiation with respect to w.

For simplicity, from this point on we omit the dependence of all quantities on time.

We shall formulate the mechanics of the fluid membrane in terms of the generating

curve. Its speed is given by a(u) = 1/[r'(u)]? + [#/(v)]?. Integrals on the surface can
be brought to the interval [0, 1] with the relation dS = (2mar)du. The tangent unit
vector to the generating curve pointing in the u direction and a unit normal are given
by
= }{T’,Z'}, n= l{—z’,r’}.
a a

Viewing the parameter u as a label for material particles, we can express the velocity

of the membrane in terms of its tangential and normal components,
e={r:}=V =v+u.n=ut+v.n,

where the dot denotes partial differentiation with respect to time, v is tangential
component and

1 1
= a(r'ﬂﬁ +2'2), v, =—(=2r+r'2). (3.2)
a

This decomposition is important since only the normal velocities change the shape of
the membrane. The tangential velocities represent the flow of the amphiphiles on the

membrane surface. The above relations can be inverted as
. l ! / . 7 )
F=—(r'"vy — 2'vn), Z==(r'v,+ 2w
a a

A key object for the kinematics and constitutive relations of the two-dimensional fluid

on a curved, time-evolving surface is the rate-of-deformation tensor d. This tensor
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can be geometrically thought as the tangent projection of the rate of change of the
metric tensor of the surface as it is advected by the membrane velocity (Scriven,
1960; Marsden and Hughes, 1983; Arroyo and DeSimone, 2009), which leads to the

expression

d= - (Vww+ V') —u.k,

B | =

where V, denotes the surface covariant derivative and k = —V  n the second fun-

damental form. The formulas for axisymmetric surfaces can be found in Arroyo and

DeSimone (2009).

Introducing b(u) = —r"(u)z'(u) + r'(u)z"(u), we can write the mean and gaussian
curvatures as , )
1/b =z bz

H==-|=+-— K= ’ 3.3

a (a2 * fr) ’ atr (8:3)

Note that here H is defined as the trace of the second fundamental form.

3.3 Governing Equations

Hre, We present the generic ingredients for the governing equations for the shape
evolution, under the assumption of low Reynolds number, hence neglecting inertia.
The dissipative potentials can be expressed by a functional W{r, Z], which, although
not explicitly written, depends nonlinearly on the shape of the surface. Under the
assumption that both the ambient bulk fluid and the membrane two-dimensional fluid
are Newtonian, this functional is quadratic in its arguments.

The curvature energy and in general other energetic mechanisms such as line ten-
sion, depend exclusively on the shape of the membrane, hence can be expressed in
terms of a nonlinear functional II[r,z]. The energy release rate functional is the
negative of the variation of the energy functional in the direction of {r,2}, i.e.
G[r, 2] = —6Il[r, z; 7, 2], where again its explicit (nonlinear) dependence on the con-
figuration of the surface has been omitted. By its definition, it is clear that the energy

release rate functional is linear in its arguments.

The membrane dynamics are often constrained by global nonlinear equalities such
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as enclosed volume or surface area constraints. We generically express these con-
straints with a vector-valued functional as C|r,z] = 0, or in rate form as D[r, 2] =
dC|r,z;7,2] = 0. Again, this functional is linear in its arguments and nonlinear in
the configuration of the membrane. We shall also consider local constraints such as
the local inextensibility of the membrane, expressed at each point of the membrane

o e, 2) = 0

The dynamics of the membrane equilibrates the dissipative and the energetic forces
subject to the constraints. Mathematically, the evolution equations follow from min-

imizing W, 2] — G[r, 2] subject to the constraints. Forming the Lagrangian
LI, 2, A, A] = W, 3] — GIF, 2] — [)\d(v'",z)dS _A-DJ, 4,
T

we find the velocities at each configuration {r, z}, finding the stationary points with

respect to all admissible variations
g:l =0k = 0L = xk= 0, (3.4)

which is a form of the principle of virtual power. Note that, unlike the other arguments
of the Lagrangian functional, the Lagrange multipliers for the global constraints A are
not functions of u. If d(7, 2) = 0 expresses the local inextensibility of the membrane,
then the Lagrange multiplier A is the surface tension. We provide below the specific

form of these functionals.

3.4 Constraints

Fluid membranes are semipermeable, and assuming osmotic equilibrium between the

enclosed and the outer media, it is often reasonable to assume that the enclosed
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volume is constant. This constraint is expressed as

1
g e / L dp Vi) rar)dn.  (35)
0

a

0=D",4 =V = ﬁ/

r
Generally, the in-plane stresses on the membrane are low compared to the elastic
moduli, and the membrane can be assumed to be locally inextensible (Seifert and
Lipowsky, 1995). This condition on the surface is expressed as (Arroyo and DeSimone,

2009)
O=traced=V,-v— Hu,,

which for axisymmetric surfaces reduces to

! 5 ! !
0 =d" (7, 2) = i(rv@)’ — Huy, = (T 2 ) 7+ (z + ft ) ;3

ar a a a? a

If the details of the fluid flow on the membrane are disregarded, this local condition is

often replaced by a total surface area constraint (Du et al., 2009), which for a closed

surface takes the form

1
. H
0=Duef ] =8 =— / HundS = — / — (=i -+ r'2) (2mar)du. (3.6)
r 0

3.5 Dissipation

3.5.1 Membrane Dissipation

As derived in Arroyo and DeSimone (2009), the dissipation potential for a Newtonian

closed fluid membrane can be written as

Wy, u,| = /,u d:ddS
T

= /” E(deu(vs-u)z—Kv|2+(H2—zK)Ug—fz(vsv:k)vn ds,
T
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where d denotes the exterior derivative, dv® is the generalization of the curl of the
tangent velocity field on the surface, and p denotes the membrane viscosity, with units
of force x time x length~!. Molecular dynamics simulations (den Otter and Shkulipa,
2007) as well as experiments (Danov et al., 2000; Dimova et al., 2006) support model-
ing fluid membranes as Newtonian two-dimensional fluids. For axisymmetric surfaces,

this expression reduces to

o | | - 2 7 22 b , . 27 2 2
Wmem[’f‘,z] = /ﬂ’ L(Qvﬁ) + Evt e &'Un (E’Ut -+ aﬁvt) + (H = QK)'Un d87
r

o0 & [
[ 1y 2 1ot
= [uldw om0 (2 g5 ||u s
T a )
= G HP-2K | |

The matrix in the above expression is positive semidefinite. Indeed, it becomes obvious
from the derivations that it has a zero eigenvalue associated with rigid body motions,
i.e. velocity fields obtained from equation (3.2) and 7 = 0 and Z = constant. This

reflects the fact that the membrane dissipation is internal to the surface.

We provide here a remarkably simple alternative expression of this dissipation po-
tential under the hypothesis of axisymmetry. We first use the the local inextensibility
constraint to express v, in terms of v, and wv,. The dissipation potential then takes

the form

wrenls, 3 = [t [ ] { E) ;r)z} [: ] as,

which, using equation (3.2), can be written as

pmemfy 5] = /F % (;)2d8 = /D Y (;)2 (2mar)du. (3.7)
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3.5.2 Bulk Dissipation

We assume that the velocities of the membrane and of the surrounding fluid co-
incide, i.e. no slip as suggested by coarse-grained MD simulation (den Otter and
Shkulipa, 2007) and conventionally assumed for lipid-water interactions (Stone and
Ajdari, 1998). This hypothesis may not be adequate in extreme situations, for in-
stance if there is significant flow across the membrane. We consider an infinite fluid

at rest at infinity and axisymmetry.

In the absence of body forces, the dissipation potential can be written as
1 .
Wb“1k=/ a’:DdV:/ pPikp s D av,
2 R3 R3

where o is the stress tensor, D = 1/2[Vu + (Vu)7] the rate-of-deformation tensor in
the bulk fluid, and « denotes the velocity field of the bulk fluid. This fluid is assumed

to be incompressible, V « u = 0. The no-slip condition is expressed as u =V on I.

3.6 Curvature Elasticity

The curvature elasticity of the fluid membrane is modeled by the Helfrich-Canham

functional (see Seifert and Lipowsky, 1995, for a discussion on curvature elasticity

models),

M= /E(H _Co)? dS+ / neli S, (3.8)
I 2 r

where Cy denotes the spontaneous curvature and « and kg are elastic parameters.
For closed homogeneous surfaces, the second term is a topological invariant, which
we will disregard here. For a general treatment for membranes with boundary, see

Arroyo and DeSimone (2009). The energy release rate takes the form

Glon] = — /F k(H — Cy) [Asvn + % (H? — 4K + HCo) v, | dS.
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For the numerical implementation, to avoid third order derivatives of r and z, it
proves more convenient to take variations directly from the following form of the
elastic energy

Mr, 2] = /01 g(H — Cy)*(2mar)du, (3.9)

together with equation (3.3), which yields an expression for G[r, Z] as follows.

! H H
G[r, 2] = —/ k(H — Cp) (%—Ijr + gr’ 7+ giﬁ” + %ZZ’ + gzﬂzl’”) (2mar)du
0

1 ' !
—i—/ w(H — Cy)? (T—'f" + =z + cw*) mdu,
0 a

z
4

where

0H OH 2" 3br' OH _ 2 O0H _ 7‘”_31)2’ i 8_H B 'r_'

e o =2 =T 4 =—.
or ar?’” O’ a3 a®’ Or a3’ 0z a3  a®  ar’ 92 a3

Both approaches can be shown to be equivalent by integration by parts with the

conditions in equation (3.1) to annihilate the boundary terms.

3.7 Different Models

Here, we consider several models to assess the specific effects of the membrane viscous
flow and its relevance. Initially, for the sake of qualitative comparison, we consider a

model with only membrane dissipation, and local membrane inextensibility

BATF, 3,0, A% = W, 1 = G, 4 — [ A7, 2)d5 — A™'D™, 2.
i by
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We consider also a model with only bulk dissipation, together with a global area

constraint as in Du et al. (2009)
LB[?:‘, Z-)Aarea, Avol] - Wbulk[,!;, Z} _ G[’I",Z] _ AareaDarea[?;’ Z} _ A"'OIDVO][QF', ZJ

A similar model with local inextensibility can be considered, as in Biben et al. (2005).
We have checked that the results for both models are very close, hence consider only

LB for definiteness.

We also consider a model whose dissipative mechanism is purely mathematical
LC[’I.", Z Aa,rea,Avol} _ WLQ {T, Z] _ G[T,Z] _ Aa,reaJDarea[?;, Z] _ AVOIDVO][?I",Z'],

where i
Wlzff, 3] = / Bo2ds,
r2
and /1 is a mathematical viscosity coefficient. The resulting dynamics, for the closed
surfaces considered here, are a constrained version of the L, gradient flow of the
Willmore energy. Such a gradient flow finds applications in geometrical analysis (Si-
monett, 2001), and is also considered by some authors as a simple model for the
dynamics of fluid membranes (Du et al., 2006). In all the models presented so far,
vesicles of different sizes evolve in the exact same way, upon re-scaling of the time

variable. Finally, the following model accounts for both the membrane and the bulk

dissipation

qu“['f);}? /\JAVOl] — M/mem[,];7 Z-]_I_Wbulk[?;, JL’]—G[T-', Z-]_/ )\diHGXt(T", Z)dS—AVDlDVOl[f‘, Z'}.
r
In this model, the two dissipative mechanisms compete, and vesicles of different sizes
exhibit a different relaxation behavior, as reported in Arroyo and DeSimone (2009).
These models could be supplemented by external actions, although here we only
consider the relaxation dynamics from an initial out-of-equilibrium condition. Here,

the out-of-equilibrium configurations are obtained as equilibria for a given value of
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the spontaneous curvature Cy, which in the dynamics simulation is set to zero, or
by applying an external force on the vesicle, which is suddenly released so that the
systems returns to an equilibrium state. It should be mentioned that, while for models
LB LC, and LM the boundary conditions in equation (3.1) are sufficient, the model
LA requires an additional condition to fix the motion along z, which otherwise remains

undetermined due to the invariance of W™ apparent from equation (3.7).
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Chapter 4

Numerical Methods

4,1 Introduction

One of the most demanding methods to simulate the fluid-structure interaction in bi-
ological systems is the finite element immersed boundary (FEIB) method, see Heltai
(2008); Boffi et al. (2005). This is a newly developed method based on the im-
mersed boundary (IB) methods, firstly introduced by peskin in 1972 (Peskin, 1972)
and widely used in fluid-membrane interaction problems Peskin (2003); Mittal and
Taccarino (2005). There are a considerable number of methods based on IB, such
as Immersed Finite Element Method (IFEM), which have fundamental differences in
formulation and application (Zhang et al., 2004; Liu et al., 2006, 2007; Zhilin, 1998).
Here, we develop a new approach by utilizing FEIB and B-Spline curve represent-
ing geometry of biological membrane. In this chapter, a special semi-discretization,
in which a Lagrangian B-Spline curve moves on top of a background Eulerian fluid
mesh which spans the entire computational domain, is described and the bulk dis-
sipation matrix is calculated. At last, in order to minimize the number of control
points of the B-Spline while representing high curvatures more accurately and also
avoiding undesirable control point clustering in some areas, an effective combined

re-parametrization method is introduced.

25
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4.2 Spacial Semi-discretization

The spacial discretization follows from a standard Galerkin approach. The generating

curve of the axisymmetric surface is represented numerically as a B-Spline curve

c(u;t) = {r(u;t), 2 ZBI ) {ri(t), 2:(2)}, (4.1)

Pr(t)

where B;(u) are the B-Spline basis functions (Piegl and Tiller, 1997) defined on the
interval [0,1], and {r;(¢), 2;(¢)} is the position of the /—th control point of the B-
Spline curve at instant t. Again, we drop the dependence on time. The velocity of

the membrane can be computed as

V(u)~ > Bi(u)Pr. (4.2)

Since the formulation involves up to second derivatives of the generating curve, it is
convenient that the numerical representation is sufficiently smooth, hence avoiding
cumbersome mixed approaches. Here, we have considered cubic B-Splines, which
have up to second-order continuous derivatives. With the natural numbering of the
basis functions, the symmetry conditions in equation (3.1) can be expressed in this
numerical representation as r; = ry = 0, 21 = 22 and zy_1 = zy. We collect all the
nodal values in the vector P = {ry, 21,72, 22,...,7n, 2n}. If local inextensibility is

required, we need to discretize the field of Lagrange multipliers

M
?.L) ~ ZBJ)\_],
J=1

where B are taken here to be the quadratic B-Splines obtained from the same knot

vector used to generate the functions Bj.

Plugging these representations into the different models, generically written as
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L, and equating to zero the derivatives of L with respect to the control points
{r;(t), zr(t)}, possibly A; and the global multipliers A (or equivalently evaluating
the variations in equation (3.4) at the B-Spline basis functions), the Galerkin semi-

discrete equations follow as

D(P)P+L(P)A = f(P) (4.3)
LT(P)P = 0

where A collects all the Lagrange multipliers for a given model. This system of
differential-algebraic equations is integrated in time with a specialized package.
Specifically, recalling equation (3.5), the entries for column of the constraint matrix

L corresponding to the global volume constraint are
L}/’?l — _Dvol [Bh 0}: L}gl — _DVOI [0, BI]

Similarly, recalling equation (3.6), the column of L corresponding to the global area

constraint is
L?.f-ea . —Dareﬂ[B], O], ?iea, — _Dare&[O, B[]

The matrix entries corresponding to the local inextensibility constraints are

_ 1 / H . ) 1 / Hr' «
L}rﬁt = —/0 (T ‘ ) BrB;(27ar)du, L}‘f’}t = —/0 (Z + ; ) BrB;(2rar)du.

a2 a a?
Recalling equation (3.10), the elastic force vector is computed as
fre = G[Br,0], fr. = G[0, By].

From equation (3.7), it follows that the only nonzero entries of D™*™ are

1
8
Dﬁeﬁzf #BIBJLadU
k) U ,r-
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4.3 The Bulk Dissipation Matrix Dbk

We discretize the ambient velocity field and pressure as

To enforce the no slip condition, we define
n=f|v—u|2 ds,
T
which we minimize with respect to P; to find the relation
MP = NU, (4.4)
where U = {uy,, U1z, Uz, U2z, - - - , Unp, Unz } a0d
Myig; = 035 L BiB;dS,  Nrjak = O '/F BiNgdS.

The lower-case indices ¢, j and k£ run over r and z.

After standard space discretization, the discrete equations for the bulk flow take

the form

KU +L,p = N'M™'f(P) (4.5)
LU = 0

The form of the forcing term follows from the power conjugacy between P and f,
together with equation (4.4). Isolating U from the first equation in (4.5) and plugging

it into the second equation allows us to write

p=(LIK L) '"LJK'N"M™' f.
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Replacing back in the first equation, and recalling equation (4.4), we find

P=M'N(K"'-K'L(LJK'L) 'LyK")N'M" f

(Db:&)—l

In a pure Dirichlet problem, the pressures are defined up to a constant. Taking a
solution and adding a constant to the pressure field clearly shows from the equations

that it is also a solution. In order to remove this the indeterminacy, we applied a

an:O

n

constraint on the bulk pressure

This constraint introduces another Lagrange multiplier to the system which leads to

an additional equation and more complex bulk dissipation matrix.

KU +Lyp = N'M™'f(P) (4.6)
T
L,U+Ly = 0

Lip = 0

where L, is a vector of ones. By solving for Lagrange multipliers in second and third

equation and replacing back in the first equation, the bulk matrix is found
DM = (M N [K ! -~ K 'L,(LTK 'L,) 'LTK ' + H] N"M !}
where i

H=K 'L,(LK 'L,) 'L,(LT(LTK 'L,) 'L,) 'L (LTK™'L,) 'LTK™!

This type of formulation for bulk dissipation is very important because it allows us

to combine different dissipation mechanisms, easily, by adding two different dissipation

matrix.
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Tu

Figure 4.1: Non-uniform knot span adapted to the curvature of the generating curve
(left), and control polygon for a given vesicle shape (right).

4.4 Reparametrization

The B-Spline curve, which represent the desired biological membrane, described in
equation 4.1 is obtained by integrating the velocity of the control points of gener-
ating curve (P) in time. Therefore, there is no restriction on the relative position
of the control points and this may cause clustering of the control points in some
areas irrespective of the geometric features of the generating curve and leads to over-
resolving of some areas while some other areas have poor resolution. Furthermore, the
curvatures of the B-Spline is changing during the time, and considering that higher
curvature parts need more resolution to be represented accurately, it is important to
re-parametrize the generating curve periodically in the simulations.

Here, we have devised a combination of two different re-parametrization meth-
ods: Arc-length re-parametrization (Peterson and Taligent, 2006; Sharpe and Thorne,
1982), in order to avoid control points getting too close and cross over each other, and
curvature-based re-parametrization, to capture higher curvatures more accurately.

This combined re-parametrization method builds a non-uniform knot span for the
B-Spline functions; hence, it clusters the knots where the curvature of the generating
curve is high while avoiding too close control points. At the re-parameterization
instants, the new control points relative to the new set of basis functions are obtained
by a least square fit to the previous description of the generating curve that results in

a nearly arc-length parameterization, see figure 4.1 for an illustration. This method
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allows us to significantly reduce the number of control points as compared to resolving

the fine geometrical features with uniform refinement, and still obtain very accurate

solutions.
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Chapter 5

Simulation Results

5.1 Introduction

In this section, first, the results for a simple yet informative axisymmetrical example is
introduced and compared with the available analytical solution in order to verify the
applied numerical method and investigate the boundary effects. Then, the dynamic
simulations of a biological membrane are illustrated with focus on the evolution of

curvature energy during time for a sufficiently large and fine mesh.

5.2 Biomembrane Dynamic Simulation Results

In this simulation, we start with an out-of-equilibrium membrane, which is repre-
sented with a cubic B-Spline, and continue solving the system of equations, described
in Chapter 4, until the system reaches an equilibrium state. The novel numerical
technique explained in Chapter 4 is applied here. As mentioned before, this combined
immersed finite element B-Spline method requires a background finite element mesh.
Figure 5.1 shows the whole adaptive background mesh and the B-Spline curve. Q2 /Q1
elements have been used in order to satisfy LBB condition. Figure 5.2 shows a closer

look of the mesh near the B-Spline. The position of control points in the elements is

illustrated in figureb.3.

33
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Chapter 6

Conclusions

Motivated by the out-of-equilibrium behavior of systems in biology and bio-inspired
technology, I have studied, computationally, the dynamics of biological membranes
with a particular emphasis on development of a novel numerical technique, Finite
Element Immersed Boundary (FEIB) method.

In the presented work, first the composition and structure of biological mem-
branes have been explained and the physical role of lipids, as the main component
of all biomembranes, on fluidity and bilayer formation of membranes has been dis-
cussed. Then, a continuum model for an inextensible fluid membrane with curvature
elasticity immersed in a viscous, incompressible Newtonian fluid has been described
and after that based on this model and B-Spline curve representation a special semi-
discretization with related bulk dissipation matrix was derived. Finally, some dynamic
simulations of a biological membrane was presented, reliability of the introduced re-
parametrization method was investigated and the numerical method was verified by
means of available analytical solution for the most important example of axisymmet-
rical flow.

The new formulation of bulk dissipation matrix empower us to combine bulk dis-
sipation with other dissipation models which are effective in different biomembranes.
This is very important because although for large vesicles, the bulk viscosity plays
an important role to set the dynamics, for small vesicles, curvature energy and mem-
brane viscosity become dominant driving and dissipative mechanisms (Arroyo and

DeSimone, 2009) which is common in cell biology and in man-made bio-inspired sys-
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