
Universitat Politecnica de
Catalunya

Erasmus Mundus Master Thesis

Numerical Investigation of Low
Reynolds Locomotion

Author:
Flaviu Simon

Advisor:
Prof. Marino Arroyo

June 28, 2013





Acknowledgements

First of all, I would like to thank my advisor, Prof. Marino Arroyo for all
the help and guidance he has given me during this process. I can truly say
that I have learned a lot from him, and praise him for his patience with me.
Additional thanks go to my labmates working in the Laboratori de Calcul
Numeric within the UPC who have always been there when I needed help
with anything and have made the long days of work less dull.

Then I would like to thank the entire CIMNE and Erasmus Mundus
directory who have made it possible for me to study in this prestigios master
course.

Last but not least, I would like to thank my family, friends and classmates
who have encouraged and supported me during the process of writing my
thesis. Without the confidence inspired by them, I would have never been
able to go through with this endeavor.

i



Abstract

The euglenids are microorganisms which are part of the Protista king-
dom of eukaryotes. They can be found in diverse aquatic mediums such as
ponds, puddles or even the sea, depending on the species. They feed through
phagotrophy, phototrophy and osmotrophy. The outer layer of the euglenids
is called pellicle and it is flexible, allowing the organism to move and at the
same time retaining its original shape.

In my thesis, I have focused on the movement of the green euglena in a low
Reynolds number medium, by altering its shape, called metaboly. Although
all species use flagella to propell them through the fluid, we will only study
the metaboly and its added effect to the locomotion. This type of locomotion
has not been fully unravelled, and there remain many questions regarding
the actuation mechanism as well as the efficiency of this kind of movement,
compared to the largely discussed ciliary and flagellar motions.

Shape changes are actuated by molecular motors on the pellicle, which
produce in-plane shear deformations. These shear deformations cannot be
accommodated by the pellicle unless it deforms. In a previous work [1],
the actuation shear that in vivo euglenids perform has been measured from
movies using a kinematical theory of the pellicle. Here, inspired by the spacio-
temporal patterns of pellicle shear of real euglenids, and to analyze this shape
morphing principle, I consider a simplified pellicle shape, and actuate it with
synthetic shear distributions.

Then, I place the motile artificial pellicles in a viscous fluid in the limit of
vanishing Re to analyze the hydrodynamic performance as a micro-swimmer.
I compare the performance of several actuation pellicle distributions. Fur-
ther steps in this direction may result in new concepts for microfluidics, for
instance in the case of peristaltic micropumps.

The results I obtained reflect the very volatile nature of the pellicle. They
also agree with the research that has been done before on this topic: the
more shear exists on the pellicle, the more the euglenoid moves forward. My
numerical analysis on the kinematics of the pellicle has given insight on the
pellicle helicity, and has provided data for the hydrodynamics solution.
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Chapter 1

Introduction

Today there is a constant need for science to explore the microscale and
nanoscale world, to try to discover things which could improve fields such
as medicine, computational sciences, physics and ultimately, our lives. Ana-
lyzing the locomotion at a low Reynolds number can join loose ends in the
current view on such microorganisms as the euglenoid, whose metaboly has
never been fully understood, especially since scientists still don’t know what
the molecular motor that powers this strange motion is.

My take on low Reynolds number locomotion, which has been almost
entirely numerical, is presented in this thesis report. Leaving the numerics
aside for a moment, I have to admit that the problem has fascinated me ever
since I first saw a recording of the motion. I was amazed of how this minute
organism could develop such a complex apparatus necessary for performing
this type of locomotion. Finding out more about how this was possible was
my incentive when I decided to get involved in this project. Little did I know
what I had gotten myself into.

Figure 1.1: Euglenoid metaboly, image adapted from Leander [5]
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CHAPTER 1. INTRODUCTION

One approach to studying this movement was done in the article by Ar-
royo et al. [1]. The experiments behind this article are the basis for my
numerical investigation, as I mentioned in the abstract. The article chal-
lenges the existing conceptual models of swimming at low Reynolds number.
It explores the pellicle kinematics and hydrodynamics of the stroke using the
model developed. It concludes that each euglenoid studied has a different
behaviour, showing geometrically distinct strokes.

What I am trying to understand is the relationship between the pellicle
shear and the distance travelled. We know the euglenid is moving, but one
objective is to see which velocity it employs and what the efficiency of its
movement is. Pellicle deformations are determined by the sliding of pellicle
strips, which retain their length and width, as known from previous studies.
This is why the surface area of the euglenids remains almost constant during
the metaboly, with deviations of 5%.

My study aims to further explore the locomotion of the euglenid, by
building a simplified model, recording the relevant results and presenting it
in a comprehensible way. The utility of this research is related to the field of
microfluidics, taking into account the fact that the pellicle can be a model
for engineered active surfaces. A good example of this is the actuators in a
peristaltic micropump used for biomedical applications.
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Chapter 2

Background

2.1 Theory

In this section I have firstly given an overview on low Reynolds number
flow. Also, I have reviewed the biological details of the euglenids, especially
those of the pellicle.

2.1.1 Low Reynolds number locomotion

The Reynolds number for an incompressible Newtonian fluid with density
ρ and viscosity η, is a dimensionless quantity which qualitatively captures
the characteristics of the flow regime obtained by solving the Navier Stokes
equations. These need to be solved for the flow field u and the pressure p. 1

∂u

∂t
(ρ) + (ρ)(u · ∇)u = −∇p+ η∇2u

∇ · u = 0

The first equation then becomes, in the low Reynolds number limit:

−∇p+ η∇2u = 0 = ∇ · σ

where σ is the stress tensor. The fact that there is no explicit time dependence
in the equations means that a self-propelled object has to be subject of a
cyclic deformation in shape pace which does not retrace its path. This means
that reciprocal motions are not allowed.2

1Lauga E., ”The hydrodynamics of swimming miorganisms” , Rep. Prog. Phys., vol.72,
no. 15,p.6

2Stone H. A, Samuel A.D.T. ”Propulsion of microorganisms by surface distortions” ,
Phys Rev Lett, vol.77, no. 19, 1,p. 1
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2.1. THEORY CHAPTER 2. BACKGROUND

There are many physical interpretations of the Reynolds number, such
as:

• ratio of the typical inertial terms in the Navier-Stokes equation, to the
forces per unit volume.

• ratio of time scales.

• ratio of forces on the body.

• etc.

We can consider the case of a swimmer which deforms its surface for the
sole purpose of moving through a fluid, lacking the intervention of external
forces. This example perfectly illustrates the case of an euglenoid. Establish-
ing that the mass is m, size is L, velocity is U and the density and viscosity of
the fluid are ρ and η, we get the formula for the Reynold’s number expressed
as:

Re = ρUL/η (2.1)

The motion at a low Re number is basically a motion without considering
inertia, due to its minuteness. This means that the strategies of swimming
used by large organisms, such as mammals and fish will not be available
for microorganisms living in a low Re medium. In this kind of medium,
the forces acting in a precise moment determine what is happening to the
microorganism in that moment, without having any effect in the future. The
Re number for a microorganism such as the euglenoid is about 10−4 − 10−5,
which, when applied to a human being, would be something like swimming
in a pool full of molasses and not being able to move more than 1cm/min,
as a famous example by Edward Purcell, a Nobel Prize for Physics winner.3

Swimming at a low Reynolds number is done due to a periodic change
of shape. A swimming stroke is a closed path in the space of shapes but, in
general, an open path in the space of located shapes. If a stroke is small,
the shape of the swimmer will not drastically change. Once the stroke is
finalized, it will return to its original shape, what differs being the location
and orientation. In order to compute the swimming step, X(γ) and the
dissipation D(γ), we need to solve the beforeseen Stokes equations for the
velocity field u of the ambient liquid, subject to the boundary conditions
that u vanishes at infinity and satisfies a no-slip condition on the surface of

3Purcell E.M.,”Life at Low Reynolds Number”, Brodylab, Nov. 2005, Web May 2013,p.
3
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2.1. THEORY CHAPTER 2. BACKGROUND

the swimmer. To obtain the locomotion we have to look into the condition
that the force and torque on swimmer disappear at all times.4

On the same note, but extending a bit, I have also worked on the idea of
optimal swimming, which implies minimizing the energy dissipated per unit
swimming distance, D(γ)

X(γ)
, while the average speed X(γ) has to be kept fixed.

The dissipation per unit length D(γ)
X(γ)

and the velocity X(γ)
τ

scale as 1
τ
, where

τ is the period of the stroke. We can define the inefficiency of the stroke, or
the swimming drag coefficient in the following way:

δ(γ) =

(
D(γ)

X(γ)

)
/

(
4πµX(γ)

τ

)
This number is inverse proportional with the efficiency of a swimmer.

Because δ in d dimensions has size Ld−2, geometrically similar swimmers
have the same efficiency in two dimensions, while the smaller swimmers are
more efficient in three dimensions.

A slightly different approach to the notion of efficient swimming was that
employed by Lighthill. He defines the efficiency of a swimming microorganism
as the power that would be needed to drag an object of the same size with the
same speed through viscous fluid, divided by the actually dissipated power.
This definition of the efficiency could technically generate some values which
exceed 100%, but the actual swimming efficiency is of the order of 1%. The
internal energy losses are ignored when calculating Lighthill’s efficiency. 5

2.1.2 Overview on pellicle configuration and metaboly

There are many papers discussing life and locomotion at low Reynolds
number. What has not been discussed so extensively is the efficiency at
which different microorganisms manage to move through this type of fluid.
Although metaboly has attracted attention due to its unique characteristics,
there are still many questions as to what powers it. My research has also
tried to analyze the efficiency of the euglenoid’s movement, as some previous
experiments show that it is much better than that of other microorganisms.
We will see that this efficiency is proportional to the bending shear of the
pellicle.

It is known that the shape changes of the euglenoid are enabled by the
existence of the pellicle and its subcomponents: the cytoskeleton, prote-

4Avron J.E.,Gat O., Kenneth O.”Optimal swimming at low Reynolds numbers”, Phys
Rev Lett, Oct. 2004, Vol. 93, No. 18,p. 1

5Osterman N.,Vilfan A.,”Finding the ciliary beating pattern with optimal efficiency”,
PNAS, Sept. 2011,Vol. 108, No. 38,p. 1
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2.1. THEORY CHAPTER 2. BACKGROUND

Figure 2.1: Different pellicle shapes for euglenoids, image adapted from Le-
ander [5]

naiceous strips, microtubules, plasma membrane, and the tubular cisternae.
This complex system is considered as a synapomorphy within the evolution of
this class of eukaryotes. Different species of euglenoids have different pellicle
configurations. Some euglenoids exhibit a pellicle with few strips, arranged
longitudinally. This type of pellicle is quite rigid, the strips being oftentimes
fused together, preventing metaboly. When strips are arranged in a helical
manner however, the microorganism can display metaboly.

Focusing on the strips, we denote the fact that they are composed of a
type of proteins known by the name of articulins, and generally have an S-
shaped cross-section which consists of two regions: an arch region and a heel
region. The adjacent strips basically fit together along their lateral edges by
overlapping ones arch with the other’s heel. The discontinuities generated
by this type of articulation enable the dynamic changes in the cell shape
as well as the cytoskeletad replication preceding the cell division. In some
lineages, there are so called projections on the frame of the strips which help
join it with its neighbour, as seen in Fig. 2.2. These can be differentiated in
pre-articular and post-articular projections, based on their position within
the joint. The robustness of these varies greatly with the different species
of euglenoids. The thinner they are, the more flexible the pellicle is during
metaboly. 6

The strips also have a vital role in the duplication of euglenoids, or cy-
tokinesis. The number of strips doubles before this process starts, new strips
emerging in the articulation zones between mature strips. In some lineages,
these new strips do not extend up to the posterior end of the cell, which
determines the formation of the so-called whorls of reduction. The whorls
will have a different number for different species, ranging from 1 to 4.

6Leander B.S., ”Euglenida: euglenids or euglenoids” , Version 11, September 2008,
.http://tolweb.org/Euglenida/97461¿
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2.1. THEORY CHAPTER 2. BACKGROUND

Figure 2.2: Pellicle configuration, image adapted from Leander [5]

The history of how the pellicle evolved in the case of euglenids is quite
interesting and shows how in many cases, a change in the mode of nutrition
has determined a change in the number of pellicle strips as well as the way
they are oriented. Euglenids that prey on small cells will have less than 12
rigid strips, while euglenids that consume large cells will have 20 to 60 strips
capable of metaboly.7

It is considered that euglenoids may provide information about the evo-
lution of unicellular eukaryotes. This is because they are among the few pro-
tists that possess diverse morphological traits that appear to be controlled
by a common developmental mechanism, the details of which are completely
unknown at this time.8

By observing one species of euglenoid called Euglena fusca which possesses
a large number of strips and highly ornamented cells, we conclude that during
the shape changes of the pellicle, the strips do not change their length or
width, but the helicity. The active motions of the pellicle are thought to be
fueled by ATP, but there is no certain response as to what kind of molecular
motor is employed in this action.

Many other questions which are not fully elucidated arise regarding the
pellicle’s conformation and behaviour, such as the the appearance of pellic-
ular knobs on random strips and their role. It seems like the different strip
surface patterns are an effect of constructive neutrality or evolutionary his-
tory rather than adaptation to the environment. I will not further discuss

7Idem
8Leander B.S.,”Trends in the evolution of the euglenid pellicle”, Evolution, April. 2001,

vol. 55, no. 11,p. 1
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2.1. THEORY CHAPTER 2. BACKGROUND

these matters, because it would sidetrack me from my original goal of strictly
analyzing the metaboly from a mechanical point of view and illustrating its
advantages for the euglenoids.

The model I have proposed for the pellicle kinematics is directly based
on the connection between distributed actuation and shape changes.9

9M. Arroyo,L. Heitai,D. Millan and A. DeSimone, ”Reverse Engineering the Euglenoid
Movement”, PNAS, October 30, 2012,vol. 109 no. 44.,p. 2

8



Chapter 3

Kinematics of the metaboly

3.1 Obtaining the mathematical expressions

3.1.1 Pellicle surface and generating curve

This chapter numerically illustrates the motion of the pellicle. We have
the initial spline curve written in the following way:

ca(u) =
N∑
I=1

BI(u){rI , zI}a (3.1)

In this relation BI(u) are the basis functions referred to a reference in-
terval u ∈ [0,1] and {rI , zI}a are the cylindrical coordinates of the control
points associated with the a-th frame. Isomap embeds each frame in a point
τ in a periodic segment scaled to [0,1]. The generating curve of the pellicle
is then parametrized in pseudo-time as:

ca(u) =
N∑
I=1

BI(u)
n∑
a=1

wa{rI , zI} (3.2)

where n is the number of frames, and wa(τ) are smooth meshfree maximum-
entropy basis functions.10

The stroke path is given by τ (τ) =
n∑
a=1

wa(τ)τa. By minimizing |τ (τ) −

τa|2 we find the pseudo-instant for each frame associated to the time instant
(a− 1)∆t.

10M. Arroyo,L. Heitai,D. Millan and A. DeSimone, ”Reverse Engineering the Euglenoid
Movement: Suporting information”, PNAS, October 30, 2012,vol. 109, no. 44., p. 1

9



3.1. MATHEMATICS CHAPTER 3. KINEMATICS

The pellicle deforms due to simple shear γ, the part of the total area
which measures a given parallel. The generating curve (r0 and z0) can be
differentiated with regards to time in order to obtain the pellicle velocities
within the symmetry plane. The orientation is given by the vector field
along the strips s0, and the surface meridian α0. C is then the Cauchy-Green
deformation tensor which characterizes the strain of the pellicle surface in
the reference configuration.11

If c(u,t) = {r(u, t), z(u, t)} is the generating curve of the axisymmetric
surface Γ. The speed a is equal to

√
r′2 + z′2, containing the partially differ-

entiated components of the generating curve. n = 1/a{−z′, r′} is the unit
normal. The element of area of the axisymmetric surface can be expressed
as dS = 2πardu. Summing everything up, we get the following expressions
for the area and volume:

S = 2π

∫ 1

0

ardu, V =
1

3

∫
Γ

x · ndS =
2π

3

∫ 1

0

(−z′r + r′z)rdu (3.3)

3.1.2 Deformation of the pellicle

Based on what I have discussed in the previous section, the reference
pellicle configuration can be formulated as x0(θ) = {r0 cos(θ), r0 sin(θ), z0}.
In the previous formula, the azimuthal angle θ ∈ [0, 2π] refers to material
particles. r(t), z(t) and ψ(t) represent the full prescription of the pellicle
Lagrangian motion along the stroke, as stated in the article.12

x(θ, t) =


r(t) cos[θ + ψ(t)]
r(t) sin[θ + ψ(t)]

z(t)

 (3.4)

In Cartesian coordinates, the natural basis vectors of the tangent place
to the deformed configuration are:

x =


r′ cos(θ + ψ)− rψ′ sin(θ + ψ)
r′ sin(θ + ψ) + rψ′ cos(θ + ψ)

z′

 (3.5)

xθ =


−r sin(θ + ψ)
r cos(θ + ψ)

0

 (3.6)

Because we assume that the local deformation is the result of simple shear
along the pellicle strips, the local deformation gradient takes the form:

11Arroyo,loc. cit.
12Ibid.,p. 2
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3.1. MATHEMATICS CHAPTER 3. KINEMATICS

[Pellicle characteristics](A) shows a microscope image of a green
euglena[26].(B) shows the sliding between the different pellicle strips which

causes the pellicle shear γ. (C) is a depiction of the pellicle and its
characteristic reference configuration {r0, z0}. These last two figures were

adapted from Arroyo et al. [1]

F = R(Id+ γs0m
T
0 )

where R is the orthogonal matrix, s0 = sin(α0e0) + cos(α0e0θ) and m0 =
− cos(α0e0)+sin(α0e0θ). α0 is the angle of the pellicle strips with the surface
parallels in the reference configuration.

Then we can formulate the Cauchy-Green deformation tensor as:

C = F TF = Id+ γ(s0m
T
0 +m0s

T
0 ) + γ2m0m

T
0 (3.7)

=

[
1− 2γ sin(α0) cos(α0) + γ2 cos2(γ0) γ(sin2(α0)− cos2(α0))− γ2 sin(α0) cos(α0)

γ(sin2(α0)− cos2(α0))− γ2 sin(α0) cos(α0) 1 + 2γ sin(α0) cos(α0) + γ2 sin2(γ0)

]
(3.8)

Equating this with the deformation derived from the shape changes, we
get relations between the reference pellicle conformation (r0, z0, α0), the de-

11



3.1. MATHEMATICS CHAPTER 3. KINEMATICS

formed configuration (r, z, ψ) and the pellicle shear for the reference state
(γ):

(a2 + r2ψ′2)/a2
0 = 1− 2γ0 sin(α0) cos(α0) + γ2

0 cos2(α0) (3.9)

(r2ψ′)/(r0a0) = γ0(sin2(α0) cos2(α0))− γ2
0 sin(α0 cos(α0) (3.10)

(r/r0)2 = 1 + 2γ0 sin(γ0) cos(γ0) + γ2
0 sin2(γ0) (3.11)

We are making the assumption that α0 = π
2
, by considering that the

pellicle strips are parallel to the meridians. In a time dependent case, the
component of the generating curve r(u) is equal to r0(u)

√
γ(u)2 + 1, where

γ(u) is the simple shear.
Based on these equations, we can determine the pellicle shear (γ) and the

azimuthal displacement (ψ). So from Eq. 3.11 γ is then:

(− cos(α0)±
√

(r/r0)2 − sin2(α0))/ sin(α0) (3.12)

Respectively, from Eqs. 3.10 and 3.11 we deduct the following formula-
tion:

r2

a0r0

ψ′ =
cos(α0)

sin(α0)

[
1−

(
r

r0

)2
]

+ γ0 (3.13)

We assume α0 = π
2

and we can then find ψ by integrating this equation.
First we obtain ψ′:

ψ′(u) =
a0(u)γ(u)

r0(u)(γ(u)2 + 1)
+ γ(0) (3.14)

Then we get the azimuthal displacement:

ψ(u) =

∫ u

0

a0(s)γ(s)

r0(s)(γ(s)2 + 1)
ds+ ψ(0) (3.15)

For accuracy, we set ψ(0) as 0 so that
∫

Γ
ψrdS is 0.

If the pellicle strips are parallel to the meridians in the reference config-
uration, then γ =

√
(r/r0)2 − 1. What is clear from the expression is that

the reference configuration component r0 is inversely proportional with the
pellicle shear γ.13

13Ibid.,p. 4

12



3.1. MATHEMATICS CHAPTER 3. KINEMATICS

The third component of the deformed configuration in the time indepen-
dent case can be obtained from Eq. 3.9 and from the definition of the speed
a :

z′(u) =

√
a0(u)2 − [(γ(u)2 + 1)r′0(u) + r0(u)γ(u)γ′(u)]2

γ(u)2 + 1
(3.16)

And then by integrating this we get:

z(u) =

∫ √
a0(s)2 − [(γ(s)2 + 1)r′0(s) + r0(s)γ(s)γ′(s)]2

γ(s)2 + 1
ds+ z(0) (3.17)

The time dependent deformed configuration is then obtained by differen-
tiating the same expressions but with respect to time. So for the component
r(u, t) = r0(u)

√
γ(u, t)2 + 1, the time derivative is:

ṙ(u, t) =
r0(u)γ(u, t)γ̇(u, t)√

γ2(u, t) + 1
(3.18)

Doing the same for the azimuthal displacement ψ and using Eq. 3.13, we
get:

ψ′(u, t) =
a0(u)γ(u, t)

r0(u)(γ(u, t)2 + 1)
(3.19)

Integrating:

ψ(u, t) =

∫ u

0

a0(s)γ(s, t)

rs(s)(γ(s, t)2 + 1)
ds+ ψ(0, t) (3.20)

And then differentiating with respect to time:

ψ̇(u, t) =

∫ u

0

a0(s)(γ(s, t)2 − 1)γ̇(s, t)

rs(s)(γ(s, t)2 + 1)2
ds+ ψ̇(0, t) (3.21)

Finally, from Eqs. 3.9, 3.11, 3.13, we find the formulas for the third
component of the deformed configuration:

z′(u, t) =

√
a0(u)2 − [(γ(u, t)2 + 1)r′0(u) + r0(u)γ(u, t)γ′(u, t)]2

γ(u, t)2 + 1
(3.22)

13



3.2. SOFTWARE IMPLEMENTATION CHAPTER 3. KINEMATICS

→ z(u, t) =

∫ u

0

√
a0(s)2 − [(γ(s, t)2 + 1)r′0(s) + r0(s)γ(s, t)γ′(s, t)]2

γ(s, t)2 + 1
ds +

+ z(0, t)

(3.23)

The time derivative is then:

ż(u, t) =

∫ u

0

−γ(s, t)γ̇(s, t)(a0(s)2 − k2)j(γ(s, t)2 + 1)−1 − (γ(s, t)2 + 1)k ·

· [γ̇(s, t)(2γ(s, t)r′0(s) + r0(s)γ′(s, t)) + r0(s)γ(s, t)γ̇′(s, t)] ·
· j ds+ ż(0, t)

(3.24)

where k = [(γ(s, t)2 + 1)r′0(s) + r0(s)γ(s, t)γ′(s, t)]

and j = 1/
[
(γ(s, t)2 + 1)

√
a0(s)2−[(γ(s,t)2+1)r′0(s)+r0(s)γ(s,t)γ(s,t)]2

γ(s,t)2+1

]
3.1.3 Pellicle velocity

Having the components of the reference and deformed configuration, as
well as their derivatives, we can proceed to calculating the pellicle velocity
field in the x-z plane:

ẋ =


ṙ

rψ̇
ż

 = vsnn+ ve+ vθeθ (3.25)

In this expression, vsn is the normal velocity due to shape changes and is
equal to n · ẋ = (−z′ṙ + r′ż)/a, v is the tangential velocity along generating
curves (meridians), and is equal to e · ẋ = (r′ṙ+z′ż)/a with e = 1/a{r′, 0, z′}
and finally vθ = eθ · ẋ = rψ̇ with eθ = {0, 1, 0}, is the tangential velocity
along the parallels.14

3.2 Software implementation

The practical side of my dissertation, the software implementation of the
model, has been done in Matlab. This has accounted for a high percentage of

14Ibid,p. 5

14
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my work, an evident continuation of the entire theoretical process employed
in the project so far.

When I reached this point in my work, I have been provided with a
Matlab code by my supervisor, which had been devised by the ones previously
working on the article cited under [1].

To get a grasp on the possibilities offered by the code, as well as ease to
ease my work, I have simplified the code, adapting it to a more rudimentary
geometry which could offer the same results in terms of pellicle shear and
deformation. The shape I chose closely resembles that of the original geom-
etry of Euglena Fusca, is a cylinder. The cylinder has been defined by the x,
y and z dimensions.

The first part of the code employs a step-by-step approach to obtain the
pellicle shear, and uses 3rd degree B-splines to define the Gauss quadra-
ture. The hydrodynamics solver employed by the code in the final part of
my dissertation uses the Boundary Integral Method, which is more appropri-
ate and gives successful results in other cases when it was adopted such as
the study of hydrodynamics of swimming micro-organisms in the Stokesian
regime (Ramia et al. 1993; Shum et al. 2010). I have presented a detailed
description of the equations behind the process of solving the Stokes equation
in the previous section.15

3.2.1 Simplified pellicle

As I mentioned before, my work on the code has started with a simplifi-
cation of the pellicle geometry, in order to ease the work and also to see if a
very basic geometrical shape would suffice as a foundation for the movement.
This is why I have used a cylinder of specific dimensions for the reference
state of the pellicle.

The pellicle shear function has been implemented so that it gives the
possibility of switching the example and it has been defined over a time
interval from 0 to 1. Basically, the cases presented containing the function
and its derivative are just examples that I make use of to illustrate the
characteristics of the pellicle. As a visual aid, the pellicle shear for the
different functions has been plotted in a map which can be seen in Figure
3.2. The functions are:

γCP1 = amplitude · sin (uCP + t/2) · 2 · π2; (3.26)

15Zhu L., Lauga E., Brandt L., ”Low-Reynolds number swimming in a capillary tube”,
J Fluid Mech, 29 April, 2013,vol 726, pp.285-311
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(a) open (b) closed

Figure 3.1: Reference state of the pellicle in the open 3D surface(simplified)
form and in the closed 3D surface(complex) form.

γ̇CP1 = amplitude ·2 ·π ·cos (uCP + t/2) · 2 · π · sin (uCP + t/2) · 2 · π; (3.27)

γCP2 = amplitude · sin (uCP + t) · 2 · π; (3.28)

γ̇CP2 = amplitude · 2 · π · cos (uCP + t) · 2 · π; (3.29)

γCP3 = amplitude · e−k·((uCP−0.5)−0.5·(t−0.5))2 ; (3.30)

γ̇CP3 = k · ((uCP − 0.5)− 0.5 · (t− 0.5)) · γCP ; (3.31)

where uCP is a matrix containing the values of the 43 control points in
time and t is the time (40 steps in our case) and k is a parameter which is
inversely proportional with the width of the bulge .

Moving foward with the Matlab code implementation of the synthetic
strokes, the next phase was to compute the shapes along the stroke. The
expressions for the components of the deformed configuration (r,z,ψ) are

16
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(a) function 1 (b) function 2 (c) function 3

Figure 3.2: The deformed pellicle for the 3 different shear functions. I have
mostly experimented with function 3.

given earlier in section 3.1.2. All three parameters are evaluated both at
Gauss points and at sample points. Now that I had the expressions relating
the pellicle shear, pellicle orientation, shape changes and azimuthal motions,
I went on to calculate the velocity components of the pellicle.

The velocity field, as denoted by Eq. 3.25, has been obtained by first
computing the components of the three velocities: ṙ, ż and ˙psi. These are
the time derivatives of the deformed configuration, as seen in Eq. 3.18, 3.24
and respectively 3.21. The process of differentiation has been described in
section 3.1.2. The natural basis function x(θ, t) has been presented in Eq.
3.4. By differentiating these, I have obtained the velocities, which I have
then plotted on the pellicle using the inbuilt Matlab function quiver3. This
function plots the vector components present in the first 3 arguments at the
points given by the last 3 arguments.

The next step in my work was to check for the consistency of my calcula-
tions. The analytical results had to be consistent with the numerical results.
For this I have computed the values of the velocity through numerical differ-
entiation using the algorithm:

17
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Figure 3.3: Map of pellicle shear for the 3 cases. Further in my analysis I
have focused on case c.

Vx =
(xn+1 − xn)

∆t
(3.32)

Vy =
(yn+1 − yn)

∆t
(3.33)

Vz =
(zn+1 − zn)

∆t
(3.34)

and the values of the mean velocity:

V 1 =
(xn+1 + xn)

2
(3.35)
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Figure 3.4: (A) An overall image of the velocity vectors plotted with different
colors on the 10 pellicle strips. (B) Quiver plot showing the coincidence of
the blue and yellow quiver arrows representing the numerical differentiation
and the average velocities.

V 2 =
(xn+1 + xn)

2
(3.36)

V 3 =
(xn+1 + xn)

2
(3.37)

Having these values, I have plotted with the quiver3 Matlab function the
two sets of velocities in different colors, in order to see whether the arrows
are superposed or not. Figure 3.4 shows a detail of this. The values have
been plotted at the Gauss points.
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Figure 3.5: 3D line plot of the displacements for every pellicle strip.

3.2.2 Complex pellicle

The cylinder has been a good simplification for the euglenoid pellicle, but
as I advanced with my work, I needed a better geometry for this complex
mechanism. This is why I developed a different geometry which I used for
the rest of the numerical analysis. The new geometry has been defined using
a vector which contained a set of data for the initial half-contour. This
has been then used to interpolate the generating curve of the axysimmetric
surface along with the information obtained by defining the b-splines and

20
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Figure 3.6: Line plot of the 3 velocities both calculated by numerical differ-
entiation and by average

Gauss quadrature. The speed a is the obtained by using the formula available
in Section 3.1.1. Then I have followed the steps described in the previous
subsection: evaluating the reference shape. What changes here is that we
have to use the Least Squares method in order to obtain the control polygon
of the deformed surface, by comparing the initial reference pellicle and the
new configuration of the pellicle. The Least Squares Method is used to
generate an overall solution which minimizes the sum of squares of the errors
existent in the results of the equations. Basically this method minimizes the
sum of squared residuals to fit data.16.

16Lai T.L., Robbins H., Wei C.Z., ”Strong consistency of least squares estimates in
multiple regression”, Proc Natl Acad Sci USA, 6 July, 1978, Vol. 75, No. 7
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Figure 3.7: Line plot of the 3 velocity components both calculated by nu-
merical differentiation and by average

rh(u) =
∑
I

(BI(u)rI) (3.38)

zh(u) =
∑
I

(BI(u)zI) (3.39)

These are the two components of the pellicle configuration. BI is the
basis function. rI and zI are the unknowns. By using the Least Squares
Method we then get the following expressions:

min
rI

=
1

2

∫
|rh(u)− r(u)|2 dS (3.40)

min
zI

=
1

2

∫
|zh(u)− z(u)|2 dS (3.41)
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where dS has been defined previously as 2πardu.
We come to

Ir = 1
2

∑
|rh(uig)− r(uig)|2wig

= 1
2

∑
|
∑

(BI(u)rI)− r(uig)|2wig
(3.42)

and

Iz = 1
2

∑
|zh(uig)− z(uig)|2wig

= 1
2

∑
|
∑

(BI(u)zI)− z(uig)|2wig
(3.43)

MrI = b (3.44)

MzI = bI (3.45)

Where M is the matrix defined as the sum of the basis functions and
weights.

MIJ =
∑
i

gBI(uig)BJ(uig)wig (3.46)

and
bI =

∑
i

gBI(uig)r(uig)wig (3.47)

bI =
∑
i

gBI(uig)z(uig)wig (3.48)

We have all the required data necessary to perform the regression and
obtain rI , zI , the components of the control polygon. This is done in the
code by a predefined function which also calculates the error.

With the control polygon, we can calculate the new value for the gener-
ating curve, by interpolation. This data will be used in the final part of the
analysis, the hydrodynamics, when the swimmer is immersed in a newtonian
fluid. The Galerkin Boundary Element Method is used to solve the Stokes
equation of fluid flow.
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Figure 3.8: The plot shows both the quiver arrows for the numerically dif-
ferentiated velocity and the average velocity (A) and the pellicle strips and
the way they twist during the motion of the microorganism (B).
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Figure 3.9: The control polygon with red squares reprezenting the 43 control
points. The black line which is seemingly connecting the points is the second
expression for the generating curve and the dashed line which is not visible
is the initial configuration of the pellicle. The distance between the last two
parameters I have mentioned is about 1.5 · 10−4.
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Chapter 4

Swimming hydrodynamics

4.1 Obtaining the mathematical expressions

The final part of the project naturally involves placing the swimmer
in a fluid, which in our case is Newtonian which means its viscosity does
not change with the flow rate. The value for the Reynolds number is esti-
mated to be 10−4, taking into account the size of the euglenids (50µm) and
the stroke frequency (0.1 Hz). The flow is characterized using Stokes equa-
tions, as we have seen earlier. They are solved using the Boundary Integral
Method, which distinguishes itself from the Finite Element Method through
the fact that only domain surfaces need to be meshed. It is the method of
choice when solving external problems and those involving complex regions.
The dimension of the problem is reduced and integration along complicated
curves, if done with care, can be accurately evaluated.

The general integral representation of the Stokes equations is:

c(x)uk(x) = −
∫
S

Gik(x− y)fi(y) dS(y) −
∫
S

∑
i

jk (x− y)ui(y)nj(y) dS(y)

(4.1)
where

c(x) =

{
1 x ∈ Ω
1
2

x ∈ S

and Ω is the domain of the problem (which the swimmer occupies our
case) with boundary S. G is the Green’s function and it can be expressed

as: Gij(x) = 1
8πµ

(
δij
|x| +

xixj
|x|3

)
, x ∈ R3.

∑
is the Stokes-stresslet and it is

represented as:
∑

ijk(x) = − 3
4π

xixjxk
|x|5 . f is the surface traction.
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The first integral is known as the single layer potential, and the second
integral is the double layer potential.

Moving on from the general case to our particular case, we know that for
the volume changing euglenids, V̇ =

∫
Γ
vsn dS 6= 0 . The total normal fluid

velocity will include the permeation contribution vpn in order to satisfy the
balance of mass of the internal fluid. The expression

∫
Γ
vpn dS = −V̇ is then

associated with the permeation contribution. The total fluid velocity at the
surface is then vout = (vsn + vpn)n + ve + (vθ + ωr)e + Vcez. In this formula
ω is the rigid body rotational velocity and Vc is the translational velocity.
In terms of simplicity, a uniform field vpn = −V̇ /S is the best choice, but
it can also be defined as vpn(u, t) = −V̇ (u, t) where h(u,t) us a profile with
unit integral over the surface.17 The interior part of the swimmer has been
ignored in my study. The linear velocity along z and the azimuthal spin of
the cell are calculated from the self-propulsion condition.

For swimmer immersed in a Newtonian fluid with low Reynolds number,
we use a boundary integral formulation as seen in Eq. 4.1. This means the
following equations are satisfied by the velocity of the fluid at any point x:

vi(x) +

∫
Γ

Tijk(x− y)vinnj (y)nk(y) dΓy =

∫
Γ

Gij(x− y)f innj (y) dΓy (4.2)

for x ∈ Ω

vi(x) +

∫
Γ

Tijk(x− y) voutj (y)nk(y) dΓy =

∫
Γ

Gij(x− y) f outj (y) dΓy (4.3)

for x ∈ R3 \ Ω
f inn(y) and f out(y) are the inner and outer tractions at y ∈ Γ defined as

f inn(y) = σinn(y)n(y) and f out(y) = −σout(y)n(y), where n(y) is the outer
unit normal to ∂Ω at the point y, σ is the Cauchy stress in the fluid. G and
T are the Green’s functions defined earlier in this chapter.

Using the symmetry of the domain, we obtain the Fredholm integral equa-
tions for the unknown tractions f inn and f out, which we solve by means of
the Galerkin boundary element method.18

If we ignore the inner behaviour of the swimmer is equivalent to equating
the Dirichlet boundary conditions for the inner velocity vinn to 0. The inner
part of the swimmer has a traction f inn equal to 0, which means it does not
contribute to the motion of the dissipation of the body.19

17Arroyo, loc. cit.
18Ibid.,p. 6
19Arroyo,loc. cit.

27



4.1. MATHEMATICS CHAPTER 4. HYDRODYNAMICS

The total viscous force and torque are reduced by the conditions of self-
propulsion imposed, returning Vc and ω, the rigid body translational and
rotational velocities. The only two important equations are:

ez · intΓ (f inn(y) + f out(y)) dΓy = 0
ez · intΓ (y − o)× (f inn(y) + f out(y)) dΓy = 0

(4.4)

o is a point on the symmetry axis of the swimmer. Another hydrodynamic
parameter that has been calculated was the power dissipated through the flow
induced in the inner and outer flow 20:

W inn(t) =
∫

Γ
f inn(y, t) · v(y, t) dΓy

W out(t) =
∫

Γ
f out(y, t) · v(y, t) dΓy

(4.5)

This helps obtain the average power exerted by the swimmer on the sur-
rounding fluid P out and average ambient fluid dissipation P int+out:

P out =
∫ T

0
W out(t) dt

P inn+out = 1
T

∫ T
0

(W inn(t) +W out(t)) dt
(4.6)

where T is the duration of a stroke.
We basically evaluate the swimming performance with the linear displace-

ment in one stroke U, measured in units of body length 2R = sqrtS
π

, and the
Lighthill’s efficiency EffL, as mentioned in the article 21. I have spoken more
about Lighthill’s efficiency in the first chapter of my thesis. For our swimmer
it is defined as EffoutL = 6πηRW 2/P out where η. Although the efficiency of
metaboly is quite good, the setback of this form if movement is its relatively
slow speed, approximately 1-2 µm/s, significantly less than the one of the
ciliates and flagellates. An interesting conclusion that the article comes to
is the fact that the swimming performance is proportional to the maximum
pellicle shear. This is why I have especially focused on experimenting with
different shapes, trying to optimize the efficiency.

The azimuthal energy dissipation in the fluid takes a toll on the swimmer’s
efficiency, which accounts for about 20% of the outer dissipation.

The distinction which has to be made while analyzing the swimmer’s
motion is between a power stroke and a recovery stroke. The power stroke is
the motion which propels the swimmer forward, appearing as a bulge which
travels downwards along the pellicle down to the tip, with striking similarity
to a peristaltic wave. At the opposite pole is the recovery stroke, which
pushes the swimmer backwards again, making the bulge appear at the other

20Arroyo, loc. cit.
21Arroyo,loc. cit.
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Figure 4.1: The shape of the pellicle used in the Hydrodynamics chapter

end of the pellicle. In my model, the swimmer is only performing the power
stroke.

To better illustrate the capabilities of the pellicle and obtain more mean-
ingful results, I have decided on using a slightly modified shape for the results
section. The shape is presented in Fig. 4.1.

4.2 Results

I have discussed the theoretical part behind the hydrodynamics of the
pellicle in the previous section. In the code, this part of the analysis has
been concentrated in a solver which uses dynamic libraries. The inputs for
this are: the control points, the final generating curve, a Matlab file which
contains auxiliary calculations and the velocities at Gauss points.

The solver returns the total stress jump per unit area that a swimmer has
to apply to reach the given velocity, the traction, the rigid body translation
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Figure 4.2: The global position with respect to different amplitudes for k =
30

and rotation velocity Pdot etc. I have used the velocity to calculate the global
position, which basically shows us the path of the swimmer over a certain
time span. GP = ti−ti−1

2·(Ṫi+Ṫi−1)
where Ṫ is the translation velocity and t is the

time. We also calculate the global angle, which is in fact the angular velocity:
GA = ti−ti−1

2·(Ṙi+Ṙi−1)
. When plotted, the global position should be a smooth line.
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(a) In plane velocity at time step 1
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(b) In plane velocity at time step 20
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(c) In plane velocity at time step 40
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(d) k = 10, amp. = 3.57 (e) k = 30, amp. = 2.91 (f) k = 60, amp. = 2.5

Figure 4.3: The deformed pellicle for the 3 different bulge widths, inversely
proportional to parameter k from Eqs. 4.7 and 4.8 and for the maximum
amplitude possible in each situation.

The calculations behind the hydrodynamic solver can be divided into
two parts based on the type of movement of the pellicle: translation and
rotation. For the translation part such parameters as the translation drag
and the total force are obtained which lead to getting the translation velocity
which is Total force/Translation drag.

For the rotation part, on the other hand, the solver processes the values for
the rigid torque and the total torque which once divided, give us the angular
velocity. The translation and angular velocity are useful in calculating the
global velocity and the global angle, as I have previously shown.

To remind the reader, the shear function I have used in my computations
and its derivative are:

γCP3 = amplitude · e−k·((uCP−0.5)−0.5·(t−0.5))2 ; (4.7)

γ̇CP3 = k · ((uCP − 0.5)− 0.5 · (t− 0.5)) · γCP ; (4.8)
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From Figure 4.2 we can see the relationship between the amplitude and
the global position of the swimmer. We can define the maximum admissible
shear as the value where the shear representation does not make any physical
sense. The maximum amplitudes for which the model works, but is at the
maximum admissible shear are different for different sizes of the bulge, as
seen in Table 4.1.

K (1/width) Amplitude Lighthill Efficiency(%) Norm. Vel.

10

0.89 0.9651 0.0607
1.80 6.33 0.1746
2.70 15.56 0.3310
3.57 25.4332 0.5667

30

0.72 0.2506 0.0349
1.40 1.3831 0.1119
2.10 4.3229 0.2344
2.91 10.0622 0.4716

60

0.62 0.1203 0.0217
1.2 0.6290 0.0745
1.8 2.0495 0.1688
2.5 5.2777 0.3629

Table 4.1: Table showing the maximum Lighthill Efficiency for different
solvers and shapes.

I have computed the Lighthill Efficiency and the normalized velocity for
3 different bulge widths and 4 amplitudes for each bulge. This shows the
influence of the bulge width and amplitude on the results. The results are
visible in Table 4.1 and they denote the fact that with a wider bulge the
locomotion is more efficient and the euglenid moves at a higher velocity.
This is a confirmation of what I have stated previously: the more the pellicle
deforms, the more the swimmer advances.
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Conclusions

The results that I came to during my research show a consistency with
what has been shown in the article by Arroyo et al.[1]. My purpose from
the very beginning was to numerically analyze the movement, so I did just
that, parametrizing the movement in a numerical model and finalizing by
’releasing’ the model of the swimmer in a newtonian fluid and doing the
subsequent hydrodynamical calculations.

The pellicle shear amplitude influences what is known in my study as
the global position of the swimmer, which is the translation velocity in time.
In layman’s terms, this means that the more the pellicle bends, the more
the euglena advances. My model has shown high adaptability, as the shape
can be easily molded, and as you have seen in my previous figures, there are
numerous ways to play with the parameters and obtain interesting results.

Taking into account the fact that the Reynolds number for a euglenoid
swimming in water is about 10−4 dyn, which can be converted to 10−9 N,
the efficiency of the movement is good, even compared to microorganisms
which use a flagella or cillia. For a wide bulge traveling across the length of
the euglenid, the Lighthill efficiency can reach a percentage of 25 %, which
is the maximum value I was able to obtain as seen in Table 4.1. As for
the normalized velocity, it increases in the same manner as the Lighthill
Efficiency.

Metaboly is composed of two motions: the power stroke and the recovery
stroke. During the recovery stroke, the swimmer loses some of the advantage
gained in the power stroke. My model only executes the power stroke, which
explains the very high Lighthill Efficiency values obtained.

One of the reasons euglenoids have developed this kind of motility is
the fact that they are usually found in granular substrates, where using the
flagellum for propulsion is very difficult.

The green euglena might be a minute creature which cannot even be seen
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with the naked eye, but its complex pellicle holds a lot of information that
can lead to breakthroughs in many fields. As good idea for future studies
on the euglenoid pellicle is, as I have mentioned before, applying it in the
field of microfluidics, and specifically in the case of peristaltic micropumps
or microvalves.

I will conclude my exposition on the mechanics behind the locomotion of
the green euglena by expressing my newfound fascination for the possibilities
offered by the study of microorganisms such as the green euglena and hope
that it will prove useful in many fields of work. As the romans once said
natura nihil frustra facit, meaning nature does nothing in vain. There is
always something left to learn by looking at the nature surrounding us and
this feeds the inquisitive minds of scientists everywhere.
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