
College of Engineering
Civil and Computational Engineering Centre

Thesis of Master of Science in Computational Mechanics

A Weakly Coupled Strategy for
Computational Fluid-Structure

Interaction: Theory, Implementation
and Application

Student: Sander Vaher

Supervisor: Dr. Wulf Georg Dettmer

Submitted to the University of Wales in fulfilment of the requirements for the Degree of
Master of Science in Computational Mechanics

Swansea University
May 2013

Swansea University MSc Computational Mechanics

Summary

This study investigates the implementation of weakly coupled fluid-structure interaction scheme
into a real computer program.

Firstly, the introduction to theoretical background of finite element method with focus on
linear elasticity and finite volume method with focus on fluid dynamics, is given. This is followed
by the the description of the strategies for solving fluid-structure interaction problems, with
the emphasis on staggered or weakly coupled schemes.

Staggered scheme provides the the basis of employing sophisticated sub-solvers for each
domain. The individual sub-solvers in this work are an open source finite volume method based
OpenFOAM and an in-house finite element method based MPAP2. As both of the solvers
are written in the C++ programming language, the software are linked together by making
OpenFOAM libraries available in MPAP2. This provides a fast and efficient data transfer
between the sub-solvers. Few additional data structures and functions are programmed, which
define the interaction between the sub-domains. The main steps of the implementation of the
specific staggered scheme algorithm, developed by Dettmer and Perić [5], are described.

Finally, numerical examples are presented. The first part of examples focuses on classical
problems of fluid flow and structural dynamics that are solved by employing each sub-solver
individually. In second part, a two-dimensional fluid-structure interaction benchmark problem
is solved for various meshes and solution parameters. A conclusion is driven based on the theory
of added mass effect and on the results of numerical simulations.

i

Swansea University MSc Computational Mechanics

ii

Swansea University MSc Computational Mechanics

Declarations and Statements

Declaration

This work has not been previously been accepted in substance for any degree and
is not being concurrently submitted in candidature for any degree.

Signed:

Date:

Statement 1

This dissertation is the result of my own independent work/investigation, except
where otherwise stated. Other sources are acknowledged by footnotes giving
explicit references. A bibliography is appended.

Signed:

Date:

Statement 2

I hereby give my consent for my dissertation, if relevant and accepted, to be avail-
able for photocopying and for inter-library loan, and for the title and summary
to be made available to outside organisations.

Signed:

Date:

iii

Swansea University MSc Computational Mechanics

iv

Swansea University MSc Computational Mechanics

Contents

Summary . i
Declarations and Statements . iii
Contents . vi
Acknowledgements . vii
List of Figures . ix
List of Tables . x
Abbreviations . x

1 Introduction 1
1.1 Motivation and Problem Description 1
1.2 Layout of the Thesis . 2

2 The Basics of Finite Element Modelling 5
2.1 Mechanics of Deformable Solids 5

2.1.1 The Concept of Lagrangian Description 5
2.1.2 The Governing Equations for Solids 6

2.2 The Weak Form . 7
2.3 Solution Procedure . 11

3 The Basics of Finite Volume Modelling 13
3.1 Governing Equations of Fluid Flow 13
3.2 Spatial Discretisation Using Finite Volume Formulation 16

3.2.1 Approximation of Surface Integrals 18
3.2.2 Approximation of Volume Integrals 19
3.2.3 Interpolation and Differentiation Schemes 19
3.2.4 Diffusion Term and aspects of non-orthogonality 22

3.3 Temporal discretisation and methods for unsteady problems . . . 23
3.4 Solution to Navier-Stokes Equations 26

3.4.1 Derivation of pressure equation 26
3.4.2 Solution to pressure-velocity coupling 28

3.5 Calculation of traction forces . 29

4 Computational Fluid-Structure Interaction 31
4.1 Classification of Fluid-Structure Interaction Solvers 32
4.2 Staggered Scheme for Fluid-Structure Interaction 34
4.3 Stability of Staggered Scheme . 37

5 Implementation of the Weakly Coupled Scheme 39
5.1 MPAP2 . 39
5.2 OpenFOAM . 39
5.3 Assembly of Sub-solvers into Single Computer Program 42

6 Numerical Examples 49
6.1 Fluid Dynamics - Channel Flow (study on grids) 49
6.2 Solid Dynamics - Cantilever Beam 51
6.3 Fluid Dynamics - Flow around cylinder 55
6.4 Fluid Dynamics - Flow in a Channel with Prescribed Wall Motion 60
6.5 FSI - Flow Induced Oscillations of a Flexible Beam 62

v

Swansea University MSc Computational Mechanics

7 Conclusions 73

vi

Swansea University MSc Computational Mechanics

Acknowledgements

It is impossible to overvalue my supervisor, Dr. Wulf G. Dettmer, encouragement

and time guiding me throughout this masters course. I am truly grateful to him

for being my thesis supervisor.

I also would like to thank European Commission for sponsoring this Master of

Science program and my studies in UPC Barcelona and Swansea University. It

has helped me to widen the knowledge not just in Computational Mechanics, but

also in various cultures by meeting open minded and enthusiastic young people

from all over the world.

Special thanks to my undergraduate supervisor Dr. Hendrik Naar from Tallinn

University of Technology for introducing the world of numerical methods.

Finally, I would like to thank my parents for their support and encouragement

not just in my studies, but at any time and anywhere.

vii

Swansea University MSc Computational Mechanics

viii

Swansea University MSc Computational Mechanics

List of Figures

2.1 Motion of deformable body . 6
2.2 Typical partial differential equation problem over a complex domain 8
3.1 Arbitrary 2D finite volumes grid with notations 17
3.2 Upwind Differencing . 20
3.3 Central Differencing . 21
3.4 Various approaches for non-orthogonality correction 23
3.5 Forward and backward Euler approximation of time integral . . . 24
3.6 Midpoint and trapezoidal rule for approximating time integral . . 25
4.1 Structure of a FSI solver [4] . 31
4.2 Classification of FSI solvers . 33
4.3 Interpolation of traction forces . 36
5.1 Structure of typical pimpleDyMFoam case directory 41
5.2 Interface data transfer . 47
6.1 Geometry of channel flow problem 49
6.3 Velocity field at outlet . 50
6.2 Pressure distribution of 2D channel flow for various grids 51
6.4 Geometry of clamped pipe . 52
6.5 Finite element model of the pipe 52
6.6 Oscillation of free end of pipe . 54
6.7 Pipe end displacement at the end of the first period 55
6.8 Geometry and boundary conditions of flow around cylinder problem 56
6.9 Grid fragments of flow around cylinder problem 57
6.10 Comparison of drag coefficients 58
6.11 Comparison of lift coefficients . 59
6.12 Pressure field of fully developed wake region (OpenFOAM fine grid) 59
6.13 Geometry and boundary conditions of channel with wall indentation 60
6.14 Fragment of the grid at t = 13.5 ≈ T/2 61
6.15 Vorticity (colour scale: −6 . . .+ 6) 62
6.16 Geometry and boundary conditions of oscillating beam 63
6.17 Overview of the fine mesh . 64
6.18 Coarse mesh at the connection of the bluff body and the beam . . 64
6.19 Oscillation of the beam tip (coarse mesh, β = 0.05) 68
6.20 Oscillation of the beam tip (coarse mesh, β = 0.3) 68
6.21 Oscillation of the beam tip (coarse mesh, β = 0.5) 69
6.22 Oscillation of the beam tip (coarse mesh, β = 0.8) 69
6.23 Flow induced oscillations (vorticity colour scale -150...+150) . . . 70
6.24 Oscillation of the beam tip (fine mesh, β = 0.05) 71
6.25 Oscillation of the beam tip (fine mesh, β = 0.3) 71
6.26 Oscillation of the beam tip (fine mesh, β = 0.5) 72
6.27 Oscillation of the beam tip (fine mesh, β = 0.8) 72

List of Tables

3.1 Classification of fluid flows based on various properties 13
3.2 Schemes of finite volume method CFD codes 25
6.1 Grid properties of channel flow model 50
6.2 Simulation properties for flow around cylinder problem 56
6.3 Comparison of lift and drag coefficients 58

ix

Swansea University MSc Computational Mechanics

6.4 Fluid grid properties of oscillating beam problem 63
6.5 Results of the coarse grid simulation 66
6.6 Results of the fine grid simulation (∆t = 0.00025) 66

Abbreviations

2D two-dimensional

3D three-dimensional

CD central differencing

CFD computational fluid dynamics

CM control mass

CV control volume

FSI fluid-structure interaction

GUI graphical user interface

LSE linear system of equations

OS computer operating system

UD upwind differencing

x

Swansea University MSc Computational Mechanics

1 Introduction

1.1 Motivation and Problem Description

Fluid-structure interaction (FSI) is an important area in the field of compu-

tational multiphysics. Problems, involving coupling of fluid flow with a solid

structure, are common not just in structural engineering, but also in biology and

medicine.

Often in ordinary engineering problems, the affect of the fluid-structure inter-

action is negligible, because of minute traction forces or a very stiff structure. For

example, in most cases wind cannot deform a building at a scale, which changes

its structural behaviour or changes the patten of air flow.

However, there is an unlimited number of cases where the fluid-structure in-

teraction cannot be disregarded and an efficient fluid-structure interaction solver

becomes useful. For instance,

Mechanical engineering - turbo-machinery, ship dynamics and wind turbines;

Aerospace engineering - aeroelasticity, flutter of wings, propellers and rotors;

Civil engineering - slender (suspension-)bridges, flutter of cables;

Biomechanical engineering - artificial organs (heart, lungs), blood flow in vessels

Named examples illustrate the need for a fluid-structure interaction solver,

which should be robust, accurate and computationally efficient.

Computational fluid-structure schemes can be classified as strongly (equilib-

rium of kinematics and traction forces is satisfied exactly at the interface) and

weakly coupled (in general traction forces equilibrium is not satisfied). Strongly

coupled strategies have wider range of applicability, but are computationally more

expensive compared to weakly coupled or staggered schemes. The restricted range

of applicability of staggered schemes is due to instabilities occurring if the ratio

of solid over fluid is small. In weakly coupled schemes the added mass effect

is not accounted for and it causes inaccuracy of traction forces, which lead to

inaccuracy in deformation of the solid structure and finally to instabilities.

Many strongly coupled schemes have been developed in last two decades, in-

cluding partitioned/monolithic, exact/inexact Newton-Raphson procedures and

Gauß-Seidel (or Dirichlet-Neumann or fixed point iteration schemes) iteration. A

variety of problem-specific schemes are suggested to improve the computational

efficiency of the strongly coupled schemes (see, for example, [21]), but in general

the computation time for staggered scheme is one order of magnitude shorter [5].

Combining two individual solver into a single fluid-structure solver is conve-

nient only with Gauß-Seidel and staggered schemes. In most of the cases the fixed

point iteration strategy or weakly coupled scheme with compressible, explicit or

first order accurate fluid sub-solver have been implemented to ensure the stability.

1

Swansea University MSc Computational Mechanics

Examples of can be found of combining OpenFOAM and FEAP with the help

of Component Tempered Library by Kassiotis et al. [12], [13]; OpenFOAM and

DEAL.II by Johan Lorentzon [15]; OpenFOAM and Code Aster by Romanelli et

al. [20] etc.

The aim of this thesis is to develop a robust and efficient FSI solver by com-

bining individual fluid and solid simulation codes into single software. As the

fluid sub-solver of this project has the capabilities of turbulence modelling, the

ultimate goal is to model FSI problems with high Reynolds number over a long

period of time. The attention of current project is restricted to incompressible

flows.

A open-source computational fluid dynamics (CFD) solver, OpenFOAM, will

be employed as a fluid sub-solver in the final FSI computer program. In-house

finite element software, MPAP2 (Multi-Physics Analysis Program), developed by

Dr. Wulf G. Dettmer in Swansea University Civil and Computational Engineering

Centre, will be used as solid sub-solver in the current project. The coupling will

follow the strategy suggested by Dettmer and Perić in paper [5].

1.2 Layout of the Thesis

This thesis is divided into theory (Sections 2 - 4), implementation (Section 5) and

application (Section 6) parts.

Theory. In Section 2 the basics of finite element analysis is presented on the

basis of two typical boundary value problems - heat conduction and linear elas-

ticity. The steps from governing equations to weak form and finally to system of

algebraic equations, are given. The solution procedure of a typical finite element

computer program closes the section on solid sub-solver.

Section 3 focuses on finite volume method on the basis of OpenFOAM. The

most important spatial and temporal discretisation methods are described. So-

lution procedures for Navier-Stokes equations with the emphasis on pressure-

velocity coupling using SIMPLE and PISO algorithms, are given. Finally the

computation of traction forces of the fluid flow, are viewed.

Section 4 provides an introduction to computational fluid-structure interaction

with the focus on weakly coupled schemes. Stability issues of a specific staggered

strategy are discussed. This section closes the theory part of the thesis.

Implementation. In Section 5, firstly, the structure of both sub-solvers, MPAP2

and OpenFOAM is given. This is followed by instructions describing the steps to

link OpenFOAM with MPAP2. A brief overview of new data structures and key

points of transferring the data across the interface is provided.

2

Swansea University MSc Computational Mechanics

Application. Section 6 provides a numerical examples of each sub-solver and

finally the coupled fluid-structure interaction solver. Two simple computational

fluid dynamics problems are solved in OpenFOAM and a single structural dy-

namics problem in MPAP2. This section will be closed by a numerical example

on a fluid-structure interaction benchmark problem, which is solved for various

meshes and control parameters.

Section 7 brings the conclusions of this work and suggests directions for further

work.

3

Swansea University MSc Computational Mechanics

4

Swansea University MSc Computational Mechanics

2 The Basics of Finite Element Modelling

Many physical phenomena can be described by partial differential equations and

boundary conditions. Analytical solutions may not be available due to the com-

plexity of equations or the domain. Thus, numerical methods are employed to

solve complex problems by exploiting computers. The most powerful, robust and

widely used numerical solution technique nowadays, is the finite element method.

Finite element analysis can be used with structured and unstructured meshes for

various partial differential equation types.

In this section only the basics of finite element modelling for structural prob-

lems will be described. Firstly, the governing equations of solid mechanics will be

visited. Secondly, the weak form of linear steady state problem will be presented.

Finally a solution procedure on the basis of a real computer program will we

viewed.

For additional information on finite element analysis, refer to any relevant

textbook. (e.g Cook et al [2] or Reddy [19]).

2.1 Mechanics of Deformable Solids

2.1.1 The Concept of Lagrangian Description

Kinematics of solid mechanics are usually described in the Lagrangian setting

(material description) as the displacements are small compared, for example, to

fluids. It means that any particle position of physical property are described

in referential coordinates and time. Usually the reference configuration is the

configuration at t = 0.

Thus, two position fields for particles can be described - the initial position

and current, as shown in Figure 2.1. The motion of body is described by mapping

function φ from initial configuration to current,

x = φ(X, t), (2.1)

where x denotes the current and X the initial location.

Material derivative of the current position of particle, x, is the instantaneous

velocity v of that particle. Thus the velocity can be expressed as,

v = ẋ =
dx

dt
=
∂φ(X, t)

∂t
(2.2)

and the acceleration as,

a = v̇ = ẍ =
d2x

dt2
=
∂2φ(X, t)

∂t2
. (2.3)

Displacement is a vector pointing from point P in the initial configuration to

5

Swansea University MSc Computational Mechanics

X3

E3

E2

E1

X2

X1

b

b

P

p

φ

t = 0

t = t

x3

e3
e2

e1

x2

x1

Figure 2.1: Motion of deformable body

point p in the final configuration and thus, a displacement field can be described

for the body. In Lagrangian description it becomes,

u(X, t) = ub + x(X, t)−X, (2.4)

where ub = 0, if the coordinate systems for undeformed and deformed config-

uration coincide.

2.1.2 The Governing Equations for Solids

The equations that govern the mechanics of solid continuum, are the balance

equations (mass, momentum, and energy) equations, kinematic relations and fi-

nally constitutive equations.

For simplification proposes, only the linear momentum conservation equation is

given. The full set balance equations is given in any continuum or solid mechanics

textbook (e.g Bonet and Wood [1] or Holzapfel [9]).

The conservation of linear momentum reads,

d

dt

∫
Ω

ρv dV =

∫
Ω

ρ
dv

dt
dV =

∫
Ω

(∇ · σ + ρb) dV, (2.5)

which in differential (local) form gives,

ρẍ = ∇ · σ + ρb, (2.6)

where σ(x, t) is the Cauchy stress tensor and b is the acceleration vector for

body forces.

6

Swansea University MSc Computational Mechanics

If the displacements u are small, then the configuration x can be approximated

by X and the settings for small strain (geometrically linear) analysis are obtained.

Consitutive law. In order to close the system one needs a relationships between

the stresses, strains and material properties. In this work only Neo-Hookean

material model is considered for the solid domain. The constitutive equation of

this hyperelastic material is given as [3],

σ = G J−
5
3

(
B− 1

3
tr(B)I

)
+K

J2 − 1

2J
I, (2.7)

where G and K are the material shear and bulk modulus, respectively and the

left Cauchy-Green deformation tensor B is given as,

B = F FT , (2.8)

where

F =
∂φ

∂X
= ∇0φ . (2.9)

Denoting the mapping as, x = φ(X) = x(X), the Equation (2.9) can be

expressed as,

F =
∂x

∂X
. (2.10)

In the framework of infinitesimal strains, Equation (2.7) reduces to

σ = 2G

[
1

2

(
∇u + (∇u)T

)
− 1

3
(∇ · u) I

]
+K(∇ · u) I. (2.11)

2.2 The Weak Form

To employ the finite element method solving partial differential equations (e.g

governing equations presented in the preceding section) specific steps must be

followed. The domain is divided into finite number of elements, the continuous

equations are discretised and system of algebraic equations is built. The discreti-

sation process involves defining the weak form of the governing equations, which

is presented in this section.

Denoting a linear differential operator, of any order, as L(•), the governing

equations can be written as,

L(u) = −f ∀ x ∈ Ω (2.12)

u = uD ∀ x ∈ ΓD (2.13)

q(u) · n = qN ∀ x ∈ ΓN , (2.14)

7

Swansea University MSc Computational Mechanics

where Ω is the domain of the problem, ΓD and ΓN denote the Dirchlet and

Neumann type boundary condition part of the boundary Γ. Expression, Γ =

ΓD ∪ ΓN holds at any time for the domain. The variable f denotes the source

term in Ω. The quantities uD and qN represent prescribed boundary values of the

primary variable and prescribed fluxes (secondary variable) through boundary,

respectively. The secondary variable q(u) is a linear function of the first derivative

of the primary variable u. And finally, vector n denotes the unit outward normal

of the boundary Γ.

The graphical representation of this problem can be seen in Figure 2.2.

X3

X2

X1

qN

qN

ΓD

uD = u0

qN = 0

n

Ω

f

ΓN

Figure 2.2: Typical partial differential equation problem over a complex domain

In this work, the typical examples of finite element analysis will be followed:

heat conduction and linear elasticity (referring to equations in Section 2.1.2).

In case of heat transfer problem, the operator L denotes a Laplacian term in

heat conduction equation

∇ · (κ∇u) = −f ∀ x ∈ Ω (2.15)

u = uD ∀ x ∈ ΓD (2.16)

q(u) · n = qN ∀ x ∈ ΓN , (2.17)

where
κ – thermal conductivity

u – temperature

f – heat source in Ω

uD – prescribed temperature on boundary

qN – prescribed heat flux on boundary (e.g qN = 0 for isolated boundary).
As noted previously, the secondary variable is the derivative of the primary. Thus,

q(u) = κ∇u.

Such description is named the strong form of the problem.

Instead of enforcing the Equation (2.15) to hold at any point on the domain,

8

Swansea University MSc Computational Mechanics

the expression can be enforced weakly by multiplying the strong from by weighting

function w and taking an integral over the domain. Thus, Equation (2.15) renders,∫
Ω

w [∇ · (κ∇u)] dV = −
∫

Ω

wf dV (2.18)

Integrating by parts reduces the order of differential equations by one and

employing Divergence theorem gives,∫
Γ

w(κ ∇u · n) dA−
∫

Ω

κ∇w · ∇udV = −
∫

Ω

wf dV. (2.19)

The resulting expression is less strict compared to Equation (2.15) and is thus

called the weak form of the problem.

Similarly, the weak form of solid mechanics problem can be derived. For

simplification, a steady state linear elasticity problem is considered by neglecting

time derivative and non-linear terms in Equations (2.6) and (2.7). In this problem,

the operator L represents linear function for Cauchy stress tensor σ, expressed

in terms of displacement vector u, L(u) = ∇ · σ(u). The strong formulation of

the problem gives,

∇ · σ(u) = −b ∀ x ∈ Ω (2.20)

u = uD ∀ x ∈ ΓD (2.21)

σ(u) · n = tN ∀ x ∈ ΓN , (2.22)

σ(u) = λ(∇ · u) I +G
[
∇u + (∇u)T

]
, (2.23)

where
σ(u) – stress tensor

b – body forces vector

λ, G – Lamé constants

uD – prescribed displacement vector

tN – prescribed traction forces vector.

The derivation of the weak form follows the same steps as in heat conduction

problem and the resulting equation can be given as,∫
Ω

∇w : σ(u) dV =

∫
ΓD

w · t dA+

∫
Ω

w · b dV, (2.24)

where

∫
Ω

∇w : σ(u) dV =

∫
Ω

λ(∇·w)(∇·u) + 2G ∇w :

(
1

2

[
∇u(∇u)T

])
dV. (2.25)

9

Swansea University MSc Computational Mechanics

Same equations can be derived by following the principle of potential energy,

where the weighting function in heat conduction and linear elasticity problem are

called virtual temperature and virtual work, respectively.

Having the integral form of the weighted functions, one needs to substitute ap-

proximation uh into Equations (2.24) and (2.25). Function uh is defined piecewise

employing the shape functions and coefficients at the nodes. The approximation

of u is given as,

u(x) ≈ uh(x) =
n∑
j=1

ujNj, (2.26)

where uj are the coefficients to be identified and Nj are the shape functions.

Various methods have been developed for choosing the best test and shape

functions. In current work only the Galerkin approach is presented. For other

methods, for instance, point collocation, least squares and Petrov-Galerkin, refer

to [19].

Employing Galerkin approach (wi = Ni), the approximation uh and the dis-

cretised weak form, Equations (2.12) - (2.14) (general boundary value problem)

for single element render,

n∑
j=1

[∫
Ω

wiLNj dV

]
uj =

∫
Ω

wi f dV +

∫
Γ

wi q dA, (2.27)

where uj is a vector of coefficients to be identified. The term in brackets on

the LHS forms the stiffness matrix, and RHS forms the external forces vector.

So far a single element has been considered. For the clarity, superscript e was

not added to each term, but will be hereon for any variable on the elementary

basis.

One could concentrate the terms under integral and write Equation 2.27 as,

n∑
j=1

wi k
e
ij u

e
j = wi f

e
i + wi Q

e
i (i = 1, 2, ..., n) (2.28)

Instead of presenting the discretisation process of heat conduction and linear

elasticity equations, the final, elementary stiffness matrix and external forces

vector is given.

For heat conduction,

keAB =

∫
Ωe

κ ∇NA · ∇NB dV (2.29)

peA =

∫
ΓN∩Γe

NA qN dA+

∫
Ωe

NA f dV (2.30)

and for linear elasticity,

10

Swansea University MSc Computational Mechanics

keAB =

∫
Ωe

λ ∇NA ⊗∇NB +G (∇NA · ∇NB I +∇NB ⊗∇NA)dV, (2.31)

peA =

∫
ΓN∩Γe

NA t dA+

∫
Ωe

NAb dV. (2.32)

2.3 Solution Procedure

In Section 2.2 a discretised weak form of the problem for single element was

derived.

Galerkin formulation for linear problems can be written,

nel∑
i=1

wA k
e
AB uB =

nel∑
i=1

wA p
e
A, (2.33)

which in matrix form gives,

w ·K u = w ·P, (2.34)

where w and u are vectors of nodal values of the weighting w function and

the trial solution uh. Vector P holds the nodal values of external forces.

For the global linear system of equations (LSE), the elementary equations are

assembled,

K =

nel

A
e=1

ke, P =

nel

A
e=1

pe. (2.35)

The connectivity matrix T is employed to define the locations of local stiffness

matrix entries in the global system. Since w arbitrary, Equation 2.34 renders,

Ku = P. (2.36)

For linear problems the stiffness matrix, K is constant and calculated only

once. In case of non-linear governing equations, new stiffness matrix is calculated

at each iteration by computing the derivative of residual with respect to the sought

variable u. This procedure is called Newton-Raphson method and employed to

accelerate the convergence of the solution. Linear systems converge in single

iteration as stiffness matrix K does not depend on solution u.

In real computer programs isoparametric elements are introduced to employ

numerical integration (e.g Gauß quadrature) over complex elements. Jacobian

(for isoparametric transformation) is calculated for the mapping to transfer data

between the reference and real element.

Before solving the system Ku = P, the Dirichlet boundary conditions must

be applied, otherwise the system is not closed and K is singular. Suppressing

11

Swansea University MSc Computational Mechanics

rows-columns, Lagrange multipliers and penalty method are the strategies to en-

force Dirichlet boundary conditions (including dependent degrees of freedom).

One of the goals of these methods is to remain the symmetry of K to reduce the

computational cost of solving the LSE. For more information, refer to [2] or [19].

The general procedure of a finite element analysis software is [6]:

1. Definition of the geometry (nodal coordinates x, connectivity matrix T) and

reference element.

2. Generate linear system of algebraic equations:

• Loop over elements

– Loop over integration points

→ compute Jacobian of the isoparametric transformation

→ compute derivatives of shape functions Ni in reference coordinates

→ find derivatives of shape functions Ni in global coordinates

→ compute contribution of every integration point to ke and fe

• assemble system, Ku = P

3. Apply Dirichlet type boundary conditions

4. Solve system Ku = P

Usually the solution procedure in a real computer program is controlled by

macros, which call specific functions and procedures. The same method is em-

ployed in solid sub-solver of the current project. For more information on solution

control in MPAP2, refer to Section 5.1.

Depending on the software, a preprocessor and postprocessor may be included

to the main part of the finite element analysis computer program. Preprocessor

is exploited to create geometry, generate the mesh, and define the boundary

and initial conditions of the problem. Postprocessor is employed to compute the

solution (using to nodal values and shape functions) and the derivative of it at

desired points of the domain.

12

Swansea University MSc Computational Mechanics

3 The Basics of Finite Volume Modelling

All the fluid flow simulations in this study have characteristic length and time-

scales that are considerably larger compared to the scales of molecular structure

of the matter. Thus, it is possible to express any macroscopic physical property

of the matter as a continuous function.

The most distinct property of the fluid compared to solid, is its non-resistance

to external shear forces. Even the smallest force causes deformation, which allows

the fluid to flow.

Fluid flows are caused by externally applied loads:

• surface forces, including pressure and shear stress caused by sliding of a

boundary wall

• body forces (e.g gravity)

Fluid flows can be classified according to many properties of fluid and the nature

of flow as shown in the following Table, 3.1. Obviously, the list is not complete

and it is not the only classification.

Flow types Property
laminar ↔ turbulent Reynolds number
incompressible ↔ compressible Mach number
subsonic ↔ supersonic ↔ hypersonic Mach number
viscous ↔ inviscid distance from a wall
non-Newtonian ↔ Newtonian viscosity dependence on the shear rate

Table 3.1: Classification of fluid flows based on various properties

In these flow types, some terms in the Navier-Stokes equations become dom-

inant and others negligible. Thus many simplification and approximations of

Navier-Stokes equations are developed, which correspond to a specific flow types,

e.g incompressible flow, inviscid (Euler) flow, Potential flow, creeping (Stokes)

flow, Boussinesq approximation and boundary layer approximation. These sim-

plifications are not just in favour of finding an analytical solution in case of simple

geometry of the domain, but also may decrease the computational cost as well as

the need for the required computational resources (e.g memory, CPU).

The derivation of equations and algorithms in following sections is mainly

based on the book “Computational Methods for Fluid Dynamics” [8] by Joel H.

Ferziger and Milovan Perić, and on Hrvoje Jasak PhD thesis “Error Analysis and

Estimation for Finite Volume Method with Applications to Fluid Flows” [10].

3.1 Governing Equations of Fluid Flow

In solid mechanics usually the conservation laws of extensive properties (mass,

momentum and energy) are applied on a control mass (CM). In fluid mechanics

13

Swansea University MSc Computational Mechanics

it is more convenient to examine particular spatial region of flow, rather than to

follow a parcel of matter. This is due to the deformations in fluid flow, which are

usually much larger compared to solid mechanics.

In this study only incompressible flows (liquids or gases with Mach number

below 0.3) are under investigation and thus only the conservation of mass and

momentum will be viewed in this section. The conservation law of a property

relates the rate of change of the amount of that property in a given control mass

to externally determined effects. As mass cannot be created nor destroyed, the

conservation equation gives

d(m)

dt
= 0 . (3.1)

But the momentum can be changed by action of external forces according to

Newton’s second law of motion

d(mv)

dt
=
∑

f , (3.2)

where
t – time

m – mass

v – velocity

f – forces acting on the control mass.

These conservation laws must be transformed into control volume (CV) form

as one is regarding to a specific spatial region.

If one considers φ as any conserved intensive property (φ = 1 for mass conser-

vation and φ = v for momentum conservation), then the corresponding extensive

property Φ can be expressed as,

Φ =

∫
ΩCM

ρφ dΩCM , (3.3)

where ΩCM is the volume occupied by the control mass.

Using Reynolds’ transport theorem, each conservation equation can be written

for a control volume as,

d

dt

∫
ΩCM

ρφ dΩCM =
d

dt

∫
ΩCV

ρφ dΩCV +

∫
SCV

ρφ(v − vb) · n dSCV , (3.4)

where
ΩCV – volume of CV

SCV – surface of CV

n – unit outward normal of CV

v – fluid velocity

vb – velocity of the CV surface.

14

Swansea University MSc Computational Mechanics

This Equation (3.4) states that the rate of change of the amount of a physical

property in the control mass is equal to the rate of change of the property in the

CV plus the net flux of this property trough the CV surface.

Considering control volumes hereon, the notation will be for clarification changed

as follows: ΩCV and SCV to Ω and S, respectively. It is also assumed that the

control volume is fixed in the space and thus vb = 0. This assumption also allows

to replace the full time derivative (first term on the RHS) of the Equation (3.4))

with partial time derivative ∂
∂t

.

By setting φ = 1, one obtains the integral form of the equation of mass con-

servation

∂

∂t

∫
Ω

ρ dΩ +

∫
S

ρv · n dS = 0, (3.5)

which in differential form is

∂

∂t
ρ+∇ · ρv = 0 . (3.6)

To obtain the integral form of the momentum conservation equation, one needs

to replace the arbitrary physical property φ by velocity v and use the Newton’s

second law of motion (Equation (3.2)),

∂

∂t

∫
Ω

ρv dΩ +

∫
S

ρvv · n dS =
∑

f . (3.7)

As stated before, the forces, acting on the fluid, are divided into surface and

body forces. The surface forces can be expressed using stress tensor on the

boundary, which for Newtonian fluid can be written as,

T = −(p+
2

3
µ∇ · v)I + 2µD, (3.8)

where

µ – dynamic viscosity

I – unit tensor

p – static pressure

D – rate of deformation tensor,
which is given as,

D =
1

2
[∇v + (∇v)T] .

Body forces per unit of mass are expressed by vector b. Thus the overall

integral form of the momentum equation becomes,

15

Swansea University MSc Computational Mechanics

∂

∂t

∫
Ω

ρv dΩ +

∫
S

ρvv · n dS =

∫
S

T · n dS +

∫
Ω

ρb dΩ. (3.9)

Momentum conservation equation in differential form gives

∂(ρv)

∂t
+∇ · (ρvv) = ∇ ·T + ρb . (3.10)

Mass and momentum conservation form the crucial part of Navier-Stokes equa-

tions. The full set of Navier-Stokes equations includes also energy conservation,

which is not considered in this work as the flow is assumed to be isothermal and

incompressible.

3.2 Spatial Discretisation Using Finite Volume Formula-

tion

The starting point for FV methods are the integral form of the conservation equa-

tions (see Chapter 3.1). The domain is divided into a finite number of control

volumes, on which the conservation equations are applied. The actual computa-

tional node, where the variable values are calculated, lies at the centroid of each

CV. To evaluate the variable at a surface of a CV, interpolation of two adjacent

CVs is used. Quadratures are used to find a surface and volume integrals of a

variable over a CV. As a result, an algebraic formulae containing the number of

adjacent CVs respect to CV under investigation, is derived for each cell in the

domain.

Finite volume method is conservative as the convective and diffusive fluxes

(surface integrals) are equal for cells that share the same face. The number of

flat surfaces forming a control volume is not limited, allowing to generate mesh

for complex domains with reasonably good quality.

The advantages of the FV method is its conservativeness (on local as well as on

global level) and that all the approximations have physical meaning (e.g surface

integral - flux).

The main disadvantage of FV methods is related to difficulties of achieving

higher, than second order accuracy, due to three levels of approximation: inter-

polation, differentiation and integration (especially with unstructured grids).

Many domain discretisation methods have been developed for finite volumes

method (see for example page 71 in “Computational Methods for Fluid Dynam-

ics” [8]), but in this work the focus is on discretisation schemes, used in Open-

FOAM. The nodes on the grid are placed at the centroid of the control volume

(other approach would place nodes to equal distance from face). Moreover, Open-

FOAM uses collocated variable arrangement, which means that all the variables

16

Swansea University MSc Computational Mechanics

are calculated at the same location - at the cell centroids. This arrangement

became popular in early 1980’s, when semi-implicit methods for pressure-velocity

coupling were developed. Another common variable arrangement places the pres-

sure variables in the centre of the cell and the velocity in the face centres or to

vertices of the cell. That variable arrangement is known as staggered approach.

A typical finite two-dimensional (2D) non-uniform volume grid can be seen in

the Figure 3.1.

NW N

W

SW

P

n

w

s

e

S SE

E

NE

EE

Figure 3.1: Arbitrary 2D finite volumes grid with notations

All the variables are calculated at the filled circles. The cell under investigation

is noted P and the adjacent cells (cells that share faces with cell P) are marked

either N , S, W or E, according to their position in respect to cell P . Capitals

denote cells and lower case letters, faces (n – north, s – south, w – west, e – east).

Before finding the solution for Navier-Stokes equations, one needs to look at

the discretisation methods of following terms (operators): gradient, divergence

and laplacian. Generic scalar transport equation is considered as a good example

for conservation equations. Following this, general transport equation approach,

it is assumed that the fluid velocity field and the fluid properties are known.

The velocity and pressure field can be found by solving Navier-Stokes equations,

which is viewed after describing the discretisation methods in Sections 3.2.1 -

3.3. General transport equation is exploited to describe the idea of finite volume

discretisation. This equation has all the terms that appear in a conservation

equations, but it is simpler, because of the linearity and the transported physical

quantity is scalar.

A generic scalar transport equation reads,

17

Swansea University MSc Computational Mechanics

∂

∂t

∫
Ω

ρφ dΩ +

∫
S

ρφv · n dS =

∫
S

Γφ∇φ · n dS +

∫
Ω

Sφ dΩ, (3.11)

where Sφ is a source or a sink and Γφ is the diffusivity of φ.

The differential form of an arbitrary scalar transport Equation (3.11) gives,

∂(ρφ)

∂t
+∇ · (ρφv) = ∇ · (Γφ∇φ) + Sφ. (3.12)

3.2.1 Approximation of Surface Integrals

Equation (3.11) contains many surface integral terms and thus an approximation

of these terms must be found.

The net flux through the boundary of a CV is sum of integrals over all the

faces of the cell ∫
S

f dS =
∑
k

∫
Sk

fdS, (3.13)

where f is the normal to CV face component of flux - convective (ρφv · n) or

diffusive (Γφ∇φ · n) and k, number of faces of the cell.

To evaluate the Equation (3.13) exactly, one has to know the value of the

integrand f at every point at the surface Sk. As only the values at CV centres

are known, an approximation has to be carried out. It involves two levels:

• the integral is approximated using one (or more) discrete values on the face

• the face values are calculated using nodal values of adjacent cells

The simplest face integral approximation multiplies the single value at the face

centre (approximation of the mean value over the face) by the area of the face

(mid-point rule). Thus the surface integral for face e becomes

Fe =

∫
Se

fdS = f̄eSe ≈ feSe, (3.14)

where
Se – area of the face

f̄e – mean value of integrand

fe – component of flux vector at face centre in direction of face normal.

This approximation is second-order accurate only if the variable fe at face

centre has been found using scheme, which is at least second order accurate. In-

terpolation is used to find the value of the variable at face centre and its algorithm

will be given later.

18

Swansea University MSc Computational Mechanics

Higher order approximations of surface integral are available if the variable is

known at more locations on a single face (e.g at vertices of the face). As this is

not used in OpenFOAM, the schemes will not be presented in this paper. For

more information, please refer to page 74 in the textbook [8].

3.2.2 Approximation of Volume Integrals

Referring again to Equation (3.11), one can see the need for approximation of

volume integrals.

Similarly to surface integral, the simplest second-order volume integral ap-

proximation is a product of the mean value of integrand and the volume of the

cell. Given that the variable at point P (see Figure 3.1) is an approximation of

the mean over a cell, the overall approximation of the volume integral can be

given as,

QP =

∫
Ω

q dΩ = q̄ VΩ ≈ qPVΩ, (3.15)

where qP is the value of q at cell centre. Replacing mean value q̄ by qP generates

an exact scheme for the volume integral only if the distribution of q is constant

or linear over the cell.

Higher order volume integral approximations require values of q at more lo-

cations than just at the centre of the cell. OpenFOAM uses only single value at

the cell centre and thus higher order schemes are not discussed here. For more

information of the higher order schemes, one can refer to page 75 in the textbook

[8].

3.2.3 Interpolation and Differentiation Schemes

The integrand f used in Equations (3.13) and (3.14) denotes convective (f c =

ρφv · n) or diffusive (fd = Γφ∇φ · n) flux in the general transport equation (Eq.

3.11)

In order to evaluate these fluxes, one has to know the value of φ and its gradient

normal to the cell-face. Interpolation is used to express φ at a face in terms of

cell nodal values.

Numerous schemes have been developed for the best approximation of φ at

the face. As higher than second order schemes include values not just from the

adjacent cells, but from cells further away, the implementation for unstructured

grids becomes complex and will not be discussed here.

Upwind Differencing (UD) is the simplest bounded scheme available. It is first

order accurate and takes its face value from cell centre that is located upstream

19

Swansea University MSc Computational Mechanics

φe =

{
φP if(v · n)e > 0;

φE if(v · n)e < 0
(3.16)

EP e
bb

b

b

b

v

d

φP φe

φE

Figure 3.2: Upwind Differencing

The unconditional stability is achieved by numerical diffusion, which the scheme

contains. To find the magnitude of the diffusion, one has to compare Equation

(3.16) to Taylor expansion around P ,

φe = φP + (xe − xP)

(
∂φ

∂x

)
P

+
(xe − xP)2

2

(
∂2φ

∂x2

)
P

+H, (3.17)

where H denotes higher order terms.

It can be seen that the approximation equals just the first term on RHS of

Taylor expansion and the leading truncation error is diffusive, which is given,

fde = Γe

(
∂φ

∂x

)
e

,

where Γe = (ρu)e∆x/2 (for one-dimensional problem).

Linear interpolation or central differencing (CD) is the next common approxi-

mation for the variable at face centre. It assumes linear distribution between two

adjacent cell centres and is given as,

φe = φEλe + φP (1− λe), (3.18)

where λe is the distance ratio given as,

λe =
xe − xP
xE − xP

, (3.19)

where xE − xP = |d| considering the notation in Figure 3.3.

20

Swansea University MSc Computational Mechanics

EP e
bb

b

b

b

d

φP

φe

φE

Figure 3.3: Central Differencing

Taylor series expansion of φE about point xP gives

φE = φP + (xE − xP)

(
∂φ

∂x

)
P

+
(xE − xP)2

2

(
∂2φ

∂x2

)
P

+H. (3.20)

This expression can be used to evaluate the derivative at xP

(
∂φ

∂x

)
P

=
φE − φP
xE − xP

− xE − xP
2

(
∂2φ

∂x2

)
P

+H

= λe
φE − φP
xe − xP

− xE − xP
2

(
∂2φ

∂x2

)
P

+H. (3.21)

By substituting the derivative in Equation (3.17) gives

φe = φEλe + φP (1− λe)−
(xe − xP)(xE − xe)

2

(
∂2φ

∂x2

)
P

+H, (3.22)

which proves central differencing being second order accurate.

Blended differencing is a linear combination of two previous schemes with an

aim to maintain the boundedness of upwind differencing and accuracy of central

differencing. It can be written using face values from previous schemes

φe = (1− γ)(φe)UD + γ(φe)CD (3.23)

or in terms of the nodal values

φe =[(1− γ)max(sgn(v · n), 0) + γλe]φP +

[(1− γ)min(sgn(v · n), 0) + γ(1− λe)]φE, (3.24)

where γ, 0 < γ < 1, is blending factor, which defines the amount of numerical

diffusivity in the scheme.

21

Swansea University MSc Computational Mechanics

Many variations of upwind and central differencing schemes have been devel-

oped. One can find all available interpolation schemes of OpenFOAM from the

software’s user guide [18].

Higher order schemes that involve larger computational molecule than just

adjacent cells, are described in the literature. Most of them are developed having

structured (sometimes even uniform) grids in mind. Some of these algorithms are

also available in OpenFOAM (see user guide [18]). Anyhow, the overall accuracy

remains second order, because of the scheme used for approximation of the surface

integrals.

3.2.4 Diffusion Term and aspects of non-orthogonality

Assuming linear variation of φ between nodes P and E, to evaluate the diffusive

term, fd = Γφ∇φ · n, the simplest approximation reads(
∂φ

∂x

)
e

≈ φE − φP
xE − xP

=
φE − φP
|d|

. (3.25)

It can be proven that the approximation (3.25) is second order accurate only

if the face is exactly at the midway between the nodes P and E. Moreover, one

has to bear in mind that particular expression defines the gradient between the

nodes, not normal to the face.

The alternative is to find cell-centred gradients of cells (exploiting Green-

Gaußprocedure) shearing the face as,

(∇φ)P =
1

VP

∑
k

∫
Sk

φf dS =
1

VP

∑
k

φfkSk (3.26)

and then use linear interpolation:

(∇φ)e = λe(∇φ)P + (1− λe)(∇φ)N . (3.27)

The latter method is less accurate, but can be used also for non-orthogonal

grids.

The optimal solution, which is also implemented in OpenFOAM, would be to

use both of Equations (3.25) and (3.27).

This method is based on the decomposition of face area vector into orthog-

onal and non-orthogonal part. Three different decomposition strategies can be

employed, which are shown in Figure 3.4

22

Swansea University MSc Computational Mechanics

c
S

P e
d

E
bb b

(a) Minimum correction

c
S

P e
d

E
bb b

(b) Ortohogonal correction

c
S

P e
d

E
bb b

b

(c) Over-relaxed

Figure 3.4: Various approaches for non-orthogonality correction

All these approaches are second order accurate and satisfy the decomposition

expression,

S = b + c, (3.28)

where S is the area vector of a face.

The approximation that is more accurate (Eq. 3.25) is used together with

vector b which is parallel to vector d and the approximation, based on cell-

centred gradients will be used as corrector together with vector c. Thus the

overall face normal gradient becomes

(∇φ · S)e = |b|φE − φP
|d|

+ c · (∇φ)e, (3.29)

where (∇φ)e is calculated using Equation (3.27).

This procedure ensures optimal solution, as less accurate approximation is

used together with shorter(in general) vector c.

3.3 Temporal discretisation and methods for unsteady prob-

lems

The main classification of the discretisation methods for the time derivative terms

are the explicit and the implicit method. The first of them uses just the values

from the past, while implicit method includes also values from the next time-step

and can only be solved iteratively. There are four main discretisation methods for

time derivatives. These are the source for many other combined methods, which

are not described in the scope of this study. One can refer to any numerical

methods textbook for further information.

Lets consider a first order ordinary differential equation with an initial condi-

tion

dφ(t)

dt
= f(t, φ(t)); φ(t0) = φ0 (3.30)

The aim is to find value of φ after a small time increment ∆t. The simplest

way to construct algorithm for φn+1 is to integrate Equation (3.30) form time

instant tn to time instant tn+1.

23

Swansea University MSc Computational Mechanics

∫ tn+1

tn

dφ

dt
dt = φn+1 − φn =

∫ tn+1

tn

f(t, φ(t))dt (3.31)

As φn+1 is unknown, one can not substitute previous expression directly to

transport equation, but needs to find an approximation of φn+1.

Four most basic and well-known methods are presented in following paragraphs

and shown graphically in Figures 3.5 and 3.6.

If one uses only the value of the integrand at previous time-step, one achieves

method known as explicit or forward Euler,

φn+1 = φn + f(tn, φ
n)∆t. (3.32)

This scheme becomes unstable as Courant number becomes larger than unity.

Courant number can be calculated as,

Co =
ve · d

∆t
, (3.33)

where ve is the fluid velocity at face e, d is the vector from node P to node E

and ∆t is the time-step size.

b b

f

tn tn+1

t
b b

f

tn tn+1

t

Figure 3.5: Forward and backward Euler approximation of time integral

Secondly, one could use the integrand at the new point tn+1 to estimate the

integral

φn+1 = φn + f(tn+1, φ
n+1)∆t. (3.34)

Method presented by previous equation (3.34) is called implicit or backward

Euler.

Third method uses midpoint between tn and tn+1 and is named accordingly -

the midpoint rule. It is a semi-implicit method, as it must be solved iteratively,

although not at time instant tn+1, but at tn+ 1
2
.

φn+1 = φn + f(tn+ 1
2
, φn+ 1

2)∆t. (3.35)

24

Swansea University MSc Computational Mechanics

b b

f

tn tn+1

t
b b

f

tn tn+1

t

tn+ 1
2

Figure 3.6: Midpoint and trapezoidal rule for approximating time integral

For the last method both, the start and the end point, is used for approximat-

ing the integral. This implicit method is called the trapezoidal rule and is given

as,

φn+1 = φn +
1

2
[f(tn, φ

n) + f(tn+1, φ
n+1)]∆t. (3.36)

All four methods, listed previously, are known as two-level methods. Both of

the Euler schemes are first order accurate, while the midpoint and trapezoidal

rule are second order. Although the stability depends largely on the time-step

size, the backward Euler is considered the most stable and forward Euler the

least.

Besides these schemes, there are many other, which are derived either by

combining previous ones (predictor-corrector methods) or adding more points were

the function is evaluated (multipoint methods)

As most of these schemes can be viewed as extension of the previous four

methods, the stability largely depends on the contribution from implicit Euler

with respect to contribution from other methods.

By combining temporal disretisation with spatial, solution methods for un-

steady transport equations are derived. Although many modification and naming

conventions can be found in the literature [8] [17] , the most common methods

are shown in Table 3.2.

Temporal Spatial CFD scheme

forward Euler + upwind differencing = forward time centred space or explicit

Euler method

midpoint rule + central differencing = leapfrog method

backward Euler + central differencing = implicit Euler method (one of Crank-

Nicolson methods)

trapezoidal rule + central differencing = Crank-Nicolson Method

Table 3.2: Schemes of finite volume method CFD codes

25

Swansea University MSc Computational Mechanics

3.4 Solution to Navier-Stokes Equations

3.4.1 Derivation of pressure equation

The differential form of Navier-Stokes equations were stated in Section 3.1, which

for incompressible (ρ = const) flows becomes

Mass conservation:

∇ · v = 0 (3.37)

Momentum conservation:

∂v

∂t
+∇ · (vv)−∇ · (ν∇v) = −∇p. (3.38)

In general Navier-Stokes follow the same discretisation rules as the generic

transport equation, with exceptions that Navier-Stokes equations are vector equa-

tions, non-linear and there is a pressure term, which does not have analog from

the generic equations.

Firstly, the non-linear term ∇ · (vv) or in integral form,
∫
S

vv ·n dS, is under

investigation. Using Equations (3.14) and (3.13) this convective term can be

discretised as,

∇ · (vv) =
∑
k

Sk · (v)k(v)k

=
∑
k

Fk(v)k

= aPvP +
∑
k

akvk, (3.39)

where N represents the central cell and k any neighbouring cell. Moreover, F ,

aP and ak are function of v.

In order to find solution to Equation (3.39), either a non-linear equation solver

must be used or the equation has to be linearised beforehand. Taking into account

computational cost of the non-linear solver, linearisation is preferred. In terms

of Equation (3.39), linearisation means that coefficient aP and ak are calculated

using the velocity field from the previous iteration, which did satisfy the continuity

Equation (3.37).

As one can see, pressure term is present only in the momentum equation, but

this equation is used for the calculating the velocity field v. In fact, the mass

conservation equation can be viewed as a constraint on the velocity field, rather

than an individual equation for a specific variable. Thus a scheme to calculate

pressure field, which satisfies the continuity equation must be derived. There

are two approaches for that, which are basically the same, but involve different

explanation.

26

Swansea University MSc Computational Mechanics

One way is to find the derivative of the momentum equation and then cancel

out all the terms that are carrying ∇ · v, because the continuity equation still

holds. The outcome of this procedure will be a Poisson equation for the pressure.

This approach is presented in textbook by Ferziger and Perić [8].

Another way to describe the same procedure is to evaluate from the momentum

the velocity at a face and substitute it into the continuity equation. Hrovje Jasak

has used this approach in his PhD thesis [10] and will also be presented in this

study.

The starting point to derive velocity-pressure coupling, is semi-discretised mo-

mentum equation

aPvP = H(v)−∇p, (3.40)

where pressure gradient is left undiscretised and H(v) holds the rest of the terms

of momentum equation that are not give in Equation (3.40). Term H(v) can be

expressed as

H(v) = −
∑
k

akvk +
∂v

∂t
−∇ · (ν∇v). (3.41)

Using Equation (3.5) for incompressible fluid and the discretisation method

from Equation (3.13), the continuity equation can be given as

∇ · v =
∑
k

Sk · vf = 0 (3.42)

To substitute momentum equation into mass conservation equation, one needs

to evaluate vP from Equation (3.40)

vP =
H(v)

aP
− 1

aP
∇p. (3.43)

Velocities at faces can be evaluated through any interpolation scheme, pre-

scribed in Section 3.2.3 and is expressed for face k as,

vk =

(
H(v)

aP

)
k

−
(

1

aP

)
k

(∇p)k . (3.44)

By substituting previous expression into Equation (3.42) gives

∇ ·
(

1

aP
∇p
)

= ∇ ·
(

H(v)

aP

)
=
∑
k

Sk ·
(

H(v)

aP

)
k

. (3.45)

The final form of the discretised Navier-Stokes equations for incompressible

flow are

27

Swansea University MSc Computational Mechanics

The conservation of momentum:

aPvP = H(v)−
∑
k

Sk(p)k (3.46)

and the Poisson pressure (continuity eq.) equation:

∑
k

Sk ·
[(

1

aP

)
k

(∇p)k
]

=
∑
k

Sk ·
(

H(v)

aP

)
k

. (3.47)

3.4.2 Solution to pressure-velocity coupling

In this section the solution strategies for Equations (3.46) and (3.47) are investi-

gated.

In general, the solution methods can be divided into simultaneous and into

segregated algorithms.

For the simultaneous algorithm, the resulting matrix is significantly larger than

the number of computational points in the domain, due to the inter-equation

coupling. This scheme is barely ever used because of its computational cost and

memory requirements.

Segregated algorithms solve the Equations (3.46) and (3.47) in sequence, with

special treatment for the inter-equation coupling. The most used algorithms are

PISO (Pressure Implicit with Splitting of Operators), SIMPLE (Semi-Implicit

Mehod for Pressure-Linked Equations) and derivations of these algorithms. De-

spite the fact that these schemes are implicit, the matrix to be solved is much

smaller compared to simultaneous algorithms. Furthermore, in real computer

programs, the alternating direction implicit (ADI) method is used to split the

momentum equations into series of one dimensional problems, each of which is

block tridiagonal. This approach is also used in OpenFOAM.

Originally PISO scheme is developed for transient problems with assumption

of small time-steps. The solution procedure is described by following steps:

1. The momentum Equation (3.46) is solved for v using pressure field from

previous time instant, n. In general, the resulting velocity field, v∗, does not

satisfy the continuity equation and thus is denoted with an asterisk, “∗” and

called a prediction.

2. Using the predicted velocities, the variable H(v) in Equation (3.47) can be

evaluated and new pressure field calculated.

3. Having the new pressure field, the velocity field can be corrected explicitly

using Equation (3.43). Observing the Equation (3.43), it can be seen that the

correction of velocity field depends on the change in pressure gradient (1
aP
∇p

term) and on the influence of the velocity correction in neighbouring cells

28

Swansea University MSc Computational Mechanics

(H(v)
aP

term). For this case, “explicit” means that term, H(v) in Equation

(3.43) is calculated using the predicted velocity field, v, and the velocity

correction is neglected. Obviously, such cancellation is inadmissible and the

steps 2 and 3 must be repeated until required tolerance is reached. Thus,

despite some steps in correction procedure are explicit, the scheme in total

is considered as implicit.

In short, PISO algorithm consists of single implicit momentum predictor fol-

lowed by series of pressure evaluations and explicit velocity corrections. In Open-

FOAM the number of correction loops is specified by defining nCorrectors in

file fvSolution.

SIMPLE algorithm is originally developed for steady state flows, where the

initial and final flow fields diverge significantly. The steps of the algorithm are:

1. Using under-relaxation for velocity, the momentum Equation (3.46) is solved

for v. Previous time-step values are used to find the pressure gradient.

2. The pressure Poisson Equation (3.47) is solved to find current pressure field.

3. Similarly to PISO algorithm, the pressure equation contains term H(v),

where the correction of the velocity field is not taken into account. Instead

of looping over steps 2 and 3, pressure is solved only once and the corrected

velocity field is taken into account by using under-relaxation factor.

pn+1 = pn∗ + αp(p
n∗ − pn), (3.48)

where pn∗ is the pressure found in step 2. As SIMPLE algorithm is mainly

used for steady state flows, n−1, n and n+1 may denote not the time-step,

but iteration iteration step.

In literature, it is proven that the optimum value for under-relaxation factor

for pressure is given as,

αp = 1− αv, (3.49)

where αv is the relaxation factor for momentum equation. Moreover, αp = 0.2

and αp = 0.8 are the recommended values.

3.5 Calculation of traction forces

An essential part of a FSI solver is the calculation of traction forces, generated

by the fluid. It consist of computing pressure and viscous forces.

In finite volume method, the variables (pressure and velocity) are calculated,

and saved for the next time instant, at cell centres and at the face centres for

29

Swansea University MSc Computational Mechanics

the boundary. Thus the pressure field on any boundary is available after Navier-

Stokes equations are solved and the traction force due to pressure can be found

by multiplying face area vector by the pressure value at the centre of that face.

The calculation of viscous forces is slightly more complex. Assuming incom-

pressible flow the Equation (3.8) renders,

T = −pI + 2µD. (3.50)

As the pressure is already calculated, the viscous stresses tensor is given as,

τ = 2µ
1

2

[
∇v + (∇v)T

]
. (3.51)

Similarly to pressure, the velocity field of the domain is available. The gradient

of the velocity field can be found using Equation (3.25) and viscous stress tensor

calculated using Equation (3.51). Finally, the same procedure as calculating the

traction for pressure follows - viscous stress tensor at the face centre is multiplied

by the area vector.

In order to minimise the number of operations, the pressure and viscous force

vectors are added and only one traction vector is passed to solid (see Section 5.3

instruction 7).

30

Swansea University MSc Computational Mechanics

4 Computational Fluid-Structure Interaction

In coupled multiphysics problems, such as FSI, any change in one subsystem

causes a response in other subsystems.

In most fields of engineering the analysis types can be divided into three main

categories:

• analytical

• computational

• experimental.

The same applies to fluid-structure interaction.

An analytical solution can be found to very a limited set of problems. However,

these are substantial not just in industrial applications, but also in order to

understand the problem and for the validation of numerical solvers.

Experimental analysis is the most trustful and can be used for the validation

of numerical analysis, but the limiting factors are the cost and in some cases

the constraints on scaling, such as, for example, satisfying Reynolds and Froude

number simultaneously in a scaled towing test.

The computer simulation of fluid-structure interaction requires the discreti-

sation of the solid and fluid domains. The resulting algebraic systems must be

solved simultaneously or in turns.

To ensure the clarity, modularity and the flexibility of a FSI solver it is common

to divide it into three parts: fluid, solid and interface [4]. This approach collects

all additional calculations, such as the transfer of traction forces and kinematic

data. Graphical representation of this modular approach is shown in Figure 4.1.

FLUID
Navier-Stokes solver

(mesh solver)

uf , (xf) ui

INTERFACE

ui

SOLID
Solid solver

ui ds

traction forces traction forces

Figure 4.1: Structure of a FSI solver [4]

In Figure 4.1 the symbols denote following degrees of freedom:

31

Swansea University MSc Computational Mechanics

ui – kinematic DOF of the interface

uf – all DOF of the fluid (velocity and pressure), except kinematic DOF

on the interface,

xf – degrees of freedom of the fluid mesh

ds – degrees of freedom of the solid (nodal displacements)

Moreover, the introduction of interface domain simplifies data handling of

non-matching meshes and allows for independent remeshing of sub-domains.

A system of equations that corresponds to previous FSI solver structure, is

given as,

rf (uf ,ui) = 0 (fluid);

gf (uf ,ui) + gs(ds,ui) = 0 (interface); (4.1)

rs(ds,ui) = 0 (solid).

These equations are solved at each time-step for ui, uf and ds. The vectors rf ,

rs denote the nodal residual forces of the fluid and solid sub-domains, whereas

gf , gs represent the traction forces exerted on the interface by the fluid and the

solid, respectively.

This system of equations corresponds to Newton-Raphson schemes and is

solved as a whole (monolithic) or in turns (partitioned). These schemes pro-

vide generally good robustness and accuracy, but are computationally expensive

and difficult to implement.

Besides Newton-Raphson schemes, Gauß-Seidel and staggered schemes have

been developed [4].

These four types of computational FSI solvers are described in following Sec-

tion, 4.1, and the staggered scheme, which is the focus of current project, is

described in Section 4.2.

4.1 Classification of Fluid-Structure Interaction Solvers

Before categorising FSI solvers according to the strategy, possible interface for-

mulations are reviewed. Two main types of defining the interface between fluid

and solid are:

• interface capturing

• interface tracking

In the first case, the solid and fluid mesh are moving independently, i.e., they

slide over each other. It is mainly used with Eulerian fluid mesh. This method

does not set any constraints on the scale of deformations (or rotations), but is

less accurate in terms of satisfying the conservation equations.

32

Swansea University MSc Computational Mechanics

In interface tracking, the fluid and structure mesh are moving together - there

occurs neither overlapping nor gaps between the sub-domains. It is considered

more accurate, but unsuitable for large deformations (remeshing needed). In

order to preserve the quality of fluid mesh, additional computation is required to

solve for the nodal coordinates.

In current project only the interface tracking method is used.

As a next step, the solution scheme must be chosen. A graphical representation

of various FSI solvers, based on the strategy, is presented in Figure 4.2.

Computational Fluid-Structure Interaction Solvers

Monolithic Partitioned

Monolithic
Newton-Raphson

Partitioned
Newton-Raphson

Gauß-Seidel
iteration

Staggered
schemes

Strongly coupled schemes
Weakly coupled

schemes

Figure 4.2: Classification of FSI solvers

Strongly coupled solvers satisfy the equilibrium of traction forces exactly. They

comprise monolithic and partitioned Newton-Raphson as well as Gauß-Seidel

strategies. For monolithic schemes, the DOF from all the sub-systems (fluid,

solid, interface and mesh) are accumulated into single matrix equation, which is

highly non-linear and involves all cross-derivatives. Besides the computational

cost of solving the system of equations, monolithic Newton-Raphson strategy is

difficult to implement. Consistent partitioned Newton-Raphson procedures tend

to offer maximum robustness, but the implementation is even more tedious.

In Gauß-Seidel and staggered schemes the sub-domains are solved in turns - in

separate systems of equations. The vector of traction forces t must be introduced

to define the interaction between the sub-domains. As a result, the system of

Equations (4.1) changes to

rf (uf ,ui) = 0

gf (uf ,ui) = t

}
(fluid)

rs(ds,ui) = 0

gs(ds,ui) = −t

}
(solid), (4.2)

which are solved at each time-step for ui, t, uf and ds.

33

Swansea University MSc Computational Mechanics

Gauß-Seidel iteration scheme is named in literature also as Dirichlet-Neumann

iteration or as fixed point iteration scheme. The algorithm starts from the fluid

domain, which is solved for the fluid degrees of freedom as well as for the interface

traction forces. The latter are then applied on the solid as an external load. Solid

sub-solver calculates a new approximation of the kinematical interface degrees of

freedom, which should be closer to the solution. The results from both domains

are compared and if difference is below user defined tolerance, the algorithm

moves to next time-step. Otherwise, the procedure is repeated.

In general the convergence of a Gauß-Seidel algorithm can be improved signif-

icantly if fixed or dynamic (e.g Aitken’s or steepest descent) relaxation is used.

For more information on Dirichlet-Neumann iteration scheme, one should refer

to literature, [4] and [14].

The solution strategy and specific properties of staggered schemes will be dis-

cussed in the next Section.

4.2 Staggered Scheme for Fluid-Structure Interaction

Staggered schemes form a group of weakly-coupled solvers (see Figure 4.2). These

solvers perform a fixed sequence of sub-solvers, traction force interpolations, data

exchanges or any other constant number of calculations in each time-step, no

matter whether the Equations (4.2) are satisfied or not. This causes a violation

of the traction forces of the sub-domains, but if the time-step size and other

algorithm parameters are carefully chosen, staggered schemes can be accurate and

computationally very efficient. The solution of weakly coupled scheme coincides

with those from Newton-Raphson and Gauß-Seidel schemes only as the time-step

size tends to zero.

The solution procedure of staggered scheme, used in this project, is exclusively

based on the article [5] by Dettmer and Perić.

Time variable t is introduced to describe the solution procedure of this scheme.

The subscripts 0, 1, 2, ..., n, n + 1, ...N denote the discrete instants of the simu-

lation. Assuming that the solution for time instants tn−1 and tn, is known, the

approximation of the solution for time-step tn+1 is given in a Box, 4.1.

It can be seen that in step 2, the solid is loaded by the traction force predictor

tP
n+1, but the fluid responds in step 3 by a traction force t∗n+1. The difference

tP
n+1−t∗n+1 is the violation of the traction forces of the system of Equations (4.2).

In order to spread the violation between the solid and the fluid, an average of the

traction forces is calculated in step 4.

The coefficient β controls the contribution from the fluid domain, which at the

same time can be viewed as the relaxation factor, parallel to Gauß-Seidel scheme.

A natural choice of β is 0.5, but for large fluid-solid density ratios (large added

mass effect), to ensure stability, smaller values of the coefficient are used. For

34

Swansea University MSc Computational Mechanics

1. calculate traction force predictor

tPn+1 = 2 tn − tn−1 (4.3)

2. load solid with predicted traction force and solve for interface displacement (and for
the displacement of solid internal nodes)

rs(dsn+1
,uin+1

) = 0
gs(dsn+1

,uin+1
) = −tPn+1

}
solve for dsn+1

and uin+1
(4.4)

3. move fluid non-slip boundary and update fluid mesh, then solve fluid for traction force

rf (ufn+1
,uin+1

) = 0
gf (ufn+1

,uin+1
) = t∗n+1

}
solve for ufn+1 and t∗n+1 (4.5)

4. compute the corrected traction force

tn+1 = βt∗n+1 + (1− β)tPn+1 (4.6)

5. go to next time-step

Box 4.1 Procedures of staggered scheme in single time-step

more information, see Section 4.3 and an article [5].

Although in current project only constant size time-steps are used, in case of

adaptive time stepping is used, the expression for predictor becomes

tP
n+1 = (1 + κn+1)tin − κn+1tn−1, (4.7)

where κn+1 = ∆tn+1/∆tn is the ratio of the current and the previous time-step.

One of the goals of this project is to maintain the second order accuracy

for both sub-systems and for the whole FSI solver. As different time integration

schemes are used for the fluid (in fact, some of the fluid time integrations schemes

are not second order accurate) and for the solid, the time integration of the cou-

pling needs extra care. The importance of time integration for coupled problems

is investigated in an article [11] by Joosten and Dettmer, and the algorithm for

particular staggered scheme, based on the generalised-α method, is presented in

article [5].

Independently from the temporal discretisation (and its order) of the sub-

systems, for the highest possible accuracy of the coupling, the traction of previous

and current time-step must be interpolated. Basically, the interpolation, which

is described in the following, is required if the fluid and solid traction forces are

associated with different time instants within the time-step.

Assuming generalised-α method discretisation for both sub-domains the inter-

polation algorithm becomes

ts
n+αs

f
= αs

f tsP

n+1 + (1− αs
f) ts

n (4.8)

35

Swansea University MSc Computational Mechanics

tf
n+αf

f
= αf

f tf∗

n+1 + (1− αf
f) tf

n, (4.9)

where
ts
n+αs

f
– traction forces on solid at time instant tn+αs

f

tf
n+αf

f
– traction forces by fluid at time instant tn+αf

f

tsP

n+1 – predicted traction forces (load on solid at time instant tn+1)

tf∗
n+1 – traction forces from the fluid domain at time instant tn+1

ts
n = tf

n – averaged traction forces of previous time-step, tn

αs
f , α

f
f – time integration coefficients, which can be calculated as,

αs
f =

1

ρs
∞ + 1

, (4.10)

αf
f =

1

ρf
∞ + 1

, (4.11)

where ρs
∞, ρf

∞ are the spectral radius associated with an infinite time-step size

of solid and fluid domain, respectively.

For clarity, a graphical interpretation of Equations (4.8) and (4.9) is presented

in Figure 4.3.

tn+αf
f

b b

t

tn tn+1

t

tn+αs
f

tn+αf
f

tn

tn+1tn+αs
f

b

b

b

b

Figure 4.3: Interpolation of traction forces

In order employ the traction forces interpolation on the scheme presented in

Box 4.1, two additional calculations must be performed.

Firstly, between step1 and 2 in Box 4.1, Equation (4.8) must be used, to load

the structure with forces associated to time instance tn+αs
f
.

Secondly, between steps 3 and 4 in Box 4.1, Equation (4.9) must be employed

to transfer (interpolate) the traction forces from time instant tn+αf
f

to tn+1. More

precisely, Equation (4.9) in from

36

Swansea University MSc Computational Mechanics

tf∗

n+1 =
tf
n+αf

f
− (1− αf

f) tf
n

αf
f

(4.12)

is used.

In current project the generalised-α method is used for the solid domain

throughout all the simulations.

For fluid, OpenFOAM (finite volume method) is used, and various schemes are

available for time-integration of unsteady flows [18]. The most used of these are

the first order implicit backward Euler (denoted as “Euler” in OpenFOAM) and

the Crank-Nicolson (trapezoidal rule), with the possibility of blending it with the

former (for time algorithms, see Section 3.3).

Comparing blended Crank-Nicolson method with the generalised midpoint

rule, it can be seen that the blending factor (in OpenFOAM denoted as ψ)

corresponds to ρh
∞ in the general midpoint rule. In both schemes, the smaller

the named parameter (ψ or ρh
∞), the more numerical damping is introduced by

increasing contribution from backward Euler scheme.

Thus, the parameter ρf
∞ in Equation (4.11) can be replaced by the blending

factor, ψ, from the OpenFOAM (blended Crank-Nicolson).

There is not any efficient method to determine the optimal value for ψ (to

ensure good accuracy and at the same time, maintain the boundedness) for un-

structured grids. In this project, the optimal value was found by running many

cases with various values of ψ (see Section 4.3).

4.3 Stability of Staggered Scheme

One of the main drawbacks of weakly coupled schemes has been their instability.

The reason for it is the added mass effect with incompressible fluid and moderate

solid over fluid mass ratio. The inertia of the fluid mass entrained by the solid

structure is not considered in the structural dynamics solver. Thus, the deforma-

tion of the structure, when loaded with the fluid traction forces, is generally too

inaccurate to allow for the design of a stable staggered algorithm.

Using the algorithm proposed in paper [5], a staggered scheme, with incom-

pressible fluid and second order accurate implicit sub-solvers, is proven to be

unconditionally stable even at relatively low ratios of solid over fluid. This is

ensured by a simple control parameter β (see Section 4.2), similar to relaxation

factor in block Gauß-Seidel schemes. Basically, β defines the contribution of trac-

tion forces from the sub-domains and averages them. To maintain the stability of

the overall scheme, smaller values of β must be used with smaller ratios of solid

over fluid. On the other hand, smaller values of β increase the inaccuracy of the

coupling as the contribution of fluid traction forces is not accounted. Although,

37

Swansea University MSc Computational Mechanics

the second order accuracy of the coupling is maintained independently of the

value of β.

In the article [5] by Dettmer and Perić, it is proven on a linear model problem,

that high frequency damping of the overall system is reduced if the condition

√
1− β > max(ρf

∞, ρ
s
∞). (4.13)

is fulfilled. Thus, instabilities are likely to occur if the Equation 4.13 is not true.

Although, this condition can not be applied directly to a complex numerical

mode, it gives an indication for which combination of values β, ρs
∞ and ρf

∞ the

computation might fail.

In limit case, where solid over fluid ratio is approaching to zero, for overall

stability, the averaging factor β tends also to zero. Thus, the traction forces

by fluid are ignored and high frequency oscillations may occur (if the damping

by sub-solvers do not compensate it). Thus, prescribed strategy cannot be used

with zero density or infinitely thin solid structures. Same criteria applies also to

Gauß-Seidel strategies.

38

Swansea University MSc Computational Mechanics

5 Implementation of the Weakly Coupled Scheme

In this chapter the two software, for fluid and solid domain, are described in the

first two sections. The main focus is on the structure of the program rather than

on problems arising from running a particular simulation.

The last section focuses on the merging of the two software.

5.1 MPAP2

Multi-Physics Analysis Program - MPAP2 is a finite element method software,

developed in Swansea University, Civil and Computational Engineering Centre

by Dr. Wulf G. Dettmer. MPAP2 has the capabilities of modelling fluid flow and

non-linear solid mechanics problems. Moreover, it can solve coupled problems

with interacting domains. For instance, contact dynamics and fluid-structure

interaction. Theoretically, the number of sub-domains is not limited.

The current version of MPAP2 does not have the capabilities for turbulence

modelling.

The core structure of MPAP2 is written in C++, while most of the material

and element models have been implemented in Fortran. Object-oriented pro-

gramming language, C++, enables high modularity and flexibility of the code,

which is also employed in MPAP2.

One of the base classes in MPAP2 is DomainTree that holds all the domain

types. Each domain type may contain one or more domains, which can interact

with each other or with domains of another type. Each finite element method

based domain has child classes: Geometry, Mesh and many other containing pro-

cedures for solving finite element method problems.

Classes related to graphical user interface (GUI) , LSE solvers etc, compose

rest of the modules in the software.

The program is controlled by macros, which are executed automatically ac-

cording to input file or run manually by using GUI. The flexibility of MPAP2

also allows for the straight forward implemenation of user defined macros.

5.2 OpenFOAM

OpenFOAM stands for Open Source Field Operation and Manipulation, which

is a C++ library to create various executables - applications. These are divided

into solvers and utilities. Most of the utilities are either pre-processing tools or

post-processing interfaces/converters.

OpenFOAM is used by many universities as it is open source, flexible and

modular, which makes it easy to add new solvers and boundary conditions. On

39

Swansea University MSc Computational Mechanics

the other hand, more options and larger flexibility requires wider knowledge from

the user, which extend the period of study significantly.

Finite volume method with collocated arrangement is the discretisation scheme

for solving Navier-Stokes equations in OpenFOAM. Almost any other scheme or

property of the simulation is user defined: interpolation, differentiation, integra-

tion schemes, preconditioners, LSE solvers and solution tolerances.

The program supports boundary deformations and has various built in mesh

motion solvers. The boundary motion can either defined in terms of velocity or

displacements. To ensure the quality of the grid, either laplace, stress-strain or in-

terpolation based mesh solvers can be chosen (in various versions of OpenFOAM

other mesh solvers are available). In the current project displacementLaplacian

solver from dynamicMotionSolverFvMesh class with

quadratic inverseDistance diffusivity was chosen as this strategy ensured the

least distorted grid close to moving boundaries - the boundary layer mesh re-

mained in good quality).

OpenFOAM version 2.1.1 contains large variety of standard solvers from po-

tential flow solvers to combustion solver with chemical reactions and turbulence

modelling and from Monte Carlo simulation to financial calculations, in total

78 standard solvers. The main categories of these solvers are: “Basic” CFD,

incompressible flow, compressible flow, multiphase flow, direct numerical simu-

lation, combustion, heat transfer and buoyancy-driven flows, particle tracking

flows, molecular dynamics, direct Monte Carlo simulations, electromagnetics,

stress analysis of solids and finally financial calculations.

Making all the standard solvers available in the assembled software would

firstly be time consuming and more importantly - unnecessary. After the ex-

amination of all standard solver in OpenFOAM, it appeared that all required

features exists in pimpleDyMFoam solver. PimpleDyMFoam is a transient solver for

incompressible, flow of Newtonian fluids on a moving mesh using the PIMPLE

(merged PISO and SIMPLE pressure coupling) algorithm [18].

A typical OpenFOAM pimpleDyMFoam solver project directory is shown in

Figure 5.1

40

Swansea University MSc Computational Mechanics

project name

constant

polyMesh

blockMeshDict

boundary

faces

neighbours

owners

points

triSurface

geometry.stl

dynamicMeshDict

transportProperties

turbulenceProperties

system

controlDict

fvSchemes

fvSolution

snappyHexMeshDict

0

0.1

... (time directories)

(continuous line rectangles denote directories and dashed denote files)

Figure 5.1: Structure of typical pimpleDyMFoam case directory

Geometry and constant physical properties are stored in the constant direc-

tory while files related to control parameters, numerical schemes and options for

LSE solvers, are stored in the system directory. Boundary and initial conditions

are defined time directory that is the starting time of the simulation (usually

“0”).

Most of data in OpenFOAM related files is saved in form, known as the dictio-

nary. A dictionary is an entry, which contains data entries that can be retrieved

by the input/output by means of keywords. A dictionary consists of dictionary

name followed by curly brackets, in which one or more keywords with one or more

entries are defined (please refer to [18] page U-102 for more information).

The results are saved in time directories that follow to initial conditions direc-

tory. Result directories can have the same sequence as the time instants in the

41

Swansea University MSc Computational Mechanics

solution process or once in every fixed number of time-steps. For example, one

can save the velocity, pressure or any other physical quantity field after every 10

time-steps.

5.3 Assembly of Sub-solvers into Single Computer Pro-

gram

The aim of this project was to construct a FSI solver, which is able to simulate

(incompressible) fluid-structure interaction over a long period of time. Such solver

can only be efficient if the sub-solvers share the same memory. Another option

would have been to transfer data through files, which is time consuming, and

increases even more in cases, where the ratio of interface DOF to sub-domains

internal DOF, is larger.

The carrying idea of the assembly was to keep the OpenFOAM totally un-

changed, which means that OpenFOAM libraries were attached to MPAP2 ex-

isting libraries. There are many reasons behind it:

• MPAP2 has already got the structure for interacting domains

• OpenFOAM is designed without any global variables

• compilation process of OpenFOAM is significantly more time consuming

with that of MPAP2

In following paragraphs a detailed description of the assembly process of

MPAP2 and OpenFOAM is given.

1. Installation of OpenFOAM.

OpenFOAM source code can be download from www.openfoam.org/download.

According to the Linux operating system (OS) distribution, relevant source

pack with the compiling instructions, must be chosen. It is recommended

to download and install the third-party software (e.g ParaView for post-

processing) at once, in case it is not already included in the pack for partic-

ular Linux distribution.

In case of using older version of Linux, it might be required to update the

GNU Compiler Collection (GCC) for the installation of the latest release of

OpenFOAM.

On a regular personal computer (e.g CPU: Intel Core 2 Duo P8400/2.26

GHz, RAM: 4.0 GB) the compilation process takes about two hours.

42

Swansea University MSc Computational Mechanics

2. Installation of MPAP2

Having the source code of MPAP2, a makefile, needed for installation, is

usually included in the pack. Besides g++ compiler for the *.cpp files, a

Fortran compiler is required due to material and element models, written in

Fortran (see Section 5.1). For example, gfortran, which is part of the GCC

package for Linux.

3. Testing the functionalities of MPAP2 and OpenFOAM individually

After the installation of both software, it is recommended to test their func-

tionality by running some of the tutorial cases which come with the software.

Besides becoming familiar with the programs, it helps to discover any mis-

takes caused by incompatibility of computer architecture, compiler version

and Linux distribution in the early stage.

4. Removing ambiguous names

There are a few common function, class and variable names in MPAP2

and OpenFOAM. To avoid ambiguous names in the coupled software, some

changes are needed in MPAP2. As the scope of MPAP2 classes is global

with respect to OpenFOAM, thus any ambiguous class name can be avoided

by adding the global scope symbol “::” at the front of each conflicting class

in MPAP2.

Careful positioning of calls to include header files in a *.cpp file may

reduce the need for using the global scope notation. In general, files con-

taining variables of wider scope - header files belonging to MPAP2 - should

be placed before the header files of OpenFOAM.

For some ambiguous function names the easiest solution, to knowledge

of author, is changing the function name in MPAP2. In current project fol-

lowing changes were made: time ← mpapTime, debug ← mpapdebug and

solve ← mpapSolve.

The replacement in MPAP2 files is easily accomplished using Linux ter-

minal command:

$find .../fem/mpap2 -type f -exec sed -i ’s/solve/mpapSolve/g’

5. Compiling MPAP2 together with OpenFOAM libraries

After ensuring that both programs are working without any complications,

the libraries originally belonging to OpenFOAM must be made available

also for MPAP2. As this paper focuses only solving fluid domain using pim-

pleDyMFoam solver, the necessary libraries and paths for compilation can

43

Swansea University MSc Computational Mechanics

be found in corresponding directory:

/opt/openfoam211/applications/solvers/incompressible/pimpleFoam/

pimpleDyMFoam/Make. In case more solvers or utilities are necessary in the

FSI solver, relevant libraries from OpenFOAM must be added to MPAP2

makefile.

To ensure that the solver is functioning, a macro that calls pimpleDyM-

Foam could be generated and any tutorial case of OpenFOAM run through

MPAP2.

Besides added libraries, OpenFOAM requires several definitions of macros

used by the preprocessor. These must be also added to the MPAP2 makefile

as variables in command line option -D. More information about wmake

(makefile used in OpenFOAM) can be found by studying files in direc-

tory: /opt/openfoam211/wmake.

6. Creating a new domain type, OpenFOAM, in MPAP2

To use as much as possible the existing data structures for FSI in MPAP2,

the most convenient method to program the interaction between pimpleDyM-

Foam and solid domain, is by defining OpenFOAM as another domain type.

Changes that are needed in MPAP2 Definitions.h file are:

• Adding OpenFOAM into DOMAIN TYPE NAMES list

• Adding OPENFOAM into DOMAIN KEY list

• Adding OPENFOAM into DOMAIN TYPE ENUM list

and changes in prgReadFile.cpp file are:

• Adding to the end of header files list:

#ifdef INCLUDE OPENFOAM

#include "OpenFOAM.h"

#endif

• Adding the OPENFOAM case into the list of domains (e.g after case

INTERFACEWCAM block):

case OPENFOAM:

#ifdef INCLUDE OPENFOAM

domain.newDom(new OpenFOAM);

n = domain[OPENFOAM].dom.n;

cout << ‘‘ loading OPENFOAM ’’ << n << ‘‘ ... \n\n’’;
domain(OPENFOAM,n-1).readFile(*Ifile);

#else

prgError(1,‘‘prgReadFile’’,‘‘OpenFOAM not linked in!’’);

44

Swansea University MSc Computational Mechanics

#endif

break;

It is recommended to add

#ifdef INCLUDE OPENFOAM

....

#endif

around any piece of code, related to OpenFOAM. By following this recom-

mendation, in case OpenFOAM is not needed or there are compatibility

errors, OpenFOAM functionalities can be easily revoked by not defining

INCLUDE OPENFOAM during the compilation.

Having MPAP2 ready to accept domain type “OpenFOAM”, the header

and *.cpp file with the declarations and constructors must be created.

It is unpractical to print and explain every line of class OpenFOAM in this

paper, but the most important elements of the code will be presented.

In order to benefit from the shared memory and ensure fast data transfer

and efficient memory use, pointers must be used to access data either from

MPAP2 or OpenFOAM. This might not be immediate as the class “Open-

FOAM” is created before any velocity or pressure field exist. Thus a NULL

pointer must be created for each and every OpenFOAM data structure that

is later needed.

Some of the most important data that is needed for the calculation of

traction forces are: runTime (current time instant), p (pressure field) and U

(velocity field), but also nu (value of kinematic viscosity). In current project

the pointers for data from OpenFOAM is denoted with its original name +

MpapPtr. For instance, runTime becomes runTimeMpapPtr.

Although OpenFOAM class constructor does not have any argument, the

most important data read from the input file is the path to the particular

OpenFOAM case directory, number defining the dimension, solver name (e.g

pimpleDyMFoam) and name of patches that form the interface with solid.

In current version of the coupled software a possibility to define a indi-

vidual motion of every patch has been programmed. The functionality can

be employed in simulations, where the boundary motion is described by a

time function. For an example, please see Section 6.4.

In OpenFOAM class the most important functions are:

• OpenFOAM::createFieldsPimpleDyMFoam - creates velocity and pres-

sure field, by reading the boundary and initial conditions from files.

Moreover, reads fluid properties ν, ρ, etc, from corresponding file.

45

Swansea University MSc Computational Mechanics

• OpenFOAM::runPimpleDyMFoam - runs pimpleDyMFoam solver for sin-

gle time instant. May contain many velocity-pressure coupling or non-

orthogonality corrections loops. Furthermore, calls functions to deform

interacting patch and to move internal mesh.

• OpenFOAM::calcTraction - based on the current velocity and pressure

field, calculates the traction forces on the boundary. This is done by

adding effective viscous stress and hydrostatic pressure.

7. Creating a new class, InterfaceOFWC

InterfaceOFWC (referring to keywords: Interface, OpenFOAM, Weakly Cou-

pled) is child class of Domain and holds data structures and functions related

to transferring traction forces and boundary motion. The most important

member functions of InterfaceOFWC class are:

• InterfaceOFWC::prepareInteractions - function that is called once

in the beginning of the simulation to calculate the traction and kinematic

interpolation coefficients.

The basis of this function is sticky interface, which assures that the

mesh of sub-domains do not slide at the interface. Thus, the transfer

coefficients are calculated once in the beginning of the simulation and

remain constant.

Calculation of transfer coefficients for traction forces in 2D:

1. In case of non-matching meshes, a fluid cell is divided at the location

of each solid node. The traction force of a cell is divided into smaller

units (drawn as streaked in Figure 5.2).

2. At centre of each traction force unit (denoted by triangle) two closes

solid nodes are found and corresponding traction transfer coefficients are

found (depending on the distance between unit centre and solid node).

p1 =
a

a+ b
; p2 =

b

a+ b
, (5.1)

where
a, b – distance from force unit centre to solid node on left and

right, respectively.

p1, p2 – force coefficients for solid node on left and right, respec-

tively,
where p1 + p2 = 1.

Calculation of transfer coefficients for velocity in 2D:

1. In case of non-matching meshes, at each solid node two closest cell-

vertexes are found and corresponding velocity transfer coefficients for

both vertexes are found. Similarly to Equation (5.1).

46

Swansea University MSc Computational Mechanics

A graphical interpretation of interface data transfer is shown in Figure

5.2.

transfer of displacements

b b b b brsrsrsrsrsrs

FLUID

SOLID

transfer of traction forces

b

node of solid domain

vertex of fluid domain cell

rs centre of traction unit
(not centre of face)

traction magnitude

Figure 5.2: Interface data transfer

• InterfaceOFWC::deformInterfacePatch - employs the transfer coeffi-

cients, found from the previous function, and calculates new locations

for the points at interface. Furthermore, calls mesh solver and finds

new locations for internal points of fluid mesh according to boundary

displacements and the solution scheme.

Finally calculates the fluid velocity at face centres according to solid

node velocities and the interpolation coefficients. The “sticky” boundary

condition ensures that the velocity of fluid particle at the interface is the

same as the velocity of solid boundary.

• InterfaceOFWC::loadSolidInterface - employs the coefficients from

function InterfaceOFWC::prepareInteractions to find the load from

traction force unit centre for particular node.

47

Swansea University MSc Computational Mechanics

48

Swansea University MSc Computational Mechanics

6 Numerical Examples

6.1 Fluid Dynamics - Channel Flow (study on grids)

In this section numerical results of flow in channel (2D Poiseuille flow) are pre-

sented. The main focus of this study is to investigate the affect of different finite

volume grids on the results.

The domain with dimensions and boundary conditions is shown in Figure 6.1.

Pressure is fixed at the outlet, a parabolic velocity profile with maximum value

of 1.5, described at the inlet and non-slip boundary conditions are applied at the

walls. Fluid density, ρ = 1.0 and the dynamic viscosity, µ = 0.00197 (Re = 507).

Internal velocity field was set to vx = 1.0 as the initial condition.

Figure 6.1: Geometry of channel flow problem

Being a simple domain, there exists a analytical solution for the velocity profile

cross the channel as well as for the pressure distribution along the channel. The

velocity profile is given,

u = − 1

2µ

dp

dx
(h2 − y2), (6.1)

while the pressure distribution along the pipe gives:

p = −3µum
h2

x+ p0, (6.2)

where um is the mean velocity at the inlet. For parabolic velocity profile with

maximum value, umax = 1.5, the mean value becomes um = 1.0.

Using Equation (6.2), one can find the pressure at the inlet

p = −3 · 0.00197 · 1.0
0.52

(−26.0) + 0.0 = 0.61464 . (6.3)

In total six different grids were used, which properties are presented in Table

6.1. For the first five grids FEM oriented mesh generator was used and for the

last OpenFOAM own mesher, blockMesh was used.

49

Swansea University MSc Computational Mechanics

No. Grid type No. of

cells

Non-orthogonality Skewness Pressure error

at inletmax. avg. max.

1 unstructured triangular 22,356 20.16 4.78 0.497 23.1 %

2 unstructured quadrilateral 15,110 19.00 2.73 0.566 -1.91 %

3 structured triangular 6,656 36.87 21.28 0.333 29.1 %

4 structured quadrilateral 14,400 1.10 0.04 0.021 -0.25 %

5 structured quadrilateral 3,200 4.66 0.39 0.174 -0.40 %

6 struc. quad. (blockMesh) 3,000 0.00 0.00 0.000 -0.43 %

Table 6.1: Grid properties of channel flow model

A grid samples of the outlet for each case is presented in the Figure 6.3.

All the grids, presented in the Table 6.1, pass the OpenFOAM mesh quality

evaluation utility, checkMesh (tool to evaluate mesh quality for FV simulation).

PimpleFoam incompressible flow solver is used for the simulation. Time-step

size is chosen such that Co < 1.0 throughout the simulation. For first five grids

non-orthogonal correctors are used by setting nNonOrthogonalCorrectors = 2

(see Section 3.4.2). In all cases the number inner and outer loops are fixed to

two (nCorrectors = 2, nOuterCorrectors = 2). Turbulence model is set to

laminar.

Pressure distribution is saved after the simulation has reached steady state

phase (for various grids steady state is reach after different number of time-steps).

The pressure variation along the channel is presented in Figure 6.2.

(a) unstructured triangular (b) unstructured quadrilateral (c) structured triangular

(d) structural quad. (fine) (e) structured quad. (coarse) (f) struc. quad. (blockMesh)

Figure 6.3: Velocity field at outlet

In the Figure 6.2, it can be easily seen that triangular meshes without spe-

cific boundary layer mesh are performing very poorly compared to quadrilateral

50

Swansea University MSc Computational Mechanics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

P
re

ss
u

re

x

Analytical
Unstructured triangular 22.4k cells

Unstructured quadrilateral 15.1k cells
Structured triangular 6.7k cells

Structured quadrilateral 14.4k cells
Structured quadrilateral 3.2k cells

Structured quad. 3.0k cells (blockMesh)

Figure 6.2: Pressure distribution of 2D channel flow for various grids

meshes. Grid 1 and 3 have also the largest non-orthogonality, but compared to

grid 2, the ratio of the pressure error at the inlet and the non-orthogonality, is

significantly larger for triangular meshes.

It can be argued that the number of non-orthogonal correctors or outer loops

was not sufficient for particular grids, but even increasing the

nNonOrthogonalCorrectors parameter did not improve the results significantly.

Secondly, it was observed that structured and more orthogonal grids provide

better results compared to unstructured and largely non-orthogonal meshes.

Despite the fact that listed grids behaved in previously presented way just for

particular domain and for trivial flow pattern, these outcomes can be used as

guideline for domain discretisation for later problems.

6.2 Solid Dynamics - Cantilever Beam

In this section a simple structural dynamics problem is solved using finite element

software MPAP2 and the results are compared to analytical solution. The main

aim of this example problem is to investigate generalised-α method scheme for

time integration in structural dynamics.

The model consist of a circular pipe, which is clamped at one end and loaded

by body forces. The body forces are applied suddenly at time t = 0, causing

the beam to oscillate. The material is described by following properties: density

51

Swansea University MSc Computational Mechanics

ρ = 7.85·10−9; bulk modulus K = 160, 000 and shear modulus G = 80, 000, which

corresponds to mild steel. Acceleration of g = −9, 800 along y-axis is applied to

create the loading.

The geometry with dimensions and boundary conditions is shown in Figure

6.4.

Figure 6.4: Geometry of clamped pipe

The finite element model, which can be seen in Figure 6.5, is constructed of

6, 000 linear hexahedral elements using nearly incompressible Neo-Hook material

model.

Figure 6.5: Finite element model of the pipe

As the three-dimensional (3D) domain is symmetric and loaded just in one

direction, it can be viewed as 2D cantilever beam. Thus, an analytical solution

can be found from the literature for the natural frequencies of this structure.

Only the main equations of the derivation of analytical solution are presented

in this paper. One should refer to any textbook on vibrations for more information

(e.g Dukkipati and Srinivas [7]).

Assuming a continuous cantilever beam with distributed mass and subjected

to free vibration, the equation of motion can be written as (Meirovitch, 1967),

d2

dx2

[
EI(x)

d2w(x)

dx2

]
= −λmω2w(x), (6.4)

52

Swansea University MSc Computational Mechanics

where
E – Young’s modulus,

I – moment of inertia,

w - displacement along z-axis,

λm - mass density of the beam (ρA),

ω - angular frequency.

The boundary condition for this system are given as,

At x = 0; w(x) = 0,
dw(x)

dx
= 0

and at x = L;
d2w(x)

dx2
= 0,

d3w(x)

dx3
= 0 .

Solving Equation (6.4) (employing separation of variables) gives

d4w(x)

dx4
− β4

nw(x) = 0, (6.5)

where

β4
n =

ω2λm
EI

. (6.6)

After integrating and using the boundary conditions, the frequency equation

is given as,

cos(βnL) cosh(βnL) = −1, (6.7)

Corresponding to the eigenvalues of βn, the mode shapes for the beam are

given as,

wn(x) = An[(sin βnL− sinh βnL)(sin βnx− sinh βnx) (6.8)

+(cos βnL− cosh βnL)(cos βnx− cosh βnx)], (6.9)

where n = 1, 2, 3...∞ .

Denoting αn = βnL, the circular natural frequency can be expressed as,

ω = αn

√
EI

λmL4
. (6.10)

The Equation (6.7) is satisfied by specific values of αn, which correspond to

natural frequencies. For the first mode αn = 1.875 and natural frequency becomes

ω1 = 1.8752

√
EI

λmL4
= 1.8752

√
205, 714 · 59, 682, 000

7.85 · 10−9 · 16, 022 · 4, 0004
= 68.65 . (6.11)

53

Swansea University MSc Computational Mechanics

This angular frequency corresponds to following frequency and period,

f1 =
ω1

2π
=

68.65

2π
= 10.93

T1 =
1

f1

=
1

10.93
= 0.915 .

As the objective of this example problem is to investigate generalised-α method

scheme, the main focus stays on the effect of integration parameter ρh∞ on the

results. Six different values of ρh∞ are used: 0.1, 0.3, 0.5, 0.7, 0.9 and 0.99. Time-

step size ∆t = 0.01 is used, which corresponds approximately to 90 time-steps

per single oscillation period.

The results of the numerical simulation can be seen in Figures 6.6 and 6.7.

Figure 6.6 shows the free end displacement over couple of cycles with the time

integration parameter set to ρh∞ = 0.5. The results for various values of ρh∞ are

so close to each other that Figure 6.7 was generated to show the difference in

the behaviour of the pipe in various simulations. The displacement curve for

ρh∞ = 0.99 is removed in Figure 6.7, as it is visually impossible to distinguish it

from curve of ρh∞ = 0.9

-7

-6

-5

-4

-3

-2

-1

0

1

0 0.05 0.1 0.15 0.2 0.25

D
is

p
la

ce
m

en
t

o
f

fr
ee

en
d

Time

ρh∞ = 0.5

Figure 6.6: Oscillation of free end of pipe

54

Swansea University MSc Computational Mechanics

-0.08

-0.06

-0.04

-0.02

0

0.02

0.088 0.089 0.09 0.091 0.092 0.093 0.094 0.095

D
is

p
la

ce
m

en
t

of
fr

ee
en

d

Time

ρh∞ = 0.1

ρh∞ = 0.3

ρh∞ = 0.5

ρh∞ = 0.7

ρh∞ = 0.9

Figure 6.7: Pipe end displacement at the end of the first period

Moreover, Figure 6.7 provides the possibility to compare the analytical and

numerical results visually. In terms of frequency, for all values of ρh∞ the oscillation

period coincides with the analytical results (difference less than 1%). Smaller

time-step size and larger length to diameter ratio should be used to analyse the

natural frequencies further, but in the scope of this project, the accuracy achieved,

is absolutely sufficient.

As there is no damping nor active external loading involved in this simple

cantilever beam problem, it is assumed that the amplitude of the oscillation

remains constant. By analysing Figure 6.7, it can be seen that the integration

parameter, ρh∞ = 0.5, is performing best in terms of amplitude conservation.

Considering the outcomes of this simple beam problem, in further simulations

integration parameter, ρh∞ = 0.5, was used for the solids.

6.3 Fluid Dynamics - Flow around cylinder

The aim of this classical fluid flow problem is to investigating methods to access

traction forces in OpenFOAM. The results, in terms of drag and lift coefficients,

are compared with results from MPAP2 and the literature.

The geometry and boundary conditions of the model are shown in Figure

6.8. The fluid properties are: fluid density, ρ = 1.0 and the dynamic viscosity,

µ = 0.005 (Re = 200). The inlet velocity is set to constant over the whole

section, u∞ = 1.0 and same value for the internal velocity field is set as the initial

condition.

55

Swansea University MSc Computational Mechanics

Figure 6.8: Geometry and boundary conditions of flow around cylinder problem

Three different meshes, coarse, fine and triangular (without structured bound-

ary layer mesh), are generated for OpenFOAM and just single mesh for MPAP2.

The properties of grids can be seen in Table 6.2.

Grid Solver
No. of

DOFs

Non-orthogonality Skewness
∆t

max. avg. max.

OpenFoam Coarse pimpleFoam ∼ 25,728 25.97 5.42 0.369 0.005

OpenFoam Fine pimpleFoam ∼ 56,595 25.83 3.93 0.366 0.005

OpenFoam Triangular pimpleFoam ∼ 127,680 27.27 2.96 0.603 0.0025

MPAP2 MPAP2 ∼ 36,144 - - - 0.01

Table 6.2: Simulation properties for flow around cylinder problem

The coarse and fine grids for pimpleFoam solver are generated using blockMesh

and snappyHexMesh utilities of OpenFOAM. The number of cells around cylinder

for both grids is almost the same, while for the rest of the mesh, fine mesh is two

times denser in both directions compared to coarse. The reason for this is to keep

time-step size and thus maximum Courant number constant for both of the grids.

Time-step sizes for each simulation are presented in last column of Table 6.2.

The mesh for MPAP2 and triangular grid for OpenFOAM is built in FEM

oriented mesh generator and consists of 2D three-noded elements. For Open-

Foam triangular grid no specific boundary layer mesh was generated close to the

cylinder, but just very fine triangular grid. Fragments of meshes can be seen in

Figure 6.9.

56

Swansea University MSc Computational Mechanics

(a) OpenFoam coarse grid (b) OpenFoam fine grid

(c) OpenFoam coarse grid (magnified) (d) OpenFOAM triangular grid

(e) MPAP2 mesh

Figure 6.9: Grid fragments of flow around cylinder problem

Each simulation is ran until (t > 100) the amplitude of the drag and lift reaches

constant value. For all OpenFOAM simulations the time-step size (shown in Table

6.2) is chosen small enough that Courant number stays below unity and the time

integration scheme is set to Crank-Nicolson with blending factor ψ = 0.5. For

FEM, generalised-α method is used with time integration parameter ρf
∞ = 0.5.

In each case, the traction forces are saved and drag/lift coefficients calculated.

Moreover, the period of the vortex shedding is found and Strouhal number cal-

57

Swansea University MSc Computational Mechanics

culated.

St =
D

Tu∞

In OpenFOAM the functions for calculating the traction forces are compiled

into individual library libforces.so, which must be included manually by defin-

ing it in controlDict file. Although, the same library cannot be used directly

in the FSI solver, many functions from that library are employed by copying into

OpenFOAM class in MPAP2.

Results of the simulations are presented in Table 6.3 and in Figures 6.10, 6.11.

Grid
max.

CD

max.

CL

St
compared to MPAP2

max. CD max.CL St

OpenFoam Coarse 1.39 0.63 0.1980 99.8% 94.2% 99.6%

OpenFoam Fine 1.35 0.60 0.1942 97.4% 90.3% 97.7%

OpenFoam Triangular 1.42 0.70 0.1984 102.1% 105.7% 99.8%

MPAP2 1.39 0.66 0.1988 100.0% 100.0% 100.0%

Table 6.3: Comparison of lift and drag coefficients

In Table 6.3, the MPAP2 results are chosen as reference value without any

particular reason. The only aim is to provide easier comparison between the

results.

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

130 132 134 136 138 140

C
D

Time

OF coarse

OF fine

OF triang.

MPAP2

Figure 6.10: Comparison of drag coefficients

58

Swansea University MSc Computational Mechanics

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

130 132 134 136 138 140

C
L

Time

OF coarse

OF fine

OF triang.

MPAP2

Figure 6.11: Comparison of lift coefficients

From the results it can be seen that the triangular mesh behaves “stiffer”

compared to quadrilateral or to finite element results. This outcome coincides

with results from the Section 6.1. Ignoring results of the triangular grid, mesh

with large DOFs creates less drag and lift which is in correspondence with the

theory.

Furthermore, FEM and FVM provide similar results at the same discretisation

level - having similar number of degrees of freedom. Although, it is observed that

FEM is less mesh dependent compared to FVM.

The pressure field of a fully developed wake region can be seen in Figure 6.12.

Figure 6.12: Pressure field of fully developed wake region (OpenFOAM fine grid)

Compared to some of the results in the literature (e.g Bergmann and Cordier

[16]), the results vary approximately in the same scale as in present study. Most

of the results of previous studies lie between the MPAP2 and OpenFOAM fine

59

Swansea University MSc Computational Mechanics

grid values, but even very close results to the triangular mesh can be found in

some papers.

Thus, it can be said that the drag and lift coefficients computed using Open-

FOAM are satisfactory. However, extra care is needed in order to guarantee high

grid quality, especially in the region of boundary layer.

6.4 Fluid Dynamics - Flow in a Channel with Prescribed

Wall Motion

The problem has been used previously presented by many researches (e.g Wall

[22] and Dettmer [3]). The initial motivation of the problem was to have a

simplified model of blood flow in a vessel. The aim of this example in current

project is to study defining complex boundary conditions in OpenFOAM. This

includes defining the motion of the boundary, specifying the velocity of fluid

on that boundary and solving the internal mesh. The geometry and boundary

conditions can be seen in Figure 6.13.

Figure 6.13: Geometry and boundary conditions of channel with wall indentation

Fluid flow parameters as well as the time function for moving the indentation

are taken from Dettmer [3] and are given as, inflow velocity ū∞ = 1.0, dynamic

viscosity µ = 0.00197, density ρ = 1.0 and the boundary motion

h(t) =
1

2
ε

[
1− cos

(
2π

t

T

)]
, (6.12)

where amplitude and period are, ε = 0.38 and T = 27.027, respectively.

These parameters correspond to Re = u∞bρ/µ = 507. Initial channel width,

b = 1.0, is taken as the characteristic length of the flow.

The mesh is generated using blockMesh and mirrorMesh utilities of Open-

Foam. Grid is built of 6656 quadrilateral cells and a fragment of it is shown in

Figure 6.14.

60

Swansea University MSc Computational Mechanics

Figure 6.14: Fragment of the grid at t = 13.5 ≈ T/2

Three new boundary condition were defined and compiled into individual li-

braries in OpenFOAM. They were used for describing the boundary movement of

the wall fragment (denoted as “sin1”, “indentation” and “sin2” in Figure 6.13).

These new boundary conditions are similar to oscillatingDisplacement bound-

ary condition, which is available in standard OpenFOAM (version 2.0). The main

difference consists in finding the end points of the patches and calculating the

displacement for every point on that patch according to the desired shape.

Two main criterion are examined in this simulation:

1. Wake region must form in downstream region of the indentation at the be-

ginning of expansion phase and recover the uniform parabolic flow profile at

the beginning of contraction phase (observations by Wall [22] and Dettmer

[3]).

2. The fluid velocity at the boundary must coincide with velocity of the bound-

ary in order to ensure correct wall conditions.

In Figure 6.15 it can be seen that the first criteria is fulfilled. Wakes are

forming just after the indentation in the expansion phase and disappear by the

beginning of next contraction phase.

61

Swansea University MSc Computational Mechanics

t = 0.1
t/T ≈ 0.00

t = 7.0
t/T ≈ 0.26

t = 13.5
t/T ≈ 0.50

t = 16.5
t/T ≈ 0.61

t = 19.0
t/T ≈ 0.70

t = 21.5
t/T ≈ 0.80

t = 24.5
t/T ≈ 0.91

t = 27.0
t/T ≈ 1.00

Figure 6.15: Vorticity (colour scale: −6 . . .+ 6)

In order to verify that the second criteria is satisfied, one must find the velocity

of the indentation. Thus the time derivative of displacement (Equation (6.12)) is

needed,

v(t) =
∂h(t)

∂t
=
επ

T
sin

(
2π

t

T

)
. (6.13)

The velocities are compared at time instant t = 7.0, when the wall motion is

fastest

v(t = 7.0) =
0.38π

27.027
sin

(
2π

7.0

27.027

)
= 0.0441002 .

The velocity field at the same time instant, close to the moving boundary, was

observed in ParaView. The vertical component of velocity field was the same as

calculated using Equation (6.13). Thus, also the second criteria is satisfied.

6.5 FSI - Flow Induced Oscillations of a Flexible Beam

This model problem has been used by many researches (e.g A. Wall [22] and W.G

Dettmer [3]) to test their FSI solution strategies. In current project the geometry

as well as the material properties are the same as in previously mentioned papers.

The model consists of bluff body and a flexible beam behind it, in the region

of wakes as shown in Figure 6.16.

62

Swansea University MSc Computational Mechanics

Figure 6.16: Geometry and boundary conditions of oscillating beam

The fluid domain is bounded by constant velocity inlet, pressure defined outlet

and slip condition walls. No-slip boundary conditions are applied on the interfaces

of square body and the beam. The fluid flow parameters are following:

inflow velocity u∞ = 51.3 ,

dynamic viscosity µf = 1.82 · 10−4 ,

density ρf = 1.18 · 10−3 ,

which correspond to Reynolds number

Re =
ρf D u∞

µf

=
1.18 · 10−3 · 1.0 · 51.3

1.82 · 10−4
= 332.6 .

Two fluid grids, a coarse and a fine, are generated, which parameters are presented

in Table 6.4. The mesh quality parameters presented in this table are valid for

initial configuration and will change during the simulation as the mesh deforms.

Grid No. of

cells

Non-orthogonality Skewness

max. avg. max.

Coarse 20,962 49.67 4.30 2.883

Fine 70,453 46.42 3.16 0.839

Table 6.4: Fluid grid properties of oscillating beam problem

Both of the meshes are generated using OpenFOAM utilities blockMesh,

snappyHexMesh and extrudeMesh. Although, fine grids is twice (in both di-

rections) as dense as the coarse grid, the thickness of cells close to the interface

with solid remains similar. An overview of the dense mesh and a closer snapshot

of the coarse mesh are shown in Figures 6.17 and 6.18, respectively.

63

Swansea University MSc Computational Mechanics

Figure 6.17: Overview of the fine mesh

Figure 6.18: Coarse mesh at the connection of the bluff body and the beam

Employing PIMPLE algorithm in all the simulations, Courant number can

be larger than one, but still one can not choose any time-step size. As the

determinative Courant number of this problem arises from the motion of beam

(time-step size with respect to thickness of the cell on interface), it is complicated

to find correct prior running the simulation.

The bluff body is rigid and fixed in space whereas the beam material properties

are

shear modulus Gs = 9.2593 · 105,

bulk modulus Ks = 2.78 · 106,

Young’s modulus (Es = 2.5 · 106),

64

Swansea University MSc Computational Mechanics

density ρs = 0.1,

Poisson ratio νs = 0.35.

For the beam, plane stress conditions are assumed and only one mesh is gen-

erated, which consists of 20 nine-noded quadratic fully integrated rectangular 2D

elements.

In most of the FSI problems the critical domain, in terms of the stability as

well as computational cost, is the fluid. Thus, it is assumed, that the solid does

not cause any instabilities and the main focus is on the fluid sub-domain. For

the solid sub-domain, single time integration parameter is used, ρs
∞ = 0.5 .

To investigate the effect of traction force averaging parameter β (see Box 4.1

in Section 4.2 and the Section 4.3) and the time integration parameter for fluid

ρf
∞ (known as blending factor ψ in OpenFOAM), 16 simulations for both of the

meshes are run.

In order to analyse just the stability of particular FSI scheme, the largest

blending factor, which ensures the stability of fluid flow was determined before-

hand. This was done by exploiting the same fluid model with fixed rigid beam

at various blending factors. Although, many other parameters (e.g time-step and

grid size) can affect the stability, it was found that ψ > 0.8 leads in most of the

cases to unstable results.

The simulation parameters and results for coarse mesh and fine mesh are

summarised in Tables 6.5 and 6.6, respectively.

65

Swansea University MSc Computational Mechanics

β ρf∞

Stability max. disp. avg. frequency

∆t

0.0001

∆t

0.0005

∆t

0.0001

∆t

0.0005

∆t

0.0001

∆t

0.0005

0.05 0.05 Stable Stable 1.196 1.206 3.247 3.247

0.05 0.3 Stable Stable 1.148 1.173 3.195 3.247

0.05 0.5 Stable Stable 1.171 1.172 3.279 3.247

0.05 0.8 Unstable Unstable - - - -

0.3 0.05 Stable Stable 1.176 1.182 3.236 3.247

0.3 0.3 Stable Unstable 1.178 - 3.247 -

0.3 0.5 Stable Unstable 1.144 - 3.215 -

0.3 0.8 Unstable Unstable - - - -

0.5 0.05 Stable Stable 1.178 1.162 3.268 3.247

0.5 0.3 Stable Stable 1.152 1.246 3.279 3.247

0.5 0.5 Unstable Unstable - - - -

0.5 0.8 Unstable Unstable - - - -

0.8 0.05 Unstable Stable - 1.153 - 3.247

0.8 0.3 Unstable Unstable - - - -

0.8 0.5 Unstable Unstable - - - -

0.8 0.8 Unstable Unstable - - - -

Table 6.5: Results of the coarse grid simulation

β ρf∞ Stability
max.

displacement

avg.

frequency

0.05 0.05 Stable 1.324 3.185

0.05 0.3 Stable 1.228 3.226

0.05 0.5 Stable 1.262 3.300

0.05 0.8 Unstable - -

0.3 0.05 Stable 1.316 3.205

0.3 0.3 Stable 1.255 3.226

0.3 0.5 Stable 1.238 3.165

0.3 0.8 Unstable - -

0.5 0.05 Stable 1.281 3.175

0.5 0.3 Stable 1.209 3.155

0.5 0.5 Unstable - -

0.5 0.8 Unstable - -

0.8 0.05 Stable 1.213 3.165

0.8 0.3 Unstable - -

0.8 0.5 Unstable - -

0.8 0.8 Unstable - -

Table 6.6: Results of the fine grid simulation (∆t = 0.00025)

Stability. According to the theory in article [5], the implemented scheme be-

comes unstable for large values of β, which for the problem, under consideration,

66

Swansea University MSc Computational Mechanics

is approximately β > 0.5. At low values of β (high frequency damping of the

coupling is reduced) the algorithm fails only if the fluid sub-solver possesses very

little or no numerical damping (corresponds to large value of ρf
∞), which was

observed also in current example.

Amplitude and frequency. For all discretisation models considered, maximum

the beam tip displacement lie between 1.14 and 1.32, the average frequency be-

tween 3.165 and 3.279.

Although, the maximum amplitudes of fine mesh are about 10% larger com-

pared to coarse mesh, the average amplitude is approximately in the same range.

See Figures 6.19 to 6.22 and 6.24 to 6.27 (axis notation is removed for better

readability - vertical axis is for displacement and horisontal for time). The obser-

vation that finer spatial as well as temporal discretisation, firstly, increases the

amplitude and, secondly, increases the number of cycles before the stable response

of the beam is developed, was noticed in current project similarly to work [3] by

Dettmer.

Comparing the values in Table 6.5 to results by Dettmer, the frequencies agree

well, but the maximum amplitude in current work is approximately 8% smaller.

Taking into account that the difference for the drag and lift coefficient in flow

around cylinder example (see Section 6.3) was in the same range (5 to 8%), it

may be concluded that the variation in amplitude is not due to resolution of

interaction, but due to differences in fluid domain. For further analysis, more

comparative simulations with fixed body should be performed.

67

Swansea University MSc Computational Mechanics

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.0001

∆t = 0.0005

(a) β = 0.05, ρf∞ = 0.05

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.0001

∆t = 0.0005

(b) β = 0.05, ρf∞ = 0.3

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.0001

∆t = 0.0005

(c) β = 0.05, ρf∞ = 0.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.0001

∆t = 0.0005

(d) β = 0.05, ρf∞ = 0.8

Figure 6.19: Oscillation of the beam tip (coarse mesh, β = 0.05)

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.0001

∆t = 0.0005

(a) β = 0.3, ρf∞ = 0.05

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.0001

∆t = 0.0005

(b) β = 0.3, ρf∞ = 0.3

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.0001

∆t = 0.0005

(c) β = 0.3, ρf∞ = 0.5

Figure 6.20: Oscillation of the beam tip (coarse mesh, β = 0.3)

68

Swansea University MSc Computational Mechanics

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.0001

∆t = 0.0005

(a) β = 0.5, ρf∞ = 0.05

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.0001

∆t = 0.0005

(b) β = 0.5, ρf∞ = 0.3

Figure 6.21: Oscillation of the beam tip (coarse mesh, β = 0.5)

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.0001

∆t = 0.0005

(a) β = 0.8, ρf∞ = 0.05

Figure 6.22: Oscillation of the beam tip (coarse mesh, β = 0.8)

A typical oscillation cycle of coarse mesh with parameters of ∆t = 0.0001,

β = 0.5 and ρf
∞ is shown in Figure 6.23. The vorticity contour plots agree well

with those presented in [3].

69

Swansea University MSc Computational Mechanics

(a) t = 2.9 (b) t = 3.0

(c) t = 3.1 (d) t = 3.2

Figure 6.23: Flow induced oscillations (vorticity colour scale -150...+150)

70

Swansea University MSc Computational Mechanics

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.00025

(a) β = 0.05, ρf∞ = 0.05

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.00025

(b) β = 0.05, ρf∞ = 0.3

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.00025

(c) β = 0.05, ρf∞ = 0.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.00025

(d) β = 0.05, ρf∞ = 0.8

Figure 6.24: Oscillation of the beam tip (fine mesh, β = 0.05)

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.00025

(a) β = 0.3, ρf∞ = 0.05

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.00025

(b) β = 0.3, ρf∞ = 0.3

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.00025

(c) β = 0.3, ρf∞ = 0.5

Figure 6.25: Oscillation of the beam tip (fine mesh, β = 0.3)

71

Swansea University MSc Computational Mechanics

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.00025

(a) β = 0.5, ρf∞ = 0.05

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.00025

(b) β = 0.5, ρf∞ = 0.3

Figure 6.26: Oscillation of the beam tip (fine mesh, β = 0.5)

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

∆t = 0.00025

(a) β = 0.8, ρf∞ = 0.05

Figure 6.27: Oscillation of the beam tip (fine mesh, β = 0.8)

72

Swansea University MSc Computational Mechanics

7 Conclusions

The main objective of this work, the linking of two existing sub-solver software

into a combined fluid-structure interaction solver, has been achieved. A software

framework to access data or call functions of OpenFOAM via MPAP2 was de-

veloped. The staggered scheme for combining implicit fluid and solid solvers,

developed by Dettmer and Perić, was implemented and a tested on a benchmark

problem. In the scope of this work only two-dimensional laminar flow problems

were viewed.

A more detailed description of the achievements and suggestions for further

work are presented in the following.

Firstly, the theory of basic finite element analysis was presented on the example

of heat conduction and linear elasticity. The steps from governing equations to

weak form and finally, to system of algebraic equations were shown. A brief

description of the solution procedure of a typical finite element software was

given.

In order to illustrate the theory, and study the main features of MPAP2, a

simple structural dynamics problem was solved and compared to analytical solu-

tion (see Section 6.2). Results from numerical simulation were basically identical

to the analytical solution.

Secondly, an introduction of finite volume analysis was given on the basis of

open source software - OpenFOAM. The most employed discretsation schemes for

each term in Navier-Stokes equations were presented. The steps of SIMPLE and

PISO algorithms were given, as these are the main strategies for solving pressure-

velocity coupling of incompressible fluid dynamics in OpenFOAM. The aspects

of non-orthogonality in the finite volume grid were described and illustrated by

a numerical example of two-dimensional Poiseuille flow (see Section 6.1).

Thirdly, the theory of computational fluid-structure interaction was given. A

brief overview of various strategies was presented with the main focus on the

weakly coupled scheme. The implementation of specific solution strategy was

presented and short instructions for merging OpenFOAM and MPAP2 were given.

Finally a numerical example of FSI benchmark problem was provided. Two

different mesh densities were considered and for each mesh 16 different combina-

tions of fluid time integration parameters and traction forces averaging coefficients

were run.

In this example, it was observed that the stability of the scheme can be ensured

by careful choice of traction forces averaging parameter β. Small values of β lead

to instabilities only if no or very little numerical damping is introduced by the

fluid sub-solver, whereas large values of β cause the scheme to fail in all the cases,

except if large time-step and backward Euler scheme is used for the fluid.

73

Swansea University MSc Computational Mechanics

The oscillation frequencies agreed well with works by other researchers, but

approximately 8% difference was observed in the beam tip amplitude. Similar

disagreement was observed in drag and lift coefficient for cylinder in the flow (see

Section 6.3).

Current project included one benchmark problem with various settings (meshes,

integration parameters). In order to get better understanding of the differences

with respect to work by Dettmer, more comparative fluid flow simulations should

be performed. Moreover, deeper study of OpenFOAM would be beneficial to

ensure that the meshing is good quality and all optimal solution parameters are

chosen.

After a good agreement of lift and drag is achieved with well known CFD

software or experimental data, studies should be extended to large Reynolds

number and turbulent flows.

To widen the range of applicability, the coupling algorithm should be modified

to solve 3D problems. Moreover, for large problems, a possibility of employing

multiple processors should be programmed.

74

Swansea University MSc Computational Mechanics

References

[1] J. Bonet and R.D. Wood. Nonlinear Continuum Mechanics for Finite Ele-
ment Analyis. Cambridge University Press, 2rd edition, 2008.

[2] R.D. Cook, D.S. Malkus, M.E. Plesha, and R.J. Witt. Concept and Appli-
cations of Finite Element Analysis. John Wiley & Sons Inc, 4th edition,
2001.

[3] W.G. Dettmer. Finite Element Modelling of Fluid Flow with Moving Free
Surfaces and Interfaces Including Fluid-Solid Interaction. Phd thesis, Uni-
versity of Wales Swansea, September 2004.

[4] W.G. Dettmer. Fluid-structure interaction. Lecture notes, 2012. MSc in
Computational Mechanics, Swansea University.

[5] W.G. Dettmer and D. Perić. A new staggered scheme for fluid-structure
interaction. International Journal for Numerical Methods in Engineering,
93(1):1–22, 2013.

[6] P. Dı́ez. The finite element method. Lecture notes, 2011. MSc in Computa-
tional Mechanics, UPC Barcelona.

[7] R.V. Dukkipati and J. Srinivas. Textbook of Mechanical Vibrations. PHI
Learning Private Ltd, 2rd edition, February 2012.

[8] J.H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics.
Springer-Verlag, 3rd edition, 2002.

[9] G.A. Holzapfel. Nonlinear Solid Mechanics - A Continuum Approach for
Engineering. John Wiley and Sons Ltd, 2000.

[10] H. Jasak. Error Analysis and Estimation for the Finite Volume Method
with Applications to Fluid Flows. Phd thesis, Imperial College of Science,
Technology and Medicine, June 1996.

[11] M.M. Joosten, W.G. Dettmer, and D. Perić. On the temporal stability and
accuracy of coupled problems with reference to fluid-structure interaction.
International Journal for Numerical Methods in Fluids, 64:1363–1378, 2010.

[12] C. Kassiotis, A. Ibrahimbegovic, and H.G. Matthies R. Niekamp. Nonlinear
fluid-structure interaction problem. part i: implicit partitioned algorithm,
nonlinear stability proof and validation examples. Computational Mechanics,
47(3):305–323, 2011.

[13] C. Kassiotis, A. Ibrahimbegovic, and H.G. Matthies R. Niekamp. Nonlinear
fluid-structure interaction problem. part ii: space discretization, implementa-
tion aspects, nested parallelization and application examples. Computational
Mechanics, 47(3):335–357, 2011.

[14] U. Küttler and W.A. Wall. Fixed-point fluid-structure interaction solvers
with dynamic relaxation. Computational Mechanics, 43(1):61–72, 2008.

[15] J. Lorentzon. Fluid-structure (fsi) case study of a cantilever using openfoam
and deal.ii with application to viv. Msc thesis, Lunds Institute of Technology,
June 2009.

75

Swansea University MSc Computational Mechanics

[16] M.Bergmann and L.Cordier. Control of the circular cylinder wake by trust-
region methods and pod reduced order models. Technical report, Institut
National De Recherche en Informatique et en Automatique, June 2008.

[17] P. Nithiarasu. Computational fluid dynamics. Lecture notes, 2012. MSc in
Computational Mechanics, Swansea University.

[18] OpenFOAM Foundation. OpenFOAM User Guide, version 2.1.1 edition, May
2012.

[19] J.N. Reddy. An Introduction to the Finite Element Method. McGraw-Hill,
3rd edition, 2006.

[20] G. Romanelli, E. Serioli, and P. Mantegazza. An accurate invicit compress-
ible solver for aerodynamic applications. In G. D’Errico, editor, 3rd Open-
FOAM Workshop, 2008.

[21] M. von Scheven and E. Ramm. Strong coupling schemes for interaction of
thin-walled structures and incompressible flows. International Journal of
Numerical Methods in Engineering, 87(1-5):214–231, 2010.

[22] W.A. Wall and E. Ramm. Fluid-structure interaction based upon a stabilized
(ale) finite element method. In S.R Idelsohn, E.Oñate, and E.N Dvorkin,
editors, Computational Mechanics - New Trends and Applications, 1998.

76

	Summary
	Declarations and Statements
	Contents
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation and Problem Description
	Layout of the Thesis

	The Basics of Finite Element Modelling
	Mechanics of Deformable Solids
	The Concept of Lagrangian Description
	The Governing Equations for Solids

	The Weak Form
	Solution Procedure

	The Basics of Finite Volume Modelling
	Governing Equations of Fluid Flow
	Spatial Discretisation Using Finite Volume Formulation
	Approximation of Surface Integrals
	Approximation of Volume Integrals
	Interpolation and Differentiation Schemes
	Diffusion Term and aspects of non-orthogonality

	Temporal discretisation and methods for unsteady problems
	Solution to Navier-Stokes Equations
	Derivation of pressure equation
	Solution to pressure-velocity coupling

	Calculation of traction forces

	Computational Fluid-Structure Interaction
	Classification of Fluid-Structure Interaction Solvers
	Staggered Scheme for Fluid-Structure Interaction
	Stability of Staggered Scheme

	Implementation of the Weakly Coupled Scheme
	MPAP2
	OpenFOAM
	Assembly of Sub-solvers into Single Computer Program

	Numerical Examples
	Fluid Dynamics - Channel Flow (study on grids)
	Solid Dynamics - Cantilever Beam
	Fluid Dynamics - Flow around cylinder
	Fluid Dynamics - Flow in a Channel with Prescribed Wall Motion
	FSI - Flow Induced Oscillations of a Flexible Beam

	Conclusions

