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ABSTRACT

Scavenging and harnessing electrical energy from alternative sources for powering elec-
tronic devices proves to be the sole credible way towards a significant reduction in worlds’
electric consumption through self-sustainability. The present work focusses on building a
sound thoeretical platform backed up by a reliable computational technique to perform
device-level computations for energy harvesting piezoelectric beams. The point of depar-
ture is the enthalpy of the piezoelectric system which is supplemented with the kinetic
energy and whose variational form is obtained through a Hellinger-Prange-Reissner mixed
formulation. Consistent linearisation of this functional is performed to obtain the Fuler-
Lagrange equations. The kinematics of three-dimensional beam along with a quadratic
electric potential distribution across the beam thickness and height, are embedded in the
linearised equations and integration over the area is performed to obtain a set of partial
differential equations in terms of stress and electric displacement resultants. High order
Lagrangian basis and hierarchical Legendre basis functions are employed for finite ele-
ment discretisation. The computational algorithm is first benchmarked with closed-form
solutions which are reported here for the first time for this type of formulation. Finally,
a number of static, modal and dynamic analyses are presented.
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Mechanics of Piezoelectricity &
Energy Harvesting

“Scientists study the world as it is; engineers create the world that never was.”
Theodore Von Kdarmdn

1. Introductory Remarks

In literary terms, piezoelectricity refers to electricity resulting from pressure. Piezoelec-
tricity can be understood as an interaction between mechanical state and electrical state
in crystalline materials with no inversion symmetry i.e. if they are not centrosymmetric.
In general, when a piezoelectric material is mechanically strained, an electric polarisation
proportional to strain is produced, which is called the direct effect. Similarly, an electric po-
larisation in the material yields proportional strain, called the reverse effect [16] [41]. A major
application of piezoelectricity is in energy harvesting - exploiting the direct effect. Since the
energy produced from piezoelectric materials is feeble enough to be utilised in large energy
conversion devices, the industrial applications are tailored to a great extent toward consumer

electronics. These include ambient vibration energy harvesters [16] [1], remote controls [11],
life-long batteries, digital signal processors [12], shoe-mounted piezoelectrics [15] [39], back-
pack straps [20], short narrow sidewalks, noise-induced harvesters and many more.

Many of these energy harvesters are manufactured as thin films. From structural me-
chanics and mathematical modelling viewpoint this is an advantage in that it liberates us
to carry out dimensional reduction from fully three-dimensional models to simplified three-
dimensional membranes or beams.

It is the aim of present work to redress the problem of numerical modelling of energy
harvesting linear piezoelectric beams by starting from the fundamental equations of contin-
uum elasticity. To the best of our knowledge, such a sophisticated yet simple approach has
not been attempted before. The merit of approaching the problem this way is that we can
clearly see where are the strengths and limitations of piezoelectric beam theory, and the
simplicity of the approach is that we still deal with linear small strain theory.

Akin to our work, what is found in the literature, is in the form of simplified approaches
for single-degree-of-freedom systems and two-dimensional beams, which are often referred to
as lumped-parameter and distributed-parameter approaches [16] [12] [4] [I]. In the lumped-
parameter approach the piezoelectric device is modelled using a mass-spring-damper system
coupled with a capacitor and a resistor [11] [12]. The lumped-parameter is an approxima-
tion limited to a single vibration mode and it lacks some important aspects of the coupled
physical system, such as the dynamic mode shapes and accurate strain distribution as well
as their effects on the electrical response [16]. The distributed-parameter approach on the
other hand, is based on Euler-Bernoulli beam theory which neglects rotation of cross section,
shear deformation and rotational inertia. Although convenient for thin piezoelectric beams,
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distributed-parameter approach is mainly limited to two-dimensional beams [11]. A review
of finite element modelling of piezoelectric beams is provided by Benjeddou [1]. Survey of
energy harvesting with piezoelectric materials are also reported in [2] [16].

The main simplifying assumption in almost all of these approaches is the assumption
of vanishing electric field in particular direction(s), depending on the polarisation [12] [5]. In
piezoelectric beam literature, these are normally referred to as different modes of coupling
and are denoted by d;; where d is the piezoelectric coupling parameter and the subscript ¢
and j is the notation for the poling direction and applied stress direction, respectively [31].
In this setting, a d3; mode implies coupling between transverse electric field and axial strain,
and a ds3 stands for coupling between axial electric field and axial strain [12]. Other electric
field components are normally assumed to be zero. In the context of actuation, the two
common coupling modes are shear actuation and extension actuation mechanisms [5], where
in the former case the piezoelectric layer is sandwiched between two non-electro-active lay-
ers and the coupling is between shear strain and axial electric field and in the latter case,
piezoelectric films are deposited on both side of a substrate and the actuation mechanism
is driven by ds; mode of coupling. The piezoelectric effect is more pronounced when poling
is along the longitudinal direction of the beam [16]. Fabrication of piezoelectric films which
are polarised along the length or function in ds3 mode is achieved by using an interdigitated
electrode configuration (IDE) [12] [16], as shown in Fig. 5. An experimental comparison be-
tween various electrode configurations for energy harvesting piezoelectric beams is reported
by Sodano [16]. A similar work on optimisation of interdigitated electrodes for piezoelectric

actuators is also discussed in Bowen [7].

Fibre Width

Fibre Length

Figure 1: Plan View of an Interdigitated Electrode Configuration

Typically, piezoelectric materials are deposited either on one side (unimorph) or both
sides (bimorph) of a substrate. The substrate is a non-electro-active platform which does not
contribute to the electric output and merely serves as a mechanical supporting platform [10].
This can pose difficulties for integration of piezoelectric films with other microelectronic de-
vices. Recently, there have been experimental reports on thick free-standing piezoelectric
beams for energy harvesting [32] [31] [26] [33]. These are piezoelectric films which stand on
their own and do not use a supporting platform and hence offer the advantage of minimising
the movement constraints on them, thereby maximising output power [34]. For this reason,
in our work, we consider the problem of free-standing piezoelectric energy harvesting beams.
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1.. INTRODUCTORY REMARKS

On the mathematical modelling front, Benjeddou [5] attempts to build a unified beam
finite elements for extension and shear actuation mechanisms in two-dimension, not the en-
ergy harvesting in particular, but rather the reverse effect. Tabesh [13] attempts to solve
the problem of energy harvesting piezoelectric planar beams by employing Euler-Bernoulli
approach with quadratic electric potential distribution across the height of the beam. In this
paper, it is also shown that a linear electric potential assumption is not sufficient to describe
the electrostatics of the model as it violates Gauss’s law. It should be pointed out that many
conventional models in the literature rely on linear electric potential assumption [12] [22].
This problem is caused due to a combination of assumptions on mechanical kinematics and
electrostatics of piezoelectric beams. To illustrate this, let us consider the two fundamental
equations utilised in coupled electromechanical problems.

V.-o=0

V-D=0
These are the differential form of linear momentum equation and Gauss’s law, respectively,
where o is the elastic Cauchy stress tensor, D is the electric displacement vector and V- (+) is

the divergence operator. For planar beams in x — z plane the above equations can be written
as,

004, 00y,

ox 0z =0
0D, N oD. 0
ox 0z

where z lies along the longitudinal axis and z lies along the height of the beam. Let us
now assume the electric potential ¥ to have the following linear form.

U(x, 2) = d(x) + 26(x)

Where ¢ is the electric potential at the centroid of the beam and S can be considered
as the gradient of ¢ which characterises the variation of total electric potential ¢ across the
height. The displacement map of a planar beam is also given by,

uy(z, 2) = —z6(x)

ug = w(x)

where u; and us are beam displacements in x and z directions, respectively. Also, w is
the vertical displacement at the centroid and 6 is the rotation. It is clear by now that we
have adopted a Timoshenko approach for the kinematics of the beam and a similar mapping
for electric potential. To show why Gauss’s law is not satified for this model problem, let
us rely on what is commonly assumed in the literature [5] [12] [22], i.e. let us assume a dg;

coupling and postulate that the electric field E exists only in one direction, say z, then we
have.

oy
oz
Without loss of generality, if we assume a cantilever beam with a point load, from ele-
mentary beam theory we know that 6 is a quadratic function of x which implies o, is linear

E, =0, E, = —B(z)

3 Roman Poya
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in x and z. From the equilibrium of linear momentum we can now observe that o,. should
be quadratic in z and constant in z, which is not the case as shear stress o, is constant.
Certainly, this is the limitation of beam theory, be it Euler-Bernoulli approach or Timoshenko
approach. However, in the case of Timoshenko approach that we have adopted in this work,
a shear factor is introduced which makes the shear deformation consistent with a quadratic
shear deformation on an average sense over the height. Now coming to Gauss’s law, according
to our prior discussion on coupling modes the electric displacement can be written as [5] [18],

D, = e By + dises
D, = e, + dsi€4n

where ¢;; is the second order dielectric tensor and €;; is the second order elastic strain ten-
sor. Since similar to stresses, shear strain is quadratic in z and axial strain is linear in  and
z, this implies that Gauss’s law is also not satisfied, as the summation of quadratic function
with a linear function never vanishes. Even if we assume a Timoshenko approach i.e. a con-
stant shear stress across the height, Gauss’s law is still not satified. However, in the context
of beam theory, this problem can be rectified by assuming electric potential to be quadratic
in z and at least linear in x, in which case Gauss’s law can be imposed properly. Hence the
common assumption of linear electric potential in z, is not valid [18]. As a further obser-
vation, from the expressions for electric displacement in x and z directions, we can clearly
observe the coupling modes d;5 and d3, respectively, where in the first case axial electric field
is coupled with shear strain and in the second case transverse electric field is coupled with
axial strain. In piezoelectric beam literature, these coupling modes are taken into considera-
tion once at a time and the other components of electric displacement are assumed to be zero.

Fundamental contribution to the field of energy harvesting beams comes from Erturk
and Inman [16] [14] [15] [L7] [13]. Their comprehensive analytical and experimental studies
focus on building simplified techniques for piezoelectric energy harvesting cantilever beams.
These include lumped-parameter and distributed-parameter energy harvesters, equivalent
loading techniques, inclusion of tip mass for lowering frequency response and shape optimi-
sation of beams for improved electricity output.

Literature on modelling of three-dimensional piezoelectric beams is scarce, specifically
in the context of energy harvesting. While a two-dimensional approach is sufficient for bend-
ing energy harvesters, for capturing anistropic behaviour of materials it is not satisfactory.
Moreover, energy harvesters which function under coupled bending-torsion scenarios [1] re-
quire a three-dimensional description. There are also actuators which function in torsional
modes such as helical springs [10] [9].

While these approaches are straightforward and easy to follow for engineers, in the me-
chanics community in particular, there is not much evidence of investigation on piezoelec-
tric energy harvesting beams, despite the fact that the literature on numerical modelling
of piezoelectric plates and shells is plenty. A sophisticated approach with the elegance of
deriving equations from continuum piezoelectricity, to variational formulation, finite element
discretisation and the numerical issues involved therein, is missing in the literature. In this
regard, among the few, one can refer to the work of Wanger and co-workers [9] [30] [29].
As in the case of beams, plates and shells shear locking is always suspected, modelling of
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1.. INTRODUCTORY REMARKS

piezoelectric beams is also not imune from this numerical issue. Wagner [9] [29] reports a
three-dimensional beam finite element with linear/nonlinear strain measures and hystere-
sis. To resolve the problem of locking, he adopts a six field mixed variational formulation,
assuming a quadratic electric potential distribution along the area directions. The work is
restricted to static analysis only and requires a preprocessing stage to compute the warping
patterns by solving a two-dimensional boundary value problem, using a separate finite ele-
ment discretisation. Another three-dimensional finite element formulation for piezoelectric
beams is reported by Touratier [19]. Touratier’s formulation is based on higher order shear
deformation theory and trigonometric expansion of displacements, where for C! continuity
a mixture of Hermite cubic basis functions, quadratic basis functions and linear functions
are utilised for finite element discretisation. The warping of cross section is incorporated in
the model by solving the three-dimensional equations of elasticity. As a result, each beam
element has three nodes along the length with 27 degrees of freedom per element only for
electric potential. Including the warping variables there are 21 mechanical degrees of freedom
per element. The formulation does not suffer from locking and inconsistency in shear defor-
mation, however the computational cost is increased due to the high number of unknowns
for each element. The complexity of the model and usage of various bases, make it difficult
for finite element implementation. The work is restricted to static analysis and hence cannot
be used for the actual problems of energy harvesting. It should be noted, that from simple
approaches used more frequently in the engineering community to such modelling techniques,
is too long a jump. Along the same lines, Koutsawa [35] attempts to solve the problem of
static piezoelectric beams by using higher oder displacement theories for beams. A much
similar formulation to ours is that of Kushnir [30], with the difference that the former is on
ferro-electricity and is restricted to two-dimension and static analysis only.

In this work the problem of three-dimensional linear piezoelectric beams under static
and dynamic loading scenarios is considered. The kinematics of the beam adopts that of
the first order shear deformation theory or Timoshenko approach and the electric potential
is taken to be quadratic across the height and the thickness. Due to consistent usage of
elastic, piezoelectric and dielectric tensors, strains and electric field are coupled in all the
three directions, and there is no assumption on the electrostatics of the model. For avoiding
shear locking and accurate analysis of the piezoelectric problem, we employ higher order as
well as hierarchical bases in the form of Lagrange and Legendre family of approximating
functions. The variational formulation is the so-called mixed Hellinger-Prange-Reissner for-
mulation [11]. In light of [24] [25] we embed the postulated kinematics into the variational
form of the problem and perfrom area integration to obtain a series of stress and electric
displacement resultants. Some mathematical entities in the form of moment of electric dis-
placements naturally arise. Further in the linearisation process we find the Euler-Lagrange
equations of piezoelectric beams in the form of partial differential equations. We solve these
equations analytically to benchmark the computational scheme. Due to similarity in me-
chanical and electrical kinematics, these equations show resemblence, which is in fact rooted
in the beauty of modelling beams from the continuum mechanics viewpoint. The resulting
finite element discretisation has 11 degrees of freedom per node in three-dimensional and 5
degrees of freedom per node in 2D. These are displacement, rotation, electric potential and
the gradient and hessian of electric potential.
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The structure of the thesis is as follows. In the next chapter, we introduce the kinematics
of piezoelectric beams in R?® Euclidean space. This is succeeded with obtaining stress and
electric displacement resultants for our problem, by performing area integration. Chapter
3. starts with the variational formulation of piezoelectric beams. Starting from the La-
grangian of the system and the mixed Hellinger-Prange-Reissner functional and using Hamil-
ton’s prinicple, we perform consistent linearisation and embed the obtained resultants into
the linearised functional, which finally lead us to Euler-Lagrange equations. In chapter 4. the
finite element discretisation strategy is presented. In chapter 5. we provide analytical solu-
tion for various coupling fashions depending on the nature of piezoelectricity and permitivity
tensors. Finally, in chapter 6. a series of numerical simulations ranging from static to modal
and dynamic analyses are reported. Many other aspects of the numerical scheme such as the
choice of differernt basis functions, the role of different numerical integration schemes and
the effect of static condensation for higher order elements are investigated. On its entirety,
the following schematic diagram aptly represents all what is covered in this thesis.

- Reduced
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’ High Order I \\'A
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X FE for Energy ¢‘-‘\\ 4 ’
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N Piezoelec- ' Sl
o G 4 Legendre
3D-Beam tric Beams '
/-vA Basis
”” Functions
N / Mechanics,
Timo- Joupled Finite

shenko Formu- Elements

Energy \ Numerical Static
Formu- » Int (€= .

Analysis

lation Type

s
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Figure 2: Scope of Work
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2.. KINEMATICS & ELECTROSTATICS

Piezoelectricity of Three-Dimensional
Beams

“Mechanics is the paradise of mathematical science
because here we come to the fruits of mathematics.”
Leonardo da Vinci

2. Kinematics & Electrostatics

2.1. Mechanical Kinematics

Consider motion of a beam in R?® Euclidean space as shown in Fig. 3. The beam in
the undeformed configuration is completely characterised with three unit vectors €, €5 and
é3. For the sake of simplicity, x1 — x5 is taken as the plane on which the cross section lies
and x3 is the axis that coincides with the longitudinal axis of the beam. In the deformed
configuration, the three vectors characterising the rotation of the cross section together with
the deformation of point O are ¢y, ¢; and ¢3, respectively.

@

=1 €
FE 3
. T2
E3 O E2
xs3

Figure 3: Motion of Beam in R?® Euclidean Space
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The motion of beam from the undeformed configuration to deformed configuration is char-
acterised by the mapping,

(,B(f) = 17353 —|— 117(173) + A([E3)ﬁ([1)17 l’g) (21)

where p(x1, x9) = 1€] + 2965 is the position vector of a point within the cross-section. wi(z3)
is the vector of displacements in three directions. For small rotations Ap = p'+ 6 x p, where 6
is the rotation vector. We can now describe the deformation through the displacement map

(7). .

(%) = wW(xz) + 0(x3) x play, x2) (2.2)

Where the vectors w = w;€; and 0 = 0,€; are collectively called the generalised beam dis-
placements. If we write (2.2) explicitly we have,

(51 (371, T2, 933) = w1($3) - 3?293(333)
ug(x1, Ta, x3) = wa(x3) + x103(73)

ug(1, T2, x3) = ws(x3) — x102(3) + 2261 (23)

which are the same equations also used in Hughes [25] for fomulating three-dimensional beam
finite elements. The linearised strain tensor can now be computed as,

1
e =gVi+ Vi (2.3)

where the gradient of displacement Vu is given by.

ou
a.’lﬁi

Vii(z) = — ® & (2.4)

In (2.4) the Einstein’s convention for repearted indices is assumed. Knowing that 0p/0x, =
€, where a = 1,2, we have.

dv df

Vii(z) = (d—x3 + o P) @& — a;2(5a X 0) @ é, (2.5)
At this stage, it is important to note that,
U= (Gx0)@e=—(0x&) ®é=—[0x] (2.6)

is the skew-symmetric tensor associated with the axial vector (i.e. rotation vector €). Thus
we can rewrite (2.5) in terms of ¥ as.

—
—

d . df
Vﬁ(m):(d—i+€3x6+d—x3xﬁ)®€3—@ (2.7)

The linearised strain tensor can now be computed [Note that W7 + ¥ = 0],

1
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2.1. Mechanical Kinematics

where,
e:d—%%—egxﬁ (29)
g
R=— 2.1
R = (2.10)

Equations (2.9) and (2.10) are called the strain resultants for the linear beam model. We
can think of these two quantities characterising translational deformation and rotational de-
formation, respectively.

To obtain stresses and stress resultants let us consider linear isotropic case for the moment.
The inclusion of anistropy is discussed later in this chapter once we are clear with the kine-
matics and electrostatics of our problem. Using the linear elastic constitutive equation, the
Cauchy stress tensor o™ is give by.

o™ = Mr(e)l + 2ue (2.11)

A superscript m on Cauchy stress tensor stands for the mechanical contribution to the total
stress tensor, which will be discussed in the stress resultants section, in a while. We are
interested in the stress resultants (i.e. tractions) on a cross section with the normal €3 or
3, as there is no distinction between initial and deformed configuration in the small strain
regime, therefore, from the Cauchy stress tensor o™, we can proceed.

te, = o€ = Mr(€)e3 + 21els (2.12)

Where I is the second order identity tensor, tr(-) is the trace of second order tensor and A
and p are Lame’s constants. Substituting (2.8) in the above equation yields.

2#663:M[I+€3®€3]<€+EX]5)
tr(e) =e3- (€+ K x p)

tey = (I + (N + p)és @ & | (€+ R x P) (2.13)
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FE for Three-Dimensional Piezoelectric Beams

2.2. Electrical Mapping

We postulate a similar mapping for electric potential 1. While the scalar electric poten-
tial varies along the length of the beam, we assume the in-plane variation of electric potential
as a sum of product of its gradient with the distance from neutral axis and product of its
hessian with the square of the distance from neutral axis, where similar to generalised dis-
placements, the gradient and hessian can be treated independently from the electric potential
itself. In other words, we use the Taylor series expansion for electric potential up to quadratic
term across the height and thickness. The electrostatics of three-dimensional beam is shown
in Fig. 4.

Piezoelectric Layer

ulvehﬂlv/)/l

€ Polarisation in @7 Direction U, 2, s, 72

€3 us, 03

Ih

Polarisation in x5 Direction =——p

Piezoelectric Layer

Polarisation in x3 Direction

e

Piezoelectric Layer

Figure 4: Electrostatics of Three-Dimensional Piezoelectric Beam

Hence we can write.
— > — 1 — —
V(T) = ¢(x3) + B(ws) - play, v2) + B plar, za) - y(23)p(w1, 72) (2.14)
The scalar electric potential ¢, the vector 5 = Bc€,, = [2€1+ 1€, and the second order tensor
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2.2. Electrical Mapping

Y =Y € ® €y [,V = 2,1] are the electrical variables of our problem. If we write (2.14)
explicitly we have.

w(xla T2, $3) = ¢(I3) + 96‘251@3) + $152(1’3) + %x%n(ﬁs)

1 1
+ §$1£U2 (712@3) + 721(1’3)) + §I%722(I3)

Using summation over av = 1,2, the electric field vector is obtained by taking the gradient of
electric potential,

_ B dp df . 1. dvy . S L1 )\
EZ—Vw($)=—<—¢+—B~p+§p lp)ea— > (B-ea+§ea~(7+7T)p)ea

d&?g dl’g . dl’g

a=1,2
do . I d
= —d—Z(eg & 63)63 — az;2(€a X ea)ﬁ — (63 ®md—i — ./41 Y — ./42 . d—;
:—IE%—(€3®]5)/<?&—A117—A21§ (215)
where,

o do -

€ = d—{ie;;—i—ﬁ (2.16)
L df

€= — 2.17

Y= (2.17)
dy

=1 2.1
S i (2.18)

and A; and A, are third order tensors. They can be obtained more conveniently through
indicial notation by employing summation over [k, m,n = 1,2], from the corresponding terms
of (2.15).

> <%€a~(7+'yT)ﬁ)e} =) (%f?a-'ysﬁ)el

a=1,2 a=1,2
- — s - — - N - _ g - — — = s
= Cam VmnPnlay, = €y, €omPnYmn = N e
Oé:1,2 a=1,2 0:172

Note that we have used the symmetric part of hessian, ¥* = [y + ~4%]. Since in (2.15), we
have used the hessian itself instead of its symmetric part, the above equation should then be
modified as.

— — — S 1—» — — — — —
D Ea®E®FiY =) S(Ea®b®FTEOF®E) Y

a=1,2 a=1,2

Hence A; is.
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Similarly, to find Ay we write the corresponding terms of (2.15).

(53 ®ﬁ®]5>§

| —

o TS Ples =3 : €3 = 5 PmSmnPn€3, = 5 €3, PmPnSmn =
5\ P dxgp 837 5 PSP )68 = 5 PmSmnPn€s) = 5 €3, PmPnS

Hence A, is.

Ay = - (50D ®p)

N | —

The explicit forms of these tensors are given in Appendix 1.1.6. To have removed the ambi-
guity of notations for the reader, the explicit form of electric field intensity vector is.

. B2 + 1722 + %@(712 + 721)
b= B4z + 521 (112 + 721) (2.19)
¢3+ w213+ w1f23 + %1‘5’711,3 + %%@(%2,3 +721,3) + %37%’722,3

The electric displacement can now be written as,
D¢ = €FE (2.20)

where € is the second order dielectric tensor.

Remark 1. To maintain a correspondence between mechanical and electrical variables, the
components of gradient and hessian of electric potential are arranged in a reverse order, i.e.

3 B2 Y2 Y21
= {51} 7 = {712 711]

This is because the displacements of the beam are obtained through a cross product of g
with p and the total electric potential v is calculated through a scalar product of gradient
and hessian with p, which will certainly produce incosistent notations, unless we rearrange
the components. We follow this arrangement throughout our formulation.

Remark 2. Gradient and hessian of electric potential do not have a third component, since
unlike displacements, electric potential is a scalar and its in-plane variation can be fully
described with only two components.
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2.3. Stress Resultants

2.3. Stress Resultants

The stress tensor in the theory of piezoelectricity evolves naturally from consistent lin-
earisation of the enthalpy density of the system, as discussed in chapter 3. The symmetric
stress tensor is as an algebraic summation of mechanical and electrical components. The
components may not necessarily be symmetric (although in this case they are). The total
stress tensor can be written in the following form, using vectorial and indicial notations.

o =0"+0° = Mr(e)I +2ue — P E
0ij = Aewlij + 2p€i; — Prij L (2.21)
(2.22)

Where P is the third order piezoelectric tensor and a superscript e on o indicates stress
tensor arising from electrical contribution. The traction resulting from this tensor can now
be obtained.

oGy = —PUEéy =PI + (850 P)re + Ayt vy + Ay : 6| & (2.23)

The third order tensor P7" is what we will refer to as the double transpose of the piezoelectric
tensor, since it involves an even permutation of indices [cf. Appendix 1 for a detailed investi-
gation of third order tensors and their representation rules on a space of matrices which are
strictly obeyed throughout this thesis]. While the mechanical part of traction force o™ej is
straightforward to understand, in that it involves only vectors and second order tensors, the
process of simplifying the electrical component is not as trivial. To understand this, let us
calculate each of these components separately and then sum them up.

0"y = |pul + (N +p)es @ | (€+ R x p) = B¢+ E[pX]TR (2.24)
Where the second order tensor = contains material properties,

E=ul + (AN p)és® e

For the electrical component let us use indicial notation, and replace €3 with vector @, and
E with vector b, for generality. The summation is now over [i, j, k,l,m,n,p,q,r,s = 1,2, 3].

o‘d = —P"ba =P [I? + (@R P)RE+ Aty + Ay 46
afjai €; = —Pijrbiar € = Piji {52‘1616 + a;pmky, + Alipﬂpq + -'42”57"8] ax, €

= Pijk [ak(silG? + araipmk;, + apAi,, Vpg + akAzm%} €j (2.25)

In (2.25), vector €; characterises the traction vector in the j direction. It is crucial to point
out, that since A; and A, contain the terms z, and 22, respectively, by considering the axis
of the beam to coincide with the coordinate axis x3 and be the principal direction, after
integration A; vanishes, while A, only gives rise to principal second moments of area i.e. Iy
and Iy, which characterise third order derivatives ¢;; and ¢y, respectively. This liberates us
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to eliminate the two off-diagonal variables of v and ¢, and reintroduce these quantities in

vector form as.
- Y2 - 2
— 7 = 2.26
=17 ~{u 220

By following this simplification, we should also note that the third order derivative ¢’ can no
longer be pre and post multiplied with p" and instead we need to introduce another vector
§ containing the squares of distance from neutral axis in the area directions, i.e. § = x2¢,.
This vector will be utilised more frequently later on. The two third order tensors in (2.25)
will be now reduced to second order tensors A; and A,, which can be obtained in the same
manner that we obtained their third order counterparts.

A1 = E T ga (%9 é:l
a=1,2

AQI

—

3® 5

N | —

Expression (2.25) now takes the form,
oi;a; €5 = Piji [akéilef + araipmk;, + ap Ay, v + akAzisgs} &
_ 3 e 4 e 1 2 >
= ijk[ pit€l + AgimFr + Apig Ve + Akis§5:| €j (2.27)

where the newly emerged third order tensors A', A2, A% and A* are.

-Allm-q = akAliqy Aiis = apAs Azu = apdy, Aiim = Qka;Pm
Al =a® Ay, A =3 ® Ay, A =axl, Al=igaxp

is )

Knowing that a is in fact €3, we substitute back,
A1253®A1, A2:€3®A2, A3:€3®I, A4:€3®€3®ﬁ (228)

and by manipulating (2.27) we obtain.
o = Pus| A + Ak, + A + |
oy =P . {A?*Ee + A + A+ Ags} (2.29)
The first stress resultant can now be computed as,
Q= / ocs dA:/ <E€+ E[ﬁx}%) dA
A A
+ P { / {A?’Ee + Ak + AT + AZG} dA}
A
= A"E+ S"RE + ASe + S§KE + S5y + IS (2.30)
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2.3. Stress Resultants

where

(1

an— |
A

s;_/pT*;A‘ldA s;_/PT*:AldA Ig_/PT*:Asz
A A A

dA Sm:/E[ﬁx]T dA AS :/PT* : A® dA
A A

We employ the rules laid out at Appendix 1.1.6. for generating third order tensors. The
explicit forms these tensors can be found in 1.1.6. In a similar fashion we now calculate the
stress resultant of angular momentum,

PXoes = [ﬁx][;ﬂ%—()\+u)53®€3}(€+/%’><ﬁ)
+ [px]PT" [Ie?i + (E5 @ P)RE + Ay vy + Ay : c} s
~ (1ime+ X1z R
+ [px]PT {IE_é-i- (PR + Aty + Ax c} &3 (2.31)

where [pX|P is a third order tensor, containing geometric and piezoelectric material param-
eters. Performing integration as before we find the second stress resultant as,

N - /ﬁx e, dA:/ ([ﬁx]E€+ [ﬁx]E[ﬁx]T/%’> dA
A A
+ / [px]P" [«435@+A4156+AW+A26] dA
A
:A<[ﬁx]5€+ p ]E[ﬁx]T%’) dA
= STEH TR + St + Iske + 157 + GE¢ (2.32)
where
= xRt an si= [P A e = [ (px]PT At
A A A
I z/[ﬁx]PT* CAYdA G :/[ﬁx]PT* C A2 dA
A A

Once again, computing second stress resultant can be best understood using indicial notation
with summation convention employed. !

P = ijl(gj ® € ® gl)vmgmunaL = jklvm(gj oy gk)6lmu7L€n = jklvluniskné}
= jklukvlé'j =P: (ﬁ@ 17)
ﬁX P = [ﬁX]'PU’J = pmn(gm ® é’n)ijlukvlé} = pm]—’ijlukvlé’m = [ﬁX]P : (ﬁ@ ’l_f)
P x PTG = [pX]PT 50 = prun (Em @ €) Pk vitti€j = pimj Prjktirviém
= P Piriusvi = [Px|PT : (@ @ 7)
Which indicates, pre-multiplying the second order tensor [px] with each horizontal slice of the third order

—

piezoelectric tensor P and then performing double contraction with tensor (¥ ® ¥)
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px oG = —[px]PT"bd = [px]PT [Ie% F @R+ Ay + Ay c} i

P04 € = _ptjpitkbiak & = Cik {51'161 + aipmk,, + «41inqu + A2irsgrs:| Qg €

e e =
= Cin | arda€] + arpa;pmky, + apAu,,,Ypq + akA2im§rs:| €

= Cik | axOu€] + araipmky, + apAi, vq + akAQiS%} €

3 4 1 2 —
= Citk Akilef + Akzm 76;7, + Akiq'yq + Akisg5:| €t

— G| Ayt + ALK+ AL+ Aiiscs]

kim"Vm
Px oy =C"" | AR + Ak + AT+ AQG] (2.33)

In the above derivation, for convenience we have used CT" = [px|PT". Let us now consider
the electric displacement vector, which also naturally evolves from consistent linearisation of
enthalpy density, as an algebraic summation of mechanical and electrical components.
D=D°+D"=€¢E+P:e
= —e[Ie?+(€3 QPR+ Aty + Ay c]
1 oo D a e
+§7>: {(e%—/ﬁxﬁ)@eg—l—eg@(e—l—/ﬂxﬁ)}
= —€|:I6_é + (€5 ® P)KE + AT + Azf}
1 . ¥t o T = T
+ 5 [ég,PT e+ P [px]'R + esPTe— €3IPT[pX]T/£}
= —€ {IEe + (&5 ® P)kE + A7 + Agg} + A3+ AR (2.34)

Where the second order tensors Az and A, are.

Ay =& (P +P7), Ay ==& (P +P[px]”

1 1
2 2

By integrating (2.34) over the area we obtain the resultant of first electric displacement
resultant.

Q° = / D dA = / { —€ [Ie?f + (65 ® P)rE + A1y + Azé} + Agé+ A4/¥}dA
A A
— —AS€ — SSkE — SEY —I5C+ A E+ S¢TR (2.35)
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2.3. Stress Resultants

where.

A;:/edA, sz/ﬁ(ég@ﬁ)dA
A A

sg:/eAl dA, I;:/EAQ dA
A A

Anistropic Case

The incorporation of anistropic linear elasticity into our formulation is now relatively
straightforward, in that we only have to modify mechanical stress resultants, i.e.

c=0"+0‘=C:c—-PE
iy =(C:e)es — P Eey=C':e — P Eé,

where C! is the third order tensor produced from the action of C over és.
To illustrate this; due to symmetry of strain tensor we can write.

ngg =C: |:(€+EX]5)®53:|€3
Performing a general tensor analysis on fourth, second and first order tensors we have.

o;ie; = Ciji [(ak + Pkmbm)dl:| ej = €;Cjin [(ak + Pkmbm)dl:|

Substituting for corresponding tensors we obtain,

17"

ome =& C" e+ e [px]TR

Comparing the isotropic and anistropic cases, we identify that = tensor is now replaced
. - T . . . .
with &5 CY . For convenience, we use the same symbol for anistropic case and write.

o"ey = B+ E[px|'R
The stress resultants then take the same form.
Q= A"e+ SR, M=S"e+ 1"k

Where similar to isotropic case, the above-mentioned tensors are.

A" = / E dA4, S = / Epx]T dA, I" = /[ﬁx]E[ﬁx]T dA
A A A

The explicit forms of these tensors are given in 1.1.6. If origin of the coordinates in the
cross sectional plane is taken as centroid of the section then tensors S, Si, S5, S5, S%, Sz, S§
and G vanish, and further if axes are taken to coincide with the principal axes of the cross
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section then tensor I becomes diagonal and tensor I and I5 only give rise to principal second
moments of area and hence the stress resultants become

Q=A"e+ ASé + I (2.36)
M =177 + Ikt + 157 (2.37)
Qe = A" E— At —I5C (2.38)

2.4. Governing Equations of Three-Dimensional Piezoelectric Beams

To reduce the problem of continuum linear piezoelectricity to three-dimensional beam
model, the equilibrium of linear momentum, the equilibrium of angular momentum and
Gauss’s law, should be satisfied in an average sense over the cross sectional area of the beam.
If we integrate the governing equations of continuum piezoelectro-elastictiy over the cross
sectional area of the beam, we end up with the governing equations of three-dimensional
beams. Consider the linear momentum,

/(diva+6) dA=0
A
) - doeés 8a'ea
/A(dwa+b) dA_/A(axg Z o~ )dA
0 doeé, -
= 3 aegdA—i-/Z o dA+/AbdA

a=1,2
0@
81‘3

aﬁp ds + / bdA=0 (2.39)
A

where, as computed in the earlier section, Cj is the traction force vector acting on the cross
section, 7ir is the unit outward normal to the boundary of the cross section I'; as shown in
Fig. 5, b is the vector of body forces and div is the divergence operator. One can observe the
similitude of (2.39) with the linear momentum of continuum linear elasticity, where the last
two terms here indicate the traction force vector and the body force vector, respectively.

7 :/BdAJr/t} ds (2.40)
A T

Area (A)

Figure 5: Cross Section of Arbitrary and Prismatic Beams
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2.4. Governing Equations of Three-Dimensional Piezoelectric Beams

For angular momentum we have.

7 x (dive +b) dA=0
R ) - B . 0o és aaea
/Apx(leO‘—l—b)dA—/ApX((f)x3 Z o ) dA

0 doe,
8353 pxaegdA—l—/Zp o dA+/p><bdA (2.41)

a=1,2 o

T

The second integrand in the above equation can be written as.

Z 8ia (ﬁx aé’a) = Z P X 8a'ea Z 8_% X O, (2.42)

a:1’2 a:l 2

Considering that the equilibrium of angular momentum in continuum level implies,

€; X O€; = €3 X Oc3 + E €, X o, =0 (2.43)
a=1,2

and noting that dp/dz, = €,, we obtain.

doé, )
> px 5‘2 =y a—ma<ﬁx aga) + &3 X o8 (2.44)

a=1,2 a=1,2

Hence (2.41) takes the form.

i/ﬁxae} dA+/ > i(ﬁxaé*a> dA+/(€3xa€3)dA+/ﬁ><5dA
0x3 Ja Y O, A A

M - .
_ M, ﬁxaﬁrd8+€3xQ+/ﬁxbdA:0 (2.45)

0x3 r A

If we make a comparison between (2.45) and the balance of angular momentum of continuum
elasticity, we identify the appearance of an additional term é3 x Cj which in fact arises by
using the continuum balance of angular momentum itself and corresponds to the moment of
traction force vector. The second term and last term correspond to applied moments per
unit length i.e.

m:/ﬁxgd/w/ﬁxt}ds (2.46)
A r

and the first moment of traction force being M.

—

M:/ﬁxaég dA:/ﬁxt; dA (2.47)
A A
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Similarly, we can evaluate the integral form of Gauss’s law over the cross sectional area.

/(divﬁ — ¢ )dA =0
A

= o [ (0Ds oD, .
A(d1vD—q)dA—/<a$3+Zaxa)dA /q dA
6I3/D3dA+/2128% /q dA
8Q3 /Z D,rir,, ds—/q dA=0 (2.48)

a=1,2

Here, Cje as evaulated in the previous section, denotes the resultant of electric displacement.
In the context of electrical terminologies, () can be interpreted as the amount of free charge
required to balance the bounded charge over the sections area, had it been a free surface [36].
Similar to the other two resultant forces ¢ and 7i, the last two terms in (2.48) correspond
to electric displacement through the perimeter of beam cross section and the specified free
surface charge, respectively.

/Z Duiir. ds—/Aqe dA (2.49)

a=1,2

As we will see in chapter 3. we need the first moment and the second moment of electric
displacement, both of which can be treated mainly as mathematical entities. These quantities
arise naturally from the variational form of Gauss’s law, in that, while evaluating éW*¢ =
fv D;0E;dS), once we substitute for electric field E;, expressions like pD3 and 5§D, emerge,
which need to be first integrated over the cross section. After integration, these quantities
yield moments of electric displacement. To obtain the expression for first moment and second
moment of free charge Qe , we need the integrand of (2.48) multiplied with vector p'and square
of this vector which we have denoted as §= z2¢,. As mentioned earlier, the emergence of §
is due to the disappearance of off-diagonal components in =, and in fact the equivalent form
of electric potential is now written as,

(2.50)

C’3l

b=0¢+F-F

[\')IH

where 7 is given by (2.26). The modified electric field now becomes.

E=—Vy(i) = (ﬁ+ af PR §>53—Z (E-a)maaaﬁ)aa (2.51)

deg d$3 2 dl’d =12

Having noted the modified form of electric potential and electric field, we can now proceed
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with obtaining the moment resultants,
/ p(divD — ¢°)dA =0
A
S 0D3 oD
p(divD — edA:/ﬁ(——l— a)dA—/*edA
/Ap( q°) Rl > or. R
a(ﬁD3) / —;aDa / —
= [ ——=dA dA — cdA
/A Ox3 + Z b 0%, qu
0

= — D dA—i—/ dA—/ D.é, dA—/ cdA
81’3 Ap 3 A a:ZI,Q axa A Z qu

a=1,2
OMe /
= —|— ﬁDaﬁFa ga ds -
61’3 r oz;Z

> Q- / pgcdA=0 (2.52)

a=1,2 A

where M¢ is the moment resulting from the 3'¢ component of electric displacement (after
integration). The second and fourth terms in the above equation can be mathematically
characterised as moments of applied electric displacement and free charge, respectively. While
we can clearly observe the similarity between moment resultant arising from mechanical
kinematics (2.32) and moment resultant arising from electrostatics (2.52), the latter comprises
of an additional term @€, (which is in fact not a moment, but the two components of resultant
electric displacement). The moments of applied electric displacement and free charge, can
be denoted by m®.

Me = / pDs dA (2.53)
A

e = / S PDaiir, b ds - / B¢ dA (2.54)
T A

a=1,2

Similar to (2.52), we can find the second moment of electric displacement and applied charges.
/ §(divD — ¢°)dA =0
A

L= [ .{9Ds oD, .
/AS(dWD_q)dA_/AS<8:U3 —|—(XZ &ra)dA_/ASq dA

1.2

6(§’D3) / _0D,, / 5
= dA + E dA — cdA
/A 0x3 A i 0T A °

a=1,2

9 [ s, dA+/ 3 95Da) 4
Ap=12

B a_xi% AS a-ra
—/2 > waDaéy dA—/gqe dA
A 4=12 A

00 / . /
= + §Dgiir, €q ds — My — | 5¢°dA =0 2.55
O r a_zm g ' A (2:55)
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Where the second moment of electric displacement and free charge are,
0° = / §Ds dA (2.56)
A

of = / > Dyiir, o ds — / 5¢° dA (2.57)
r A

a=1,2

respectively. We can observe the emergence of an extra moment Mf, which eventually also
enters into the variational form of the problem.

Me¢ =2 / > waDoy dA
A

a=1,2

By now, we have obtained the governing differential equations of piezoelectric three-dimensional
beams in terms of stress and electric displacement resultants. For the static case, when stress
resultants are not time-dependent, these are ordinary differential equations of the following
form.

3—2 +G=0 (2.58)

D ey G =0 (2.50)
Zﬁf +r=0 (2.60)

Cg\ie — Q5 +me=0 (2.61)
2?: — Mg +0f=0 (2.62)

Equations (2.58), (2.59), (2.60), (2.61) and (2.62) constitute a set of first order differential
equation in one dimension. If the above set of equations are satisfied then the continuum
balance equations are also satisfied in an average sense over the cross section.

22 Roman Poya


mailto:romanpoya@gmail.com

3.. VARIATIONAL FORMULATION

Mixed Variational Formulation

“This field is fun; it is fun more than fun.”
T. J. R. Hughes

3. Variational Formulation

This chapter is devoted to variational formulation for three-dimensional piezoelectric
beams. The point of departure is the Lagrangian of the system, which contains kinetic energy,
enthalpy density and the external potential energy of the conservative system. Starting from
the continuum level, let € be the configuration occupied by the piezoelectric solid,  C R3,
as shown in Fig. 6. The configuration is characterised by the mechanical displacement field

: Q0 — R? and electric potential ¢ : Q — R!. If we consider two material points with
thelr position vectors as X, and Xg, then associated with them, we have the infinitesimal

strain tensor € : 2 — R3x% where R%*% represents the space of symmetric tensors, as well as

electric field E : Q — R3, as defined in the previous chapter.

e
{’ T
v 7 F'z/)
pb ¢‘E
l v
Q Q

Figure 6: Decompostion of (a) Mechanical Boundary I' = I'" UT* & I NT* = ¢ and (b) Electrical
Boundary I' =T'P UTY & TP NIY =¢

The enthalpy density of the piezoelectric system under small deformation regime can be
written as [50] [1],

=N = 1 - =
H(s,E)zée:(C:e—E-P:e—ﬁE-eE

where C : Q — R3X3%3x3 i5 the 4" order elasticity tensor, P :  — R3X3%3 the 37 order

sym sym

piezoelectric tensor and € : Q — R3x3 the 2" order dielectric tensor. Also, a dot indicates
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scalar product and a colon implies double contraction. The Lagrangian of the system L, can
now be written as [50],

L, 1,1p) = K (1) — Wi (@, 1) — Mg (17, 1)

where the kinetic, internal potential and external potential energies of the system are,

]. - —
K:/—pu-udv (3.1)
Q2

M= [ HAV (3.2)
Q4

ey = / (5@—@) dv + / tdA — / ¢ dA (3.3)
o 7 ry

respectively. In the above expressions, = Di /Dt is the material velocity (or local velocity,
since there is no distinction between the two in small deformation regime), b is the vector of
body forces, t is the applied mechanical traction, ¢¢ is the total electric charge density, ¢ is
the applied surface charge and p is the density of material. ), represents the volume occupied
by the body at time ¢ and similarly at a given time ¢, I'? and T'? represent the boundaries
where mechanical traction and surface charge are applied, respectively, see Fig. 6. The action
integral I, can now be defined as the integral of the Lagrangian over the time interval [tq, t5].

For simplicity, we assume ¢; = 0.
to .
[— / (%, 0) dt (3.4)
t1

Hamilton’s principle states that the deformation satisfying the equations of motion and the
electrical mapping satisfying the equations of electrostatics, can be obtained by making the
action integral stationary with respect to all possible mappings which are compatible with the
boundary conditions [38] [12]. To this end, we perform directional derivatives, for variation
of displacements Su and variation of electric potential 1, respectlvely The dlrectlonal
derivative, assuming a perturbation of displacements 4@ = u + Céu where ( is small and Su
is a differentiable function satisfying du(t,) = du(ts) = 0, yields.

dl d /t2 - /t2 dLl
C o rway)di= [ £
i ~ac) f@meydi=J g

/t2<d_@.a_£+d_i.a£ d¢8£) dt = /t2<5& 0L | 5u. 8£)dz&
n \dC du d¢ 9y dCOY tl ou ou

When ¢ = 0, we have @ = « and the action integral has an extermum so that.

df
- —0
d¢ o
to . -
g :/ ((5u a—€+(5u 8/3) dt
d¢ =0 4 ou ot

2oL  doc - oL
/ (55 - 5oz ) -dars s 22]) =0

24 Roman Poya

t1


mailto:romanpoya@gmail.com

3.. VARIATIONAL FORMULATION

In arriving to the last expression, we have used integration by part. Knowing that the bound-
ary term in the above expression vanishes, and using the fundamental lemma of variational
calculus, we obtain the Euler-Lagrange equation of our dynamical system.

oL doc

Similarly, by perturbing the electric field through a variation ¢ = ¢ + (0v, where d¢ is a
differentiable function such that, d9(t;) = d¢(t2) = 0, we obtain.

20L
t1 adj

df

¢=0

Applying the fundamental lemma of variational calculus, we obtain the electrostatic equation
of our system.

oL
O
From the second term of of (3.5), we can now obtain the linearised form of kinetic energy.

i%_i@K g/ 1 u-udV
dt on  dt gi  dt Jo 27

d &2 D2t
av = Z gy 3.7
—at )y, i /Qt / e (3.7)

It should be noted that in small deformation regime, no distniction is made between spatial
and material volumes, and hence the time derivative outside a volume integral can be moved
inside. We now need to obtain the linearised forms of elastostatics and electrostatics of the
piezoelectric system. This can be achieved from the principle of virtual wok, as Hamilton’s
principle also reduces to principle of virtual work for static problems.

oL oL
95~ o "

To this end, the virtual internal potential energy at any time instant can be found.

=0 (3.6)

1 — 1—; =
(5Hmt:/ (—s:C:e—E-P:e——E-eE)dV
0, \ 2 2

/ (e C:(Se—E~P:56—(5177-73:6—5E’~6E) dv

o™ VU + o 1 Vu + Vi - D™ + Vi - 56) av

&

(0' Veu+ D - vaw)

t

Il
S~ S5 — 35

div(edu) dV — [ dive - ou dV + / div(6yD) dV — [ & divD dV
t Q¢ Q Q4

Su - ot dA+/ 5wﬁ-ﬁdA—/ dive - Su dV—/ s divD dV  (3.8)
Qt Qt

ry

Il
—

o
t
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Finally, the variation of external forces yields.
Slloyy = / (5 u — qe&p) dv + / FooudA— | i dA (3.9)
Q 7 FtD
Summing (3.7)-(3.9), we obtain.
, - D*W, - .=
(dive +b—p——)-du dV + [ (divD —¢°) 6y dV
o De? o
+/ (it —1)-ou dA+/ (D7 —¢)dp dA=0 (3.10)
o FtD

The Euler-Lagrange equations can now be written.

pg—jgzdwa—l—g in Q x [0, ]
divD = ¢° in Q x [0,¢]

=1 on I' x [0, 1]

V=1 on I'Y x [0, 1]

oil =1 on I'? x [0,¢]

D-it=¢ on I'P x [0,¢]
@t)=0 a(t)=0 at @ x t =0

From the governing equations, we observe that the coupled electromechanical boundary value
problem consists of Cauchy equilibrium equations coupled with the equations of electrostatics.
In order to embed the beam kinematics into the variational form of the problem we just
obtained, let us first consider the static equilibrium equation. For simplicity we drop the
subscript ¢t on volume €.

o does doeé, - IR
diva+b-5udV:/( + )-5udV+/b-5udV
/f;< ) Q 8$3 Z 8$a Q0

a=1,2

3063.52Ldv+/ 3 a"e“.aadv+/5~5adv
9] Q

Q al’g 9 (911;a

://M dxgdA—/ @ ocy dAdxs
81’3
/ / "ea u) ) dAde, — / / DU e dAdes
Gxa
/ / b-ou dAdzs = / (orig, - 6ulpm) dA
A
oou oou
// (8_[1;‘3 oes + (XZ a—.ra'O'ea> dAdeg

+/(/(aﬁr-5a) ds)dx3+//5-5& dAdzs (3.11)
l T I1JA
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It is worth pausing here evaluating the terms that we have arrived at in (3.11). The integral
in the second last line of (3.11) contributes to the internal virtual work of piezoelectric
system and the remaining terms give rise to external virtual work of mechanical forces i.e.
we assume that electric contribution does not play a role in generating traction forces. We
now embed the kinematics of piezoelectric beam model in the second last line of (3.11) to
find an expression for internal virtual work.

wn=[ [ <% oi+ 3 %-ae@) dAdu
3 — a
:/dd_w_ (/053 dA)d:c3+/ <d¥;9 ><p> -oeg dV
1 dflfg A deg
_ /<é’a X 5@) . (/ Uga dA) dxs
l A
:/(C“_w+63><59> (/aégdA)dngr/ (di(’xﬁ)  oF AV
;L dzs A dxs
:/ d5_w+€3 50 - /aegdA dx3+/d6€ /ﬁX0'53dA dxs
1\ dzs A dzs A

= /(@-52+M-5%)dx3 (3.12)
!

For external virtual work of mechanical forces, from (3.11) we proceed.

5W£’;t—/(cm23-5&|rm) dA+/(/(aﬁF-5a) ds)dx3+//6-5a dAdzs
A ! r 1JA
:[/(5@+5@Xﬁ)-an§3dfl} +//{5Zu+5@xg3}-<aﬁpds>d$3
A Tm 1JT

+// [5?U+5”9><ﬁ] b dA das = (6w - Gy)|pm + (06 - 1730) | pm
1 JA

+/5Zu-</5dA+/des>dx3+/5@.</ﬁdeA+/ﬁxfpds>dx3
l A I l A I

(3.13)

Thus, the external virtual work in terms of specified traction and distributed forces becomes.
W2, = (5w ) |rm + (5@ - myp)|rm + /52U -q dxs + /5@ -m dxs (3.14)
! !

The first two terms in (3.14) correspond to applied point forces and applied point moments.
These are equivalent to traction boundary conditions of continuum elasticity, in that they
are prescribed at specific region of the beam and thus their boundary is termed as '™, where
superscript m stands for mechanical. The last two terms in this equation correspond to
distributed load and distributed moment along the length of the beam which are equivalent
to the body forces of continuum elasticity. While distributed loads are quite common in
beam theory, distributed moments are not normally applied as they cannot be interpreted
physically.
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For the virtual work of inertial forces, we have.

D2 D2 — — —
51/Vm€r:Dt /pu 5udV—Dt2/ {w+«9xp}-{5w+5 x pldV

D? ; D2 SO
D? - 3 . Bk
= e /p5w- {tﬁHﬁX]T@}dij/pé@[ﬁX]- {wﬂﬁx]T&]dV (3.15)
Q Q

Once again, by integrating over the cross section area, the one-dimensional expression is
obtained.

2
Winer = D— /5w- / pI dA | dxs + /5w- / plpx]TdA )0 dxs
Dt? l A l A
+/5?9- (/p[ﬁx]dA>w dx3+/5@- (/p[ﬁx][ﬁx]TdA)édxg} (3.16)
l A l A

As before, substituting the terms inside the brackets with their corresponding tensors, where
the subscript D now is chosen to stand for dynamic version of the tensors, we can write.

D? . B L
(ﬂ/Vmer = D—tz{ /léw . ADU) deg + /léw : SDQ dZEg

l l

As discussed before if origin of the coordinates is chosen as centroid of the section then first
moment of area vanishes and we obtain

_D2 — - —
5VViner = D_tQ{ /&w . ADU_j di[fg + /(50 . IDH dl’g} (318)
l l

In the context of dynamic analysis, the first integral in (3.18) is the translational inertia and

the second the rotary inertia. The semi-discrete weak form of the dynamic beam problem
can finally be stated as

SWiner +0WI, — W™, = Dt2{ / Sw-Apw das + / 50 -1p0 dxg} / (@ b€ M.&) dz;
l

+ (06 - o)

I'm

- {/5@-(](}19&3—1—/5@-%(1953—1-(5?1)-(]7))
l l
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Eventually, as observed from (3.10), the integral form of Gauss’s law contributes to the virtual
work.

SWe = / (divD — ¢°)6ep dQ = / divDdry dQ — / ¢°orp dQ

|4

/dw(Déw ) dQ2 — /DV(W dQ) — / q“oy dQ2

/ g;fw da dA+//Z D(w dAda; — /DV&DdQ / ¢°0 dQ

a=1,2
(3.20)

At this stage we can clearly identify the weak forms associated with internal and boundary
terms of our electrostatic problem. Similar to its mechanical counterpart, we treat the internal
and the boundary terms separately, starting with the former.

SWe, = / DVéy dQ = / (D%i‘b Z D, 85‘”)019
14 3

=1,2

B ds¢  déB . 1doy
_/V<d_x3+d_xg P+ 5 >D3d9+/ >

a=1,2

:/%f(/pg dA)dx3+/ld56 (/ D3 dA)das3+ /flz (/A§D3 dA)darg
/55 (/ > D dA)dngr/(Sfy (/ > zaDa dA)dxg

a=1,2 a=1,2

:/ @53+55 /DdA dx3+/d55 /ﬁDg dA )duxs
dxs ; dxg A
d57 J Y -
+ | — | = [ §D3dA |dxs+ [d7v- Z ToDo dA |dxs
; dxs 2 /4 l N —

:/(Q@-é?%t]\i@-6E6+Mf-53+66-52) das (3.21)
l

(ea (55—1—% :caéfy)D ds?

Remark 3. In the first line of (3.21), the expressions D and Véy are both assoicated with
orthonomral bases €;, where ¢ = 1,2, 3 which after carrying out inner product produce unity
l|éi|| = €; - € = 1 and hence they are taken away a priori.

Remark 4. In the second line we have substituted for values of 851/} and giw

Remark 5. Critical to our later investigation is the emergence of factor 2 which is embedded

into the definition of O¢ and ]\/.71@. The analytical solutions reported in chapter 5. make use
of this modification.

Remark 6. If we draw an analogy between the internal virtual work arising from Cauchy
momentum equations and the one from Gauss’s law, despite the clear similarity, in the above
expression Cje is the resultant of electric displacement in all direction and not like the stress
resultant @ which only consists of the tractions in €3 direction. The equilibrium of angular
momentum plays a key role here, in that it eliminates the stress resultants of the other two
directions, as can be verified from (3.11) by utilising (2.43).
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The emergence of extra terms in (3.21) is due to the second order electric potential assumption
across the area directions. These terms would vanish, had we assumed a linear electric
potential across the thickness and height of the beam. This issue is addressed in the upcoming
section. As we will see later, from a finite element implementation point of view, it is much
more elegant to evaluate the remaining electric displacement resultants (M €, Mf and 66) in
a similar form to Cje i.e. separate kinematical variables in vector form and the constitutive
parameters in tensor form. To this end, we can redo (3.21) with a view to find the explicit
forms of these electric displacement resultants. In fact, the electric displacement resultants
arise naturally in the desired form if we directly substitute for the values of D and Véy in
the first line of (3.21). While it is equally possible to evaluate these resultants from (3.21),
what is followed here is only for the purpose of a convenient presentation.

int —

SWe /ﬁvazp dQ
14

= —/V {€|:I€2+ (€3 @ p)ré + A1y + Azﬁ} — A3é— A4F5}
: {I&Z@ + (65 ® P)oRe + A0y + AQ&}dQ
_ _/Z/A 52«3{6[153 + (@ ® PR +A17+A25} _ Ay A4E}dAdx3
— /l/Ad;ae(ﬁ@ €3>{6[16%+ (€3 @ p)ré + A1y + A25] — Az€— A4F3}dAdx3
— /l/A 5_§Aip{e[IeﬁE + (65 ® P)KE + A1y + Ag?} — Age— A4E}dAdx3
—/lAé}Ag{e[Ie_é+(é’3 ®]5§/1_é+A1?+A25] — Age— A4/?5}dz4d$3
- /Zaze-ée dazs +/15,2@- [SZTE@+I;/&+157+ G5S— S§T€—I§Tﬁ} das
+/153- [ ¢ LI R+ 15 4+ GES— S5 € — I§T/%’] dz;
"

/5} - {IZT@ + G RE+GE A+ TC—T1 e - (;T/z} dzs
l

_ / (5% G + 6re - Ne + 65 - Mt + e - o%) Ay (3.22)
l
where.
—Me =8 @ +1ekt + 17+ Gy — ST e— I R (3.23)
Mg =8 I R+ I8y + GsT— S e — 1Y R (3.24)
—O0° =T ¢ + G5 K + G 7+ JC -1 e~ G{ & (3.25)

In the above expressions G¢ are all second order tensors with their entries being third mo-
ments of area. Similarly, the only second order tensor J contains of fourth moments of area.
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While it is mathematically possible to define higher order moments of area, it is difficult to
intrepret these entities physically [for a detailed discussion on this see for instance [27]]. The
explicit form of these tensors are given in 1.1.6. From above expressions we can conjecture
the final computational cost that this formulation entails when finite elements are employed.
If the material and geometric properties remain unchanged along the length of the beam,
then we can compute all these constitutive tensors only once. Also, by choosing coordinate
axis x3 to coincide with the principal axis of the beam, first and third moments of area vanish
and the reduced moment resultants become.

Me =15 R — ekt — 155 (3.26)
Me =17 — I vt — 155 (3.27)
Oc=I'e—I¢" & — J¢ (3.28)

We are now left with the weak form of boundary terms. Proceeding from the last line of
(3.20) we have.

0(Ds6y) / / I(Dy6v) /
SWE, = / dzdA + = dAdx — | ¢ dQ
e a903 v 1JA Z 0z, v vq 4

(o) e [ 0

dA + / / > " Daiir, 0t dsdzs — / / ¢ opd Adz,
— 3 1—» 3¢
:/D3<5¢+p-55+—s-57>
" 2

a=1,2
dA+/ </2an ds—/q dA)dxg
v
_'_/5% (/ ZﬁDaﬁFaga dS—/ﬁqe dA)dl'g
! r A

a=1,2
a=1,2

L1
+ /s _(/ D7 agads—/gedA)dx
/17 5 Faz;,z r B q 3

+ (0B -mg)| + (57 )
Fe Fe

+ /(5¢r drs + /(5_5 -me dxs + /(ﬁy - 08 dug (3.29)
! 1 !

= (6¢ro)

Te

Where r( is the resultant free charge which is applied as Neumann boundary condition in
our boundary value problem and m§ and of are specified first and second moments of such
resultant, respectively. These quantities are similar to specified point forces and moments.
The quantities inside the integral are the distributed counterparts of the earlier boundary
conditions i.e. distributed free charge over the lateral surface of the beam and its first and
second moments, respectively. The region ' corresponds to “points” where resultant free
charge and/or its moments is applied, where a superscript e stands for electrical. The virtual
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work of piezoelectric system is now complete and can be summed up as.

W = 6Winer + W, + OWE, — SWIT, — SWE

int ext ext

D r- i} S o
+/(@-52+M-5%+cje-526+ﬁe-526+Mf.57y+66-52> Ay
l

- [/5@-de3+/5*9mdx3+/5¢rdx3+/5B.n€edx3+/53.o%dx3}
l l l l l

—l((ﬁij’o) + (00 -mo)|  + (6dre)|  + (08 - mE) e]_o (3.30)

Irm Irm

+ (07 - 0f)
1"6

Te

Expression (3.30) completely describes the virtual work of our piezoelectric three-dimensional
beam model. If we refer back to where we started i.e. (3.10), we identify that the last two
terms in this expression have not entered in our virtual work expression, namely the variation
of traction forces and the variational form of applied surface charges, both of which are area
integrals. This is because the equivalent form of these expressions naturally arise while
reducing the three dimensional boundary value problem to the one dimensional boundary
value problem of beams.

3.1. The Choice of Linear Electric Potential

The similitude between piezoelectric beam and a purely mechanical beam is more pro-
nounced if we assume a linear electric potential across the area directions. Although as
explained in chapter 1. this assumption violates Gauss’s law [18] [9] and will not be pursued
in this work, the piezoelectric beam formulated in the earlier sections is best understood with
this assumption and in fact it is fascinating to observe that we have not deviated ourselves
much to reformulate the problem. The corresponding equations and expressions evolving
from the choice of linear electric potential can be deduced from what we have presented so
far. To this view, let us reconsider the electric potential but upto linear term this time.

—

U(T) = ¢(x3) + play, z2) - B(x3) (3.31)

The electric field vector emerging from the gradient of this potential becomes,

= —Te — (&5 ® PRt (3.32)

where €¢ and x¢ are given by (2.16) and (2.17). If we now evaluate stress resultants based on
our new electrical kinematics assuming the coordinate axis x3 to coincide with the principal
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axis of the beam, we find.

Q = A"e+ Afec
- T .
Q° = Af €— Afee

M =1"% + Ikt

— T, -
Me =TI & — It

In the above expressions only terms having ¥ and ¢ have disappeared and the remaining
constitutive matrices are exactly the same as before. At this stage, we can clearly identify the
similarity between electromechanical and mechanical stress resultants. Certainly, the coupled
formulation also seems more elegant this way, in that, each resultant is a function of both
mechanical kinematics and its electrical counterpart, either translational ones or rotational
ones but not both. Finally, the virtual work expression based on linear electrical potential

assumption takes the form.

SW = Winer + SWI, + SWE, — W™, — SWE

wnt ext ext

D2 nd . - —
+/(@.52+M.5%+q§e-526+M6~5Ee) dzs
1

- [/@@dxﬁ/a@-mdxﬁ/wrdx3+/5“5-n€edxg}
! l l l

—[(cﬁv-cfo) + (60 - o)+ (6dro)|  + (63 - mE) ]:o

rm rm Ire
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Higher Order Finite Elements

“Students and research visitors to Swansea were frequently roped in to act as crew,
but all competitive instincts during a race would be quickly abandoned if

a particularly interesting finite element discussion arose.”

D. R. J. Owen on O. C. Zienkiewicz

4. The Finite Element Discretisation

The finite element equations of three-dimensional beam model can be obtained directly
from (3.30) of chapter 3. The weak form of the problem can now be stated as:

Find [117,91@5, B, ] € U such that
D? , L
T /léw-ADIdeg—i—/léH-IDQdmg
+/(@.52+M.5;+@e.5ze+Me.5;e+M;.aa+de.az)dxg
!

— Uazu-q*dxﬁ/a@-mdx3+/5¢rdx3+/5}3-n€edx3+/53-o*edx3]
l l l l

- [(5@ @) + (56r0)

l“m

+ (86 - 17g)
]_“m

1_‘6

+ (63 - + (67 - 0}) 1:0 v [ow, 60, 5¢, 6B, 64] € Uy (4.1)
r‘e

Te

0)

where,

11
lj: {I_I:E (Hl) | U=1Up on (‘3QD} (42)

11
Uy = {5& e (Hl) | 6u=0 on aQD} (4.3)

where 0€)p now represents the boundary where all Dirichlet boundary conditions are applied
and H? is the standard vectorial Sobolev space with a superscript 11 standing for number
unknowns. If we introduce the H-conforming set of interpolating functions as,

Xip = {Nl, Na, N3, Ny, N} C H'
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where n stands for number of nodes per element, then, with a slight abuse of notation, de-
scribing the discretised variables with the same symbols, the semi-discrete weak form of the
problem can be stated as:

Find [, g, ¢, 3, Y eln ?hp such that,

D [~ i} L o
+/G@&+Mwﬁ+@ﬁ&+Mvﬁuwk&%{ﬁ&)mg
l

- Ua&-quﬁ/@.mdxﬁ/amdx3+/5“5.n€edx3+/5?y-o*edx3}
l l l 1 l

_[(5@.%) + (00 -mo)|  + (6ro)

Trm Irm

Te

+ (67 - 0f)
Fe

+ (0B - m§)

]:o V5w, 80, 86, 0B, 65 € Do ¥y (44)
FE

where,

Yy = {ﬁ |7 € ()Z’hp)n} (4.5)

From above it is evident that we use the same basis for all the nodal unknowns i.e.
equal polynomial degree interpolation for mechanical translations and rotations as well as for
electric potentials and their gradients and hessians,

=1 =1

6= N¢f B =3 NB v =Y N9 (4.7)
=1 =1 =1

where k = 1,2, 3 represents the direction of mechanical nodal variables and j = 1, 2 represents
the direction of nodal electric potential gradient and hessian. We utilise both higher order
Lagrangian and hierarchical Legendre basis functions and examine the relative performance
of each. The primary unkowns of a 2-noded beam (i.e. when linear basis functions are
employed) are.

W= [wlaw27w3yw47w5aw6]T (48)
5: [91792793764795786]T (49)
@E: [ﬁQaﬁ17¢17727717647637¢2a74a’y3]T (410)
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The finite element matrices arising from the semi-discrete virtual work of inertial, internal
and external forces, correspond to the following integrands, respectively.

lﬁ] (4.11)

AT S™ AS S¢S IC[e
s, I I G| |R
(§e 6 bee ome & 6] e T s M B (4.12)
I - -GSl |k? '
-IL -Gj| |7
| sym =J | <]
q
m
[bw 60 8¢ 63 64 | r (4.13)
Tﬁe
O_é_
qo
myo
{[520 60 66 673 64] | 7o } (4.14)
TFLS rmure
%

If we were to look at (4.12) with an eye on the explicit form of matrices presented in 1.1.6.
then vectors k¢, ¥ and ¢ should have three components with their third component being
zero and hence the 18 x 18 matrix in this equation which we will shortly call it H, would
have some zero elments corresponding to these entries [which can be verified from 1.1.6.]. In
fact the H matrix has three rows and columns with zero entries which can be eliminated at
this level. This will give the desired 15 x 15 coupled electromechanical constitutive matrix.
To continue building the semi-discrete finite element equations let us group some quantities
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and name them.

_|Ap Sp

o= [sf 1)

(AT S™ AS S¢S I
™S, L IL G

_ —A; —S§ —S; I
H = I I -GS
-I; —Gj

| sym —J |
7]

m

ﬁb— T

e

]

o

mg

| 9§ ]

(4.15)

(4.16)

(4.17)

(4.18)

The zero component of vectors ¢, 7 and ¢ are now excluded and H is a 15 x 15 matrix. The

finite element matrices can now be written as,

le
Me¢ = 5 NLHpNp dzs
le
le
K¢ = ) / BTHB du;
le
e le T —
Fy=— | N7, dxs
2 /.,

Ff = [NT@}
I'muyre

where

N, O O 0 O 0O Ny, O 0 O 0 0
O NN O 0 0 O 0 Ny O 0 0 0
N._| 0 0N 0 0 0 0 0N 0O 0 0
P10 0o 0O N O O O O O N, 0 0
0o 0 0 O N, 0 0O O 0 0 Ny, 0
0 0 0 0 0 N O 0 0 0 0 Ny

6% 12

and B and NN are given by (4.24) and (4.25), respectively.
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(4.24)

)

)
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(4.25)

0
0
0
0
0
0
0
0
0
Ny
0

~
11x22

Ny
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Analytical Solution of Planar
Piezoelectric Beams

“Although I am a computational mechanician, but I often say:
A good closed form solution is worth a thousand of computations.”
Ted Belytschko

5. Analytical Solution of Planar Piezoelectric Beams

5.1. Governing Equations of Planar Piezoelectric Beam

In this chapter, we solve the two-dimensional piezoelectric beam problem outlined in the
earlier chapters, analytically. If we consider the hessian of electric potential v, i.e. a quadratic
distribtution of electric potential across the thickness, then the system of equations consists
of five ordinary differential equations (2.58)-(2.62), where the unknown variables are stress
and electric displacement resultants. Knowing that,

Q=AF+ A +I¢

M = 1R + Igké + 157

Qe = A" E— Ajet —I5¢

Me =15 R — Tert — 157

Me =157 — 1§ vt — 15

g T T — N
Oc =17 €17 € — J<

and that distributed moments are merely mathematical entities, referring to Appendix 1 for
the explicit forms of the above tensors and noting that.

dwy oy dps dyz
T i z 7 ”
— W — -2 - — —
Rt RS e g I E Ry
dws db3 d¢ 0 0 0
dxs dzxs d1’3
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5.1. Governing Equations of Planar Piezoelectric Beam

We obtain the following system of differential equations corresponding to each of the above
differential equations.

g |#Aks 0 0 L — 0, d Pz Pog Pas| [P
p. pAk, 0 z—ﬁ +0; | + 714 Pra3 Proz Psa3 gl
3 | sym 2+ M)A ds 5 | Piss Pas Piss| \ 32
d 1 P313111 Paizlay 0 Z%i a1 0

+%§ P3a3li1 Paaszlay 0 2% +lae|=10] (5.1)
3% | Pssslin Psgslon 0 0 3 0
d (2u 4 NIz 0 0 % d 0 Ps3zlsy 0 %
Tn (2u+ N1 0 | T —Ps333114 0 0 %

3 sym i) % 5| Psaslin  —Psislyy 0 0

d 0 Pyszles O (72 . 0

7 —P133]11 0 0 Y| + €3 X Q =10 (52)
Prozlyy —Pozlyn 0 0 0

d P11z Praz P33 % — 0 d €11 €12 €13 B2
%A P13 Pyz  Pass sz_ﬁ +01 | — %A €22 €23 B
’ Psi3 Piog Psss Zﬂ ’ sym €33 j—(b
xr3 T3
d 1 ei3li1 €13lan 0 % 0 0
—%5 623[11 623[22 O % + O = O (5 3)
2% |esslin ezl O 0 r 0
3
d 0 —Ps33li1 Pzl % d esslin 0 0 %
T Py3315 0 —Pysly | | 2| — essloy 0| [ 422
Tyl g 0 0 ags | drs | ol \¢
dxs

d ezrdn 0 0 2 0
e €2loy O [ ] —Qa =10 (54)
3| sym 0] \O 0
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dwq

g 1 | Pl Pzl Passlu| ey — 02 ezl el eslin| [ B
—— | Paislea Paaslay Pigslan Z—;‘f +01 | — 5 |€esloa €a3lan €330 A
3 0 0 0 oy s 0 0 0 |\
d 1 eszJi1 €33J1122 0 fl% 0 —Pisslin Piaszliy ] %
—d—z €33J2211  €33J2200 0 % — | Passlan 0 —Ps13159 ﬁ
s 0 0 0] \o 0 0 0 | \&
estfu 00 % enliny, 0 0 /% 0
+ 0 €32lap 0O % + 0 €22l29 0 M|l =10
0 0 0 0 0 0 0 0 0

(5.5)

A few remarks are in order.

Remark 7. In (5.2) and (5.4) the expressions é; x @ and Q¢ are the stress and electric

displacement resultants, as given in (5.1) and (5.3), respectively (certainly without the outer
derivatives).

Remark 8. The brackets and subscript 3 in equation (5.3) implies that we only need the third

. . dQs .
component of this vector i.e. % + r. The other two components of )¢ are used in moment
resultants as mentioned earlier.

Remark 9. In the theory of beams it is a common practice to tune the Young’s modulus
E =2pu + ). Note that the shear coefficient for a piezoelectric beam needs to be calculated
separately due to the emergence of coupled shear stresses which are one order higher in
electric part compared to the mechanical part. In many of the examples we will assume this
factor as unity. A purely mechanical shear factor is also admissible because the electric part
does not need any corrections as it uses higher order terms of the Taylor series.

In order to solve the two-dimensional piezoelectric beam problem analytically, we chose
the x1 — x3 plane and reduce the number of unknown variables to the ones corresponding to
this plane. Assuming no axial displacements and rotation about x3 axis, we have,

wip = W, wy = 0, ws =0
0y =0, 0, =0, 03=0
o=
B = B, p1=0
Y2 =7, 71 =0
T3 =2, I =1, Iy =0
Jinn =J

With these simplification, taking the first row of (5.1), second row of (5.2), third row of

(5.3), first row of (5.4) and first row of (5.5) we obtain the generic governing equations of
piezoelectric beam.
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d dw d d 1 d
dx (MAk (da; 9)) i dx ( (Frash + Paas d(b) - 2P313[d7) ta =0
d do d dp dry dw
— | EI— Ps33] P33l A
dx( d:c) dz (333 d> ol g+ AR = 0)
d d
A(Pr13f + Psi3 d¢) + 3 P?)lsfal—7 =0

d do 1 dry
I <P313A(% - )) i <A(€133 temo )+ 56331_dx> +r=0
d o\ d( d d y
Iz <P333I—) + —( 33.7—ﬁ> + 61311 + P13 Ak, (—w —0)

d dx T d dx dx
d 1 d
—A(enp + 613df) — 561 dz 0
d |1 dw 1 d 1 d do d
Ir 2P313[(d— —0)— §I<613/@ + 633(5) — Z 33J£] + I(P133d + 613d—6 + 6117) =0

Together with the appropriate boundary conditions the piezoelectric beam problem is com-
pletely closed with the above set of equations.

Our aim is to solve for a cantilever energy harvesting piezoelectric beam purely under
the action of mechanical loads. To this end, we simplify the above five equations by equating
r = 0 and integrating the third equation inside the box. Note that we also set the constant
appearing after integration to zero, since that represents a point electric charge (counterpart
of point load). Similarly, in the first equation, we set ¢; = 0 and perform integration. The
constant of integration gives rise to point load P acting at the free end of the cantilever
beam. In practice, the beam energy harvesters are normally excited with a point load rather
than with a distributed load. Assuming that all material and geometric properties remain
constant throughout the beam length, we can take out the coefficients and simplify,

al(cjl—q: —0) 4 a8 + a3(01l¢ + ;alg Zz P (5.6)

%_ 5;126)—a1327+a1(%—9)+a25+a32¢+2%231 0 (5.7)

CLG(Z—Q: - ‘9) — a7 — as% - % ;ll 0 (5-8)

% %alg(iij—’l;j —0) — %(algﬁ - agg) — iaw% + a13% + a14% + a7 =0 (5.10)

which are the five governing equations of a cantilever piezoelectric beam under the action
of point load at the free end. The set of equations is closed by the following ten boundary
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conditions,
w(z=0)=0
OQ(x=0)=0
$(z=0)=0
flx=0)=0
Y(z=0)=0
dw d 1 d
Q(l’ = l) = |:CL1(% — 8) + QQ/B + Clgd—i + 5@12% . =P
df d 1
M(x=1)= [all% — a5£ — a3y N =0
dw d 1 dvy]
Qe(x = l) = |:CL6(% — 0) — CL7B — agﬁ — 5&9%_ - =0
do d 1
Me(.’ﬂ = l) = |:CL5% + agﬁ + CZ14")/- » =0
dw 1 d 1 dy]
Oe(l’ = l) = {au(% — 9) — §(a14ﬁ + agd—i) — Z—lalg,ﬁ- . =0
where.
a; = [LAI{?S a9 = P113Ak35 as = P313Ak’5 ay = EI
as = P33l ag = P313A a7 = €34 ag = €33 A
ag = €g3l ag = €114k; a1 = e13Ak; a1y = Psi31
a3 = Piazl a1q = €131 a5 = €33J aig = el

Note that the two boundary conditions (5.16) and (5.18) are already present in the gov-
erning equations. From the theory of beams and plates we know that Neumann boundary
conditions are normally given in the governing equations themselves in the form of shear
force and bending moment. In this problem we postulate a similar Dirichlet and Neumann
boundary conditions for electric kinematics i.e. all the electric variables are zero at the fixed
end and their resultant derivatives are specified at the free end in coupled fashion. This is

also shown in Fig. 7.

To solve the above set of equations we proceed as follows. From (5.6) and (5.9) we

can eliminate Ccll—: — 0 and find % in terms of other variables i.e.

dx Ca g ardr 2 a; dr

@_ G6P_b1 by dy

dr  aybs by bydx

where,

(5.21)

(5.22)
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Substituting (5.21) in (5.9), we eliminate 22 — 6§ from this equation as well,

d?0 d’B dry do
— —b — b33 —b =2p=0 5.23
5 +ag—— PR 30 . + 2 o (5.23)
where.
a% Q203 1 asas
b3 = —= + aq, by = aii, bio = = ( — a14)
1 1 2"
Substituting (5.22) in (5.23), we obtain
d?0 d?s dry
as dr? + ag——= A2 blld - b56 + b6P =0 (524)
b1b b byb
by = by — =, b= =2 — 21, b == — big
b2 aq albg b2
Similarly, we can eliminate % — ¢ and % from (5.23)7
L 0 (5.25)
a — — tay = .
13d . 16d 167 =
where.
bib bi3b
bis = ~bio + =, bis =~ — bu
2 2
1 asai2 1 a%2 1
biz = boy = — 12 4 =
13 = 2( @ ag) 4= 7 a + 1415

With these modifications we now have a system of three equations with three variables.

a4fl%§—a5%—a13d7—i—f’—0

2
a5f§2+a9d$2+bn — b5 +bsP =0
G13d$+bl5d +b16d + a6y =0

These three coupled equations are in terms of rotations; if we can emancipate from maths to
say so. At this stage, it is necessary to mention that not all cases of piezoelectric cantilever
beam yield the above set of equations. Many piezoelectric materials have an inordinate
number of zero entries in their piezoelectric and permitivity tensors, and this significantly
affects the coupled nature of the governing equations. In this work, the aforementioned three
equations are categorised into three main cases namely, the fully coupled case, the case when
permitivity tensor is diagonal and P33 = 0 and the case when only the solution with a first
order electric potential is sought for. While the first case is mathematically important to
solve, in practice very few piezoelectric materials give rise to such a coupling. The most
notable piezoelectric materials like PZT-5H, PZT-5A, Quartz and many more have diagonal
permitivity tensors meaning that in our case €33 = 0 and this as we will see changes the
nature of electromechanical coupling significantly. The last case considered is when our
approximation of electric potential is up to first order. This is an elegant case which provides
us with an insight into a simpler way of coupling and whose solution can be compared with
many other numerical models in the literature. We solve for all these three cases starting
from the last case and working our way backwards.
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5.2. Piezoelectric Beam with First Order Electric Potential

Considering a linear electric potential across the beam thickness, one ends up with only
two coupled equations in terms of # and [ which are,

20 2B

= —%w%—P:O (5.26)
a5% + ag% —b;8+bsP =0 (5.27)
with the following boundary conditions.
OQ(x=0)=0 Blx=0)=0

Certainly the last two coupled boundary conditions can be written in uncoupled form as

ol gl _
|:@:| =l =0 [%] =l B

Integrating (5.26) twice and applying the boundary conditions for # we obtain.
0=—=8——z’+—=zx (5.28)

Substituting (5.28) in (5.27) we obtain a non-homogeneous second order ordinary differential
equation in terms of j3,

d2B

where.
2
as

as
b7:_+a97 bgzb(;——
aq Qg

The complete solution to (5.29) is given by,

b
B = cze + che™ + b—SP (5.30)
5

where k = 4/ Z—i and the coefficients ¢; are found after applying the boundary condition as.

bg 1 bg €2kl
CSZ—E{W]P C4=—b—5|:mp
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All the remaining variables (6, w and ¢) can be found by back substitution.

b8 1 kx 2kl —kx b8
P PL

by 1 2kl
v (E al) l{:{l%—e?"/’l} (e cc +b5 a1¢
p , PL, P 1las  a 1 2kl
. 2=y ——_iPl1= 5.34
6EI$ + QEIx + ,UAk’sx k(a4 (11) {1—#62“} ( € ( )

5.3. Piezoelectric Beam with Diagonal Permitivity Tensor

An important and simple way to solve for all the variables for a piezoelectric beam with
quadratic electric potential assumption arises for materials with diagonal permitivity tensor
and P33 = 0, certainly when poled along the longitudinal direction.

a4% —a5%+P:O (5.35)
(15% + GQ% — b8+ bsP =0 (5.36)
515% + blﬁ% + a1y =0 (5.37)
with the following boudnary conditions.
6(x=0)=0 {a4% —(g% » =0
Blx=0)=0 {%%—Fagfl—ﬁ_ :C:l:()
Y(z=1)=0 %alg(fl—: —0) — %@% - iawz—;: » =0

The first two equations are the same as before (together with their boundary conditions), so
we do not need to solve for # and [ once again. The expression for + can then be obtained
by solving the third equation,

mM1Mme sinh(\/ﬁlx) + /mims Cosh(l\/m_l — \/Wlx) — /mimy cosh(l\/m — \/m_lx)
N Jma cosh (/i) (my — k)
—k*mysinh(y/miz) + kmgsinh(y/miz) e + kmysinh(y/miz) e7*!
* vmi cosh(l/my) (mq — k?)
B T s 8T — \fimg ek 539
Vvmi (mi — k?) '
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where,
a1 b23 b24 :|
my = —, Mo = —/B — P
! blﬁ ? |:b16 blGn =1
bsbys Pk bsbis [ Pke* 2kL
Ma = mas = = Mae
3 b5b16 1+ 62kL ’ 4 b5l716 1+ 62kL 3

The two remaining variables (¢ and w) can be found by substiting the values of known 6, 3
and v in (5.22) and (5.21), respectively.

5.4. The Fully Coupled Case

Assuming no piezoelectric or dielectric constants to be zero, we need to solve the three
equations in their original form. The three equations can be reduced to two equations in
terms of # and ~y as follows,

d*p dy
d? d
b16d_xz + bioy + b18£ — byoPr + ajzc; =0 (5.40)
with the following boundary condition,
d
6(1’ = 0) =0 [b7£ + 521’7} . =0
dry
’}/(JJ == l) =0 bggﬁ - b16d— — b24P =0
Z =l

where ¢; is a yet to be determined constant and the remaining constants being.

2

a50a13 1305 a

13
biz = by + ; big = + b5, big = — + ass
aq Qg Qg
b ais b 1305 bory — 1 1202
= = , = _
20 21 Q14 22 Q14
ay ay 2 ay
bow — b by b aiz  bizag
23 = 022 ) 24 = —— —
by ay a1by

In order to solve the above coupled equations we use the matrix method and proceed as.

v =3, Y2 =7
y = @ :y/ y f— d_’}/ :y/
57 dx b P da >

This leads us to the following system of equations,

U1 0 0 1 0 Y1 0
s 0 0 0 1 Y2 0

= — 5.41
yé —ny 0 0 —Ng Ys 1 ( )
Yi 0 —ng —ng O Ya Jox + f3
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where.
e bs n_b17 n_b19
1= —7, 2= 5, 3= 7
b7 b7 bl6
bis bs bao
= — = —P =P
Ny blﬁ’ fl b7 ) f2 b16
4131
ﬁ—bw

The homogeneous solution to this problem is obtained by finding the eigenvalues and eigen-
vectors of the matrix above and has the following form,

—

Y. = CoT €M 4 30 4 ey e 4 cxaieMT

where s, c3, ¢4 and c5 are constants, 7; the eigenvectors and \; the eigenvalues. Since the

particular solution involves linear terms we will need to use fundamental matrix ®, which is
essentially the matrix with columns as Z;e*s. The particular solution is then,

7, = <I>/i>‘1f(x)dx

where f(z) is the source vector. To find the constants the boundary conditions are applied

as.

1 0 0 Ny 1 0 o 0

yof 10 ne 0 0 1197 \=n;
This leaves us with a 4 x 4 system whose solution is the vector containing constants. Note
that,

. b2 1 b23 b24

T by big big

ny

The solution is quite lengthy and is not reported here.
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Numerical Simulations

“First, solve the problem. Then, write the code.”
John Johnson

6. Representative Numerical Examples

6.1. Static Analysis
6.1.1. Emnergy Harvesting with Cantilever Piezoelectric Beams

The numerical examples presented in this section are primarily tailored towards sim-
ulation of fabric-type harvesters and fibre-based sensors, which are essentially single layer
piezoelectric sheets with no substrate material, polarised along the length, more commonly
referred to as interdigitated electrode configuration (IDE) [40] [21] [36] [12]. To this end, we
begin with the analysis of a cantilever piezoelectric beam with an applied point load at the
free end. The analytical solution for this problem in the setting of the present formulation,
was reported in the previous section. Fig. 7 shows a cantilever beam polarised along the
length with an end load acting at the free end. Much of our numerical examples will follow
similar geometrical configuration, unless explicitly stated.

Electrodes

\

Figure 7: Piezoelectric cantilever beam polarised along the length
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6.1. Static Analysis

According to |

length is given by:

}:

¥

7.95 x 1010 N
2.33 x 100 f 2’

] and [5], the material properties for PZT-5H when polarised along the
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0 0 —65
1505 0 0
3| C C
= 8 107 2%3 —, €= 1505 0 | 10—
7o o | 13 "
0 0 0 |

The h, p and hp convergence of all variables are obtained with the finite elements out-

lined in chapter 4. and are plotted in the following figures. Length of the beam is taken as
100mm and height as 1mm. The point load at the free end is 0.1V for this case. Legendre
bases with Gauss quadrature integration rules are employed in the following analysis. We
emphasise on numerical integration since two types of quadrature have been implemented,
Gauss quadrature and Gauss Lobatto quadrature and shortly we will see the comparative
performance of each.
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6.1. Static Analysis

Let us now consider the case where the permitivity tensor is diagonal. To verify the
computational scheme with the analytical solution, we first plot each variable vs number of
elements, shown in Fig. 11. Note that red circles represent analytical solution and the blue
lines the numerical one. Important to this analysis is the importance of coupled Neumann
boundary conditions.

350 0 50 100 150 200 250 300 350

= 4}
3k
oL
1
O0 50 160 l!l}O - 260 2.."")0 360 350
0
—-0.05
-0.1
-0.15
= -0.2
-0.25
-0.3
-0.35
04 50 160 léO 260 250 30 350

el

Figure 11: Comparison of Numerical and Analytical solutions

As can be verified from the analytical problem presented in chapter 5. the boundary
condition is now such that one needs to explicity modify the right hand side vector. The
Neumann boundary condition for v translates into a moment term added to the right hand
side vector by the amount by33 — boy P. Numerical solution of these cases are treated here as
a two-step procedure. First we solve the system with first order electric assumption ignoring
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v, since 8 and 6 are decoupled from the rest of variables and then we modify the right hand
side and solve the system with . It should be emphasised that this problem occurs only
in the case of piezoelectric beams with diagonal permitivity tensors and P33 = 0, due to
the natural way, boundary conditions evolve, and this has to be treated automatically in the
computational scheme. All other cases are imune from this issue. Also note that to have
non-zero v and ¢, we need to have non-zero Ps;3 which is assumed to be 20C'/m? for this
analysis. The point-wise h-convergence for all the variables including the hessian 7 is shown
in the following, where blue lines represent linear bases and red lines quadratric bases.
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Figure 12: h convergence for diagonal permitivity case
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6.1. Static Analysis

In order to verify the numerical solution with the analytical one for the fully coupled case,
we assume a piezoelectric material which has non-zero material data wherever required. The

following data have been assumed [units omitted]:
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The gemetric properties are taken as L = 10, h = 1 for this example. The following
plots show the h-convergence of H' norm. The convergence of energy norm is also plotted at
last. It should be noted that blue lines represent linear basis functions, red quadratic basis,
green cubic basis, magenta quartic basis, cyan quintic basis and yellow sextic basis. The
convergence of H! norm and L? norm, completely comply with theoritical predictions.
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Since the analytical solution is extremely lengthy and involves many trigonometric, hy-
perbolic and exponential functions, the accuracy achieved in any computing environemnt is
limited due to evaluation of these functions and the numerical solution on the other hand
completely justifies this arguement. In fact one can conjecture that the numerical scheme is
giving superior results compared to those of analytical.
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6.1.2. Emnergy Harvesting with PZT-5H

We now perform a realistic numerical simulations of energy harvesting with a cantilever
beam of PZT-5H in 2D. Since our model is essentially that of Timoshenko which is more
suited for thick beams, the dimensions are taken as h = Imm and L = 10mm. The material
properties are.

[0 0 —6.5]
0 0 —6.5
A _ [795x 10y N, foo0 23| C 150 1;)05 8 s
pf T 23x10° [ T T l0 17 0 | m2 T AR Vm
17 0 0 '
0 0 0 |

As common in the theory of beams, in the post-processing stage we recover stress re-
sultants instead of stresses and strains. Since in our formulation electric displacement re-
sultants also naturally arise, hence its plausible to compute these quantities as well at this
stage. However, since these quantities are the internal counterparts of external “forces i.e.
Neumann boundary conditions”, and in practice such boundary conditions are not imposed,
they should be zero. In finite element computations these are the recovered quantities which

are certainly not as accurate as the primary variables. This issue can be identified from the
following figures.
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Figure 16: Stress and Electric Displacement Resultants
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Figure 17: Displacements and Electric Potential (Isotropic Case) on Initial Configuration

It is interesting that the inclusion of anistropy does not affect the results in a significant

way for PZT-5H. To include anistropy, we have to use the full elasticity tensor, which for
PZT-5H is given by [50].
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B 117 0 0 0 w0 N
C= 23 0 o | 1052
23 0
| sym 2.33

Looking at the colorbars in Fig. 17 and Fig. 19, one can observe that the differences in
the results for isotropic and anistropic cases is in fact small. For a quantitive comparison,
Fig. 18 shows the variation of each variable along the length of the beam.
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Figure 18: Comparison Between Isotropic & Anistropic Cases for w, 6 & 3

This is because PZT-5H is a transverse isotropic material which has nonzero off-diagonal
entries in its elastic constitutive tensor, and as a matter of fact only two of these elements are
accessed in the current example namely C33 and Cs5 which are in fact the replacements for
Young’s modulus and shear modulus in the isotropic case, respectively. Since Cs5 = p and
Cs3 is a bit less than the Young’s modulus hence the stiffness of the system is decreased and
as a result the displacements and consequently the electric potential are increased. It should
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however be noted that the resemblence in final outputs between isotropic and anistropic
states is specific to PZT-5H and may also be observed in materials with cubic symmetry,
transverse isotropy and orthotropy. The plots in Fig. 18 correspond to the only non-zero
variables in this case, since the problem is mechanically driven and all electrostatic boundary
conditions are zero.
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Figure 19: Displacements and Electric Potential (Anistropic Case) on Deformed Configuration

6.1.3. Cantilever with Uniformly Distributed Load

We now analyse an anisotropic PZT-5H cantilever beam under the action of uniformly
distributed load. A load of 5N/mm? is applied on the beam, and the geometric properties
of the beam are kept the same as before. To remove locking phenomena we adopt a higher
polynomial degree interpolation, since with linear bases, one has to use at least more than 200
elements. The resulting displacements and electric potential are shown in a two-dimensional
format.

FElectrodes

Figure 20: Piezoelectric Cantilever Beam with Uniformly Distributed Load
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Figure 21: Displacements and Electric Potential on Deformed Configuration

Also, the stress and electric displacement resultants are.
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Figure 22: Stress and Electric Displacement Resultants
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6.2. Modal Analysis

Exciting piezoelectric structures to specific frequencies is crucial in energy harvesting.
Many piezoelectric beams function in low frequency range and if they are designed to harvest
from ambient vibration, then the lowest frequency of the beam should be adjusted to the
natural frequency of ambient structures. For our later investigation, it is essential to perform
some eigenvalue analysis. To start off, we benchmark the problem again with the analytical
results to assure the reliability of computational scheme. The analytical solution is given in
Appendix 3 for simply supported and cantilever planar Timoshenko beams. In the current
scenario the mass of piezoelectric structure remains that of Timoshenko and its stiffness is
obtained through static condensation which we here call it “equivalent stiffness”. 1t is in fact
advantageous to benchmark our eigenvalue problem with Timoshenko model as the inclusion
of piezoelectricity shifts the eigenspectrum by a small amount; and this is the case for a
major class of piezoelectric materials. This argument is followed by the Fig. 23.
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Figure 23: hp Convergence of 4" Eigenfrequency for Simply Supported Beam

Note that in Fig. 23 [bottom-right one] a uniformly reduced integration is not performed
for Legendre basis functions 2, and thus it may not correspond to a mixed formulation,
mathematically, as in the case of Lagrangian basis with uniformly reduced integration and
so their comparison [Lagrange and Legendre| is perhaps not plausible.

2Since Legendre basis functions are hierarchical, implementing a uniformly reduced integration becomes
difficult, as each element of the stiffness matrix will have a different polynomial degree.
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Cantilever case is considered next. Fig. 24 follows the
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Figure 24: hp Convergence of 4" Eigenfrequency for Cantilever Beam

As mentioned earlier, the deformation in the plane x; — x3 and the plane x5 — x5 are identical
for purely mechanical beams, which is well captured by the numerical scheme as shown in
Fig. 24 [bottom-right]. In this analysis 5th frequency of the planes are compared. Note that
in this analysis material properties are assumed as A = 0, p = %106 and p = 500 and the

remaining results all correspond to those of plane z; — z3.
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Now that we have benchmarked our scheme, we perform modal analysis for a thin
anistropic PZT-5H cantilever beam with L = 30mm, b = 10mm and h = 1mm. Nor-
malised eigenmodes and eigen-frequencies are shown below. The magnitude in the colorbar
indicates normalised absolute magnitude of total deformation.
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Figure 25: Normalised Eigen Modes and Frequencies of PZT-5H - Coupled Equivalent Stiffness
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Figure 26: Normalised Eigen Modes and Frequencies of PZT-5H - Purely Mechanical Stiffness

One can observe that eigenvalues and normalised eigenvectors for mechanical stiffness and
equivalent stiffness have remained the same. To evaluate this more precisely, let us dig a bit
deeper. Table Table 1 lists the natural frequencies in each case for up to wip.
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Table 1:

Natural Frequencies

Mode

Wm

Wp

Wm —Wp
Wm,

© 00 O Ol Wi

—_
)

140.81149134
875.65766700
2422.20896950
4665.76977219
7550.54225521
11003.36779600
14950.01035772
19318.97869416
24044.52728908
29068.14324649

140.81149451
875.65805424
2422.21145393
4665.77830766
7550.56336363
11003.41050281
14950.08575128
19319.09929792
24044.70637895
29068.39421358

2.25613409e-08
4.42223200e-07
1.02568804¢-06
1.82938086e-06
2.79561643¢e-06
3.88124838e-06
5.04304395e-06
6.24276081e-06
7.44825923e-06
8.63375018e-06

10"
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Figure 27: Absolute Relative Difference in Frequency Response between Mechanical Stiffness and Equivalent

Piezoelectric Stiffness

It should be noted that higher order frequencies are normally not accurate in finite ele-

ments |

] and the results above should be looked upon with suspicion. However from Table 1

one can observe a minute shift in frequencies. Since the piezoelectric and dielectric param-
eters are way smaller than the mechanical ones, these results may differ from material to

material.
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6.3. Dynamic Analysis

In this section, we perform dynamic analysis on cantilever piezoelectric beams. Since
we have utilised higher order basis functions, the computational cost of dynamic problems
for larger systems will be reduced substantially if we perform static condensation for inte-
rior degrees of freedom. To perform static condensation in a dynamic scenario is not that
straightforward. To show how static condensation is performed for problems involving in-
ertial terms, consider the HHT-a method which is one of the most generic methods in the
family implicit dynamic integrators for structural problems, with integration parameters «a;, o
and ~ [cf. Appendix 4 for procedural details of direct time integrators utilised in this work].

Miizi1 + (1 + ) Kiliy — vKil; = (1 +7)Fiy1 — 7 F; (6.1)
Uiy = 13 + At [(1 — 8)il; + &LH] (6.2)

5 5 - 5,1 bre T
Uiy = U; + Atu; + At (5 — Q)i + il (6.3)

While carrying out static condensation on global matrices, the above equations can be rewrit-
ten in the following form.

Maa Mab i_Zq_s_l Kaa Kab ﬂ’@ Kaa Kab ﬁq
:’z + 1 + _:H—l _ _‘7,
[Mba Mbb} { b } (1+7) l:Kba Kbb} {U?H} K {Kba Kbb} {“?}

Usitq

ia ia
(1-9) {ﬁb} +5{ﬁg+1} (6.5)
7 1+

From (6.6) we have.

i _ L [fa ) fe) o 1 fal 1) fiE
it At2o | | @y a? Ata | @b 207 | @i

Substituting (6.7) in (6.4), and condensing out @’ ,, after lengthy algebra we obtain,

—~

6.7)

—

- - 1.
|:Kaa - KKy, Kba} Uy = (1+7) {Fﬁu - KKy, sz+1}

-7 |:F:ia - kabkbblﬁ;b] + |:Kaa - Kab-kbblkbalﬁg + |:Kab - kabklﬂylkbb} ﬁ?

1 - oL o 1 - . .
T Ao {M aa — Kap Ky, M bal G+ [Mab - KuK,, Mbb} i

1 - 7L =4 1 - - .
~0m5) {Mm ~Kaky, Mba} i — (1 - 5~) {Mm - Ky Ky, Mbb] iy (6.8)
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where,
Ko = (149K + LM (6.9)
R 1
Ko = 7K pn + ——M 1, 6.10
ol + Xa (6.10)

for any m,n = a,b. Once the exterior degrees of freedom %, , are computed, the interior
degrees of freedom u? 11 can be computed as.

: : . : e 1
Ky}, = Kt} — K@i}, + Kol + My, {mu? —(1- %)Uf}

1

My, | —
* b[Ata

. 1, v
i = (1= )] + (R =2 (611

The algorithm is summarised in the following.

1. Build Stiffness K and Mass M Matrices.

2. Split the matrices into exterior and interior parts K,,, and M ,,, [m,n = a,b]
3. Build modified stiffness matrices K, and K, [m,n = a,b]

4. Initiate nodal displacements g, nodal velocities ﬁo and nodal forces vectors ﬁo
5. Choose At, nstep, o, 6 and ~.

6. For each time step compute the nodal quantities

(a) Compute nodal displacements of exterior DoF’s #, ; from (6.8)
(b) Compute nodal displacements of interior DoF’s w?, ; from (6.11)

(c) Compute nodal accelerations

ia 1 7 7o 1 e 1 ia
b = R A i R (o R i)
Uiy At2a Uitq u,; Ato Uu; 2c0 Uu;

(d) Compute nodal velocities :

e, ue
Uit u;

— —

ué ué
n-o{F} oo (i}
% i+1
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Before starting with the dynamics of piezoelectric beams, we first examine the perfor-
mance of the developed methodology with the same geometry and material parameters used
for modal analysis. The following plots compare dynamical results for the choice of static
condensation and different polynomial bases - p.
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6.3. Dynamic Analysis

As the first example of energy harvesting via vibration, we analyse a thick cantilever beam
of anistropic PZT-5H under the action of sinusoidal point load P = 100sinz, x = 0,4mw. The

dimensions are L = 10mm and h = 1mm.
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6.3.1. An Ambient Vibration Energy Harvester Undergoing Coupled Bending-
Torsion

In this section we analyse a fully three-dimensional piezoelectric energy harvesting beam
undergoing coupled bending torsion vibration. As reported by [1], coupled bending-torsion
harvesters can function on broader frequency ranges and are advantageous in improving
efficiency of energy harvesting. To this effect, we analyse a fibre of AT-cut Quartz with
dimensions as follows,

Table 2: Beam Dimensions

Material Length (mm) | Height (mm) | Width (mm)
AT-cut Quartz 40 0.9 12

and material properties as [50)].

[86.74 —825 2715 —3.66 0 0
129.77 —742 57 0 0
B kg B 102.83 9.92 0 0 o N
p=26495,  C= 3861 0 o | X10s
68.81 2.53
| sym 29.01|
[ 0.171 0 0 ]
—0.152 0 0
3921 0 0
0. C C
p— |700187 0 0 — €= 30.82 0.86 | x 10712——
0.067 0 0 m2 wum 049 Vm
0 0.108 —0.0761 y :
0 —0.095  0.067 |

To start with, we first compute the first six natrual frequencies of the beam. The di-
mensions of the beam are chosen such that one of these modes (sixth mode) correspond to
twisting. In the next step, we perform a static analysis and compare the results obtained
with first order and second order electrical potential assumption across the thickness. For
computing natrual frequencies, we employ Hth order Lagrange basis functions using 50 ele-
ments. As observed in the modal analysis section, higher order bases produce robust results
up to computer precision. The first six natural frequencies are listed in Table 3.

Table 3: Natural Frequencies of Bending-Torsion Fibre (H z)

1 2 3 4 ) 6
112.4549400 | 703.7163505 | 1412.3115348 | 1965.8138759 | 3839.1405538 | 6321.4888954

The mode shapes corresponding to these frequencies are shown in the Fig. 32. Note that
for the purpose of plotting the interior degrees of freedom are condensed out and the colors
in the plot which essentially show the absolute magnitude of deformation are magnified by a
scale of 50.
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Figure 32: First Six Modes of Bending-Torsion Fibre

This problem is completely coupled in nature. Unlike the common three-dimensional
mechanical beam problems in which displacements and rotations in one direction do not
affect those of the other directions, here due to the usage of full material tensors the electrical
potential counterparts of rotations i.e. electric potential gradients and hessians 3, and 7,
are coupled in all directions although mechanical variables are still decoupled. This is the
sophistication of this formulation which although still using the simple mechanics of beams
we can replicate the linear piezoelectric behaviour reliably. As pointed out in first section
the available piezoelectric beam models in the literature are extremely simplified, a good
number of which rely on the assumption that electric field/electric displacement vanish in
some specified direction(s) [1] [12]. At the end, depending on the level of simplification, a lot
is taken away from the actual physics of the problem. We categorise the static analysis into
three cases, bending only, torsion only and coupled bending torsion. The loading scenarios
are listed in the following table, where a negative sign indicates downward loading and a
positive moment stands for clockwise rotation.
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Table 4: Loading Scenarios for Bending-Torsion Harvester

Cases/ Load End Point Load (N) | End Twisting Moment (Nmm)
Case 1 - Bending -5 0
Case 2 - Torsion 0 150
Case 3 - Bending-Torsion -5 150

The electric potential is plotted in the following figures on the deformed mesh. Note that
while the potential produced between end electrodes can be high for sensor application, our
aim here is to find optimum electric output for energy harvesting purposes.
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Figure 33: Voltage Output for Three Loading Cases

One important aspect that we would like to shed some light upon is the inclusion of
quadratic term in electric potential. To show how the results vary from a linear case to
quadratic case, we first show the variation of each variable over the length of the beam.
These are shown in the following figures for the coupled bending-torsion case.
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Figure 34: Variation of Mechanical Variables over the Length

All the remaining variables which are not shown are zero in this case. This includes
gradient of electric potential in x5 direction [,.
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Figure 35: Variation of Electrical Variables over the Length

If we keep the hessians of electric potential 71,7y, aside, all the remaining variables are
the same for first order solution and second order solution, apart from the electric potential
¢. Due to the nature of coupling one can observe from Fig. 35 that there is a shift in electric
potential. With this information if we plot the variation of total electric potential v on
the right end cross section and compare its variation through-the-height and through-the-

thickness
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Figure 36: Variation of Electric Potential Across the Width
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Figure 37: Variation of Electric Potential Across the Height

Observe that the variation of total electric potential across the height is constant in linear
case, due to [y being zero. Also in the quadratic case, contribution of hessian 7, is small
through the height. These discrepancies in the results are expected as the coupling in both
cases differ substantially.

Earlier in this section, we caught sight of stress and electric displacement resultants
for cantilever beams under the action of point loads and uniformly distributed loads. It is
certain that these quantities are composition of electrical and mechanical contributions. Also
the moment of electric displacement resultants in these plots correspond to Me¢ and not the
sum of Me and Mf. Since the D3 component of electric displacement produces a separate
moment Me¢ from those of its other components D, - which give rise to Mf moment, then
the total first moment of electric displacement should be realised as a summation of these
two quantities. Also the second moment of electric displacement O¢ was not plotted earlier.
This is due to fact that all electric displacement resultant quantities are associated with
Neumann boundary conditions, exactly in the same manner that recovered shear force and
bending moment are associated with the external load and moment - Neumann boundary
conditions. Since we impose zero Neumann boundary condition for electric displacement
resultants, they should vanish. In the following figures all these resultants for the case of
coupled bending-torsion beam are clearly decomposed into their electrical and mechanical
contributions.
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Figure 38: Shear Force of Coupled Bending-Torsion Fibre
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Figure 39: Bending Moment of Coupled Bending-Torsion Fibre
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Figure 40: Torque of Coupled Bending-Torsion Fibre
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Figure 41: Electric Displacement Resultant of Coupled Bending-Torsion Fibre

Finally, we perform dynamic analysis under tip load or tip twisting moment with frequen-
cies of applied vibration being those of natural frequencies of the beam computed earlier i.e.
we excite the beam at resonant frequencies. We perform the analysis with various damping
coefficients for the system. Classical damping with various coefficients are used. The dy-
namic problem is solved with Newmark’s method using 50 elements and quadratic Lagrange
basis functions with Gauss-Lobbato points. A dynamic load of P = Fysin(wt) is applied
on the fibre, where w is the frequency of vibration, P, the amplitude of vibration chosen as
100 here and t is time chosen as 60 seconds for the analysis. Fig. 42 and Fig. 43 show the
loading pattern and the end displacement for the case when beam is excited at first natural
frequency. Load is applied in the first 30 seconds and the timestep size is chosen as 1/150.

75 Roman Poya


mailto:romanpoya@gmail.com

FE for Three-Dimensional Piezoelectric Beams

100

80 b

601 7

40t ,

20¢ 1

Harmonic Load
o

-100 : : ‘
0 10 20 30 40 50 60

Time (sec)

Figure 42: Harmonic Vibration with Resonant Frequency
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Figure 43: End Displacement with Various Damping Coefficients Excited near 15° Natural Frequency

Since the elastic properties of the system is orders of magnitude larger than the density
the major contribution in damping comes from stiffness. As can be observed that excitations
damp out quickly for the case of stiffness proportional damping.To wrap up, we compute the
absolute maximum power harvested for six lowest natural frequency excitations. The power
can be computed from the variational form of Gauss’s law, which is presented in section 4.
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The instantaneous electrical power can be computed as.

e
d int

Pom Wia  [(E.Grw it s 2l +6.6) ay
l

(6.12)

In the finite element context one needs to compute the electrical power at each time step by
carrying out the normal post-processing used in stress recovery i.e. numerical integration to
compute the desired quantity at Gauss points and then looping over elements. The harvested
power for 60 seconds (full excitation cycle) and 30 seconds (half excitation cycle) for damped
and undamped system is shown in the following figures.
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Figure 44: Harvested Power at Resonance Frequencies - Half Excitation Cycle - Undamped
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Figure 45: Harvested Power at Resonance Frequencies - Full Excitation Cycle - Undamped

77

Roman Poya


mailto:romanpoya@gmail.com

FE for Three-Dimensional Piezoelectric Beams

5 1 Resonance " 274 Resonance
10 . ; 10 . ,
107 b
10°F
& S
T10° =
° 3
3 3
g g
& %
10°F
10° £
10’]0 L L L L L 10’7 L L L L L
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (sec) Time (sec)
- 3" Resonance 5 6" Resonance
10 ! | T 10 . T
10° —-\
10°
o T 10
N K
3 g 11
¥ < 10
10° b
10-127
10’10 L L L L L 10’13 L L L L L
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Time (sec) Time (sec)

Figure 46: Harvested Power at Resonance Frequencies - Half Excitation Cycle - Damped

Figure 47: Harvested Power at Resonance Frequencies - Full Excitation Cycle - Damped

It should be noted that this maximum power corresponds to an instantaneous power where
it is assumed that the electrodes are not attached to an external resistor. As observed the
maximum power is associated with the second resonance frequency. This is partly because
the amplitude of applied harmonic loads is kept the same for all loading cases but the loads
are applied in compliance with eigen modes of the system, i.e. in each case the fibre is loaded
in such a way that the deformed configuration is that of its corresponding modes.
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7.. CONCLUSION

Concluding Remarks

“The important thing in science is not so much to obtain
new facts as to discover new ways of think about them.”
William Henry Bragg

7. Conclusion

In this work, a three dimensional linear piezoelectric beam formulation and its subse-
quent finite element implementation has been presented. The mechanical kinematics of the
beam is that of Timoshenko i.e. the cross sectional planes remain plane but not necessar-
ily normal to the mid-surface. The electric potential distribution is quadratic across the
height and thickness of the beam. Unlike many available models [1] [12] [1], there is no as-
sumption of vanishing electric field in particular directions and thus strains and electric field
are coupled in all three directions. Starting from the enthalpy density of the piezoelectric
system, supplemented by kinetic and external potential energies [50], and utilising Hamil-
ton’s principle, consistent linearisation of the mixed functional has been performed and the
kinematics of the piezoelectric beam have been then embedded in the linearised form of the
problem to obtain the Euler-Lagrange equations in the form of partial differential equations.
These equations have been then solved analytically for planar beams to provide a benchmark
for the computational scheme. On the numerical analysis front, higher order Lagrange and
hierarchical Legendre basis functions have been employed to solve the monolithic problem
accurately [17] [28]. Due to similar spatial description of electrical and mechanical variables,

additional shear locking has been experienced [9], which has been rectified by utilising higher
order bases as well as reduced integration.

From studies on the nature of electric potential distribution across the area directions,
it is concluded that the inclusion of quadratic term affects the overall piezoelectric beam
behaviour significantly, in that one additional material parameter from piezoelectric tensor
is accessed which changes the nature of coupling.

Static, modal and dynamic analyses have been performed for a series of single-layer energy
harvesters under various loading scenarios. Since the electrostatic part does not contribute
to the mass of the system, hence the computed eigenmodes associated with the mechanical
beam and the piezoelectric beam show resemblance and the shift in eigenfrequencies has been
identified as negligible for lower frequencies. This is due to the fact that piezoelectric and
dielectric constants are orders of magnitude smaller than the mechanical ones.
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Crucial to the problems of energy harvesting is the mechanically driven nature of elec-
tromechanical coupling. The decomposition of stress resultants into mechanical and electrical
contributions, suggests that the mechanical contribution is way more pronounced in these
problems. Opposite observations should hold for actuation problems. The maximum instan-
taneous electric power harvested from the fibre under bending excitations has been in the
range of 960uWatt and for the fibre undergoing torsional vibration as 0.065uWatt, which is
certainly because the dominant modes of the fibre were bending related.

The results obtained with isotropic and anisotropic formulations indicate that for PZT-
5H the coupling is unaffected by the choice of formulation, in that only elastic modulus is
replaced with C33 with shear modulus having remained the same. Similar observation should
also hold for other classes of transerve isotropic piezoelectric materials, for which the change
in the results will depend on the difference between these elastic properties.

Appropriate error norms namely L?, H' and energy, have been computed and conver-
gence studies with different basis functions and different numerical integration schemes have
been carried out. Equally spaced Lagrange bases show end oscillation which is due to ill-
conditioning of the underlying Vandermonde matrix associated with them [28]. Lagrange
basis functions with Gauss-Lobatto-Legendre points are robust on the other hand, but re-
quire more computational effort as their zeroth points are not explicitly known. Legendre
bases show the best convergence, however they are not associated with any node inside the
element domain.

Numerical integration with Gauss and Gauss-Lobatto quadrature both yield similar re-
sults, although Gauss-Lobatto scheme uses two extra hat functions which can be seen as
extra computation, however they can be computed only once for mass and stiffness matri-
ces, with the advantage of mass matrix being diagonal but rank-1 deficient; as opposed to
Gauss quadrature using which needs different Gauss points and weights for mass and stiffness.

On its entirety, the formulation, finite element implementation and analytical solutions for
three dimensional linear piezoelectric beams outlined in this work are fundamentally novel,
with the advantage of retaining as much of the physics of continuum piezoelectricity as Tim-
oshenko model allows, in that there is no assumption on the electrostatic part of the problem.
The limitations of the approach are exactly the ones described by Hjelmstad [24] for linear
three-dimensional beams, which are essentially associated with dimensional reduction, i.e.
loss of Poisson’s ratio, no warping of cross section and the equations of continuum elasticity
and electrostatics having been averaged out over the cross section.
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A.1 Appendices

1.1. Appendix 1
1.1.1. Third Order Tensors

This section is devoted to matrix computations involving third order tensors, which are
extensively used in the analysis of three-dimensional piezoelectric beams formulated in the
earlier sections. Third order tensors and their idealisation as matrices are discussed with
a view to give the reader an idea of various simplified computing techniques. Third order
tensors can be represented geometrically by a cube, with slices (planes) in three dimensions
ie. x1 — X9, x1 — w3 and x9 — x3. We will use the term slice for planes and matrices arising
from the geometrical representation of third order tensors [8]. Fig. 48 follows this argument.

I
=7 =2 f=F (H A211 A311
=1 — Ao | Asan Asx
/ Apzz|  Aon Asss
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e 7 A=|[Anz| Aus  Ass
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Figure 48: Geometrical Representation of 3" Order Tensors
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1.1.2. Pre & Post Multiplication with Vectors

The main goal here is to show how change in indicial notation can lead to pre- and post-
multiplication of tensors and their various transpose forms. Most problems encountered in
formulating three-dimensional piezoelectric beams, involve manipulating third order tensors
and their products with vectors and second order tensors in such a way that the final result
remains the same. To this end, we show how third order tensors applied to low order tensors
in general can give the same result in the explicit matrix form. To understand this, let us
evaluate some tensor multiplications involving vectors, second order tensors and third order
tensors. By definition third order tensors can be seen as linear operators which once applied
to vectors yield second order tensors.

Ab = Aijpbi (8 ® &) (A1.1)

As evident from the indices, the right hand side of (A.1.1) is a second order tensor. In fact,
each horizonal slice of tensor A is multiplied with vector b to yield three vectors which can
be arranged as the rows of a 3 x 3 matrix. Since A, Agjr and Ajsjy, are the first, second
and third horizontal slices, respectively [See Fig. 48|, we have,

Ain Ane Ans by C1
Aljk:bk: = | A1 A1z Ajos by p = ¢ C2
Aiz1 Aiza Auss b3 C3
Aoi1 Asiz Aois by dy
A2jkbk = | Ao Az Ags by p =< da
Agz1 Agze Aagss b3 ds
Asir Azie Asig by f1
-Asjkbk = | Aga1 Asee Asas by p = f 2
Asgr Asze Asss b3 /3
and thus.

Ci Cp C3

-Aijkbk = |di dy ds

fi 2 3

Our aim here is in showing a simple way of carrying out these computations. If we were to
compute the product of vector b and A, proceeding from (A.1.1), we have,

Ab = Aijibi (& ® &) = bpAwii (8 @ &) = bAT (A.1.2)

where by (-)T" of a third order tensor A in (A.1.2), we imply an even permutation of indices
such that the two latter indices are not interchanged and only the last index is shifted to
the first position. In Fig. 48, this is equivalent to placing each horizontal slice from xy — x3
plane, vertically as a 1 — x3 slice. Fig. 49 shows the transpose of tensor A.

82 Roman Poya


mailto:romanpoya@gmail.com

1.1. Appendix 1

34 | A3%

Figure 49: T* Transpose of a 3'¢ Order Tensor

Looking at Fig. 49, the matrix representation of A”" can be written as.

Alll A121 A131

AT = | A3y Asy Ass

In the above expression for A”", we have purposely not transposed the matrix itself i.e. the
matrix is still in 9 x 3 format and not 3 x 9. If we now look at each column of this matrix we
identify that the last index is shifted to the first position. This tempts us to see how (A.1.2)
holds in the explicit form. To this end, we can write,

_A111 Az Ans by C1
bkAkjl = | A1 A Ao by p =< C2
_A131 Aizo A133_ b3 C3
_Azn Aso A213- by dy
bkAka = | Ao Az Ags by p =< da
_A231 Agzo A233_ b3 ds
_A311 Asio A313_ by fi
bk-Akj3 = | Aga1 Asee Asas by p =< fo
_A331 Asgo A333_ bs /3
and thus.

B Ci C2 C3

bkAkij = b.AT* == dl d2 d3

Ji fo f3
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It is interesting to note that nothing has changed in the explicit form, apart from the fact
that we are now post-multiplying vector b with each z; — x3 slice of A instead of o — x3
slice, to get the same result. Note that while its straightforward to do such manipulation in
the explicit form, the indicial form may lead us to some confusion. However, one should note
that same question can arise with second order tensor, in that in the indicial form A;;b; and
b;Aj; are not the same, if we treat A;; and Aj; as two different tensors. To show this, since
a summation convention is employed, we have.

+ (Aglbl + Aggbg + Aggbg) €9 + (Algbl + Aggbg + A32b3)€2

A;jb; € = (A1by + Aiaby + Aqgbs) € bjAi; € = (A11by + Agiby + Agib3)é;
+ (Az1b1 + Asoby + Aszbs) €5 + (A13b1 + Aggby + Assbs)és

This rather discrepancy is due to our treatment of Aj; as a separate tensor and not as the
transpose of A;;, otherwise certainly, their product with the same vector will yield the same
result. Now, the same is true for what we have presented on third order tensors i.e. we treat
Apj1, Agjo and Ay s as resulting slices, after the transpose operation is executed. This is
illustrated in Fig. 50.

NN\ =
NN\ =

NN

A AT

Figure 50: T* Transpose of A

1.1.3. Double Contraction with a Second Order Tensor
Consider the double contraction of a third order tensor with a second order tensor.
Equation (A.1.3) is equivalent to double contracting each horizontal slice of A with B. This

is a straightforward algebra, however to show this with the matrix form of third order tensor
we proceed this way.
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A:B=

Bll
B21
Bs,

Bl2
B22
Bs,

Bis
B
Bss

Now to evaluate B : A we do double contraction of each x; — x5 slice of A with B which
certainly gives us the same result.

A: B = AijBj. € = BjrAjri €= B :

B: AT =

(A.1.4)
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1.1.4. Transpose & Symmetry of Third Order Tensor

As was discussed earlier the A”" was in fact a change in each slice i.e. an even permutation
of indices. The transpose of a third order tensor, however, is normally when there is an odd
number of permutation, which in the indicial form can be written as.

A= Ay & ® 8 é
AT = Ay, € ® &, @ € (A.1.6

Hence, the transpose can be written as A;z;. If A;ji = Airj, then A is a symmetric third order
tensor. Note that there are two other possibilities for introducing symmetry.The piezoelectric
tensor P is a symmetric tensor, in that P;;r, = Pi;. In a geometrical representation, a
symmetric third order tensor can be shown as a cube cut diagonally.

i
/\/ a4
ST

Ll < S S
a4
ST / /

Figure 51: Geometrical Representation of Symmetry and Transpose of Thrid Order Tensors

As shown in Fig. 51 each matrix in the horizontal slice is symmetric and in terms of
storage we can only store the upper half of each of these matrices.

1.1.5. Double Contraction of Two Third Order Tensors

Consider two third order tensors now.
.A : P == Aijkpjkl é; &® é} (A17)

From (A.1.7) it can be observed that by double contracting two third order tensors, we in
fact perform a double contraction between each xs — x3 slice of A and x; — x3 slice of P.
Now if were to compute P : A, that would mean performing double contraction between each
29 — x3 slice of P and x; — x5 slice of A. But if our aim is in obtaining the same result from
both multiplication then we can proceed as.

AP = AP & @ & = PyrAj €& @& =P+ AT (A.1.8)

Note that, while we have already dealt with A,;; as the T* transpose of A, denoting P
as PT" may look a bit inconsistent. In fact Py, is exactly the opposite of 7™, in that, it
transforms each x; — x3 slice of P to a horizontal xo — x3 slice. But as in second order
tensors, transpose and inverse of transpose imply the same thing and hence, we stick with
our notation.
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APy AurPire Ak Piis
= [AgjPi1 AojuPira AgjiPiis
| AzjrPikr AsjpPira AsjePjis
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1.1.6. Piezoelectric Three-Dimensional Beam Tensors

The piezoelectric 3' order beam tensors discussed in stress resultant section are given in
the following. Note that we strictly obey the rules presented in the earlier section of this
appendix, for generating 3'® order tensors, in that in the following, each horizontal slice of

3'4 order tensor is represented by a column in the matrix form.

00 A 00 0 00 5] 00 0
00 A 00 0 00 S 00 0
00 A 00 0 00 0 00 0
00 0 00 0 00 0 00 0
A=10 0 0 S=100 0 Ss=100 0 =100 0
00 0 00 0 00 0 00 0
00 0 00 S 00 0 0 0 Loy
00 0 00 S 00 0 00 ln,
0 0 0] 00 0] 00 0 00 0 |

The third order tensor C required for computing second stress resultant (moments) has the

explicit form

[ o P31 ToPo3 To P33 1
—11 P39 —T1 P39 —11 P339
—29 P13 + 11 Pio3 —woPo13 + 11 Pags —x2 P13 + 11 Ps3
—21 P33 —x1P)33 —x1P333
C=[px]P = o P33 T2 Pa33 ToP333
ToPi3o To P30 To P33
—T9Pr1g + 11 Prog —TaPo1o + 11 Poge — 72 P12 + 11 P32
—2o P11 + 11 Pia1 —wo Py + 1 Pagy —x2 P11 + 11 Py
| —x1 P13 —x1 P31 —x1P331
The second order tensors related to pure mechanical kinematics are,
WAk, 0 0 0 — 1S
A" = Ak 0 S™ = 0 0 wSh
sym (2u+ N)A 2u+A)Sy —(2u+X)S; 0
I = 2u+N; 0
sym wJ

and the explicit form of tensors arising in the dynamics of the three-dimensional beams are.

pA 0 0] 0 0 —pSy plyn —plz 0

AD = pA 0 SD = 0 0 p51 ID = p[u 0

sym pA| pSy —pSi 0 sym pJ

The tensors related to electrical kinematics (dielectric tensors) are.

€11 €12 613- €1351 €1352 0 €151 €125 0

A; = A |ea1 €2 €3 SZ = | €351 €352 0 S§ = |enS1 €252 0

€31 €32 €33 €3351 €3352 0 €3151 €3252 0
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eiglin €13lan 0 eszli1 €331 0 esilin €3l 0
1225 €a3l11  €a3lan O I?,: €3zlo1 €33l20 O Iéz €31lo1 €32020 0
633]11 633[22 0 0 0 O_ 0 0 0
el €2l O 633G111 633G112 0] 613G111 613G112 0
I?Z €a1lo1  €92l50 0 G§=§ 633G221 633G222 0 G§=§ 623G221 623G222 0
0 0 0 0 0 0] 0 0 0
eszJiinn €33Ji122 0
Je= Z €33Jao11  €33J2202 0
0 0 0

The second order tensors related to coupled piezoelectric kinematics are.

P339 P533.55 P333.55
S5 = —Pi33.5, —Pa335) —P333.5,
| P1o3S1 — Pr13Sa PagsS1 — Po13S>  Psp3Si — P3135:

Py33l5; Ps33159 0]
I = —Ps3314y —Ps33119 0
| P3ozl11 — Psislia Psagloy — Pzl 0]
Pi33lo Pa3315 0]
I = —Pi33ly —Py33lio 0
| Proslin — Prislia Paaglor — Pzl 0

1 Ps33Ghio Py33Glag0 0

Gl = —P333Giny — Ps333Gi921 0

P323G111 - P313G112 P323G221 - P313G222 0

The second order tensor counterparts of some of the third order tensors used in the variational

formulation of the problem are listed in the following.

X Pz Pyiz Pss X Pri3
ATZPTZAi:A P123 P223 P323 AgZPT:A:C);:A P213
P33 Pags  Psas Psi3

) P31351 P3135; 0 ) P35,

Si = PT : Sle = P32351 P32352 0 S; = PT . 826 = P123SI
P333S1 Ps335; 0 P1335,

X Pyi31h4

I = P AR 5 Psoslhy

Py33ly

89

P33
Pss3

P5135, 0
P35, 0
Py33S5 0

Psy3l55 0
Pso3lss 0
Ps3315 0
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1.1.7.

1.1.8.

Anistropic Case

A=A

Css

sym

I=

045
C(44

CV35
Ca

S:

C33

C(33[22

sym

—Cs3l1o
Cssliy

Cualiy — 2Cy5119 + Chsla

C(3552
C34.5,
C’3352

C’34112 - C’35122

—Ci3551
—C545:
_03351

C’45‘51 - C’5552
C1aS1 — U155
C’3451 - 03552

—Cs4lh1 + Cssly

The More Familiar Voigt Notation of Solid Mechanics

In solid mechanics literature its common to write the strains and stresses in Voigt form.
Following such a notation eases out the process of multiplication and specially the double
contractions involving higher order tensor. This way we will have to modify our tensor, since
so far we have strictly followed the appropriate rules of multiplications. The piezoelectric
three-dimensional beam tensors given in the earlier section should be written in a format that
a normal matrix product with the piezoelectric tensor P should suffice. Knowing that the
double contraction of two third order tensor implies multiplying each horizontal x5 — 3 slice
of the first one with the vertical x; — x3 slice of the second one, we write the corresponding
beam tensors in such a matrix format that each column represents a vertical ;1 — x3 slice.
This way a double contraction with piezoelectric tensor can be achieved with the common
matrix multiplication.

O oo o oo oo

[l o B N e B e B e B e B o B )
DO OO O OO

St

0 0 0
0 0 0
Sy 0 0
0 0 0
0 0] S=10
0 0 0
0 0 0
0 0 S
0 0 0
90

OO OO OO o oo

Iy

N |

~N o o

—_
—

OO OO oo

N |

S oo o oo oo

N

OO OO OO o oo
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1.2. Appendix 2

1.2.1. Explicit Forms of Three-Dimensional Beam Tensors

The linearised strain tensor € in equation (2.3) has the following explicit form.

[0 o %1—%—xﬁ%
g = 5 0 de + 91 + .’13’1 (A29)
sym 2(‘;;’; + X9 32 — jgi)

Observe that ,3 = 0, where o, 8 = 1,2, which means there is no deformation in the cross
sectional plane of the beam; the basic kinematic assumption in beams. For the case of planar
beams stricted to 7 — x3 plane, wy = 0, §; = 0 and 63 = 0, and the strain tensor takes the

form.
0 0 dwy _ g,

1 dzxs
e=3 0 0 (A.2.10)
sym 2(2—1:;’ — xlﬁ)

Further if we simplify our notation according for comparison with the common 2D Timo-
shenko beam, by denoting r3 = x, x1 = z, w; = w, 3 = 0 and w3 = u, the non-zero strain
terms become,

€13 (gﬂf — 9)
€31 = 2( — Q) (A211)
€33 % - Z%

which are exactly the strain terms in Timoshenko beam model. The explicit form of the

traction vector t., is
dwi . dfs
'u'( dxs L2 G dxs )

05 = M(dwg + 9 _|_ $1 d05
(2u + /\)(dw3 + x5 del — x1d02)

dxs
Similarly, the explicit form of equations stress resultants are.

. o pAk, (% — 0)
Q=14Q2p = |pAkJ(IE +6,) (A.2.13)
@3 (20 + ) AGE

The three traction forces of (A.2.13) correspond to the shear forces in z; — 23 plane and z; — x5
plane and the axial force normal to the cross sectional plane, respectively. One can think of
(A.2.13) as the three forces in three directions at a particular node of a three-dimensional
beam. Similarly, the explicit form of moment resultant becomes.

~
|

(A.2.12)

M, (20 4 A I 92
M=< M} = @u+Mhﬂﬁ (A.2.14)
M3 dexg

The three moment resultants of (A.2.14) correspond to the bending moment about x5 axis and
x1 axis and the torsion or twisting moment of the cross section about x3 or the beam axis itself.
One can think of (A.2.14) as the three moments about three directions at a particular node
of a three-dimensional beam. Equations (A.2.13) and (A.2.14) are of particular importance
in finite element post-processing for moment and shear force recovery, where their values at
Gauss points are interpolated.
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1.3. Appendix 3
1.3.1. The Euler-Bernoulli Beam Model - EBB

Focusing our attention to the more familiar plane stress formulation for planar beams, the
displacement field of EBB can be described as,

ug = u(x) — zaggj) (A.3.15)
Uy = 0 (A.3.16)
uy = w(x) (A.3.17)

where as before z3 is the axial direction. The corresponding strain field is now obtained by
taking gradient of the displacement field.

1, 0u; Ou;
=V = = A3.1
eij = Vou= o o, axi) (A.3.18)
ou  O*w
W= o P Cas =0 30 =0 (A.3.19)

Using above relations we can obtain the internal virtual work of EBB,

85u 0%ow ., Ou *w
5Wznt_// 5633E€33 dAdl'_// Zw)E(% ag}2> dAd:E

85u 8u 82510 0*w
// or 0r ° 0a? ox 2) dAdx (A.3.20)

where FE is the elastic modulus. Equation above can be written in a more consistent way as,

dou 1T du
; Oz2 B2

where D is.
E 0
D= / (0 IO ) dA (A.3.22)
A

The finite element equations can be easily established from (A.3.20) by choosing linear La-
grangian basis function for axial terms and Hermite cubic basis functions for bending terms.

1.3.2. The Timoshenko Beam Model - TB

Unlike the Euler-Bernoulli beam model, the Timoshenko beam model also takes shear defor-
mation into account. The displacement field of TB can be described as.

ug = u(x ) (x) (A.3.23)
—0 (A.3.24)
rv) (A.3.25)
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This kinematical assumption is shown in Fig. 3. Note that 3 is taken as the rotation in this
appendix and should not be confused with electric potential gradient. Taking gradient of the
displacement field we obtain the two non-zero strains.

ou 0
€33 — % — Za—i; (A326)
1 ow 1
€31 = €13 = 5(8_x -B) = 57 (A.3.27)
Eap = €32 = €23 = 0 (A.3.28)

Using (A.3.26 - A.3.28) the virtual work of Timoshenko beam can be described as.

5VVimg = // ((5533E€33 —+ 6531(2#)531 + 5513(2#)813) dAdx
lJA

1 1
:// (5833E633+45531u531) dAda::// <5533E533—|—4—5'y,u—'y> dAdx

Bl a8, 0 0 05
— [ G =BG — ) + (G~ an)u( - B) dAde
85u 8u &W )5 Odw
// Dror T aran) T 00 (— — f) dAdz (A.3.29)

The finite element equations can be easily established from (A.3.29) by choosing equal La-
grangian basis functions for all variables. Its is important to point out that if there is an ex-
ternal moment m applied on the structure, this will be evaluated by mN T|r,,, since rotations
are interpolated with the same basis functions as translations in the C° and corresponding
higher order approaches - cf. elementary books on FEM [15] [25].
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1.3.3. The Dynamic Problem

In this section the dynamics of EBB and TB are dealt with. We start by finding analytical
frequencies of both the models for two simple geometries and then compare them with the
numerical results. To this end, the mass matrices of both EBB and TB models are first
derived from Hamilton’s prinicple outlined in chapter 3. which is.

4oL doK 2/1 .
dt o dton  dt pi-i

d &3 D2t
av=[ )Slav= | )=tav A.3.30
—at )y, i / P 3 / e ( )

Substituting the displacement vector field from (A.3.15- A.3.17) and dropping the axial term,
we obtain.

MWiner = /( Ig—wag—w +,0Aw5w> dz (A.3.31)

Using finite element discretisation, the total mass matrix can now obtained. In (A.3.31)
the first term of the integrand gives rise to rotational mass matrix and the second term
of the integrand to translational mass matrix. For Timoshenko beam, we substitute the
displacement field (A.3.23-A.3.25) in (A.3.30) and obtain.

MWiner = /(p[ﬁc%’ + pAw(Sw) dx (A.3.32)
!

In (A.3.32) the first term of the integrand gives rise to rotational mass matrix and the second
term to translational mass matrix. Expressions (A.3.31) and (A.3.32) can be derived from
the more generic dynamic equilibrium equations i.e.

D2
Dt?
in which case separation of variables on right hand side would yield the exact work expres-
sions for virtual inertial forces, but factored with w?, where w is the angular frequency and
its emergence is due to the separation of variables in time and space. Thus the dynamic

equilibrium equations (dropping the axial terms as well as the virtual work of external forces
at the moment) are given by; For EBB,

dw déw d?ow d*w
MWiner + Wit = w /( Id—d— + pAwéw) dz — /I(EI 702 E) dz (A.3.34)

dive +b = p (A.3.33)

and for TB,

5I/Vine7" + 6Wznt = w2 / (Plﬁéﬂ + pAwéw) dz
l

dof dﬁ dow dw
l

The partial derivatives in (A.3.34) and (A.3.35) are replaced with full derivatives since equa-
tions are no longer time dependent; although similar observation holds for (?? - A.3.32) but
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we have kept them like that for the purpse of illustration. The Euler-Lagrange equations can
now be extracted from (A.3.34) and (A.3.35) for the two models, respectively. This can be
achieved by working from weak form to strong form of the problems. For the particular case
of EBB it is straightforward to show the equivalent form of (A.3.34) as,

d*w d*w
2
OWiner + OWipse = /l5w {w (pAw — plw> — E]w] dx (A.3.36)
from which the governing differential equation turns out.
d? d*
W (pAw - pfd—;;’) - Efd—;j =0 (A.3.37)

Noting that w? is a consequence of separation of variables and corresponds to twice differ-
entiation with respect to time, as well as adding the contribution of external forces [from
J; dwq(x, t)dz], we obtain the fourth order differential equation governing dynamics of EBB.

0w o*w O*w
(pa2Y W g A3,
(p oz P 8t28x2> FE (A.3.38)
O*w o'w Otw
- pAW - p13t28x2 +EI Tt = q(z,t) on QxT (A.3.39)

Equation (A.3.39) is the differential equation governing dynamics of EBB. When working
from weak to strong form some boundary terms appear, which essentially correspond to the
boundary conditions of (A.3.39). Considering w? as the second time derivative, for (A.3.39)

boundary conditions turn out to be.
2
_ déw ( BI (9_1;) >
LytTw Ox O

OBw Pw
ow| — pl + EI
< Pocar T 0ad
The terms inside the brackets are the specified shear force and specified moment boundary
conditions, respectively, and the two other boundary conditions arise from the terms out-
side the brackets which are specified translation and specified rotation, respectively. These
boundary conditions coupled with initital conditions can be conveniently written as.

(A.3.40)

I+l

w=w on I, (A.3.41)

g—i =0 on Ty (A.3.42)

—pfgj—g; + El% =35 on I (A.3.43)
—Ezg%’ =m onl,, (A.3.44)

@(0,t) = dy; u(0,t) = g (A.3.45)

For TB model, we can similarly find the Euler-Lagrange equations from (A.3.35),

d? d
5VVine'r + 5Wznt = /{ |:W2plﬁ + E]_f + uAks(_w - 6):| 66
. dx dx

dw

+ [uﬂpAw + <MAI<:S(§—: — 5))] 6w}dx (A.3.46)
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whence,
d? dw
w p[5+E[d > + 1Ak (——,8)—0 (A.3.47)
w?pAw + di (pAk’ (— B)) (A.3.48)

Above set of equations are suitable for eigenvalue/model analysis. The fully dynamic equi-
librium equations of TB can now be written as,

0?3 0?3 ow
plﬁ = Efm + Ak’s(— —p) on QxT (A.3.49)
2
pAaa;U q(z,t) = aa ( Ak, ((3 5)) on QxT (A.3.50)
which are exactly the equations reported in Reddy [43]. The boundary conditions arising in

the process are,

Sw (uAk (‘Z—“’ - B)) (A.3.51)

9p
aa(122)

[s+Ty I'm +F0

the terms inside the brackets are the specified shear force and specified moment boundary
conditions, respectively, and the two other boundary conditions arise from the terms out-
side the brackets which are specified translation and specified rotations respectively. These
boundary conditions coupled with initital conditions can be conveniently written as.

w=w on I, (A.3.52)
B=60 on Ty (A.3.53)

ow _
MAkS((?—x —p)=3 on I} (A.3.54)
EI% =m onl,, (A.3.55)

As pointed out at the end of previous section that, applied moments are dealt with differently
in EBB and TB finite element formulations. From (A.3.40) and (A 3.51) one can clearly make

out, why in the evaluation of applied moments we use m (25— |, for EBB and mNT|p.,

for TB model. Under linear elastic isotropic and homogenous cross section assumptions,

equations (A.3.49) and (A.3.50) can be coupled to give one fourth order differential equation.
0*w 0w pEI  0*w I &*w pl 0%q EI 9%

El A —(pl + — —_— = A.3.57

gt T PATE T o g T ko 1T Ak or  pak o 307

The derivation is straightforward and can be achieved from (A.3.49) and (A.3.50) by elim-

inating rotation terms. Dropping the external force term, the separation of variables into

space and time leads to,
d*w pEI d*w 0?1
El— — +uw!
relel @ Y

w—wpAw =0 on Q=][0,L] (A.3.58)

d4

The above form is more suitable for modal analysis.
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1.3.4. Modal Analysis with Rotary Inertia Neglected

In this section modal analysis of both EBB and TB models is presented. Analytical solu-
tions for simply supported and cantilever beams are derived with and without rotary inertia
consideration. When rotary inertial is neglected both EBB model and TB model yield the
same expression,

El— — W*pAw =0 (A.3.59)
x
which can be verified from A.3.37 and A.3.58 by dropping the rotary inertia terms. In

(A.3.59) w is just a function of x. To solve this homogenous ordinary differential equation,
the characteristic equation has to be found which in this case is,

M —at=0 (A.3.60)

where a = {*/WL‘*/EI . The four roots of this equation are distinct and are.
A=a A=ia (A.3.61)
A=—a A= —ia (A.3.62)

The complete solution of (A.3.59) comprises of only the homogenous solution which for two
distinct real and two distinct imaginary roots takes the form [Noting that for each distinct
real root \; we add c;e*® and for each distinct complex root p 4 ig we add eP*(c; cos(qz) +
o sin(gx))].

w(r) = c1e®" 4 cye™E 4 ey cos(ax/ L) + ¢y sin(az /L) (A.3.63)
This is the complete generic solution of (A.3.59). Depending on the boundary conditions,
the coefficients can be determined. For simply supported beam, we have.

w(0) =0 w(L) =0 (A.3.64)
w"(0) =0 w’(L) =0 (A.3.65)
Imposing the above four boundary conditions yields the following system of equations.
1 1 1 0 c1 0
ela e}“ cos(la) sino(a) Z B 8 (A4.3.66)
e’ e —cos(a) —sin(a)| | 0

The above sytem of equations has a trivial solution. To get the non-trivial solution, the
determinant of the matrix should be zero, which consequently leads to.

8sin(a)sinh(a) =0 (A.3.67)

1 w2pALA n’n? |EI
a=nmt = |/ il nT = w =y Y (A.3.68)

The first four fundamental frequencies are listed below.

[ 9.8696 )
39.4784
1 [ET | 88.8264

Wn = T3\ H4 | 157.9137 (A.3.69)

whose solution is
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For cantilever beam the following boundary conditions have to be imposed.

w(0) =0 w"(L) =0 (A.3.70)
' 0 w” (L) =0 (A.3.71)

That is transverse displacement and rotation are zero at fixed end and moment and shear
force are zero at the free end. Imposing boundary conditions yield.

1 1 1 0 1 0
1 -1 0 1 ol o
e® e —cos(a) —sin(a)| Jes(  )O (A-3.72)
e’ —e * sin(a) —cos(a)| | 0

The above sytem of equations has a trivial solution. To get the non-trivial solution, the
determinant of the matrix should be zero, which consequently leads to,

cos(a) cosh(a) = —1 (A.3.73)

whose roots can be found using an iterative procedure like Newton-Raphson. For convenience,
the first four fundamental frequencies of cantilever beam are listed below.

( 3.5160 )
22.0345
1 [EI | 61.6972

Wn = e\ oA 11209019 (A-3.74)

\ : J

Equations A.3.69 and A.3.74 represent the exact frequencies of both EBB and TB model for
simply supported and cantilever beams, respectively.

1.3.5. Rotary Inertia Included

When rotary inertia is included the eigenvalues and eigenmodes are different for EBB and
TB models. We start with finding exact frequencies of EBB model, for simply supported and
cantilever beams. From (A.3.37) we have,

4

d*w d*w

2 2 _
EI - +w pIdx2 —wpAw =0 (A.3.75)
and the characteristic equation becomes,
MA4b\2—a=0 (A.3.76)
where b = %wQ and a = %wz. Since both a and b are real and positive, one can show

that the characteristic equation has two distinct real and two distinct imaginary roots, so
the complete solution of (A.3.75) becomes,

w(z) = c1e™ L 4 cye™E 4 ey cos(max/ L) + ¢4 sin(moz /L) (A.3.77)
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where +m; are the real roots and +imy are the complex roots of (A.3.76). For simply
supported beam, after imposing the boundary conditions (A.3.64 - A.3.65), and finding the
determinant we obtain a similar equation to that. of (A.3.67)

8sin(mg) sinh(my) = 0 (A.3.78)

Substituting for mgy = \/b/Q +1/2v/b% 4 4a, as well as a and b we obtain the natural fre-
quencies of simply supported EBB with rotary inertia included as.

n2m? EI
= A3.
=TT \/(pAL2 + pInZn?) (4.3.79)

It is clear that when rotary inertia term is neglected A.3.79 reduces to A.3.68. For convenience
once again four natural frequencies of simply supported EBB with rotary inertia is listed as

factor of 751/EI/pA.

(9.8692 )
39.4719
1 [ET ) 88.7936

=72\ HA ) 157.8099 (A.3.80)

\ . J
We can observe that rotary inertia decreases natural frequencies of the system. For cantilever
EBB, after imposing boundary conditions (A.3.70 - A.3.71) and finding the determinant we
obtain.

cos(my) cosh(msg) = —1 (A.3.81)

Unlike A.3.78 closed form solution of (A.3.81) is not as trivial, especially that it involves
both m1 and m2 [Note that in A.3.78 we only solve for sin(m2) = 0 since sinh(ml) = 0
gives the trivial solution]|. It turns out that, this issue has been the subject of much de-
bate in the literature [37] [19]. For the case of Timoshenko with rotary inertia included,
one solves the for the roots of a characteristic equation similar to (A.3.76), with coefficients
a = (w*p?I ks —w?pA)L*/ET and b = (pI + pEI/uks)w?L?/E1. Tts clear from these coeffi-
cients that for Timoshenko beam, the differential equation (A.3.58) does not have a generic
homogeneous solution because of the unknown nature of b — 4a. Depending on geometri-
cal and material properties, two solutions exist in general. Elegant analytical solutions for
natural frequencies of simply supported and cantilever TB are given in [19]. Going deeper
into this issue would defeat the purpose of this appendix and what has been presented so far
generally suffices, however for the sake of comparison with numerical results presented later,
the exact frequencies for L/h = 100 are listed below. For cantilever EBB with rotary inertia
the first four exact fundamental frequencies are,

(3.5158 )
22.0315
1 |EI | 61.6774

Wn = T3\ 54 ) 120.8300 (A.3.82)
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and for TB model including rotary inertia the first four exact natural frequencies for simply
supported and cantilever configurations are,

([ 9.8682 ) ( 3.5158 )
39.4564 22.0244
ss 1 [BIJs887149 | ~ 1 [EI') 61.6298

W T2\ oA Y 1575619 (U T 12\ A ) 1206580 (4.3.83)

respectively.

Some plots of h, p and hp refinement for eigen frequencies of simply supported and can-
tilever timoshenko beams are shown in the following.
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Figure 52: Comparative Convergence with Various Basis Functions; L - SSB, R - CB
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In light of the above discussion, this section is concluded.
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1.4.1. Direct Time Integration Algorithms

In this section some important direct time integration algorithms are discussed with their
relative advantages and disadvantages over each other. The structure of this Appendix
heavily borrows that of Bathe [3]. Damping is neglected throughout the analysis, however
its inclusion is straightforward.

1.4.2. The Central Difference Method
Consider the equations of motion, in general

Mii+ Ki = F (A.4.84)
Using the central difference method to approximate first and second time derivatives we have.

- Uit1 — Ui—1

= A.4.85
" oAt ( )
o Upp — 2U; + Ui

= A.4.86
AP ( )
Substituting above in the earlier equation gives.
Ui+1 — 217:1 —+ ﬁi—l . —
M( INE )+ Ku; = F; (A.4.87)
Mii; 1 = APF;, + (2M — APK) i@, — Mii;_, (A.4.88)

The above system of equations has to be solved for every time step. To compute u;_; we can
make use of the two aforementioned central difference equations i.e.

VAN A
U1 = U; — Atu; + TUz (A.4.89)

Note that in dynamic analysis of structures initial nodal acceleration vector is usually com-
puted from initial nodal displacement vector and initial nodal force vector by sovling the
motion equation, i.e.

The entire procedure can be effectively summarised as:

1. Build Stiffness K and Mass M Matrices.

2. Initiate nodal displacements g, nodal velocities ﬁo and nodal forces vectors ﬁo.
3. Choose time step size At and number of time steps nstep.

4. Compute initial nodal acceleration: M g = ]30 — Ky

5. Compute displacement at time t_: u_; = 1y — Aty + Athﬁo
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6. For each time step compute the nodal quantities
(a) Nodal displacements: My, = A2E; + (2M — ALK, — M,
(b) Nodal velocities: ;41 = o (Ui + @)

(c) Nodal accelerations: ;41 = E(ﬁiﬂ — 2U; + U;_q)

Central difference method is explicit, second order accurate and requires extremely small
time step size.

1.4.3. The Houbolt Method
The following finite difference expansions are employed in Houbolts method.

—

1
qu A2 (2uz+1 5&1 + 41_[7;_1 - ﬁi_g) (A491)

Ujr1 = 6AL (11U1+1 18ﬁz + 9’11'1',1 - 21_6‘1',2) (A492)

which are two backward formulas with error of order O(At)?, for acceleration and velocity
in terms of displacement.The step-by-step procedure for Houbolt method is given in the
following. Note that Houbolt method needs special starting procedure, such as using central
difference:

1. Build Stiffness K and Mass M Matrices.
2. Initiate nodal displacements g, nodal velocities ﬁg and nodal forces vectors ﬁo.
3. Choose time step size At and number of time steps nstep.
4. Compute initial nodal acceleration: M ﬁo = ﬁo — K1
5. Compute displacement at time t_;: U_; = gy — Aty + —uo
6. Special starting procedure, central difference method:
(a) Nodal displacements: M = At2Fy + (2M — At2K )iy — Mii_,
(b) Nodal velocities: 1 = 57 (U@ + o)
(¢) Nodal accelerations: i, = w2 (U — 2y + U_q)

7. For each time step compute the nodal quantities

(a) Nodal displacements: (2M + At*K )i, = AF + M (5@ — Aty + i)
(b) Nodal velocities: ﬁiﬂ 6At(llulﬂ 181; 4+ 9u; 1 — 21;_9)

(C) Nodal accelerations: ﬁi—i—l At2 (2U2+1 5271 + 4ﬁi—l - ’l_[i_g)
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Houbolt method is an implicit technique with second order accuracy, conditional stability
and the time step size is not restricted to numerical stability of the technique as in central
difference method. However it introduces a lagre amplitude decay and period elongation
compared to other methods.

1.4.4. The Wilson 6 Method

The implementation procedure for Wilson 6 is briefly summarised in the following:

1. Build Stiffness K and Mass M Matrices.

. Initiate nodal displacements g, nodal velocities 1o and nodal forces vectors ﬁo.

[\]

3. Choose time step size At and number of time steps nstep.

. Compute initial nodal acceleration: M ﬁo = ﬁo — Ky,

W

5. For each time step compute the nodal quantities

(a) Nodal displacements at time t + At :

(62Zt2M + K)o = (1 - 9>ﬁz + eﬁzﬁrl + ﬁMﬁl + &Mﬁl + QMZL
(b) Nodal accelerations at time ¢ + At : ﬁiﬂ = —egth (Uirg — U;) — %ﬁi + (1= 2)iy
(c) Nodal velocities at time ¢ + At : ﬁiﬂ =, + %(ﬁiﬂ + QL)

(d) Nodal displacements at time ¢ + At : ;41 = u; + At + %2(17”1 + 2&;)

Wilson 0 method is an implicit technique with second order accuracy. The method is uncon-
ditionaly stable for # > 1.37.

1.4.5. The Newmark’s Method

The Newmark’s method is a two parameter single step integrator which uses the following
approximation.

Ty = i+ A {(1 )i+ 5@“} (A.4.93)
— ]_ — —
If 9 = % and v = % the method reduces to linear acceleration method (this corresponds to

0 = 1 in Wilson’s method), if § = % and v = i the method reduces to trapazoidal/average
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acceleration method, if § = % and v = % the method reduces to Fox-Goodwin scheme and

if 6 = % and v = 0 the method reduces to central difference method. The implementation

procedure for Newmark’s method is briefly summarised in the following:

1. Build Stiffness K and Mass M Matrices.
2. Initiate nodal displacements g, nodal velocities ﬁg and nodal forces vectors ﬁo

3. Choose time step size At, number of time steps nstep and integration parameters ¢ and
Y

4. Compute initial nodal acceleration: M ﬁo = ﬁo — K1y

5. For each time step compute the nodal quantities

(a) Nodal displacements : (Atl%M + K)ii; o = Fiyy + ﬁMﬁi + ALMMJZ + (% -
1) M,

(b) Nodal accelerations : li1 = ﬁ(ﬁiﬂ — ;) — A%ui + (1 — 55)iy

(c) Nodal velocities : ﬁi+1 = ; + At 5ﬁi+1 +(1— 5)62

Newmark’s method is second order accurate and unconditionally stable for 4 > 0.5 and
v > 0.25(0.5 + 6)? Notice that unlike in the central difference and Houbolt methods in the
two latter schemes displacements, velocitites and accelerations are coupled.

1.4.6. The Hilbert-Hughes-Taylor-a Method

The Hilbert-Hughes-Taylor-a or simply a-method is a three parameter single step integration
technique which allows for energy dissipation [23]. The method uses the two equations of
Newmark together with.

Mﬁi—l—l + (1 + O{)Kﬁi+1 - OéKﬂ:Z = (1 + Oé)Fi‘_,_l - O{Fji (A495)

The parameter values are normally choosen in the range —% <a<0; v=025(1-a)? and
0= % — . By setting a = 0 Newmark’s method is recovered. The implementation procedure
for the method is briefly summarised in the following:

1. Build Stiffness K and Mass M Matrices.
2. Initiate nodal displacements g, nodal velocities ﬁo and nodal forces vectors ﬁo
3. Choose At, nstep, a;, 6 and 7.

4. Compute initial nodal acceleration: M ﬁo = ﬁo — Ky
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5. For each time step compute the nodal quantities

(a) Nodal displacements :
{ﬁM*‘ (1+ Q)K] Uisy =

(b) Nodal accelerations : ﬁiﬂ = ﬁ(ﬁiﬂ — ;) — A%wui + (1 — 5)iig

(c) Nodal velocities : ;1 = t; + At [5@“ +(1- 5)61}

1.4.7. The Generalised-a Method

The Generalised-a method is 4 parameter single step integration technique which allows for
energy dissipation [10]. The method uses the two equations of Newmark’s together with the
following equations.

M1y, + Ktit1-a; = Fipi-a, (A.4.96)
Uit1—a; = (1 — ap)tiir + agil; (A.4.97)
Uis1—a, = (1= ap)lips + agt; (A.4.98)

lit1—a,, = (1 — Q) lisr + iy (A.4.99)
Fipra; = (1= ap)Fr + asF (A.4.100)

The values for these parameters are normally chosen based on the spectral radius i.e. absolute
value of maximum eigenvalue of the matrix A such that Xrtl = AX " where X can be
the vector of any unknown quantity (i.e. displacements, velocities, accelerations) and the
superscripts n and n + 1 denote the two subsequent time steps. For an scheme to be stable,
the spectral radius p should be at most equal unity i.e p < 1. Based on spectral radius
p, the 4 integration parameters are given as, ay = p/(p + 1), an = (20— 1)/(p + 1),
0 =05+ (of — ), and v > 0.25 + 0.5(af — ). By setting oy = v, = 0 Newmark’s
method is recovered. If only «,, = 0 the scheme reduces to HHT-« scheme. The method is
unconditionally stable for a,, < ay < 0.5 and v > 0.25+4 0.5(af — ay,,). The implementation
procedure for the method is briefly summarised in the following:

1. Build Stiffness K and Mass M Matrices.

2. Initiate nodal displacements i, nodal velocities ﬁo and nodal forces vectors ﬁo
3. Choose At, nstep, oy, a,, 6 and 7.

4. Compute initial nodal acceleration: M ﬁo = ﬁo — Ky

5. For each time step compute the nodal quantities
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(a) Nodal displacements :

u&;:)M +(1— Oéf)K} Ui = (1 — Oéf)ﬁﬁ-l + Oéfﬁi + [(1Ato2[$)M —arK|U; +

—

(o) pri | {(1 — (L 1) - am] Mii

Aty 2y

(b) Nodal accelerations : ﬁiﬂ = ﬁ(ﬁiﬂ — ;) — ALWJ’ + (1 — 5)iig

(¢) Nodal velocities : w4, = @; + At {5{2@'“ +(1- 5)6@}

We are now prepared to examine the various aspects of dynamic analysis including the
choice of dynamic integrators, reduced/full integration and the choice of basis functions. In
what immediately follows the generalised-« integrator is employed, with material properties
as F = 1e06; u = 5e — 05;a,b = 1; L = 100; ks = 5/6 and p is changed for parametric study.
The cantilever TB beam is subjected to a transverse sinusoidal excitation and all the plots
presented correspond to transverse displacement of the free end. For the present study con-
sistent mass matrices are used throughout. From Fig. 57 it can be observed that when full
integration is performed all basis functions give the same results as expected.

-4

x 10
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1 .
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Lagrange - VD - Full

/ —— Lagrange — NDD - Full
Lagrange - VD - R
Lagrange - NDD - R
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Figure 57: Choice of Bases

Next the choice of full /reduced integration is presented for Lagrangian basis functions. Fig. 58
follows this argument.
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It is time to investigate the performance of dynamic integrators. A comparison is

Figure 58: LT - p = 10, RT - p = 1000,

in Fig. 60.
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Figure 59: L - p =500, R - p = 5000
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It can be verified that Houbolt method has the largest period elongation and frequency
decay. Some oscillatory nature of the schemes are shown in Fig. 60.
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Figure 60: Cross-check for Conditional Stability of the schemes; LT - Wilson # = 0.475 < 0.5, RT -
Newmark § = 0.1 < 0.5, LB - HHT a = —1.5 < —1/3, RB - Generalised Alpha A\, = 1.03 > 1

With these observation we conclude this section.
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1.5.1. Constructing Basis Functions

The Lagrangian basis functions are built using three approaches namely, using Vandermonde
matrices, using their recurring formula of Newton Divided Differences and using Bjorck-
Pererya [6]. To show this, consider the quadratic polynomial.

f(&) = a0 + a1§ + ax€’ (A.5.101)

In one-dimension finite element (A.5.101) can be used to built quadratic Lagrangian shape
functions.

(e, O O
£=—1 £=0 £=1
Knowing that the first shape function is unity at £ = —1 and zero on the other nodes we
obtain the following matrix.
1 =1 1] (ag 1
1 0 0]qa;p=<x0 (A.5.102)
1 1 1 |ag 0
A more generic form of this matrix can be written as.
(1 -1 1 -1 ... (=1)"] (ao) (1)
1 & & & . & ay 0
1 & & & .. 3 s 0
= A.5.103
1 1 1 .. 1 | lan) “y

The remaining shape functions can be found by only changing the right hand side vector.
The derivatives of any order can be found by knowing the coefficients. For instance the first
derivative is [a; + 2a9€ + 3a3€? + 4a4&3 + ... + na, "1

Building the shape functions in this fashion has the disadvantage of susceptiblity to nu-
merical errors which arises from an ill-conditioned Vandermonde-type matrix. Fig. 61 shows
the logarthmic plot of reverse condition number vs. polynomial degree. The reverse condition
number RCOND is a LAPACK reverse condition number estimator in the 1-norm.
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Figure 61: Reverse Condition Number vs. Polynomial Degree

Another way of generating Lagrange shape functions is to use there generic formula, based
on Newton Divided Differences. This formula reads.

(E=&)(E=&)(E—=E&)l§ = &imr)(§ = E31) (€ = &ig2) - (E = &)
(& = &) — )& —&3)o (& = &imr) oo (G = &ig1) (& — Gin2) (& — €n)

Higher order Legendre polynomials are less susceptible to accumulating errors and computa-
tionally more demanding compared to Lagrangian ones. In a hp-finite element context they
are constructed in a hierarchical fashion, and they may or may not be attached to the inte-
rior nodes. A normalisation is needed to transform Legendre polynomials to Legendre basis
functions [17]. The Recursive formula for constructing higher order Legendre polynomials is
given by,

N; = (A.5.104)

(n+1)P1(¢) = 2n+ 1)CP,(¢) — nP,—1(() (A.5.105)
with the first two polynomials being 1 and (. The following normalisation is employed for

obtaining the required basis functions.

Nu(C) = o) (A.5.106)

In one dimension these basis functions are used for the interior nodes of the elements and
as a continuity requirement they all have to vanish at the element boundaries [-1,+1]. The
shape functions corresponding to the two exterior nodes are always the linear basis functions,

1 1
N_4 25(1—0 Ny 25(1+C)

and the shape fucntions corresponding to interior nodes are Legendre ones. The first few of
them are listed here,

210
(7¢° = 10¢° + 3¢)

3
N2 —
N

7 9
NY= ——(5¢*—6¢2+1), N =—+
i 8\/ﬁ(C ¢C+1) W

where for convenience a single subscript ¢ is used to represent the interior nodes. In the
following these polynomials and their corresponding shape functions are plotted.

(=1, N (-1
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Figure 62: Right - Legendre Polynomials, Left - Derivatives
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Figure 63: Legendre Shape Functions
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1.5.2. Lagrangian Bases with Gauss-Lobbato-Legendre Points

As observed in the section on modal analysis, the Lagrangian bases with equi-spaced points
are numerically not stable. In this section we focus on constructing Lagrangian shape func-
tions with Gauss-Lobbato-Legendre points which yield comparatively well-conditioned ma-
trices which are imune from end oscillations [28]. To find the Gauss-Lobbato points, first we
need to construct Jacobi polynomials. This is achieved by using the recurrence relationship.

PP =1 (A.5.107)
1
PP — 5 [ = B+ (a+ B +2)(] (A.5.108)
2 3L\ PaB 4P017/3
Pg-i-ﬁl _ [(an + anC) C; Qy, n—l] (A5109)

where

al =2n+1)(n+a+B+1)2n+a+ ) (A.5.110)
az=(2n+a+ B8+ 1)(a® - % (A.5.111)
> =2n+a+B)2n+a+B+1)2n+a+5+2) (A5.112)
ay =2(n+a)(n+B)2n+a+ 5 +2) (A5.113)
The derivative of these polynomials can be evaluated by.
d o, 1 a+1,8+1
— PP (()==z(a+B8+n+1)P """ (() (A.5.114)

ac’ 2

Since Legendre polynomials correspond to the case a« = 3 = 0, (i.e. Lp(¢) = P%?), we
can compute Legendre polynomials and their derivatives. The next step is to find the roots
of (1 —(¢*)Lp(¢) as Gauss-Lobatto points are the roots of these polynomials. This can
be achieved by using a Newton-Raphson method with polynomial deflation. Once Gauss-
Lobatto points are determined the corresponding weights (necessary for integration only) are
computed as.

wl = (A.5.115)

Knowing Gauss-Lobatto points one can generate shape functions employing either Vander-
monde matrix approach or by product of monomial basis. Both approaches are followed here.
It should be noted that compared to its equi-spaced counterpart Vandermonde matrix built
with Gauss-Lobatto points are more well-conditioned. Fig. 64 shows the condition number
of both Vandermonde matrices.

114 Roman Poya


mailto:romanpoya@gmail.com

1.5. Appendix 5

10

Condition Number
N
o

=
o

10

15

(N
o

(5}

—— Lagrange -
—— Lagrange - Equi—Spaced

Gal

uss Lobatto Points

10 15 20 25 30

Polynomial Degree

Figure 64: Condition Number vs. Polynomial Degree

115

Roman Poya


mailto:romanpoya@gmail.com

FE for Three-Dimensional Piezoelectric Beams

1.2 T T T 1.2 T T T
Q Q
IS IS
c c
° B
(o] o]
-0.2 L - L -0.2 ; ; .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Abscissa Abscissa
1.2 1.2
Q Q
T T
£ £
B B
(] ]
=1 -05 0 05 1 04 -05 0 05 1
Abscissa Abscissa
1.2 T T T 1.2 T T T
Q 4 Q
T ©
c c
° °
] 1 O
02 -0.5 0 05 1 )
Abscissa Abscissa
1.2 15
1 |
1 |
0.8 *
o 06f 1 o osh i
g g
s 04 : 1 s
o S ol N\
0.2 1 N~ —
ol /N
NATN |
_0.2, 4
-0.4 L - L -1 . . .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Abscissa Abscissa

Figure 65: Lagrange Shape Functions, Left - Gauss-Lobatto, Right - Equally-Spaced

116 Roman Poya


mailto:romanpoya@gmail.com

1.5. Appendix 5

As it can be observed Lagrange shape functions with equi-spaced points show end oscil-
lation. This oscillation is not present in case of Lagrange basis with Gauss-Lobatto points.
The Gauss-Lobatto points are in fact the zeros of (1 — (?)L»(¢). For a better illustration,
these polynomials are plotted in the following.

1

=1 -05 0 0.5 1 98 -0.5 0 0.5 1

Figure 66: Plots of (1 — ¢?)L(¢)
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An important feature of Lagrangian shape functions with GLL points is that they yield
diagonal mass matrix if the number of Gauss-Lobatto points is the same as the underlying
interpolation functions. This diagonal mass matrix is however underintegrated to generate a
lumped mass matrix, so it comes with the drawback of normal mass lumping. For the case
when quadratic basis functions are employed the corresponding integration scheme is in fact
the Simpson’s 1/3 rule, as the 3-point Gauss-Lobatto weights are 1/3, 4/3 and 1/3. Fig. 67
shows p-refinement on two different frequencies of CB and SSB models computed through
modal analysis with both consistent and diagonal mass matrix.
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Figure 67: Choice of Mass Matrix for Gauss-Lobatto-Legendre Lagrange Basis Functions, Left - CB [2"¢
Frequency], Right - SSB [5* Frequency]

And the following plot is from full dynamic analysis (without static condensation) of
cantilever beam subjected to a harmonic load. The analysis is performed with HHT-« scheme
using a sufficiently fine mesh (50 elements) and the cubic Lagrangian-GLL interpolation
functions to have avoided numerical errors originating from sources other than the one(s)
related to the choice of mass matrix. However it should be noted that a sufficiently fine mesh
also implies that diagonal and consistent mass matrices will yield almost similar results. In
general, the behaviour of different mass matrices depend on material and geometric properties
and especially to a good extent on the density of the matrial used. p is taken as 500 for this
analysis.
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Piezoelectric materials find myriad of industrial application for energy har-
vesting purposes. These piezoelectric energy harvesters are essentially de-
signed with beam and membrane type configurations. The thesis presents a
continuum mechanics based formulation and finite element descritisation of
three dimensional piezoelectric beams. Starting from the Lagrangian of the
piezoelectric system, using Hamilton’s principle, the variational statement
and Euler-Lagrange equations are derived. The postulated linear mechani-
cal kinematics and quadratic electric potential variables are embedded in the

linearised functional in a seamless fashion, to obtain the governing equations

of three-dimensional beam model. Higher order nodal - Lagrange and modal

- Legendre basis functions are employed to resolve the coupled problem ac-
curately. Appropriate error norms are computed to have ensured accuracy

of the method.
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