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 Summary 
 

In the design of engineering structures, the heterogeneous materials such as soils, 
rocks, steel, concrete, etc. are usually assumed to take constant material properties. 
Deterministic mathematical models are used to predict the approximate natural responses of 
these engineering structures. As a result, conservative factors of safety are introduced in the 
design using the mean-value solution which gives a significant increase in the design, 
construction and operational costs. 

In reality, all heterogeneous materials have inherent uncertainties. These 
uncertainties of materials can be modeled mathematically leading to Stochastic Partial 
Differential Equations (SPDEs) and can be solved using Stochastic Finite Element Method 
(SFEM). The stochastic models will provide realistic simulations of physical phenomena 
and give the analyst specific information on the probabilities that can be assigned to 
predictions.   

The aim of this thesis is to study numerical techniques in SFEMs and develop 
applications in heat conduction and elastostatics problems. The task involves material 
modeling of random media, numerical solver of stochastic linear systems and applications 
in heat conduction and elastostatics problems. In this thesis, the random material properties 
are modeled as stochastic fields and discretized using the Fourier-Karhunen-Loève 
representation scheme. Then the joint diagonalization solution strategy is investigated for 
the solution of the resulting stochastic linear systems and attempts are made to improve the 
performance with joint tridiagonalization of multiple matrices. These numerical techniques 
are integrated into a SFEM framework, which is then tested in heat conduction and 
elastostatics problems of concrete wastewater pipe.  

In conclusion, the joint diagonalization algorithm agrees well with the results of 
Monte Carlo method and Neumann expansion method. Also, numerical results confirmed 
that random material properties have significant effects on the structural responses of the 
concrete pipe. Moreover, the joint tridiagonalization strategy is also being developed but 
due to time constraint some problems in convergence are still to be worked out.  
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 Chapter 1  

Introduction  

1.1 Background and Motivation  

“Randomness is the lack of pattern or regularity” [1.1]. The two sources of randomness 

[1.2] are, (i) the impracticality of a comprehensive deterministic description and the 

inherent irregularity in the phenomenon being observed, and (ii) the generalized lack of 

knowledge about the processes concerned. The level of uncertainty in the second class of 

problem, typically can be lessened by improving the measuring tools through which the 

process is being monitored and by properly documenting more data of the process. In the 

design of engineering structures, materials with random properties called random medium 

are often used, such as, but not limited to soils, rocks, and concrete. However, the 

phenomenon involving these random media is not only encountered in civil engineering but 

also in almost every engineering sector. Typical engineering problems as shown in Figure 

1.1 with respect to random media include: (a) the analysis of contamination of soil and 

groundwater with spatially distributed random hydro-geological fields (e.g. hydraulic 

conductivity); (b) the mechanics of soft and hard tissues with different constitutive models; 

(c) the electromagnetic waves scattering by a perfectly conducting aircraft; (d) risk 

assessment of rock structures; (e) the design of civil engineering structures under static, 

dynamic (earthquake and wind loadings), random fluctuations in temperature, humidity, 
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and other environmental loading conditions; (f) life prediction of structures/bridges, etc., all 

of which require complex mathematical predictions. The natural responses of these 

structures may be completely unpredictable by deterministic models.   

  
(a) (b) 

 
 

(c) (d) 

  
                      (e) (f) 

        
Figure 1.1 Engineering systems/structures with variable uncertainties 

Fortunately, these uncertainties and random characteristics of materials can be modeled 

mathematically using continuum mechanics which provides comprehensive mathematical 

models in the form of partial differential equations. These probabilistic or stochastic models 

will not only provide realistic simulations of physical phenomena but will also provide the 

analyst with specific information on the probabilities that can be assigned to predictions. 

Nevertheless, the understanding of engineering structures with variable uncertainties is not 
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yet fully developed. This is due to the fact that the stochastic nature of random media is so 

complex, the lack of proper mathematical model for the related stochastic fields, and the 

inadequacy of supporting analysis tools for the corresponding Stochastic Partial Differential 

Equations (SPDEs). 

Today, deterministic mathematical models are still widely used in the analysis of 

engineering structures composed of random media. This result to the introduction of the 

conservative factors of safety applied to the approximate mean-value solution, which gives 

a significant increase in the design, construction and operational costs. Apparently, 

deterministic models can be considered only as approximations to the corresponding 

physical problems. Li [1.3] has enumerated the four major disadvantages of using 

deterministic mathematical models to study random media. The lack of a versatile 

stochastic model for random media and the inadequacy of compatible analysis tools for the 

corresponding SPDEs are the reasons why deterministic models are still widely used. 

Therefore, it is of vital importance to investigate the mathematical foundation and to 

develop efficient and robust algorithms for practical engineering structures consisting of 

random media. 

The random structural response of engineering structures can be stimulated either by 

the input or the system operator [1.1]. In computational structural mechanics, different 

types of problems will arise based on what information is available as shown in Table 1.1 

[1.4]. From an engineering mechanics point of view, the most common stochastic system 

problem involves a linear differential equation with random coefficients [1.1]. In which the 

properties of the system under study are represented by these coefficients and can be 

interpreted as random variables. The problem can be written mathematically as  

𝜦𝒖 = 𝒇                                                                                         (1.1) 

where 𝜦 is a linear stochastic differential operator, 𝒖 is the random response, and 𝒇 is 

possibly deterministic/random excitation. This present research study undertakes only the 

deterministic input and random system type of problems. Hence, Stochastic Finite Element 

Method (SFEM) will be used (see Table 1.1).   
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Input System Output Problem Name Main Techniques 
Knowna  Knowna  Unknown Analysis (Forward Prob.) FEM/BEM/FD 
Knowna  Incorrecta  Knowna  Updating/Calibration Modal Updating 
Knowna  Unknown Knowna System Identification Kalman Filter 
Assumeda  Unknowna  Prescribed Design Design Optimization 
Known Partially 

Known 
Known Structural Health 

Monitoring (SHM) 
SHM Methods 

Knowna  Knowna  Prescribed Control Modal Control 
Knownb  Knowna  Unknown Random Vibration Random Vibration 

Methods Knowna  Knownb  Unknown Uncertainty Propagation 
(Forward Problem) 

SFEM/SEA/RMT 

Knownc  Knownb  Known from 
experiment and modelb  

Model Validation Validation Methods 

Knownc  Knownb  Known from different 
computationsb  

Model Verification Verification Methods 

Knownb  Incorrectb   Knownb  Probabilistic 
Updating/Calibration 

Bayesian Calibration 

Assumedc  Unknownb  Prescribedb  Probabilistic Design RBOD 
Knownc  Partially 

Knownb  
Partially Knownb  Joint State and Parameter 

Estimation 
Particle Kalman Filter/ 
Ensemble Kalman 
Filter Note:   a Deterministic,  b Random,  c Random/Deterministic  

Table 1.1 Types of problems in Computational Structural Mechanics 

1.2 Review of Available Techniques  

Mathematicians and engineers study and discover independently the theoretical 

and/or numerical aspects of random medium mechanics from different points of view, 

especially in the fields of SPDEs and SFEMs, respectively. In this perspective, several 

methods have been developed and proposed in these fields of study. Most of the available 

methods in SFEMs and its development will be presented next. 

1.2.1 Stochastic Partial Differential Equations  

The theory of Stochastic Ordinary Differential Equations (SODEs) also known as 

the Itô integral [1.5], have been established in 1980s and its successful applications have 

been observed in a wide range of scientific and/or technical areas. Following the triumph of 

SODEs, researchers have attempted to extend Itô’s white noise model from one dimension 

into higher dimensions [1.6]. Unfortunately, there is no natural total-order structure in 
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higher dimensional space. However, engineers believe that these SPDE developments are 

physically relevant, even though some mathematical results acquired in SPDEs show that it 

has little to do with specific physical problems and are useful only for their own interest. 

Accordingly, an effective SPDE theory is still not available to account for practical 

engineering structures composed of random media. 

1.2.2 Stochastic Finite Element Methods 

The Finite Element Method (FEM) has become the dominant analysis tool in 

engineering since over the last few decades. All the parameters in the standard FEM 

assumed constant values. In the viewpoint of discovering the appropriate method to solve 

stochastic systems, engineers tried to expand the standard FEM into SFEM [1.17-1.46] 

basically by substituting some of the parameters in the FEM by random variables. The 

important developments in SFEM related research are summarized as follows: 

Shinozuka [1.7] applied the Monte Carlo method and the standard FEM in the 

reliability analysis of structures with random excitation, random material properties or 

random geometric configurations [1.18-1.21]. The stochastic computational mechanics, 

also known as computational stochastic mechanics, then appeared from the related research 

area undertaken and a substantial growth emerged. In this work, Shinozuka used the 

trigonometric series approximation method, which is based on the spectral representation 

theory of wide-sense stationary stochastic fields [1.17, 1.22-1.24].  He also used the First 

Order Reliability Method (FORM) and Second Order Reliability Method (SORM) [1.25-

1.26] techniques. Rackwitz [1.28] noted that FORM and SORM are the most popular 

approximate techniques to date, which are used in calculating the probability integral 

encountered in reliability analysis of random structures. Furthermore, one of the latest 

research interests of these methods is applying them to larger structures [1.27]. 

Vanmarcke [1.8], Kiureghian [1.9], and Grigoriu [1.10] are also the pioneering 

researchers in stochastic computational mechanics.  During the period of 1980s and the 

1990s, more researchers joined in the research of SFEMs. Among the distinguished 

researchers are Liu [1.11], Spanos [1.12], Ghanem [1.1, 1.13], Kleiber [1.16], Deodatis 
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[1.14],  and Schuëller [1.15].  Many interesting results during this era were developed 

especially a number of non-Monte Carlo SFEM formulations.  

Perhaps, the first SFEM formulation which is not based on Monte Carlo simulations 

was done by Vanmarcke and Grigoriu [1.29]. The local averaging representation scheme for 

random material properties of beam elements is developed. The method is limited to 

estimates of second-order statistical quantities, i.e. the expectation and covariance. 

Lawrence [1.32] developed the SFEM formulation based on the series expansion 

and the Galerkin method. The equation of the form 𝐾𝑢 = 𝑓 was considered. The terms 𝐾, 

𝑢, and 𝑓 are expanded into finite series consisting of random coefficients and deterministic 

base functions, then Galerkin approach was used to solve the equation.  

Liu, et al. [1.30-1.31] developed the perturbation method. This method starts by 

expanding the unknown stochastic field using Taylor’s expansion. The stochastic field of 

random media is represented by random variables in which Taylor expansion is performed. 

Then grouping like polynomials, the unknown coefficients in the expansion are obtained, 

upon which the sum of these like polynomials is set to zero. The perturbation method is 

computationally more efficient than the direct Monte Carlo method. The disadvantages of 

this method are (1) it mainly focuses on the second-order estimate of the response and does 

not permit higher-order statistical estimates, and (2) the dependence on the random 

fluctuations being small.  

M. Shinozuka, F. Yamazaki, G. Deodatis, et al. [1.20-1.21] studied the Neumann 

expansion method. They said that one advantage of this method is its simple formulation. 

They noted that in this method, the term  𝐾0 + 𝐾𝜃 
−1 is expanded using Neumann 

expansion to solve the stochastic algebraic equation  𝐾0 + 𝐾𝜃 𝑢 = 𝑓. The computational 

efficiency of the method depends on the range of random fluctuations. With this, the 

computational cost of Neumann expansion could even be more expensive than the direct 

Monte Carlo method for large-scale random fluctuations. 

G. Deodatis and M. Shinozuka [1.38-1.39] studied frame structures and developed 

the weighted integral method for this purpose. In this method, the random material 

properties of beam elements are represented based on second-order statistical analysis and a 
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local averaging technique. In effect, the results are limited to second-order statistical 

quantities. 

R.G. Ghanem, P.D. Spanos, et al. [1.33-1.37] subsequently formulated the 

polynomial chaos expansion method. The unknown stochastic field is expanded with 

multiple Hermite polynomials of random variables, i.e. polynomial chaos, and using 

Galerkin approach to solve the associated unknown coefficients. In addition, the application 

of the Karhunen-Loève expansion in the representation of random material properties is 

also developed. 

C.C. Li and A.D. Kiureghian [1.40] presented another way of representing the 

random material properties called the least-squares approximation method. They reported 

that the error variance between the real stochastic field and the approximate one is the 

criterion of this method within each finite element. They added that this method is not as 

efficient as the Karhunen-Loève expansion method in terms of the number of random 

variables required.  

D.B. Xiu and G.E. Karniadakis [1.44-1.46] generalized the polynomial chaos 

expansion method by replacing the Hermite polynomials with other orthogonal 

polynomials. They noted down that in this method, proof of well-posedness or convergence 

of the solution scheme is not present especially in the case of single random variable. 

P.L. Liu and A.D. Kiureghian [1.26] employed the FORM and SORM to 

approximately calculate the probability integral with respect to the random solution. This is 

done to reduce the number of direct Monte Carlo simulations.  

S. Valliappan, T.D. Pham, S.S. Rao, and J.P. Sawyer [1.41-1.43] applied the fuzzy 

set theory in the context of standard finite element analysis for engineering systems without 

precise or complete definitions. They called this application a fuzzy/interval finite element 

method. The results of this method are often vague, imprecise, qualitative and incomplete 

compared with the solution of a well defined engineering system because of the fact that 

the input information of this method is insufficient to properly define an engineering 

system.  
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Recently, Li [1.3] developed a novel solution strategy to the stochastic system of 

linear algebraic equations arising from stochastic finite element modeling called Jacobi-like 

joint diagonalization algorithm. In this method, the classical Jacobi algorithm for the 

computation of eigenvalue problem of a single matrix is modified to accommodate multiple 

real symmetric matrices.  

1.3 The Aim and Layout of the Thesis  

1.3.1 The Aim of the Thesis  

 The physical phenomena that involve random media are encountered in many areas 

of engineering as affirmed in Section 1.1, hence, a research concerning random medium 

mechanics is very important in engineering. Nevertheless, after the technical review in 

Section 1.2, it is apparent that existing knowledge and methods are not sufficient to analyze 

practical engineering structures composed of random media. Engineers customized the 

standard FEM into SFEM to suit for the particular problem of random media. 

This thesis aims to study numerical techniques in stochastic finite element methods 

and develop applications in heat conduction and elastostatics problems. The task is 

naturally divided into three main parts: material modeling of random media; numerical 

solver of stochastic linear systems; and applications in heat conduction and elastostatics 

problems. In the first stage, the random material properties of heterogeneous materials are 

modeled as stochastic fields, for which an explicit representation is obtained by using the 

Fourier-Karhunen-Loève discretization scheme. In the second stage, the joint 

diagonalization solution strategy is investigated for the solution of the resulting stochastic 

linear systems, and along this direct attempts are made to improve the performance with 

joint tridiagonalization of multiple matrices. In the third stage, these numerical techniques 

are integrated into a SFEM framework, which is then tested in heat conduction and 

elastostatics problems.  
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1.3.2 Layout of the Thesis  

This thesis is organized into six chapters as outline below.  

Chapter 1: The background and motivation of the research are discussed which 

inspired the research undertaken. An incomplete but precise technical review on related 

research is also provided. Furthermore, the aim and outline of the thesis are included. 

Chapter 2: This chapter deals with the methods on modeling the random media in 

stochastic fields. The mathematical model is discussed followed by the overview of 

existing schemes. The Fourier-Karhunen-Loève representation [1.3] is discussed and used 

to represent the stochastic fields of random media described by its random material 

properties.  

Chapter 3: The stochastic finite element formulations for the steady-state heat 

conduction and linear elasticity are derived and discussed. The two formulations are then 

reduced to stochastic linear systems. Further, both the resulting stochastic linear systems 

have the same mathematical analogy, thus a generalized system is presented.  

Chapter 4: In order to solve the stochastic system of linear algebraic equations 

derived in Chapter 3, the joint diagonalization strategy is explored in this chapter. It is 

shown that any multiple real symmetric matrices can be approximately transformed into 

diagonal and tri-diagonal matrix system using a sequence of orthogonal similarity 

transformations. A modified approach called joint tridiagonalization that simultaneously 

tridiagonalizes the multiple real symmetric matrices was attempted to develop in this 

chapter but due to time constraint the algorithm’s convergence is still to be worked-out. 

Chapter 5: Two numerical examples are presented using a SFEM framework where 

the joint diagonalization strategy is integrated to solve the resulting stochastic system of 

linear algebraic equations. In particular, the steady-state heat conduction and elastostatics 

problems of a concrete wastewater pipe are considered. 

Chapter 6: Finally, this chapter discussed the summary and relevant conclusions of 

the thesis.  
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 Chapter 2  

Representation of Stochastic Processes  

In the framework of the finite element method wherein engineering systems 

composed of random media are analyzed, it is implicitly assumed that these random media 

have deterministic material parameters. These material parameters such as thermal 

conductivity, elastic modulus, etc. are assumed to have constant values over the structures 

domain. However, the material properties of the real structures composed of random media 

have several uncertainties. In view of these uncertainties, an appropriate random material 

model for the random media under consideration should be developed. 

2.1   Mathematical Model 

In random material modeling, there are at least three approaches used in the 

literature, namely, the fuzzy set theory [2.1-2.3], the theory of random matrices [2.4-2.5], 

and the probability theory [2.6-2.8]. Among these three approaches, the probability theory 

has been widely accepted in the SFEM community. Hence, a random material modeling 

approach of the random media based on probabilistic concepts with methods of mechanics 

is used in this thesis. The resulting mathematical model to describe the irregular variation 

of material properties through the random medium is defined on stochastic fields 

represented by random variables.  
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Let us assume that the Hilbert space of functions [2.9] defined over the domain 

𝐷 ⊂ ℝ𝑛 , is denoted by H. Let  Ω,ℱ, 𝑃  denote a probability space, 𝒙 ∈ 𝐷 and 𝜃 ∈ Ω. Then, 

the space functions mapping Ω → ℝ is denoted by Θ. Each map Ω → ℝ defines a random 

variable. 

The random material model involves a medium whose material properties 

demonstrates random spatial fluctuations and which may or may not be subjected to a 

random external forces. Expanding eqn. (1.1), the mathematical representation of this 

problem involves an operator equation which is not only a function over the medium 

domain 𝐷 ⊂ ℝ𝑛 , but also a function over a probability space  Ω,ℱ, 𝑃  expressed as  

 𝜦 𝒙, 𝜃 𝑢 𝒙, 𝜃 = 𝑓 𝒙, 𝜃                                                               (2.1) 

where 𝜦 𝒙, 𝜃  is a differential operator with coefficients exhibiting random fluctuations 

with respect to one or more independent variables defined on 𝐇 × 𝚯. These coefficients are 

represented as random or stochastic processes (see Appendix for definition). The response 

𝑢 𝒙, 𝜃  is then solved as a function of both arguments. Likewise, the random coefficients of 

the differential operator are assumed to be of second order stochastic processes. An 

example of a random coefficient is the thermal conductivity tensor 𝑘 in the steady-state 

heat conduction problem such that 

 𝑘 = 𝑘 𝒙, 𝜃         𝑥 ⊂ 𝐷, 𝜃 ⊂ Ω                                                    (2.2) 

Figure 2.1 shows an example of random material properties of a random medium, in which 

𝑘 = 𝑘 𝒙, 𝜃0  denotes a particular realization of the random thermal conductivity of a 

concrete slab. 

Moreover, each of these coefficients 𝑘𝑛 𝒙, 𝜃  can be defined by its first two lower 

order statistical moments, and decomposed into a deterministic and random components in 

the form 

  𝑘𝑛 𝒙, 𝜃 = 𝑘 𝑛 𝒙 +  𝛼𝑛 𝒙, 𝜃                                                        (2.3) 

where 𝑘 𝑛 𝒙  denotes the mathematical expectation of the process 𝑘𝑛 𝒙, 𝜃  and 𝛼𝑛 𝒙, 𝜃  is 

a zero-mean random process, having the same covariance function as the process 𝑘𝑛 𝒙, 𝜃 .  
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Figure 2.1 Stochastic thermal conductivity of a random medium. 

 In the random medium modeling, the continuity and differentiability of the 

stochastic fields are always taken into account for the reason that it will determine whether 

or not the SPDE holds. Further, in many cases the material property at any individual point 

𝒙0 ⊂ 𝐷 of the stochastic field is described by a stationary random variable such as 𝑘 𝒙0, 𝜃  

which is determined by its first two order statistical moments 𝑘0 𝒙0  and 𝑅 0 . 

Furthermore, for simplicity it is assumed that the stochastic processes involved are of 

Gaussian distribution since a Gaussian field is completely defined by its mathematical 

expectation and covariance.  Thus, the random medium assume as Gaussian field will make 

it possible to achieve explicit solutions in some typical random medium problems. 

2.2   Representation of Stochastic Processes 

In this thesis, the randomness of material properties through the random medium is 

modeled based on probability theory using stationary random variables in stochastic fields. 

The random medium model is defined by its mathematical expectation and covariance. In 

order to perform the associated differential operators in (2.1), the random medium property 

will be expanded according to an explicit representation of stochastic processes [2.10]. The 

thermal conductivity tensor 𝑘 for example can be explicitly represented in an ideal form as 
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 𝑘 𝒙, 𝜃 = 𝑙. 𝑖.𝑚.𝑛→+∞  𝜓𝑖 𝜃 𝑘𝑖(𝒙)
𝑛

𝑖=0
                                      (2.4) 

where 𝜃 denotes the random dimension, 𝜓𝑖 𝜃  and 𝑘𝑖(𝒙) are a sequence of scalar-valued 

random variables and tensor-valued deterministic functions, respectively. These 

deterministic functions are often expressed in terms of piecewise polynomials. This series 

clearly separates the random and deterministic parts of 𝑘(𝒙, 𝜃) and thus makes the standard 

PDE tools applicable to an SPDE system. 

 This chapter attempts to demonstrate the existing methods of representation of 

stochastic processes of random medium of the form (2.4).  

2.3   Overview of Existing Techniques  

The major concern in dealing with the random medium problems is to realistically 

portray the irregular disparity of material properties through the medium, so that a suitable 

stochastic finite element formulation can be established for the problem under 

consideration.  

Several stochastic field representation methods have been developed for the 

description of random material properties for the past years. The following paragraphs 

review the existing techniques and noting that majority of these methods is applicable for 

scalar stochastic fields. 

M. Shinozuka [2.7] and F. Yamazaki, et.al. [2.11] used the middle point method to 

discretize the definition domain of the stochastic field with finite element (FE) mesh, and 

the stochastic field is simply approximated by the random variable at the element center in 

each element. Then followed by Cholesky decomposition of covariance matrix to determine 

the central random variables, which is constructed by directly sampling the given 

covariance function. 

The local averaging method has been successfully applied by E. Vanmarcke and M. 

Grigoriu [2.6] in simple beam elements. It follows the same discretization procedure as the 
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middle point method in which random variables represent the stochastic field in each 

element, which is calculated within the element from a spatial average of the local 

stochastic field.  

In addition, the shape function method [2.12-2.14] adopts the same discretization 

procedure as the first two methods mentioned above. Although, the nodal random variables 

and the associated shape functions are used to interpolate the stochastic field in each 

element. The exact value from the given covariance is then taken from the covariance 

between each pair of nodal random variables.  

The least-squares discretization method [2.15] is an efficient discretization of 

random fields and more practical than a series expansion method employing the Karhunen-

Loève theorem. Following the discretization of the definition domain of the stochastic field 

with FE mesh, the nodal random variables are determined by means of an optimization 

procedure. The error variance between the interpolated stochastic field and the exact 

stochastic field is then used to measure the approximation accuracy within each element.  

The trigonometric series approximation method [2.16-2.19] is unique compared to 

the methods mentioned above in the sense that no FE mesh is required in this method. This 

method used the general trigonometric series with random coefficients to approximate the 

stochastic field. This is achieved through direct discretization of the spectral representation 

of the wide-sense stationary stochastic field. 

Ghanem and Spanos [2.20] are the first to introduce into the SFEM research the 

Karhunen-Loève expansion method [2.20-2.25] which is based on Karhunen-Loève (K-L) 

expansions [2.26] of second-order stochastic fields. Since then it has been widely used to 

describe random material properties [2.21-2.25]. It will be explained shortly below. 

Suppose that the random medium 𝐷 where 𝐷 ⊂ ℝ𝑛  has the random material 

property such as the thermal conductivity tensor represented by a second-order stochastic 

field 𝑘 𝒙, 𝜃  where 𝒙 ∈ 𝐷 and 𝜃 ∈ Ω. Following eqn. (2.3), the stochastic field 𝑘 𝒙, 𝜃  can 

be expanded by its mean 𝐸 𝑘 𝒙, 𝜃   and the stochastic process 𝛼(𝒙, 𝜃) with zero mean and 
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same covariance 𝐶𝑜𝑣 𝑘 𝒙1, 𝜃 , 𝑘 𝒙2, 𝜃   of the process 𝑘 𝒙, 𝜃 . Hence, the process 

𝑘 𝒙, 𝜃  can be expressed as   

  𝑘 𝒙, 𝜃 = 𝐸 𝑘 𝒙, 𝜃  +   𝜆𝑖𝝓𝑖(𝒙)𝝃𝑖 𝜃 
+∞

𝑖=1
                            (2.5)  

where 𝝃𝑖 𝜃  is the set of uncorrelated random variables, 𝝓𝑖(𝒙) and 𝜆𝑖  are the 

eigenfunctions and eigenvalues, respectively of the characteristic equation 

   𝐶𝑜𝑣 𝑘 𝒙1, 𝜃 , 𝑘 𝒙2, 𝜃  𝝓𝒊(𝒙1)𝑑𝒙1𝐷
= 𝜆𝑖𝝓𝒊(𝒙𝟐)                     (2.6) 

such that 𝜆𝑖 > 0. 

It is emphasized that the mean and covariance of 𝑘 𝒙, 𝜃  are inadequate to fully 

define a general second-order stochastic field. Most often, additional information is needed 

in order to solve the problem. If 𝑘 𝒙, 𝜃  is a Gaussian field, then 𝝃𝑖 𝜃  are Gaussian 

random variables [2.26]. In this way, the probability distribution of  𝝃𝑖 𝜃  can be easily 

determined.  

In practice, the summation term in (2.5) is truncated at a finite number n. The decay 

of the eigenvalues from eqn. (2.6) is used to determine the number of terms n to ensure the 

truncation error is acceptably small. 

The Fourier-Karhunen-Loève (F-K-L) representation scheme developed by Li 

[2.10] is probably the best method for representing random processes at present. It is 

completely mesh-free, accurate, and computationally more efficient compare to K-L 

expansion method. This method is used to represent stochastic processes in Chapter 3 and 

will be explained in Section 2.4.   

In the technical review above, it is noted that the discretization format using FE 

meshes have been widely used in the solution of this stochastic field representation 

problem. Particularly, the same mesh employed in solving the SPDE system can be used to 

describe the random material properties, which in turn makes it easier to deal with random 

media in a similar framework as the standard finite element method. 
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2.4   Fourier-Karhunen-Loève Representation of  

Random Media  

The F-K-L representation of random media will be established in this section for a 

random material property with scalar stochastic field. It is also possible to extend this 

representation of random material properties for several parameters that can be described 

by a generalized tensor stochastic field, but this will not be covered in this section. 

Let an infinite n-dimensional random media with random material property be 

described by a second-order stochastic field 𝑘 𝒙, 𝜃  where 𝒙 ∈ 𝐷 and 𝜃 ∈ Ω. Denoting that 

the expectation function and covariance function of 𝑘 𝒙, 𝜃  are 𝑘0 𝒙  and 𝑅 𝝉 = 𝑅(𝒙1 −

𝒙2), respectively. Then, the F-K-L representation of random medium in ℝ𝑛  can be 

expressed as 

  𝑘 𝒙, 𝜃 = 𝑘0 𝒙 +  𝑒 −1𝑥∙𝑦𝑑𝒁(𝒚, 𝜃)
ℝ𝑛

                                      (2.7) 

Also, the covariance function can be written as 

  𝑅 𝝉 =   𝑒 −1𝜏∙𝑦𝑑𝐹 𝒚 =
ℝ𝑛

 𝑓(𝒚)𝑒 −1𝜏∙𝑦𝑑𝒚
ℝ𝑛

                         (2.8) 

The terms 𝑘 𝒙, 𝜃  and 𝑅 𝝉  are in the form of the inverse Fourier transform and expressed 

in the frequency space. In addition, the spectral distribution function of 𝑘 𝒙, 𝜃  is denoted 

by 𝐹 𝒚 . Furthermore, the spectral density function 𝑓 𝒚  can be easily derived via the 

Fourier transform 

  𝑓 𝒚 =  
1

(2𝜋)𝑛
 𝑅(𝝉)𝑒 −1𝜏∙𝑦𝑑
ℝ𝑛

𝝉                                                 (2.9) 

Interestingly, eqns. (2.7-2.8) provide an explicit solution for the K-L expansion of 

𝑘 𝒙, 𝜃  where 𝒙 ∈ ℝ𝑛  in terms of Fourier integrals without solving eqn. (2.6). Noting also 

that the terms 𝑒 −1𝑥∙𝑦  and 𝑑𝒁(𝒚, 𝜃) in eqn. (2.7) correspond to 𝝓𝑖(𝒙)  and  𝝀𝑖𝝃𝑖 𝜃  in 

eqn. (2.5), respectively. 

Note that for a typical random media encountered in practice, the spectral density 

function 𝑓 𝒚  in eqn. (2.9) can be exactly obtained since the Fourier transforms of many 
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typical functions can be calculated analytically. Otherwise, calculate 𝑓 𝒚  numerically 

using the standard Fast Fourier Transform (FFT).  

The inverse Fourier transform (2.7) of 𝑘 𝒙, 𝜃  can be deduced to a convergent 

Fourier series of 𝑘 𝒙, 𝜃 . Due to the orthogonality of the Fourier basis and using the 

Principal Component Analysis (PCA), the F-K-L representation of random media in n-

intervals is expressed as  

 𝑘𝑁 𝒙, 𝜃 = 𝑘0 𝒙 +    𝜆𝑖
𝑁
𝑖=1 𝝓𝑖 𝒙 𝝃𝑖 𝜃                                   (2.10) 

                  ≈ 𝑘0 𝒙 +   𝜆𝑖
𝑁∗

𝑖=1 𝝓𝑖 𝒙 𝝃𝑖 𝜃 = 𝑘𝑁∗ 𝒙, 𝜃  

where 𝑁∗ is the smallest integer such that 

  
 𝜆𝑖

𝑁∗

𝑖=1

 𝜆𝑖
𝑁

𝑖=1

≥ 𝜇∗                           0 < 𝜇∗ ≤ 1                                         (2.11) 

where the ratio 𝜇∗ is the needed accuracy for approximating the total variance of 𝑘𝑁 𝒙, 𝜃 . 

Also,  

   𝑓 𝒚 𝑑𝒚𝐅𝒏

 𝑓 𝒚 𝑑𝒚ℝ𝒏
=

 𝑓 𝒚 𝑑𝒚𝐅𝒏

𝑅 0 
≥ 𝜇          0 < 𝜇 < 1                                    (2.12) 

where constant μ is the required accuracy for approximating the spectrum identified by 

𝑓 𝒚 . 

The term 𝑘𝑁∗ 𝒙, 𝜃  provides a series solution for the K-L expansion of 𝑘 𝒙, 𝜃 , this 

is due to the completeness and orthogonality of the Fourier basis and the PCA procedure. 

The terms 𝝃𝑖 𝜃  in eqn. (2.10) are stochastically independent standard Gaussian random 

variables. This is a direct consequence of 𝑘 𝒙, 𝜃  being a Gaussian field in the random 

media model. The truncation error 𝑘 𝒙, 𝜃 − 𝑘𝑁∗ 𝒙, 𝜃  is explicitly controlled by 𝜇 and 𝜇∗. 

Particularly, the ratio 𝜇 controls the error of the spectrum (i.e. eigenvalues and 

eigenfunctions) of 𝑘 𝒙, 𝜃  and the ratio 𝜇∗ controls the error of the total variance of 

𝑘 𝒙, 𝜃 . 

The case for an irregular domain 𝐷, the F-K-L representation above constructed via 

the n-interval is not equivalent to performing an exact K-L expansion of 𝑘 𝒙, 𝜃  where  
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𝒙 ∈ 𝐷. Therefore, depending on the specific domain 𝐷, the F-K-L representation may be 

less economical than the exact K-L expansion in terms of the number of random variables 

included in the series expression. 

2.5  Summary 

In this chapter, an explicit stochastic field F-K-L representation scheme is presented 

to describe the random material properties of the random media model. This scheme is 

completely mesh-free and also independent of the detailed shape of the random structure 

under consideration compare to various FE-mesh based stochastic field representation 

schemes. Also, for the case of only one random material parameter involved in the random 

media model, the F-K-L scheme provides a semi-analytical solution of the K-L expansion 

of the corresponding stochastic field. In contrast, the F-K-L representation scheme is not 

only more accurate but is also computationally more efficient than the widely used K-L 

expansion method which is based on FE meshes. This is due to the harmonic essence of 

wide-sense stationary stochastic fields [2.10].  

The F-K-L representation is attained with a prior error control. The error of the 

spectrum of stochastic fields and the error of the total variance are explicitly controlled by 

two parameters 𝜇∗ and 𝜇. 

It is worth mentioning that, it is also possible to have an F-K-L representation for 

the general elastic tensor of random media to make the random media model applicable to 

any elastic constitutive relation. 
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Appendix:  Definitions 

In order to easily understand the mathematical terms used in this chapter a brief 

definition is given below.  

Definition 2.1: Consider a probability space  Ω, ℱ, 𝑃  is given. By definition, a random 

variable is a function X from Ω to the real line ℝ that is ℱ measurable, meaning that for any 

number a, 

   𝜔 ∶  𝑋 𝜔 ≤ 𝑎  ∈  ℱ.                                                                  (2.13) 

If Ω is finite or countably infinite, then ℱ can be the set of all subsets of Ω, in which case 

any real-valued function on Ω is a random variable [2.29]. 

Definition 2.2: The expectation (also called expected value, average value, mean value or 

simply mean) of a random variable X if there is a finite set {x1,…,xm} such that X(ω) ∈ 

{x1,…,xm} can be expressed mathematically as 

  𝐸 𝑋 =  𝑋 =  𝑥𝑃𝑥 {𝑋 = 𝑥]                                                         (2.14) 

Definition 2.3: Let X and Y be random variables on the same probability space, then the 

covariance of X and Y is defined as 

  𝐶𝑜𝑣 𝑋, 𝑌 = 𝐸   𝑋 − 𝐸 𝑋   𝑌 − 𝐸 𝑌                                      (2.15) 

Definition 2.4: The stochastic process, or sometimes random process X is an indexed 

collection X = (Xt : t ∈ ℝ) of random variables, all on the same probability space  Ω, ℱ, 𝑃  

[2.29]. Stochastic field is simply a stochastic process and can be defined in an n-

dimensional (n ∈ ℕ) domain.   

Definition 2.5: Let the material property, for example thermal conductivity of the random 

medium 𝐷 where 𝐷 ⊂ ℝ𝑛  be represented by a second-order stochastic field k 𝒙, 𝜃  where 

𝒙 ∈ 𝐷 and 𝜃 ∈ Ω. Note that the stochastic field 𝑘 𝒙, 𝜃  is a function over the random 

medium domain 𝐷 ⊂ ℝ𝑛  and probability space  Ω, ℱ, 𝑃 , respectively. The stochastic field 



 

 

24 Chapter 2 Representation of Stochastic Processes 

Civil and Computational Engineering Center, Swansea University 

is governed by several conditions [2.10]. Firstly, the expectation function of 𝑘 𝒙, 𝜃  is up to 

m-th order continuous derivatives in D, such that 

 𝐸 𝑘 𝒙, 𝜃  = 𝑘0 𝒙                                                                       (2.16) 

where 𝑘0 𝒙 ∈  𝐶𝑚 (𝐷). Secondly, the covariance function of 𝑘 𝒙, 𝜃  is defined as  

      𝐶𝑜𝑣 𝑘 𝒙1, 𝜃 , 𝑘 𝒙2, 𝜃  ≡ 𝑅(𝝉)   ∀𝒙1, 𝒙2 ∈ 𝐷                            (2.17) 

where 𝝉 = 𝒙1 − 𝒙2. Thirdly, the covariance function 𝑅 𝝉  is 𝐶2𝑚  continuous at 𝝉 = 0, 

such that, it is up to 2m-th order continuous derivatives at the origin. Lastly, for simplicity 

the stochastic field 𝑘 𝒙, 𝜃  is assumed to be a Gaussian field.  

Definition 2.6: A random process, X = (Xt : t ∈ ℝ) is stationary if all its n-order marginals 

do not depend on a translation by a constant, such that for any n > 0 and  time indices 

𝑡1, ⋯ , 𝑡𝑛 , 

    𝑓𝑥𝑡1 ,⋯,𝑥𝑡𝑛
 𝑥1, ⋯ , 𝑥𝑛 = 𝑓𝑥𝑡1+𝜏 ,⋯,𝑥𝑡𝑛+𝜏

 𝑥1, ⋯ , 𝑥𝑛         ∀𝜏 ∈ ℝ.     (2.18) 

Or simply, the stochastic process is said to be stationary process if the joint probability 

distribution does not change when shifted in space or time. Thus, the parameters such as the 

mean and variance do not change over position or time. 

Definition 2.7: A random process, X = (Xt : t ∈ ℝ) is wide sense stationary (WSS) if its 

mean function  𝐸 𝑋 𝑡   is constant and its autocorrelation 𝑅𝑋 𝑡, 𝑠  is a function of  𝑠 − 𝑡 , 

i.e. 𝑅𝑋 𝜏 = 𝑅𝑋 𝑡, 𝑡 + 𝜏 . 
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Chapter 3  
Stochastic Finite Element Formulation  

The FEM is widely known and very effective in solving virtually every engineering 

field problems. However, the conventional FEM cannot be used for solving problems with 

dominant random parameters. In order to accommodate this type of problems, the 

deterministic standard FEM is generalized as the SFEM by integrating the random 

variations in materials and geometric properties of the model and the random excitation that 

may act on it. In general, the major steps involved in the SFEM [3.1] formulation are 

outlined as follows:    

1) Determination of suitable probabilistic model for the random fields; 

2) Discretization of random fields; 

3) Formulation of the FE equations of motion and its solution; 

4) Estimation of system response probabilistic characteristics; and 

5) Prediction using the results, such as structural reliability. 

Following the representation of random media using F-K-L representation scheme in 

Chapter 2, this chapter covers step 3) above, i.e. the formulation of the FE equations of 

motion and its solution. Introducing the probability space in the governing equations of any 

physical phenomena, the equivalent SPDE system of any random media can be derived. 

The SPDE system is then discretized to achieve a stochastic system of linear algebraic 
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equations using the standard finite element. The resulting stochastic system of linear 

algebraic equations will then be solved easily using the solver in Chapter 4. 

3.1   Stochastic Partial Differential Equation System 

Two typical problems encountered in engineering applications will be presented in 

this chapter, namely (1) elastostatics and (2) steady-state heat conduction problems. These 

types of problems share the same mathematical analogy. Hence, at the end a generalized 

stochastic system of linear algebraic equations is applicable to both problems. 

3.1.1 Elastostatics 

Mathematical models of physical systems are typically governed by various PDE 

systems, so with the engineering structures composed of random media. In the analysis of 

an engineering structures based on deterministic mathematical models, input data such as 

the material properties are usually given which provide unique structural responses for a 

particular boundary conditions. For example, it is well known in continuum mechanics that 

the governing equations and required boundary conditions for elastostatics are 

mathematically expressed as  

    

𝛁 ∙ 𝝈 𝒙 +  𝒃 𝒙 = 𝟎                  

𝝈 𝒙 = 𝑪 𝒙 : 𝜺 𝒙                        

𝜺 𝒙 =  
1

2
 𝒖 𝒙 𝛁 +  𝛁𝒖 𝒙       

     
𝒖 𝒙 − 𝒖  𝒙 = 𝟎  𝑜𝑛 𝜕𝐷𝑢
𝝈 𝒙 − 𝝈  𝒙 = 𝟎  𝑜𝑛 𝜕𝐷𝜎

     (3.1)          

  for 𝒙 ∈ 𝐷 ⊂ ℝ𝑛  

in which 𝒖 𝒙  and 𝒖  𝒙  represent the displacement vectors, 𝜺 𝒙  is the strain tensor, 𝝈 𝒙  

and 𝝈  𝒙  are the stress tensors, 𝑪 𝒙  is the elastic tensor, and 𝒃 𝒙  is the load vector 

defined as 𝒃 𝒙 = 𝜌 𝒙 𝒈 where 𝜌 𝒙  and 𝒈 are the density tensor and acceleration due to 

gravity vector, respectively; 𝐷 ⊂ ℝ𝑛  is the material domain, 𝜕𝐷𝑢  is the displacement 

boundary of 𝐷 and 𝜕𝐷𝜎  is the stress boundary of 𝐷.  

Ideal situations are rarely encountered in practice; hence, the need to address 

uncertainties is clearly recognized. The modeling approach of engineering structures 
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composed of random media is based on a combination of probabilistic concepts with the 

methods of mechanics. Most random material models are based on stochastic fields to 

describe the irregular variation of material properties. In order to integrate this stochastic 

fields, the specified vectors and tensors will be expressed as a function over the medium 

domain 𝐷 ⊂ ℝ𝑛  and probability space  Ω, ℱ, 𝑃 , respectively, such that:  

  

𝜺 = 𝜺 𝒙, 𝜃 

𝝈 = 𝝈 𝒙, 𝜃 

𝜌 = 𝜌 𝒙, 𝜃 

𝑪 = 𝑪(𝒙, 𝜃)

       where  𝒙 ∈ 𝐷 ⊂ ℝ𝑛 , 𝜃 ∈  Ω ⊂ ℝ𝑛                     (3.2) 

Accordingly, for random medium expression (3.1) is transformed to a SPDE system 

as follows: 

    

𝛁 ∙ 𝝈 𝒙, 𝜃 +  𝜌 𝒙, 𝜃 𝒈 = 𝟎                  

𝝈 𝒙, 𝜃 = 𝑪 𝒙, 𝜃 : 𝜺 𝒙, 𝜃                  

𝜺 𝒙, 𝜃 =  
1

2
 𝒖 𝒙, 𝜃 𝛁 +  𝛁𝒖 𝒙, 𝜃  

      
𝒖 𝒙, 𝜃 − 𝒖  𝒙, 𝜃 = 𝟎  𝑜𝑛 𝜕𝐷𝑢
𝝈 𝒙, 𝜃 − 𝝈  𝒙, 𝜃 = 𝟎   𝑜𝑛 𝜕𝐷𝜎

   (3.3)          

    for 𝒙 ∈ 𝐷 ⊂ ℝ𝑛 , 𝜃 ∈  Ω ⊂ ℝ𝑛  

which is now expressed in terms of stochastic fields. Note that these mathematical 

quantities have the same physical meanings as in eqn. (3.1). The randomness in the above 

SPDEs is introduced by the spatially irregular variation of material properties, aside from 

the possible random boundary conditions 𝒖  𝒙, 𝜃  and 𝝈  𝒙, 𝜃 , which can be treated 

separately. Hence, the probabilistic properties of the random solutions 𝒖 𝒙, 𝜃 , 𝜺 𝒙, 𝜃  and 

𝝈 𝒙, 𝜃  can be determined from the probability distributions of the stochastic fields 𝜌 𝒙, 𝜃  

and 𝑪 𝒙, 𝜃 .  

3.1.2 Steady-State Heat Conduction 

The governing equations and required boundary conditions for steady-state heat 

conduction are expressed as  

  

−∇ ∙ 𝑘 𝒙 ∇𝑻 𝒙 + 𝑸 𝒙 = 𝟎                                 

 𝑻 𝒙 − 𝑻  𝒙 = 𝟎                                    on   𝜕𝐷𝑇    

𝒒𝑛 𝒙 − 𝒒 (𝒙) = 𝟎                                on   𝜕𝐷𝑞

                        (3.4) 

                𝒙 ∈ 𝐷 ⊂ ℝ𝑛  



 

 

31 Chapter 3 Stochastic Finite Element Formulation 

Civil and Computational Engineering Center, Swansea University 

in which 𝑻 𝒙  and 𝑻  𝒙  represent the temperature vectors, 𝑘 𝒙  is the thermal conductivity 

tensor, 𝒒𝑛 𝒙  and 𝒒 (𝒙) are the heat flux vectors, and 𝑸 𝒙  is the heat source vector; 

𝐷 ⊂ ℝ𝑛  is the material domain, 𝜕𝐷𝑇  is the temperature and 𝜕𝐷𝑞  is the heat flux boundaries 

of 𝐷, respectively. 

The random variation of material properties can be described by integrating the 

stochastic fields into the thermal conductivity tensor, temperature vector and heat source 

vector which are expressed as a function over the medium domain 𝐷 ⊂ ℝ𝑛  and a function 

over a probability space  Ω, ℱ, 𝑃  written as: 

  
𝑘 = 𝑘 𝒙, 𝜃 

𝑻 = 𝑻 𝒙, 𝜃 

𝑸 = 𝑸 𝒙, 𝜃 

         where       𝒙 ∈ 𝐷 ⊂ ℝ𝑛 , 𝜃 ∈  Ω ⊂ ℝ𝑛             (3.5) 

As an example of this, the material properties 𝑘 = 𝑘(𝒙, 𝜃0) as shown in Figure 2.1 

represent a particular realization of random thermal conductivity of a concrete slab.  

Consequently, for a spatially varying medium the corresponding SPDE system of 

the governing equations and associated boundary conditions of steady-state heat conduction 

is written as follows: 

   

−∇ ∙ 𝑘 𝒙, 𝜃 ∇𝑻 𝒙, 𝜃 + 𝑸 𝒙, 𝜃 = 𝟎                               

𝑻 𝒙, 𝜃 − 𝑻  𝒙, 𝜃 = 𝟎                                      on   𝜕𝐷𝑇    

𝒒𝑛 𝒙, 𝜃 − 𝒒 (𝒙, 𝜃) = 𝟎                                on   𝜕𝐷𝑞

               (3.6)          

     for  𝒙 ∈ 𝐷 ⊂ ℝ𝑛 ,  𝜃 ∈ Ω ⊂ ℝ𝑛  

It is observed that eqns. (3.3) and (3.6) are analogous mathematically, hence, a generalized 

formulation is necessary to solve the two different physical problems. 

As depicted above, the domain of a random medium can be described also as 

stochastic fields. In SFEM, the random process is represented by a countable set of random 

variables; thus, discretizing the process.  

 

3.2   F-K-L Representation 

The random material properties 𝜌 𝒙, 𝜃 , 𝑪 𝒙, 𝜃  and 𝑘 𝒙, 𝜃  of both the 

elastostatics and steady-state heat conduction problems are typically defined by their first- 
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and second- order statistical moments. Accordingly, the density vector 𝜌 𝒙, 𝜃 , elastic 

tensor 𝑪 𝒙, 𝜃  and thermal conductivity tensor 𝑘 𝒙, 𝜃   are defined as follows: 

  𝐸 𝜌 𝒙, 𝜃  = 𝜌0 𝒙               ∀𝒙 ∈ 𝐷                                             (3.7) 

  𝐶𝑜𝑣 𝜌 𝒙1, 𝜃 , 𝜌 𝒙2, 𝜃  = 𝑅𝜌 𝝉          ∀𝒙1, 𝒙2 ∈ 𝐷;                    (3.8)  

  𝐸 𝑪 𝒙, 𝜃  = 𝑪0 𝒙              ∀𝒙 ∈ 𝐷                                              (3.9) 

  𝐶𝑜𝑣 𝑪 𝒙1, 𝜃 , 𝑪 𝒙2, 𝜃  = 𝑅𝐶 𝝉         ∀𝒙1, 𝒙2 ∈ 𝐷;                    (3.10)  

  𝐸 𝑘 𝒙, 𝜃  = 𝑘0 𝒙             ∀𝒙 ∈ 𝐷                                             (3.11)  

  𝐶𝑜𝑣 𝑘 𝒙1, 𝜃 , 𝑘 𝒙2, 𝜃  = 𝑅𝑘 𝝉         ∀𝒙1, 𝒙2 ∈ 𝐷                     (3.12) 

where 𝝉 = 𝒙1 − 𝒙2; in which the scalar entries of vector 𝜌0 𝒙 , tensor 𝑪0 𝒙  and tensor 

𝑘0 𝒙  are the expectation functions of the corresponding scalar entries in 𝜌 𝒙, 𝜃 , 𝑪 𝒙, 𝜃  

and 𝑘 𝒙, 𝜃 , respectively. Also, the elements of matrices 𝑅𝜌 𝝉 , 𝑅𝐶 𝝉  and 𝑅𝑘 𝝉  are the 

covariance functions of the corresponding scalar entries in 𝜌 𝒙, 𝜃 , 𝑪 𝒙, 𝜃  and 𝑘 𝒙, 𝜃 , 

respectively.  

According to eqns. (3.7-3.12) and the F-K-L representation scheme of random 

media, the density vector 𝜌 𝒙, 𝜃 ,  elastic tensor 𝑪 𝒙, 𝜃  and thermal conductivity tensor 

𝑘 𝒙, 𝜃  can be expressed as follows: 

  𝜌 𝒙, 𝜃  ≈ 𝜌0 𝒙 +   𝜆𝑖
𝜌𝑁𝜌

∗

𝑖=1
𝝃𝑖
𝜌 𝜃 𝜌𝑖 𝒙                                     (3.13) 

  𝑪 𝒙, 𝜃  ≈ 𝑪0 𝒙 +   𝜆𝑖
𝑪𝑁𝑪

∗

𝑖=1 𝝃𝑖
𝑪 𝜃 𝑪𝑖 𝒙                                    (3.14) 

  𝑘 𝒙, 𝜃 ≈ 𝑘0 𝒙 +   𝜆𝑖
𝑘𝝃𝑖

𝑘𝑁𝑘
∗

𝑖=1 (𝜃)𝑘𝑖 𝒙                                      (3.15) 

in which 𝜆𝑖
𝜌 , 𝜆𝑖𝐶  and 𝜆𝑖𝑘  are all positive constants; 𝝃𝑖

𝜌 𝜃 , 𝝃𝑖𝐶 𝜃  and 𝝃𝑖𝑘 𝜃  are all assumed 

to be stochastically independent Gaussian random variables; 𝜌𝑖 𝒙 , 𝑪𝑖 𝒙  and 𝑘𝑖 𝒙  are all 

series of orthonormal deterministic functions; and the integers 𝑁𝜌∗, 𝑁𝐶
∗ and 𝑁𝑘∗ are 

determined explicitly by the error-control parameters in the F-K-L representation scheme.  

The boundary conditions of eqns. (3.3) and (3.6) are allowed to be random, but this 

possible randomness can be treated separately as it has no direct effect on the associated 
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differential operators.  Consequently, the definition method of the stochastic fields 𝒖  𝒙, 𝜃 , 

𝝈  𝒙, 𝜃 , 𝑻  𝒙, 𝜃 , and 𝒒 (𝒙, 𝜃) are not specified in the random media model. However, other 

appropriate methods can be used to define it, aside from its statistical moments. 

        3.3   Stochastic System of Linear Algebraic Equations  

Equations (3.3, 3.6-3.15) formed the complete SPDE systems for elastostatics and 

steady-state heat conduction of random media. The generalized finite element discretization 

for the PDE system can be used to discretize these SPDE systems, this is due to the fact that 

SPDE system is a generalization of the conventional PDE system. The details of the well-

established FEM can be found in various FE textbooks ([3.2-3.5] for instance). These two 

SPDE systems will be derived separately but without showing much of the details and later 

on a generalization of the formulation will be considered. 

3.3.1   Elastostatics  

Following the standard FEM, the random medium D is discretized first with a finite 

element mesh. Employing variational formulation of the FEM to eqn. (3.3), the functional 

of the total potential of the random media can be written as 

  =   𝒖𝑒 𝜃  
T 1

2𝑒
𝑝    𝑩 𝒙  

T
𝑫 𝒙, 𝜃 𝑩 𝒙 𝑑(𝑣𝑜𝑙)

𝐷𝑒
 𝒖𝑒 𝜃     (3.16) 

            −  𝒖𝑒 𝜃  
T

𝑒
  𝑵 𝒙  

T
𝒈

𝐷𝑒
𝜌 𝒙, 𝜃 𝑑(𝑣𝑜𝑙)      

            −  𝒖𝑒 𝜃  
T

𝑒
  𝑵 𝒙  

T

𝜕𝐷𝜎
𝑒

𝝈  𝒙, 𝜃 𝑑(𝑎𝑟𝑒𝑎)  

in which Σ𝑒  represents the summation over all the elements, 𝑩 𝒙  is the strain matrix, 

𝑫 𝒙, 𝜃  is the elastic matrix, 𝒖𝑒 𝜃  is the nodal displacement vector of each element 
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and  𝑵 𝒙  is the shape function matrix. The elastic matrix based on eqn. (3.14) can be 

expressed as 

  𝑫 𝒙, 𝜃  ≈ 𝑫0 𝒙 +   𝜆𝑖
𝐶𝑁𝐶

∗

𝑖=1 𝝃𝑖
𝐶 𝜃 𝑫𝑖 𝒙                                   (3.17) 

in which the elastic matrices 𝑫0 𝒙  and 𝑫𝑖 𝒙  are derived respectively from the elastic 

tensors 𝑪0 𝒙  and 𝑪𝑖 𝒙 . By employing eqns. (3.13) and (3.17) into (3.16), the total 

potential is now expressed as  

   =   𝒖𝑒 𝜃  
T

𝑒
𝑝

1

2
 𝑲0

𝑒 +  𝝃𝑖
𝐶 𝜃 

𝑁𝐶
∗

𝑖=1 𝑲𝑖
𝑒  𝒖𝑒 𝜃                    (3.18) 

          −  𝒖𝑒 𝜃  
T

𝑒
 𝑭0

𝑒 +  𝝃𝑖=1
𝜌  𝜃 

𝑁𝜌
∗

𝑖
𝑭𝑖
𝑒 −  𝒖𝑒 𝜃  

T
𝑭 𝑒(𝜃)

𝑒
 

in which the elemental stiffness matrices 𝑲0
𝑒  and 𝑲𝑖

𝑒 , the elemental volume-force vectors 

𝑭0
𝑒  and 𝑭𝑖𝑒 , and the elemental external-load vector 𝑭 𝑒(𝜃) are defined as follows: 

  𝑲0
𝑒 =   𝑩 𝒙  

T
𝑫0 𝒙 𝑩 𝒙 𝑑(𝑣𝑜𝑙)

𝐷𝑒
                                           (3.19) 

  𝑲𝑖
𝑒 =  𝜆𝑖

𝐶  𝑩 𝒙  
T
𝑫𝑖 𝒙 𝑩 𝒙 

𝐷𝑒
𝑑(𝑣𝑜𝑙)      𝑖 = 1,2,⋯ ,𝑁𝐶

∗      (3.20) 

  𝑭0
𝑒 =   𝑵 𝒙  

T
𝒈

𝐷𝑒
𝜌0 𝒙 𝑑(𝑣𝑜𝑙)                                                 (3.21) 

  𝑭𝑖
𝑒 =  𝜆𝑖

𝜌
  𝑵 𝒙  

T
𝒈

𝐷𝑒
𝜌𝑖 𝒙 𝑑(𝑣𝑜𝑙)              𝑖 = 1,2,⋯ ,𝑁𝜌

∗      (3.22) 

  𝑭 𝑒 𝜃 =   𝑵 𝒙  
T

𝜕𝐷𝜎
𝑒

𝝈  𝒙, 𝜃 𝑑(𝑎𝑟𝑒𝑎)                                        (3.23) 

Minimizing the total potential  𝑝  by differentiating with respect to the 

displacement on both sides of Eq. (3.18) and equating to zero, then the following stochastic 

system of linear algebraic equations hold 

   𝑲0 +  𝝃𝑖
𝐶 𝜃 

𝑁𝐶
∗

𝑖=1
𝑲𝑖 𝑼 𝜃 =  𝑭0 +  𝝃𝑖

𝜌 𝜃 
𝑁𝜌
∗

𝑖=1
𝑭𝑖 + 𝑭 (𝜃)     (3.24) 
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in which the global stiffness matrices 𝑲0 and 𝑲𝑖  are assembled respectively from elemental 

𝑲0
𝑒  and 𝑲𝑖

𝑒 ; the global volume-force vectors 𝑭0 and 𝑭𝑖  are assembled respectively from 

elemental 𝑭0
𝑒  and 𝑭𝑖𝑒 ; the global external-load vector 𝑭  𝜃  is assembled from elemental 

𝑭 𝑒 𝜃 ; and 𝑼 𝜃  is the unknown nodal displacement vector.  

3.3.2   Steady-State Heat Conduction 

Similarly, the random medium D is discretized first with a finite element mesh. 

Then, employing variational formulation of the FEM to eqn. (3.6), the functional of the 

total potential of the random media can be expressed as 

  𝑝 =   𝑻𝑒 𝜃  
T 1

2𝑒
(  𝑩 𝒙  

T
𝑘 𝒙, 𝜃 𝑩 𝒙 𝑑 𝑣𝑜𝑙  )𝑻𝑒 𝜃   

𝐷𝑒
   (3.25) 

  +  𝑻𝑒 𝜃  
T

𝑒
  𝑵 𝒙  

T
𝑸 𝒙, 𝜃 𝑑 𝑣𝑜𝑙 

𝐷𝑒
   

  +  𝑻𝑒 𝜃  
T

𝑒
  𝑵 𝒙  

T
𝒒  𝒙, 𝜃 𝑑 𝑎𝑟𝑒𝑎 

𝜕𝐷𝑞
𝑒

   

where Σ𝑒  represents the summation over all the elements, 𝑻𝑒 𝜃  denotes the nodal 

temperature vector of each element, 𝑩 𝒙  is a matrix of the derivative of shape functions, 

𝑘 𝒙, 𝜃  is the heat conductivity matrix, and  𝑵 𝒙  is the shape function matrix.  

Substituting eqn. (3.15) into (3.25), this yields to 

   =   𝑻𝑒 𝜃  
T

𝑒
𝑝

1

2
 𝑲0

𝑒 +  𝝃𝑖
𝑘 𝜃 

𝑁𝑘
∗

𝑖=1 𝑲𝑖
𝑒  𝑻𝑒 𝜃                    (3.26) 

          +  𝑻𝑒 𝜃  
T

𝑒
 𝑭𝑖

𝑒 +   𝑻𝑒 𝜃  
T
𝑭 𝑒(𝜃)

𝑒
 

in which the elemental coefficient matrices 𝑲0
𝑒  and 𝑲𝑖

𝑒 , the elemental volume-heat vector 

𝑭𝑖
𝑒 , and the elemental external-heat vector 𝑭 𝑒(𝜃) are defined as follows: 

 𝑲0
𝑒 =   𝑩 𝒙  

T
𝑘0 𝒙 𝑩 𝒙 𝑑 𝑣𝑜𝑙 

𝐷𝑒
                                            (3.27) 
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𝑲𝑖
𝑒 =  𝜆𝑖

𝑘   𝑩 𝒙  
T
𝑘𝑖 𝒙 𝑩 𝒙 𝑑 𝑣𝑜𝑙       𝑖 = 1,2,⋯ ,𝑁𝑘

∗

𝐷𝑒
        (3.28) 

𝑭𝑖
𝑒 =   𝑵 𝒙  

T
𝑸 𝒙, 𝜃 𝑑 𝑣𝑜𝑙 

𝐷𝑒
                                                  (3.29) 

𝑭 𝑒 𝜃 =   𝑵 𝒙  
T

𝜕𝐷𝑞
𝑒

𝒒 𝑛 𝒙, 𝜃 𝑑(𝑎𝑟𝑒𝑎)                                      (3.30) 

Minimizing the total potential  𝑝  by taking variation with respect to the 

temperature on both sides of Eq. (3.26) and equating to zero, then the following stochastic 

system of linear algebraic equations hold 

   𝑲0 +  𝜉𝑖
𝑘𝑁𝑘

∗

𝑖=1
 𝜃 𝑲𝑖 𝑻 𝜃 = −(𝑭𝑖 + 𝑭  𝜃 )                            (3.31) 

in which the global coefficient matrices 𝑲0 and 𝑲𝑖  are assembled respectively from 

elemental 𝑲0
𝑒  and 𝑲𝑖

𝑒 ; the global volume-heat vector 𝑭𝑖  is assembled from elemental 𝑭𝑖𝑒 ; 

the global external-heat vector 𝑭  𝜃  is assembled from elemental 𝑭 𝑒 𝜃 ; and 𝑻 𝜃  is the 

unknown nodal temperature vector.  

3.3.3 Generalized Stochastic Linear System 

Following the finite element discretization of the SPDE systems for elastostatics and 

steady-state heat conduction above, it is observed that a complete mathematical analogy of 

the two problems exists. Hence, the resulting finite element formulations (3.24) and (3.31) 

can be expressed as a generalized stochastic system of linear algebraic equations 

   𝐊0 +  𝝃𝑖
𝐶 𝑜𝑟  𝑘 𝜃 

𝑁𝐶 𝑜𝑟  𝑘
∗

𝑖=1
𝐊𝑖 𝚽 𝜃 = 𝐅 + 𝐅                                (3.32) 

in which the corresponding terms are expressed as  

 𝐊0 =  𝑲0
𝑒 =    𝑩 𝒙  

T
 𝐷0 𝒙  𝑜𝑟 𝑘0 𝒙  𝑩 𝒙 𝑑 𝑣𝑜𝑙 

𝐷𝑒
                   (3.33) 

 𝐊𝑖 =  𝑲𝑖
𝑒 =   𝜆𝑖

𝐶 𝑜𝑟  𝑘   𝑩 𝒙  
T

(𝐷𝑖 𝒙  𝑜𝑟 (𝑘𝑖 𝒙 )𝑩 𝒙 𝑑 𝑣𝑜𝑙   
𝐷𝑒

  

    𝑖 = 1,2,⋯ ,𝑁𝐶 𝑜𝑟  𝑘
∗                                                  (3.34) 
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 𝐅 =  𝑭
𝑒

=    𝑵 𝒙  
T
  𝒈𝜌0 𝒙 +  𝜆𝑖

𝜌
𝒈𝜌𝑖 𝒙   𝑜𝑟 𝑸 𝒙, 𝜃  𝑑 𝑣𝑜𝑙 

𝐷𝑒
 

    𝑖 = 1,2,⋯ ,𝑁𝜌
∗                                                        (3.35) 

  𝐅 =  𝑭 𝑒 =     𝑵 𝒙  
T

(𝝈  𝒙, 𝜃  𝑜𝑟
𝜕𝐷𝜎  𝑜𝑟  𝑞

𝑒
𝒒 𝑛 𝒙, 𝜃 )𝑑(𝑎𝑟𝑒𝑎)               (3.36) 

 𝚽 =  𝑼 𝜃  or  𝑻 𝜃                                                                                  (3.37) 

From the above expressions, the   represents the necessary assembly over all elements, the 

matrix 𝑲0 is real, symmetric and positive-definite, the matrices 𝑲𝑖  are all real and 

symmetric, and the random matrix sum 𝑲0 +  𝝃𝑖
𝑪 𝑜𝑟  𝑘 𝜃 

𝑁𝑪 𝑜𝑟 𝑘
∗

𝑖=1 𝑲𝑖  is, in the context of 

probability, real, symmetric and positive-definite. The terms inside the parenthesis with 

“or” symbol represent the elastostatics for the first term and the steady-state heat 

conduction for the second term. In addition, the boundary conditions 𝒖  𝒙, 𝜃  and 𝑻  𝒙, 𝜃  of 

the SPDE systems can be directly introduced into the generalized stochastic linear algebraic 

system (3.32). 

The random coefficient matrix sum of eqn. (3.32) is almost surely real, symmetric 

and positive-definite such that 

  𝑃  det   𝑲0 +  𝝃𝑖
𝐶 𝑜𝑟  𝑘 𝜃 

𝑁𝐶 𝑜𝑟 𝑘
∗

𝑖=1
𝑲𝑖  ≠ 0 = 1                       (3.38) 

Accordingly, the generalized stochastic system of linear algebraic equations (3.32) is 

always well-defined and the random displacement 𝑼 𝜃  and temperature 𝑻 𝜃  solution 

exists with probability one. 
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Chapter 4  
Solution Strategy for the Stochastic 
System of Linear Algebraic Equations  

From the complete SPDE systems for elastostatics and steady-state heat conduction 

problems of random media in Chapter 3, the stochastic system of linear algebraic equations 

was derived. It is rewritten here for clarity: 

  𝐊0 +  𝝃𝑖
𝐶 𝑜𝑟  𝑘 𝜃 

𝑁𝐶 𝑜𝑟  𝑘
∗

𝑖=1
𝐊𝑖 𝚽 𝜃 = 𝐅 + 𝐅                                (4.1) 

The mathematical form of the stochastic linear algebraic system (4.1) is well-known in 

SFEM research. Hence, a number of methods have been developed already for the solution 

of these equations, namely: the Monte Carlo method [4.1-4.2]; the Neumann expansion 

method [4.3-4.4]; the polynomial chaos expansion method [4.5-4.7]; the perturbation 

method [4.8-4.9]; and recently, the joint diagonalization method [4.13]. From a 

computational point of view, the first four of these methods have encountered serious 

obstacles in practical implementations. In large and realistic problems the developed 

methodologies are either cumbersome or computationally intensive. On the other hand, the 

joint diagonalization strategy is promising and an improved method that is easy to 

implement. Therefore, the aim of this chapter is to explore the formulation of the joint 

diagonalization strategy; and in addition, to present an attempted development of the joint 

tridiagonalization for the stochastic linear systems. 
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 The notation in eqn. (4.1) will not be used in this chapter but instead the formulation 

is presented in a more simple expression in the form  𝛼1𝑨1 + 𝛼2𝑨2 + ⋯+ 𝛼𝑛𝑨𝑛 𝒙 = 𝒃, 

where the coefficients 𝛼𝑖  (𝑖 = 1,⋯ , 𝑛) represent the random variables, the real symmetric 

deterministic matrices are represented by 𝑨𝑖  (𝑖 = 1,⋯ , 𝑛), the deterministic/random vector 

is 𝒃 and the unknown random vector is 𝒙. 

4.1   Preliminary  

The standard linear deterministic finite element equations take the form of linear 

algebraic equations expressed as 

 𝑨𝒙 = 𝒃                                                                                          (4.2) 

where the matrix 𝑨, vector 𝒙 and vector 𝒃 have different physical meanings depending on 

the system under consideration. In this thesis for example, the problems of elastostatics and 

steady-state heat conduction have different meanings for every term. Thus, for elastostatics 

problem, 𝑨 represents the elastic stiffness matrix, 𝒙 the unknown nodal displacement vector 

and 𝒃 the nodal load vector. In the same way, it is the thermal conductivity matrix, the 

unknown nodal temperature vector and the nodal temperature-load vector, respectively for 

steady-state heat conduction problem. 

 The deterministic physical model depicted by eqn. (4.2) is not often valid for real 

structures composed of random media. This is due to the fact that real structures inherent 

various uncertainties of the design parameters such as material properties, geometry and/or 

loading conditions. In this case, the SFEM is used to capture the randomness of these 

design parameters. Using the SFEM formulation, it can be shown in Chapter 3 that the 

SPDEs of any physical problem can be reduced to the so called stochastic system of linear 

algebraic equations and takes the following simple form  

   𝛼1𝑨1 + 𝛼2𝑨2 + ⋯+ 𝛼𝑛𝑨𝑛 𝒙 = 𝒃                                              (4.3) 

where the deterministic 𝑚 × 𝑚 real symmetric matrices 𝑨𝑖  (𝑖 = 1,⋯ , 𝑛), the unknown 

random real vector 𝒙 and deterministic real vector 𝒃 (the uncertainties of these vector can 
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be ignored for the moment since it will not affect the whole system as it will be shown 

later) have basically the same physical meanings as their counterparts in eqn. (4.2); also the 

real scalars 𝛼𝑖  (𝑖 = 1,⋯ , 𝑛) are random factors used to capture the inherent randomness of 

the system. Obviously, eqn. (4.3) decoupled the stochastic nature of the physical problem 

into the deterministic and stochastic parts in a simple way. 

4.2   Overview of Existing Solution Schemes 

 In the SFEM research, several techniques have been used to solve the stochastic 

system of linear algebraic equations (4.3), namely: the Monte Carlo method; the Neumann 

expansion method; the polynomial chaos expansion method; the perturbation method; and 

recently, the joint diagonalization method. An outline of the first-four solution schemes is 

as follows: 

 The Monte Carlo method is simple and conceivably the most flexible method. The 

method requires a large number of simulations in order to statistically converge to the 

correct solution. Hence, it is extremely computationally demanding especially for large and 

realistic problems where a large number of samples have to be computed. To overcome this 

difficulty, improvements [4.1-4.2] have been made. In this method, eqn. (4.3) becomes a 

standard deterministic system of linear algebraic equations.  

 The Neumann expansion method [4.3-4.4] splits the left-hand side coefficients of 

(4.3) as a sum of a deterministic and stochastic matrix. Then using the Neumann series to 

expand the coefficients and the solution 𝒙 is represented as a series. The computational 

costs of the Neumann expansion method depend on the number of terms required in the 

resulting series. Unfortunately, to achieve a given accuracy it requires more terms in the 

series for large problems and could become even more expensive than the Monte Carlo 

method. 

 The polynomial chaos expansion method [4.5-4.7] is implemented using a Gaussian 

random variables and orthonormal multivariate Hermite polynomials [4.10]. The solution 𝒙 
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can be represented as polynomial chaos expansion if 𝛼𝑖  are mutually independent Gaussian 

random variables. The unknown vector-valued coefficients of this expansion can be solved 

through a Galerkin approach whose shape functions are provided by the multivariate 

Hermite polynomials. The method can only be used to solve equations consisting of 

Gaussian random variables. In addition, the computational costs and the complexity 

involved in the derivation of multivariate Hermite polynomials increase exponentially as 

the number of random variables grows. 

  In the perturbation method [4.8-4.9], all the random variables 𝛼𝑖  are decomposed 

into deterministic part and random part. The random solution 𝒙 is approximated by 

Taylor’s series where the origin and coefficients involved are both unknown deterministic 

vectors. The method’s order depends on the number of terms expanded in Taylor series. As 

a result, several procedures can be defined, i.e. zero-order perturbation, first-order 

perturbation, second-order perturbation and so on. Due to increasingly high complexity of 

the analytic derivations as well as computational costs, the applications of higher-order 

perturbations are rare.   

 Lastly, the idea of joint diagonalization strategy is to simultaneously transform the 

real symmetric matrices 𝐴𝑖  using a sequence of orthogonal similarity transformation which 

gradually decreases the off-diagonal elements of the matrices. Then, the classical Jacobi 

method is modified to solve the resulting average eigenvalue problem. The strategy is 

simply an approximation except if all the matrices have exactly the same eigenstructure. 

The formulation and detailed discussion of the joint diagonalization is explained in the next 

section.  

4.3   Joint Diagonalization Strategy 

 This section discusses the new solution strategy for the stochastic system of linear 

algebraic equations (4.3) called the joint diagonalization. The formulation of the scheme is 

discussed below followed by the Jacobi-like algorithm for the average eigenvalue problem.  
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4.3.1  Formulation 

The strategy aims to obtain an explicit solution of 𝒙 by inverting the matrix sum 

 𝛼1𝑨1 + 𝛼2𝑨2 + ⋯+ 𝛼𝑛𝑨𝑛  in terms of the random variables 𝛼𝑖  (𝑖 = 1,⋯ , 𝑛). In order to 

have a well-defined solution, the matrix sum must be non-singular almost surely, i.e. 

 𝑃  𝛼1𝑨1 + 𝛼2𝑨2 + ⋯+ 𝛼𝑛𝑨𝑛  ≠ 0 = 1                                    (4.4) 

The main idea here is to simultaneously diagonalize all the matrices 𝑨𝑖  (𝑖 =

1,⋯ , 𝑛) such that 𝑩−1𝑨𝑖𝑩 = 𝜦𝑖 = 𝑑𝑖𝑎𝑔 𝜆𝑖1 , 𝜆𝑖2, ⋯ , 𝜆𝑖𝑚     𝑖 = 1,⋯ , 𝑛 , so that eqn. (4.3) 

can be transformed into: 

  𝑩 𝛼1𝜦1 + 𝛼2𝜦2 + ⋯+ 𝛼𝑛𝜦𝑛 𝑩
−1𝒙 = 𝒃                                     (4.5)  

where the matrix 𝑩 is assume to exist and be an invertible matrix,  𝜦𝑖  are diagonal matrices 

containing the eigenvalues 𝜆𝑖𝑗   𝑗 = 1,⋯ ,𝑚  of the 𝑚 × 𝑚 real symmetric matrix 𝑨𝑖 .  

From eqn. (4.5), the solution 𝒙 can now be solved explicitly. After a sequence of 

mathematical manipulations, the solution 𝒙 is expressed as 

  𝒙 = 𝑫 
1

 𝛼𝑖𝜆𝑖1
𝑛

𝑖=1

,
1

 𝛼𝑖𝜆𝑖2
𝑛

𝑖=1

,⋯ ,
1

 𝛼𝑖𝜆𝑖𝑚
𝑛

𝑖=1

 
T

                                (4.6) 

where 

  𝑫 = 𝑩𝑑𝑖𝑎𝑔 𝑑1, 𝑑2, ⋯ , 𝑑𝑚                                                             (4.7) 

  𝑩−1𝒃 =  𝑑1, 𝑑2, ⋯ , 𝑑𝑚  T                                                              (4.8) 

After solving 𝒙, the associated joint probability distribution and statistical moments, such 

as the expectation and covariance can be readily calculated. The strategy above is basically 

an average eigenvalue problem. In order to solve for 𝒙, we need to obtain first the 

transform matrix 𝑩 and the corresponding eigenvalues 𝜆𝑖𝑗   𝑖 = 1,⋯ , 𝑛;  𝑗 = 1,⋯ ,𝑚 . This 

will be tackled in detail in the subsequent subsection.  

4.3.2   Jacobi-Like Scheme for the Average Eigenvalue 
           Problem 
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 In linear algebra, the eigenvalue problem for square matrices can always be 

transformed into a real diagonal matrix using orthogonal operators. For example, in 𝑚 × 𝑚 

real symmetric matrix 𝑨 there exists an orthogonal matrix 𝑸, such that 𝑸−1𝑨𝑸 = 𝜦 =

𝑑𝑖𝑎𝑔 𝜆1, 𝜆2, ⋯ , 𝜆𝑚  , where 𝜦 is a diagonal matrix and 𝜆𝑖 ∈ ℝ  𝑖 = 1,⋯ ,𝑚 . The diagonal 

elements of 𝜦 are the eigenvalues of 𝑨 and the columns of 𝑸 are the corresponding 

eigenvectors of 𝑨.   

 The classical Jacobi method [4.11-4.12] is used to calculate the matrices 𝜦 and 𝑸. 

The object is to minimize the off-diagonal elements of the real symmetric matrix 𝑨 so that 

the matrix becomes more nearly diagonal through a sequence of Givens similarity 

transformations. Even though Jacobi’s idea is applied to a single matrix, the algorithm can 

be modified to accommodate multiple real symmetric matrices. The procedure is as 

follows: 

Every Jacobi transformation gradually vanishes one pair of off-diagonal elements in 

real symmetric matrices 𝑨𝑘  𝑘 = 1,⋯ , 𝑛 . In order to gradually vanish the pair of equal 

elements  𝐴𝑘 𝑝𝑞  and  𝐴𝑘 𝑞𝑝 , the orthogonal Givens matrix 𝑮 with the rotation angle 𝛽 

 

1
1

cos sin
, ,

1
sin cos

1

col p col q

row p

row q

G G p q
 



 

 
 
 
 

  
 
 
 
 

               (4.9) 

is employed. The series of orthogonal similarity transformations gradually reduce the sum 

of off-diagonal elements  𝑜𝑓𝑓 𝑨𝑘 
𝑛
𝑘=1  where the off-diagonal elements is defined as 

𝑜𝑓𝑓 𝑨𝑘 ≜    𝑨𝑘 𝑖𝑗
2𝑚

𝑗=1,𝑗≠𝑖
𝑚
𝑖=1 ,  𝑘 = 1,⋯ , 𝑛 , which have no effect on the Frobenius 

norms defined as  𝑨𝑘 𝐹 ≜     𝑨𝑘 𝑖𝑗
2𝑚

𝑗 =1
𝑚
𝑖=1  

1/2
,  𝑘 = 1,⋯ , 𝑛 . For each transformation, 

the new matrices are calculated as 𝑨𝑘
∗ = 𝑮 𝑝, 𝑞, 𝛽 𝑨𝑘𝑮

−1 𝑝, 𝑞, 𝛽  where only the rows p 

and q, and columns p and q are changed. After every transformation, with some algebraic 

manipulations the following equalities will hold 
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   𝑜𝑓𝑓 𝑨𝑘
∗  =𝑛

𝑘=1  𝑜𝑓𝑓 𝑨𝑘 −  2 𝑨𝑘 𝑝𝑞
2𝑛

𝑘=1 +  2 𝑨𝑘
∗  𝑝𝑞

2𝑛
𝑘=1

𝑛
𝑘=1   (4.10) 

Hence, the minimization of the off-diagonal elements  𝑜𝑓𝑓 𝑨𝑘
∗  𝑛

𝑘=1  is equivalent to 

minimizing  2 𝑨𝒌
∗ 𝑝𝑞

2𝑛
𝑘=1 . 

 From the results of the new matrices 𝑨𝑘
∗ , the expression  2 𝑨𝑘

∗  𝑝𝑞
2𝑛

𝑘=1  is given as 

   2 𝑨𝑘
∗  𝑝𝑞

2𝑛
𝑘=1 =  2 

1

2
  𝑨𝑘 𝑞𝑞 −  𝑨𝑘 𝑝𝑝 𝑠𝑖𝑛2𝛽 +  𝑨𝑘 𝑝𝑞𝑐𝑜𝑠2𝛽 

2
𝑛
𝑘=1                                                                                    

               =  𝑐𝑜𝑠2𝛽  𝑠𝑖𝑛2𝛽 𝑱  
𝑐𝑜𝑠2𝛽
𝑠𝑖𝑛2𝛽

                                  (4.11) 

where 𝑱 =   
2 𝑨𝑘 𝑝𝑞

2  𝑨𝑘 𝑝𝑞   𝑨𝑘 𝑞𝑞 −  𝑨𝑘 𝑝𝑝  

 𝑨𝑘 𝑝𝑞   𝑨𝑘 𝑞𝑞 −  𝑨𝑘 𝑝𝑝  
1

2
  𝑨𝑘 𝑞𝑞 −  𝑨𝑘 𝑝𝑝  

2  𝑛
𝑘=1 .   (4.12) 

Suppose that 𝑒1
 𝐽   and 𝑒2

 𝐽   denote the unit eigenvectors of 𝑱, and 𝜆1
(𝐽)

≥ 𝜆2
(𝐽 )

≥ 0 the 

eigenvalues of 𝑱, then based on the theory of quadratic form the maximum and minimum 

eigenvalues are reached when  𝑐𝑜𝑠2𝛽  𝑠𝑖𝑛2𝛽 𝑇 is equal to 𝑒1
 𝐽   and 𝑒2

 𝐽  , respectively. 

Therefore,  2 𝑨𝑘
∗  𝑝𝑞

2𝑛
𝑘=1  is minimized using the optimal Givens rotation angle 𝛽𝑜𝑝𝑡  based 

on the minimum eigenvalue as determine by 

   𝑐𝑜𝑠2𝛽  𝑠𝑖𝑛2𝛽 T = 𝑒2
 𝐽        𝑐𝑜𝑠2𝛽𝑜𝑝𝑡 ≥ 0                                  (4.13)          

for which the corresponding Givens matrix is formed. 

The modified classical Jacobi algorithm is summarized in steps as follows: 

 Step 1. For all the entries of matrices 𝑨𝑘  look for an entry  𝑝, 𝑞  where 𝑝 ≠ 𝑞 

such that  2 𝑨𝑘 𝑝𝑞
2 ≠ 0𝑛

𝑘=1 . 

Step 2. For every entry  𝑝, 𝑞  that satisfies step 1, the Givens matrix 

𝑮 𝑝, 𝑞, 𝛽𝑜𝑝𝑡   can be formed by calculating first the optimal Givens 

rotation angle 𝛽𝑜𝑝𝑡  from eqn. (4.13). 

Step 3. Update all the matrices 𝑨𝑘  as 𝑨𝑘
∗ = 𝑮 𝑝, 𝑞, 𝛽𝑜𝑝𝑡  𝑨𝑘𝑮

−1 𝑝, 𝑞, 𝛽𝑜𝑝𝑡  . 

Note: only the p-th and q-th rows/columns in these matrices need to be 

updated. 
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Step 4. Repeat steps 1-3 until the process converges. 

If the above steps has been performed K times, then the transform matrix B in eqn. (4.5) is 

computed as 

  𝑩 = 𝑮1
−1𝑮2

−1 ⋯𝑮𝐾
−1 = 𝑮1

𝑇𝑮2
𝑇 ⋯𝑮𝐾

𝑇                                               (4.14) 

and the diagonal entries in the final matrices 𝑨𝑘
∗  correspond to the eigenvalues 𝜆𝑖𝑗   𝑖 =

1,⋯ , 𝑛;  𝑗 = 1,⋯ ,𝑚 . The convergence of this average eigenstructure problem is 

guaranteed by the Jacobi-like joint diagonalization algorithm since it can be shown that it is 

monotonously decreasing in the iterative procedure [4.13]. 

 

4.3.3  Discussions 

 The Jacobi-like algorithm for multiple real symmetric matrices reduces to the 

classical Jacobi algorithm for a single real symmetric matrix and the joint 

diagonalization solution strategy gives the exact solution of 𝒙 in this simple case, 

i.e. 

  𝛼1𝑨1𝒙 = 𝒃                                                                                     (4.15)  

  𝒙 =
1

𝛼1
𝑨1
−1𝒃                                                                                   (4.16) 

Nevertheless, the present methods, such as the Monte Carlo method, the Neumann 

expansion method, the polynomial chaos method and the perturbation method do 

not have the above characteristic. Furthermore, the solution for the deterministic 

equation system (4.2) can be regarded as a special case of the solver for the more 

general stochastic equation system (4.3).   

 Except if all the real symmetric matrices 𝑨𝑖   𝑖 = 1,⋯ , 𝑛  have exactly the same 

eigenstructure, the joint diagonalization of eqn. (4.3) for 𝑛 ≥ 2 can only be 

approximately achieved. The approximate result is essentially an average 

eigenstructure that minimizes all the off-diagonal entries measured by 

 𝑜𝑓𝑓 𝑨𝑘 
𝑛
𝑘=1 . Consequently, the degree of the eigenstructure similarity of matrices 

dictates the effectiveness and efficiency of the approach. 
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 The right-hand side vector b of eqn. (4.3) has been assumed deterministic. In the 

present approach there is basically no intermediate operation required on b until the 

final solution x is calculated for the given random variables  𝛼𝑖  (𝑖 = 1,⋯ , 𝑛) as 

affirmed in the explicit solution (4.6). Thus, the performance of the solution strategy 

is not influenced by the type of random variations.  

 The Jacobi-like joint diagonalization procedure contributes the main computational 

cost which is proportional to the total number of matrices n.  

 The Jacobi-like joint diagonalization is monotonously decreasing in the iterative 

procedure. A representative convergence history of the algorithm can be seen in 

[4.13].  

 

 

4.4   Joint Tridiagonalization Strategy 

 The development of joint tridiagonalization strategy is somewhat similar in 

structure of the joint diagonalization strategy. The scheme transforms the real symmetric 

matrices 𝑨𝑖  (𝑖 = 1,⋯ , 𝑛) into real symmetric tridiagonal matrices 𝑻𝑖  as opposed to the 

diagonal matrices. The formulation of the scheme will be discussed next followed by the 

Jacobi-like algorithm for the resulting average eigenvalue problem. 

4.4.1  Formulation 

The key idea in this strategy is to simultaneously tridiagonalize all the 𝑚 × 𝑚 real 

symmetric matrices 𝑨𝑖  (𝑖 = 1,⋯ , 𝑛) such that 𝑪−1𝑨𝑖𝑪 = 𝑻𝑖    𝑖 = 1,⋯ , 𝑛 , then eqn. (4.3) 

can be transformed into: 

  𝑪 𝛼1𝑻1 + 𝛼2𝑻2 + ⋯+ 𝛼𝑛𝑻𝑛 𝑪
−1𝒙 = 𝒃                                      (4.17)  

where the matrix 𝑪 is assume to exist and be an invertible matrix and 𝑻𝑖    𝑖 = 1,⋯ , 𝑛  are 

real symmetric tridiagonal matrices and nonsingular. The solution 𝒙 is given by 

  𝒙 = 𝑪  𝜶𝒏
𝒊=𝟏 𝒊

𝑻𝒊 
−𝟏

𝑪−1𝒃                                                            (4.18) 
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Hence, in order to get the solution 𝒙 it is necessary to obtain first the transform matrix 𝑪 

and the corresponding tridiagonal matrices 𝑻𝒊.  

4.4.2   Jacobi-Like Scheme for the Average Eigenvalue 
           Problem 

 In linear algebra, a square matrix can be transformed into a real symmetric 

tridiagonal matrix using a series of orthogonal similarity transformation. For example, in 

𝑚 × 𝑚 real symmetric matrix 𝑨 there exists an orthogonal matrix 𝑷, so that 𝑷−1𝑨𝑷 = 𝑻, 

where 𝑻 is a real symmetric tridiagonal matrix having the same eigenvalues of 𝑨 and the 

columns of 𝑷 are the corresponding eigenvectors of 𝑨. 

 Here, the classical Jacobi method [4.11-4.12] is used to calculate the matrices 𝑻 and 

𝑷 but with some modifications. The aim here is to minimize the off-tridiagonal elements of 

the real symmetric matrix 𝑨 so that the matrix becomes more nearly tridiagonal through a 

sequence of Givens similarity transformations.  

The orthogonal Givens matrix 𝑮 (4.9) is used to gradually diminish one pair of off-

tridiagonal elements in real symmetric matrix 𝑨𝑘  𝑘 = 1,⋯ , 𝑛 . In each orthogonal 

similarity transformations the sum of off-tridiagonal elements  𝑜𝑓𝑓𝑡𝑟𝑖 𝑨𝑘 
𝑛
𝑘=1  where the 

off-tridiagonal elements is defined as 𝑜𝑓𝑓𝑡𝑟𝑖 𝑨𝑘 ≜    𝑨𝑘 𝑖𝑗
2𝑚

𝑗=𝑖+2
𝑚−2
𝑖=1 ,  𝑘 = 1,⋯ , 𝑛 , 

gradually diminishes in which each operation have no effect on the Frobenius norms of 𝑨𝑘 . 

The new matrices are computed as 𝑨𝑘
∗ = 𝑮 𝑝, 𝑞, 𝛽 𝑨𝑘𝑮

−1 𝑝, 𝑞, 𝛽  where only the rows p 

and q, and columns p and q are changed. The following equalities hold after each 

transformation 

   𝑜𝑓𝑓𝑡𝑟𝑖 𝑨𝑘
∗  =𝑛

𝑘=1  𝑜𝑓𝑓 𝑨𝑘 −  2 𝑨𝑘 𝑝𝑞
2𝑛

𝑘=1 +𝑛
𝑘=1                (4.19) 

                2 𝑨𝑘
∗  𝑝𝑞

2𝑛
𝑘=1 −    2 𝑨𝑘

∗  𝑖𝑗
2𝑚

𝑗=𝑖+1
𝑚−1
𝑖=1,

𝑛
𝑘=1  

Thus, the minimization of  𝑜𝑓𝑓𝑡𝑟𝑖 𝑨𝑘
∗  𝑛

𝑘=1  is equivalent to minimizing the expressions 

 2 𝑨𝑘
∗  𝑝𝑞

2𝑛
𝑘=1 −    2 𝑨𝑘

∗  𝑖𝑗
2𝑚

𝑗=𝑖+1
𝑚−1
𝑖=1,

𝑛
𝑘=1 .  
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 From the results of the new matrices 𝑨𝑘
∗ ,  

  2 𝑨𝑘
∗  𝑝𝑞

2 −
𝑛

𝑘=1
   2 𝑨𝑘

∗  𝑖𝑗
2𝑚

𝑗=𝑖+1
𝑚−1
𝑖=1,

𝑛
𝑘=1 =                                                     

    𝑐𝑜𝑠2𝛽  𝑠𝑖𝑛2𝛽 𝑱1  
𝑐𝑜𝑠2𝛽
𝑠𝑖𝑛2𝛽

 − 2 𝑐𝑜𝑠𝛽  𝑠𝑖𝑛𝛽 𝑱2  
𝑐𝑜𝑠𝛽
𝑠𝑖𝑛𝛽

    (4.20)                                  

where 

 𝑱1 =   
2 𝑨𝑘 𝑝𝑞

2  𝑨𝑘 𝑝𝑞   𝑨𝑘 𝑞𝑞 −  𝑨𝑘 𝑝𝑝 

 𝑨𝑘 𝑝𝑞   𝑨𝑘 𝑞𝑞 −  𝑨𝑘 𝑝𝑝  
1

2
  𝑨𝑘 𝑞𝑞 −  𝑨𝑘 𝑝𝑝  

2  𝑛
𝑘=1    (4.21) 

 𝑱2 =   
 𝑱2 𝟏𝟏  𝑱2 𝟏𝟐
 𝑱2 𝟐𝟏  𝑱2 𝟐𝟐

 𝑛
𝑘=1                                                                       (4.22) 

  𝑱2 𝟏𝟏 =  𝑨𝑘 𝑝−1,𝑝
2 +  𝑨𝑘 𝑝+1,𝑝

2 +  𝑨𝑘 𝑞−1,𝑞
2 +  𝑨𝑘 𝑞+1,𝑞

2                       (4.23) 

  𝑱2 𝟏𝟐 =  𝑱2 𝟐𝟏 =  𝑨𝑘 𝑝−1,𝑝 𝑨𝑘 𝑝−1,𝑞 +  𝑨𝑘 𝑝+1,𝑝 𝑨𝑘 𝑝+1,𝑞 −            (4.24) 

 𝑨𝑘 𝑞−1,𝑝 𝑨𝑘 𝑞−1,𝑞 −  𝑨𝑘 𝑞+1,𝑝 𝑨𝑘 𝑞+1,𝑞  

  𝑱2 𝟐𝟐 =  𝑨𝑘 𝑝−1,𝑞
2 +  𝑨𝑘 𝑝+1,𝑞

2 +  𝑨𝑘 𝑞−1,𝑝
2 +  𝑨𝑘 𝑞+1,𝑝

2                      (4.25) 

Then based on the optimization theory, the optimal Givens rotation angle 𝛽𝑜𝑝𝑡  is 

computed numerically using the Newton-Raphson method from eqn. (4.20), so that the 

corresponding Givens matrix is formed. 

The modified classical Jacobi algorithm here is the same as in the joint 

diagonalization strategy except for some minor alterations. The procedure is as follows: 

 Step 1. For all the entries of matrices 𝑨𝑘  look for an entry  𝑝, 𝑞  where 

𝑞 = 𝑝 + 2 and 𝑝 < 𝑚 − 1 such that  2 𝑨𝑘 𝑝𝑞
2 ≠ 0𝑛

𝑘=1 . 

Step 2. For every entry  𝑝, 𝑞  that satisfies step 1, the Givens matrix 

𝑮 𝑝, 𝑞, 𝛽𝑜𝑝𝑡   can be formed by calculating first the optimal Givens 

rotation angle 𝛽𝑜𝑝𝑡  from eqn. (4.20) using Newton-Raphson method. 

Step 3. Update all the matrices 𝑨𝑘  as 𝑨𝑘
∗ = 𝑮 𝑝, 𝑞, 𝛽𝑜𝑝𝑡  𝑨𝑘𝑮

−1 𝑝, 𝑞, 𝛽𝑜𝑝𝑡  . 

Note: only the p-th and q-th rows/columns in these matrices need to be 

updated. 
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Step 4. Repeat steps 1-3 until the process converges. 

If the above steps has been performed K times with Givens matrices 𝑮1, 𝑮2, ⋯ , 𝑮𝐾 

respectively, then the transform matrix 𝑪 in eqn. (4.18) is given by 

  𝑪 = 𝑮1
−1𝑮2

−1 ⋯𝑮𝐾
−1 = 𝑮1

𝑇𝑮2
𝑇 ⋯𝑮𝐾

𝑇                                               (4.26) 
 

4.4.3  Discussions 

The proposed joint tridiagonalization strategy above has the following issues: 

 The proposed algorithm reduces to a single real symmetric matrix and the proposed 

joint tridiagonalization solution strategy gives the exact solution of 𝒙 as  

𝒙 = 𝑪 𝜶1𝑻1 
−𝟏𝑪−1𝒃                                                                    (4.27) 

 The joint tridiagonalization strategy is only an approximate except if all the 

symmetric matrices 𝑨𝑖   𝑖 = 1,⋯ , 𝑛  have exactly the same eigenstructure.          

 For a single random variable, the convergence of the scheme is guaranteed. For 

random variables greater than 2, i.e. 𝑛 ≥ 2 the scheme does work for some real 

symmetric matrices but for most matrices the strategy is not converging properly. 

The author believes that the strategy will work to all real symmetric matrices. The 

algorithm was implemented in MATLAB. The errors might be in the code itself or 

the formulations.  Due to time constraint the development was not completed, it is 

therefore recommended that this algorithm can be further verified in the future 

studies.                                                            

 

4.5   Summary of the Joint Diagonalization Approach 

The response statistics for any static stochastic systems can be achieved by 

following the procedure below:  

1) Discretize the random material parameters using the explicit F-K-L 

representation scheme; 

2) Discretize the unknown field with finite element mesh in spatial dimension; 
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3) Using the standard finite element formulation procedure construct the stochastic 

system of linear algebraic equations by taking into consideration the F-K-L 

expansion of the random material parameters involved; 

4) Approximate the joint diagonalization of all matrices using the steps outlined in 

Section 4.3.2; and 

5) Obtain the response vector 𝒖 for a specific realization of random variables.  

Note that the joint diagonalization strategy is applicable to any real symmetric matrices. 

The procedure above is integrated into a SFEM framework and then used in the numerical 

examples of Chapter 5. 
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Chapter 5  
Numerical Examples 

In this chapter, numerical results for steady-state heat conduction and elastostatics 

problems are presented to verify the joint diagonalization strategy and examine the 

significance of the uncertainties in the material model. Using the SFEM framework of 

[5.1], two separate analyses were prepared to differentiate the effect of randomness of the 

thermal conductivity and Young’s modulus on the structure under consideration.  

The numerical problem concerns a concrete wastewater pipe buried in ground. The 

cross-sectional area of the concrete pipe is shown in Figure 5.1 with inner radius of 0.6 m, 

outer radius of 0.8 m and thickness of 0.2 m. The concrete material is assumed to be 

isotropic and the deterministic material properties are Poisson’s ratio 𝜈 = 0.2, coefficient of 

thermal expansion 𝛼 = 10-5/°C and density 𝜌 = 1500 kg/m3 which are assumed to be of 

constant values. The major concrete material properties such as thermal conductivity 

𝑘 = 𝑘 𝑥, 𝜃  and Young’s modulus 𝐸 = 𝐸(𝑥, 𝜃) are assumed to be random and 

approximately modeled as independent stationary Gaussian stochastic fields (Note: the joint 

diagonalization formulation is not restricted to any specific probability distribution of 

random variables which means any probability distribution can be used). The mean value of 

thermal conductivity is 1.7 W/(mK) and the corresponding covariance function is defined 

as 0.116𝑒− 
 𝑥1−𝑥2 

2+ 𝑦1−𝑦2 
2

0.2
 
2 3 

W2/(mK)2. Analogously, the mean value of Young’s 

modulus is 60 GPa and the corresponding covariance function is defined by the equation as 
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            Figure 5.1 A cross section of concrete wastewater pipe. 

 

    Figure 5.2 Finite element mesh and boundary conditions of the  
                                          concrete wastewater pipe.  
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144𝑒− 
 𝑥1−𝑥2 

2+ 𝑦1−𝑦2 
2

0.2
 
2 3 

GPa2. 

The concrete pipe is subjected by two different types of loading, namely thermal 

and pressure loads both in the internal and external surfaces due to the wastewater flow 

inside and the surrounding earth outside. The applied temperatures are 9°C and -2°C at the 

inner and outer surfaces, respectively; and the applied pressures are 0.02 MPa and 0.03 

MPa in the inner and outer surfaces, respectively.  

Further, the geometry of the concrete wastewater pipe is meshed using triangular 

finite elements consisting of 896 nodes as shown in Figure 5.2. 

In the following sections, the solutions of the pipe due to steady-state heat 

conduction and elastostatics are presented and discussed. Moreover, the joint 

diagonalization strategy which is integrated into the SFEM framework was used to generate 

the results in the next sections. In addition, the Monte Carlo method and Neumann 

expansion method were used to compare the effectiveness of the joint diagonalization 

method.  

5.1  Example 1 – Steady-State Heat Conduction  

First of all, the random thermal conductivity of the concrete pipe is explicitly 

expanded using F-K-L representation scheme. In order to determine the number of terms 

needed in the F-K-L expansion, the approximation error due to truncation is controlled 

within 10% in terms of the difference of variance. For a specific realization of the random 

thermal conductivity of concrete pipe see Figure 5.3. Then in space dimension, the 

unknown field is discretized with finite element mesh.  Using the standard finite element 

formulation the problem is reduced to a stochastic system of algebraic linear equations 

consisting of 22 random variables.  

As shown in Figure 5.3, the random thermal conductivity distribution varies 

significantly from the mean value of 1.7 W/(mK). In fact, it varies approximately by 15% 

and 27% from the minimum to maximum conductivity values, respectively. This means  
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Figure 5.3 Thermal conductivity of the pipe reconstructed from F-K-L expansion. 

 
Figure 5.4 Comparison of the Monte Carlo solution, Neumann expansion solution 

 and Joint diagonalization solution  
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that the randomness of the thermal conductivity might affect the structural response of the 

pipe inside-out. 

In the heat conduction analysis, the stochastic system of linear algebraic equations 

(4.3) is composed of 23 – 896 × 896 real symmetric matrices including the mean matrix. 

The joint diagonalization method is then applied to compute a total number of 8960 sample 

solutions of the stochastic system of linear algebraic equations. In order to verify the 

accuracy of the joint diagonalization strategy, the samples above are compared with Monte 

Carlo solutions and Neumann expansion solutions. As shown in Figure 5.4 the joint 

diagonalization method agrees well with the Monte Carlo method. However, the Neumann 

expansion method is converging much slower compare to the joint diagonalization method. 

Hence, in terms of convergence rate the joint diagonalization method is much better than 

the Neumann expansion method.   

Moreover, the random temperature distribution of the concrete pipe due to the inner 

and outer surfaces temperature boundary conditions of 9°C and -2°C, respectively is shown 

in Figure 5.5. Even though the variation of thermal conductivity is fairly significant as 

shown in Figure 5.3, Figure 5.5 reveals that the random variation of temperature 

distribution is rather small. The result is somewhat similar to the deterministic linearly 

distributed temperature from inner surfaces of the pipe towards the outer surfaces. The 

result is attributed to the strong fixed-temperature boundary conditions applied on both the 

inside and outside surfaces of the pipe. It shows that the randomness of the thermal 

conductivity does not really affect the distribution of temperature within the walls of the 

pipe. This occurrence is more apparent in Figure 5.6 where the temperature difference of 

the random solution and the deterministic solution where the thermal conductivity has a 

mean value of 1.7 W/mK was plotted. It reveals that the maximum variation of the 

temperature is about 0.15°C (less than 10%) only which occurs approximately at the center 

of the pipe wall. 

To have an idea of the variation of temperature at any point of the wall, an inner 

node 806 (see Figure 5.2) approximately at the center of the pipe wall was selected. The 

probability distribution of temperature at the selected node as shown in Figure 5.7 was 

generated from a simple statistical counting of the sample solutions. The figure shows a  
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Figure 5.5 Random temperature distribution in the pipe. 

 
Figure 5.6 Temperature distribution difference between the random and mean-value 
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  Figure 5.7 Temperature variation of the pipe at node 806. 

Gaussian distribution of the temperature as confirmed by the assumption made above. This 

graph usually gives a better technical reference to design engineers.  

5.2  Example 2 – Elastostatics 

The concrete wastewater pipe was analyzed as 2D plane strain problem. For plane 

strain state, the longitudinal elements of the pipe are assumed to be in the z-direction for 

convenience, so that the cross section is in the xy-plane. The surface tractions and body 

forces are applied perpendicular to the longitudinal elements, independent of the z-direction 

and do not vary along the length. Moreover, it is assumed that all cross sections are in the 

same condition.  Hence, it is sufficient to consider only a unit thickness of the pipe in the 

xy-plane.  

 In a plane strain analysis, the displacement in the z-direction must be constant or it 

can be assumed to be zero. The strains 𝜀𝑧  , 𝛾𝑥𝑧  and 𝛾𝑦𝑧  are taken as zero. Further, the stress 

components 𝜏𝑥𝑧  and 𝜏𝑦𝑧  are zero, and 𝜎𝑧  can be found from 𝜎𝑥  and 𝜎𝑦 . Thus, the  
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Figure 5.8 Young’s modulus reconstructed from F-K-L expansion. 

         
Figure 5.9 Mean-value distribution of the principal stress 𝜎1  
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Figure 5.10 Mean-value distribution of the principal stress 𝜎2 

 
Figure 5.11 Mean-value distribution of the principal stress 𝜎3  



 

 

62 Chapter 5 Numerical Examples 

Civil and Computational Engineering Center, Swansea University 

plane strain problem reduces to the determination of 𝜎𝑥 , 𝜎𝑦  and 𝜏𝑥𝑦  which are functions of  

𝑥 and 𝑦 only. For a detailed discussion of plane strain problems see [5.2] for instance. 

Following the steps in Section 5.1, the random Young’s modulus of the concrete 

pipe was explicitly expanded using F-K-L representation of random media. For a specific 

realization of a random material model, Figure 5.8 shows a random Young’s modulus 

reconstructed from F-K-L expansion. The random Young’s modulus fluctuates appreciably 

from the mean value of 60 GPa. In fact, it varies approximately by 5% and 39% from the 

minimum to maximum Young’s modulus values, respectively. Thus, the randomness of the 

material Young’s modulus might affect the structural response of the pipe significantly.     

Using the Young’s modulus mean-value of 60 GPa, the distributions of the three 

principal stresses (𝜎1, 𝜎2, 𝜎3) around the pipe due to the thermal and pressure loads were 

calculated and plotted as shown in Figures 5.9-5.11. For a particular solution, Figure 5.9 

shows that the distribution of the 1st principal stress 𝜎1 had varied around the pipe from a 

minimum value of 0.725 MPa in the neighborhood of inner surfaces and midsection of the 

wall to a maximum value of 4.075 MPa in the vicinity of outer surfaces. Notice that the 

stresses are all positive. Also, as shown in Figure 5.10 the distribution of 2nd principal stress 

𝜎2 have a minimum value of -3.2 MPa in the inner surfaces and increases uniformly to a 

maximum value of 1 MPa in the outer wall. Though the result shows that negative stresses 

have the maximum numerical values but positive stresses prevail around the pipe. 

Furthermore, the distribution of the 3rd principal stress 𝜎3 (see Figure 5.11) have a 

minimum value of -7.1 MPa in the inner surfaces and increases almost regularly towards 

the outside surfaces to a maximum value of 0.75 MPa in the outer surfaces. Clearly, the 

negative stresses dominated the distribution around the pipe. Accordingly, the maximum 

and minimum values of the three principal stresses had occurred at the outer surfaces and 

reduced towards the inner surfaces of the pipe, respectively.  Moreover, the results are 

mostly uniformly distributed throughout the pipe for the three principal stresses. 

Solving the problem by considering a random Young’s modulus of the material, the 

random distribution of the three principal stresses (𝜎1, 𝜎2, 𝜎3) are shown in Figures 5.12-

5.14. The 1st principal stress 𝜎1 distribution as shown in Figure 5.12 had varied around the 

pipe from a minimum value of 0.625 MPa to a maximum value of 5.325 MPa. Notice that 
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Figure 5.12 Distribution of principal stress 𝜎1 due to random Young’s modulus  

 
Figure 5.13 Distribution of principal stress 𝜎2 due to random Young’s modulus  
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Figure 5.14 Distribution of principal stress 𝜎3 due to random Young’s modulus 

 
 

Figure 5.15  Variation of the principal stresses at node 806. 
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the stresses are all positive. The fluctuations of stress distribution near the vicinity of the 

outer surfaces are more pronounced then becomes lesser in the neighborhood of the inner 

surfaces. In addition, the distribution of 2nd principal stress 𝜎2 in Figure 5.13 had fluctuated 

in the inner region of the pipe from a minimum value of -4.85 MPa and almost uniform 

distribution towards the outer region with a maximum value of 1.25 MPa. The plot also 

shows that numerical values of negative stresses had prevailed in the pipe but the positive 

stresses spreads more that cover most of the region towards the outside surface. 

Furthermore, Figure 5.14 shows the 3rd principal stress 𝜎3 distribution have a minimum 

value of -9.4 MPa at the inner region to a maximum value of 1 MPa at the outside wall. 

Obviously, the negative stresses dominated the result.  Likewise, the maximum and 

minimum values of principal stresses had occurred at the outer surfaces and reduced 

towards the inner surfaces of the pipe, respectively.  Principal stress variations are more 

pronounced at the inner regions of the pipe. Moreover, the results for the 1st principal stress 

fluctuates significantly at the outer surfaces and moves towards the center of the pipe but 

distributes more uniformly near the wall center in the direction of the pipe center. The 2nd 

principal stresses due to random material property, varies at the inner surfaces of the pipe in 

the direction outward and becomes nearly uniform up to the outer surfaces of the pipe. 

While the 3rd principal stress shows fluctuation of stresses at the inner surfaces of the pipe 

and becomes almost uniform elsewhere towards the outside surfaces. Overall, the values of 

the three principal stresses have increased significantly from using the mean-values to 

random distribution of Young’s modulus. In this particular solution, it clearly shows that 

the randomness of material property affects significantly the structural responses of the 

concrete wastewater pipe considered. But the results above cannot be taken as a conclusion 

for the whole problem since it only represents a particular solution of the problem.    

The variation of the three principal stresses at any point of the concrete pipe can 

also be plotted if desired. As shown in Figure 5.2, node 806 was selected for a 

representative point of the pipe. Figure 5.15 shows a graph of the probability density versus 

the variation of the principal stresses at the selected node. The probability distribution 

function (pdf) above for the principal stresses at node 806 was generated from a simple 

statistical counting of the sample solutions. The figure shows a Gaussian distribution of the 

principal stresses. In addition, different shapes and sizes of distribution are shown. The 1st 
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principal stresses 𝜎1 in node 806 are spread mostly positive with a maximum probability 

density of approximately equal to 0.95 × 10−6. The 2nd principal stresses 𝜎2 show a 

narrower distribution and generally positive values with a maximum probability density of 

about 1.7 × 10−6. Lastly, the 3rd principal stresses 𝜎3 have mostly negative values and 

spreads widely and a maximum probability density of about 0.67 × 10−6. Note that the 

figure shows only a solution for a particular node or point in the pipe. 
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Chapter 6  
Summary and Conclusion 

The standard FEM is a very powerful tool used to simulate and analyze virtually all 

engineering problems. The method assumes that all the given values are deterministic in 

nature taken as mean values. As a result, FEM solution represents the mean-values of the 

true values being sought. In reality, most of the engineering analysis involves some form of 

uncertainties. These uncertainties can be encountered in the material properties, geometry 

or boundary conditions/loadings. If uncertainties dominate the engineering problem, then a 

simple finite element analysis is not sufficient for the solution of the said problem. The real 

challenge to the engineers is on how to solve these problems incorporating the randomness 

of the system involved. Over the years, to solve stochastic linear systems engineers 

modified the conventional FEM into SFEM. The SFEM can be thought of as a 

generalization of FEM by integrating the random variations of the system involved.     

In the SFEM, the randomness of the system involved can be integrated into the 

deterministic PDE’s by adding not only a function of the medium domain 𝐷 ⊂ ℝ𝑛 , but also 

a function of probability space  Ω,ℱ, 𝑃 . In this way, the PDE’s will become SPDE’s 

where all the mathematical terms are described in stochastic fields by random variables.  

In this thesis, only the randomness of the material properties was considered. The 

thermal conductivity of a material for instance can be defined as 𝑘 = 𝑘 𝒙, 𝜃  where 𝒙 is a 

function of the medium domain and 𝜃 is a function of the probability space. The coefficient 

𝑘 𝒙, 𝜃  can be defined by its two lowest statistical moments, such as the expectation and 
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covariance. It is then expanded by the F-K-L representation of stochastic processes. The 

equivalent SPDE system of any random media is then discretized to achieve a stochastic 

system of linear algebraic equations using the standard finite element. 

Over the years, several methods have been developed to solve this stochastic system 

of linear algebraic equations, namely: Monte Carlo method; Neumann expansion method; 

perturbation method; polynomial chaos expansion method; and recently, the joint 

diagonalization method. In this thesis, a new algorithm called the joint diagonalization 

strategy is investigated to a particular problem and compared the results to the existing 

methods. This algorithm is integrated into a SFEM framework, implemented in MATLAB 

and tested to solve typical engineering problems such as the steady-state heat conduction 

and the elastostatics in a concrete wastewater pipe. The algorithm is monotonously 

decreasing in each iterations which ensures the convergence of the method. Further, the 

joint tridiagonalization algorithm is also under development, this is somewhat similar to the 

joint diagonalization algorithm but due to time constraint some problems are still to be 

worked out such as the convergence of the method.  

In conclusion, the joint diagonalization strategy is better than the Neumann 

expansion method and in good agreement to the Monte Carlo method. In terms of relative 

error, the joint diagonalization algorithm is more accurate than the Neumann expansion 

method. The Jacobi-like algorithm for multiple real symmetric matrices reduces to the 

classical Jacobi algorithm for a single real symmetric matrix and the method gives the exact 

solution in a simple case. Further, the solution for the deterministic equation system (4.2) 

can be regarded as a special case of the solver for the more general stochastic equation 

system (4.3). The joint diagonalization can only be approximately achieved except if all the 

real symmetric matrices 𝑨𝑖  (𝑖 = 1,⋯ , 𝑛)  have exactly the same eigenstructure. This means 

that the approximate result is essentially an average eigenstructure that minimizes all the 

off-diagonal entries measured by  𝑜𝑓𝑓 𝑨𝑘 
𝑛
𝑘=1 . Lastly, the Jacobi-like joint 

diagonalization procedure contributes the major computational cost of the new approach 

which is proportional to the total number of matrices. This also implies that the algorithm 

can be easily parallelized and the total computational cost is proportional to the total 

number of random variables in the system. 
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Lastly, as shown in the numerical examples in Chapter 5, it clearly shows that the 

randomness of material property affects significantly the structural responses of the 

concrete wastewater pipe. Hence, the randomness of material properties should be 

considered in analyzing engineering structures composed of random media. If uncertainties 

dominate the engineering problem, then a SFEM should be used to simulate and analyze 

the engineering system. However, computational cost is expected to increase in SFEM 

compared to FEM. In the future, this will not be an issue as the computer power and data 

storage are rapidly increasing.    
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