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Abstract

In natural science as well as in a lot of technical applications, turbulence is a phenomena

which strongly influences flow and transport behavior. In contrast to laminar flow, the

simulation of turbulent flow requires advanced numerical techniques. Even for small

problems, a direct numerical simulation with the Navier-Stokes equations would be

computationally too expensive. This can be solved by time averaging these equations,

but then new equations for the eddy viscosity are required. The simplest solution

is to calculate the eddy viscosity by algebraic relations. Additionally, using schemes

like the vertex or cell centered finite volumes may lead to non-physical oscillations in

the pressure field. Triggered by these facts, a different discretization scheme, called

staggered-grid has been implemented in DuMux(www.dumux.org). In the scope of

the proposed Master thesis, turbulence models, like the Baldwin-Lomax (Baldwin and

Lomax [1978]), Cebeci-Smith model (Cebeci and Smith [1974]) and modifications of

the Prandtl mixing length model are implemented into the DuMux framework. Then

the implementation is tested against suitable numerical or physical experiments like

Laufer [1954] and interpreted in relation to the old discretization technique.
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Ã tensor

a temporal average

a
′

quantity fluctuation

∆ Laplace operator

∇ nabla operator

Abbreviations

CFD Computational fluid dynamics

DNS direct numerical simulation

DuMux DUNE for Multi-{Phase, -physics, -component, -scale,

...} flow in Porous Media

DUNE Distributed and Unified Numerics Environment

RANS Reynolds-averaged Navier-Stokes equation

PDE partial differential equation



Chapter 1

Introduction

I am an old man now, and when I die and go to heaven there are two matters on

which I hope for enlightenment. One is quantum electrodynamics, and the other is the

turbulent motion of fluids. And about the former I am rather optimistic.

- Horace Lamb -

1.1 Motivation

In physical problems, turbulence is a key factor which influences the transport and flow

behavior. For example, in sedimentation processes turbulence has chief importance to

the human environment. These include problems concerning sediment transport and

sedimentation like uncontrolled sand transport in rivers, unwanted dust in living areas

and dust in electronic devices [20]. The sediment transport behavior is based on sim-

ple and empirical formulas which are applicable only for simple and very specific cases.

With these approaches, the error can reach dozens or hundreds of percentages. There-

fore, advanced models of turbulence are necessary for achieving solution pertaining to

sediment transport in short time with a higher accuracy. In contrast to laminar flow,

the simulation of turbulent flow requires advanced numerical techniques. For example,

the simulation of blood flow in the aorta is complicated owing to occurrence of both

laminar and turbulent flows in it [16]. During the cardiac cycle, the normal laminar

flow of the aortic blood flow can become unstable and undergo transition to turbulence,

at least in pathological cases such as coarctation of the aorta where the vessel is lo-

cally narrowed. The coarctation results in formation of a jet with high velocity, which

creates a transition to turbulent flow. Turbulence requires advanced mathematical or

physical models in order to resolve the flow features.

Even for small problems a direct numerical simulation with the Navier-Stokes equations

would be computationally too expensive. Turbulence causes formation of eddies at

different length scales. Majority of the energy is contained in large-scale structure.

The energy cascades from these large scale structure to smaller scale by an inertial and

essentially inviscid mechanism. This process continues, creating smaller and smaller
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structures which produce a hierarchy of eddies. Eventually this process creates large

number of small structures so that viscous dissipation occurs. The scale corresponding

to this phenomena is named as Kolmogorov length scale(η). The Kolmogorov length

scale is given by

η = (ν3/ε) , where ε is rate at which larger eddies supply energy.

Also, for high Reynolds turbulence, k which represents the kinetic energy per unit mass

of fluctuating turbulent velocity can be expressed as

ε ∼ k3/2

l

A particular case is considered to highlight the computational effort that will be re-

quired in solving the problem by direct numerical simulation of Navier-Stokes equation.

In order to solve all scales, the grid spacing in terms of number of nodes in x-direction

has to be

nx =
l

η
=

l

ν3/ε1/4
∼ l(k3/2/l)1/4

ν3/4
∼ Re

3/4
T 3D−→ ntot = 1015nodes, ReT =

k1/2l

ν

A commonly used dimensionless term relating inertia and laminar forces as a ratio is

termed as Reynolds number which gives an indication of the turbulence. The term

ReT is the turbulence Reynolds number[27]. In order to illustrate the computational

effort in direct numerical simulation, Re
3/4
T is assumed a value of 105. The number of

nodes in x-direction is equivalent to the turbulence Reynolds number as can be seen

in the above expression. Hence, the total number of nodes in three dimensions will be

equal to (Re
3/4
T )3 which equals 1015 nodes.

ntot = 1015nodes

⇓

1015nodes · 4var/node · 8Byte/var = 32 · 106 GB

Each node will have four variables to be solved. Each variable further requires 8

bytes of memory. Therefore, the total memory required to solve a problem by direct

method is very large with a value of 32GB. Hence, the computational effort increases

significantly in direct simulation of the Navier-Stokes equation.

Most of what can be done theoretically has already been done and experiments are

generally difficult and expensive. As computing costs have continued to decrease, CFD

has moved to the forefront in engineering analysis of fluid flow. To lower the compu-

tational effort, a classical technique used is the application of an averaging or filtering

procedure to the Navier-Stokes equations yielding new equations for a variable that is
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smoother than the original solution. This is due to the procedure of averaging which

removes the small scales or high frequencies of the solution [19]. Being smoother, the

smallest scales are less than the Kolmogorov scale but comparable to cutoff length

scale. Hence, the computational effort and complexities are lowered. The higher fre-

quencies are not included in the computation but their influence is considered via the

use of a statistical model. The new variable to be calculated is the eddy viscosity.

The simplest solution is to calculate the eddy viscosity by algebraic relations. For

this purpose, two algebraic models namely Baldwin-Lomax model and Cebeci-Smith

models are implemented in this thesis. However, these models are implemented using

staggered grid discretization scheme because it provides a strong coupling between the

velocities and pressure, which helps to oscillations in the pressure and velocity fields.

1.2 Contents of Thesis

The thesis which involves implementation of the algebraic turbulence models contains

five chapters. Chapter 2 describes the physics pertaining to the flow of fluids. In

the chapter 3, the mathematical equations, discretization schemes and physical as-

sumptions are discussed in detail. In chapter 4, the simulation results of the three

modifications of Prandtl mixing length models alongwith the models i.e. Cebeci-Smith

and Baldwin-Lomax using a staggered grid are analyzed and conclusions are drawn.

Finally, in the last chapter, a brief description of conclusions and scope for future

research works are discussed.



Chapter 2

Basics Of Fluids

Theory is the essence of facts. Without theory, scientific knowledge would be only

worthy of the madhouse.

- Oliver Heaviside -

The chapter 2 describes the physics pertaining to the fluid flow and turbulence.

2.1 Fluid Definition

A fluid is any substance that deforms continuously when subjected to a shear stress, no

matter how small. For example, if one imposes a shear stress on a solid block of steel

as depicted in fig. 2.1(a), the block would not begin to change shape until an extreme

amount of stress has been applied. But if we apply a shear stress to a fluid element,

for example of water, we observe that no matter how small the stress, the fluid element

deforms, as shown in fig. 2.1(b)[13].

Figure 2.1: Deformation of fluid under shear force, from [13].
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Figure 2.2: Laminar and turbulent flow of water from a faucet: (a) Steady laminar,
(b) Periodic, wavy laminar, (c) turbulent, from [13].

2.2 Types Of Flows

Let us first define what a flow is: a flow is the continuous movement of a fluid, i.e.

either a liquid or gas, from one place to another. Basically there exist two types of

flows, namely laminar flows and turbulent flows as shown in fig. 2.2. In simple words,

laminar flow can be stated as a simple flow while turbulent flow is a complicated flow.

2.2.1 Laminar Flow

Laminar flow, sometimes known as streamline flow, occurs when a fluid flows in parallel

layers, with no disruption between the layers. Laminar flow occurs when the fluid is

moving at a low velocity. The layers slide past one another but there is no lateral

mixing. The motion of particles in fluid is very orderly with all particles moving in

straight lines parallel to the pipe walls as can be seen in the fig. 2.3. It is a flow regime

characterized by a low momentum convection but high momentum diffusion.

2.2.2 Turbulent Flow

In 1975, Hinze defined turbulence as an irregular condition of flow in which the various

quantities show a random variation with respect to time and space coordinates as shown

in fig. 2.3, so that statistically distinct average values can be discerned. The problem

with this definition is the fact that non-turbulent flow can be described as irregular. The

instantaneous properties in a turbulent flow are extremely sensitive to initial conditions

but the statistical averages of instantaneous properties are not sensitive. However, in

1974, Bradshaw pointed that the time and length scales of turbulence are represented

by frequencies and wavelengths. Some of the chief characteristics of the turbulent flows

are briefly described in the following sections.
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Figure 2.3: Velocity profiles of laminar and turbulent flows, from [5].

Instability The instability that develops in a laminar flow transforms into turbu-

lence. Its occurrence can be attributed to the interaction between inertial terms and

viscous terms.

Statistical aspects Since, turbulence is characterized by random fluctuations, it

becomes necessary to use the statistical methods to analyze it. The time history of

turbulent flow is stored and the required flow properties are integrated over the time

to obtain the time averages.

Continuum phenomena of turbulence The smallest scales of turbulence are ex-

tremely small which are many orders of magnitude smaller than largest scales of turbu-

lence. The ratio of smallest to largest scales decreases as Reynolds number increases.

Turbulence scales and cascade Turbulent flows comprises a continuous spectrum

of scales ranging from largest to smallest. It can be visualized with eddies which

can be described as a local swirling motion whose characteristic dimension is defined

by the local turbulence scale. The eddies are loosely defined as coherent patterns of

velocity, vorticity and pressure. The energy cascades from large scales to small scales

by an inertial and inviscid mechanism. In this process, smaller eddies are created

producing a hierarchy of the eddies. The larger eddies contain the smaller ones. Based

on the length scales mentioned below, the eddies can be divided into three categories:

a) Integral length scale: These are largest scales in energy spectrum. These eddies

obtain energy from mean flow and also from each other. These eddies contain

most of the energy.
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b) Kolmogorov length scales: Smallest scales in the spectrum that form the viscous

sublayer range. They possess high frequency and cause the turbulence to be

homogenous.

c) Taylor microscale: The intermediate scales between the largest and the smallest

scales which make the inertial sub-range. These scales pass down the energy from

largest to smallest eddies without dissipation [26].

In the energy cascade process, the kinetic energy transfer occurs from larger eddies to

smaller eddies as the turbulence decays. The heat is dissipated by the smaller eddies

through the action of viscosity. Therefore, the turbulent flows can be concluded as

dissipative [27].

2.3 Relevant Flow Properties In Turbulence

2.3.1 Viscosity

Viscosity is the amount of internal friction or resistance of a fluid to flow. Water, for

instance, is less viscous than honey, which explains why water flows more easily than

honey. We consider flow between two horizontal parallel flat plates spaced at a distance

’h’ apart, as depicted in fig. 2.4. A tangential force F is applied to the upper plate

sufficient to move it at constant velocity U in the x direction, and study the resulting

fluid motion between the plates.

Figure 2.4: Flow between two horizontal, parallel plates with upper one moving at
velocity U, from [13].
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Experiments show that the force needed to produce motion of the upper plate with

constant speed U is proportional to the area of this plate, and to the speed U. Further-

more, it is inversely proportional to the spacing between the plates, h. Thus, according

to Newton’s law of viscosity: For a given rate of angular deformation of a fluid, shear

stress is directly proportional to viscosity.

F = µ
AU

h
(2.1)

Whether a flow is laminar or turbulent depends of the relative importance of fluid

friction (viscosity) and flow inertia. The point at which laminar flow evolves into

turbulent flow depends on other factors besides the velocity of the layers. A material’s

viscosity and specific gravity as well as the geometry of the Viscometer spindle and

sample container all influence the point at which this transition occurs [1].

2.3.2 Velocity

It is worthwhile to note that an increase in velocity leads to a higher Reynolds number.

And when the Reynolds number crosses a particular limit, the flow becomes turbulent.

Moreover, for a turbulent flow the velocity components and other variables at a point

fluctuate with time in an apparently random fashion. So, the velocity is considered as

sum of an average value u(t) and random fluctuation u
′
(t) as shown in fig. 2.5. This

is known as Reynolds decomposition. Similarly, there is fluctuation in other variables

like pressure and density.

Figure 2.5: Velocity fluctuations in turbulent flow, from [15].

2.4 Boundary Layer

As the fluid passes around the object, molecules next to the surface stick to it. The

speed of the molecules just above the surface gets reduced due to their collision with
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the molecules sticking to the surface. The molecules just above the surface also slow

down the flow that is just above them. However, as one moves away from the surface

the reduction in speed of the molecules decreases. This creates a thin layer of fluid near

the surface in which the velocity changes from zero at the surface to the free stream

value away from the surface. This layer is called as boundary layer because it occurs

on the boundary of fluid [9]. The aerodynamic boundary layer was first defined by

Ludwig Prandtl(1904). The equations of fluid flow are simplified by dividing flow field

into two areas i.e. one inside boundary layer where the viscosity dominates and the

other outside the boundary layer with negligible viscosity effects. Hence, a closed form

solution is obtained with simplification of the Navier-Stokes equations.

2.4.1 Laminar And Turbulent Boundary Layers

In a laminar boundary layer, any exchange of mass or momentum takes place only

between adjacent layers on a microscopic scale. Consequently, the viscosity µ is able

to predict the shear stress associated. Laminar boundary layers are found only when

the Reynolds numbers are small. However, a turbulent boundary layer is marked by

mixing across several layers of it on a macroscopic scale. Packets of fluid may be seen

moving across. Thus there is an exchange of mass, momentum and energy on a much

bigger scale compared to a laminar boundary layer.

A turbulent boundary layer is formed at only larger Reynolds numbers. The boundary

layer thickness δ grows with distance from the leading edge. After some distance, from

the leading edge, it reaches a constant thickness. This is termed as fully developed

boundary layer.

Figure 2.6: Boundary layer thickness, from [14].

Additionally, the boundary layer is divided into two layers namely turbulent boundary

layer and viscous sublayer respectively after the flow becomes turbulent as noticed in

fig. 2.6. It is worthwhile to note that the flow remains laminar in the viscous sublayer
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as the viscous forces dominate in the region and near the wall which reduces the

Reynolds number, even if the main flow is turbulent[24].

For laminar flows, the boundary layer thickness δ is small. For a flat plate, it is denoted

as

δ

x
=

5.0

Re0.5x
(2.2)

For turbulent flows, it is denoted as

δ

x
=

0.385

Re0.2x
(2.3)

2.4.2 Some Terminology Of Boundary Layers

Thickness Of Velocity Boundary Layer It is defined as the distance from the

solid body at which the viscous flow velocity is 99 % of the freestream velocity.

Displacement Thickness It is an alternative definition stating that the boundary

layer represents a deficit in mass flow compared to inviscid flow with slip at the wall.

Displacement thickness is defined as the distance by which the wall would have to be

displaced in the inviscid case to give the same total mass flow as in viscous case [5].

2.4.3 Boundary Layer Transition

As the flow develops, the boundary layer thickens and becomes less stable and eventu-

ally becomes turbulent. This process is termed as boundary layer transition. When a

fluid flows at high velocities, the boundary layer becomes turbulent and the gradient

of the wall becomes smaller [17].

2.5 Measure Of Turbulence

A fluid makes a transition in its flow regime from laminar to turbulent as the inertial

forces become more dominant than the viscous forces.

In the fig. 2.7, the Reynolds experiment is displayed which indicates the transition

to turbulence of flow in a pipe as the flow speed is increased. As mentioned earlier,

the magnitude of Reynolds number can give an indication regarding the turbulent or

laminar regime of the fluid in consideration.

When the Reynolds number is small, the non-linearities are small, and we can solve

the equation. In the fig. 2.8, it is observed that as the flow moves from left to right, we

see the path of the dye streak generating more complicated patterns as the transition
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Figure 2.7: Reynolds’ experiment using water in a pipe to study transition to turbu-
lence; (a) low speed (b) higher-speed flow, from [13].

begins. Finally, the flow becomes turbulent in the extreme right region of pipe. In the

turbulent flows, the non-linearities become more important. Eddies and vortices form

and spin and dissolve without much obvious pattern.[13].

Figure 2.8: Transition to turbulence in spatially-evolving flow, from [13].

The flow in a pipe is laminar, transitional or turbulent provided the Reynolds number

is small enough, intermediate or large enough. For general engineering purposes, the

flow in a round pipe is laminar if the Reynolds number is less than approximately

2100. The flow in a round pipe is turbulent if the Reynolds number is greater than

approximately 4000. For Reynolds number between these two limits, the flow may

switch between laminar and turbulent conditions in random manner [11].



2.6 Law Of Wall And Turbulent Flow 12

2.6 Law Of Wall And Turbulent Flow

According to the law of wall as mentioned by Theodore Von Karman, the average

turbulent velocity at a particular point is proportional to the logarithm of the distance

of the point under consideration from the wall. It is applicable to parts of the flow that

are close to the wall (< 20% of the height of the flow). Dimensional analysis can be

used to prove the logarithmic variation. A velocity scale ut is defined which is derived

from the surface shear stress τw. The velocity scale is expressed as

ut =

√
τw
ρ

(2.4)

The quantity ut is also known as friction velocity which is a velocity scale representative

of velocities close to a solid boundary.

Figure 2.9: Velocity profile for a turbulent boundary layer, from [27].

The law of wall can be expressed as

U

ut
=

1

κ
ln
uty

ν
+ C (2.5)

Here κ is Karman constant, C is dimensionless integration constant, ν is kinematic
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viscosity and U is the velocity at distance ’y’ from wall respectively. The velocity

profile for a turbulent layer is shown in fig. 2.9.

The dimensionless velocity u+ and distance y+ as observed in the fig. 2.9 are defined

as

u+ =
U

ut

y+ =
uty

ν

(2.6)

Three distinct regions are observed namely viscous sublayer, log layer and defect layer.

The velocity in viscous sublayer depends on ut, ν and y. It can be represented in form

of

U = utf(y+) (2.7)

where f(y+) is a dimensionless function. In the defect layer, a lot of experiments were

performed by Darcy, von Karman and Clauser to obtain a suitable correlation with

velocity-defect law or Clauser defect law which is expressed below:

U = Ue − utg(η), η ≡ y

∆
(2.8)

Here, Ue is the velocity at the boundary layer edge and g(η) is a dimensionless function

and ∆ is a thickness characteristic of the outer portion of the boundary layer [27].



Chapter 3

Modelling The Turbulence

All models are approximations. Essentially, all models are wrong, but some are useful.

However, the approximate nature of the model must always be borne in mind.

- George Edward Pelham Box -

In this chapter, the theory behind solving the turbulent flows and the relevant physi-

cal equations concerning fluids are discussed. Thereafter, the algebraic zero equation

models for turbulence are described in detail. Furthermore, a brief outline about the

numerical model implementing the staggered grid is discussed. Finally, the concepts

and the structure of program used in implementation of the models are explained

briefly.

3.1 Equations

The mathematical basis for a comprehensive general purpose model of fluid flow is

formulated from the basic principle of conservation of mass, momentum and energy.

In the conservation laws, the fluid is regarded as a continuum. In the formulation

of equation for mass, momentum and energy, it is assumed that fluid is a continuous

medium contained in a three dimensional space such that every parcel of the fluid, no

matter how small in comparison with the whole body, can be viewed as a continuous

material. For analysis of fluid flows at macroscopic length scales, the molecular struc-

ture of matter and the motions are ignored. The behavior of fluid is described in terms

of macroscopic properties such as velocity, pressure, density and temperature and their

space and time derivatives.

3.1.1 Mass Conservation

The mass conservation equation is derived with an assumption that the rate of increase

of the mass in the fluid element is equal to net rate of flow of mass into fluid element.

In the compact vector notation, it is denoted as
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∂ρ

∂t
=
∂(ρui)

∂xi
(3.1)

3.1.2 Momentum Conservation

It is derived from the Newton’s second law which states that the rate of change of

momentum of a fluid particles equals the sum of all forces acting on the particle [18].

The equation of momentum conservation is stated as

∂ui
∂t

+ uj
∂ui
∂xj

= fi −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(3.2)

where the vector fi represents external forces.

3.2 Approaches

Turbulence simulation, in its purest form can be performed by Direct Numerical Sim-

ulation which is an entirely expensive approach requiring a millions of CPU hours for

relevant Reynolds numbers as described earlier. However, another method known as

Large Eddy simulation can be used. It models the effects of small eddies and resolves

the large, most energetic eddies, the smallest resolved size being of order 102 of the

appropriate dimension of the flow. Another way for resolving the time and space evo-

lution of turbulence within a turbulent flow is achieved by a statistical approach which

is followed in the current study. In this approach, integration of governing equations of

flow in time and derivation of equations for time-averaged flow properties is performed

so as to obtain the Reynolds-Averaged Navier-Stokes equations [10].

3.2.1 Reynolds Averaging

Three types of averaging are most relevant in turbulence modeling namely time average,

spatial average and ensemble average. Time averaging is useful in turbulence which is

stationary in nature i.e. the mean values does not vary with time. Let f(x,t) be an

instantaneous flow variable. Its time average FT (x) is defined as

FT (x) = lim
T→∞

1

T

∫ t+T

t

f(x, t)dx

Spatial averaging is used in turbulent flow that is uniform in all direction. The spatial

coordinates are averaged. The average is denoted by Fv

FV (t) = lim
V→∞

1

V

∫
V

f(x, t)dV
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Finally, the ensemble averaging used in turbulent modeling is most general type of

Reynolds averaging suitable for flows that decay in time[27].

3.2.2 Reynolds -Averaged Navier-Stokes Equations (RANS)

As discussed earlier, the statistical approach is used for solving turbulent flows as

there are often random fluctuations in the flow regime. In order to derive the Reynolds

-Averaged Navier-Stokes Equations from the instantaneous Navier-Stokes equations,

Reynolds decomposition is required. Reynolds decomposition refers to the splitting of

flow variable (like velocity) into a mean component u(x) and fluctuating component

u
′
.

u(x, t) = u(x) + u
′
(x, t) (3.3)

Some of the assumptions in derivation of Reynolds -Averaged Navier-Stokes Equations

are as follows:

a) Constant viscosity

b) Density does not depend on pressure

c) The fluid in consideration is Newtonian

d) The fluid is incompressible

e) The mean values of turbulence does not vary with time

Assuming the fluid to be incompressible, the mass conservation equation reduces to

∂ui
∂xi

= 0 (3.4)

and the momentum equation is

∂ui
∂t

+ uj
∂ui
∂xj

= fi −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(3.5)

Now, each of the instantaneous quantity is split into time-averaged and fluctuating

components. The resulting equations are time-averaged yielding

∂ui
∂xi

= 0 (3.6)

∂ui
∂t

+ uj
∂ui
∂xj

+ u
′
j

∂u
′
i

∂xj
= f i −

1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(3.7)

The momentum equation can be written as

∂ui
∂t

+ uj
∂ui
∂xj

= f i −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

−
∂u
′
iu
′
j

∂xj
(3.8)
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Upon manipulating further, we obtain

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρf i −
∂

∂xj

[
−pδij + 2µSij − ρu

′
iu
′
j

]
(3.9)

Here, µ is viscosity and the mean strain rate tensor sij is given by

sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.10)

Thus, the above equation represents the Reynolds averaged Navier-Stokes

equation(RANS)[25]. The quantity -ρu
′
ju
′
i is known as Reynolds stress tensor which is

symmetric and has six unknown quantities. Thus, we have ten unknown variables in

total i.e. one pressure and three velocity apart from the stress tensor. The total num-

ber of equations are four i.e. one mass conservation and three components of RANS.

Hence, our system is not closed [27].

3.3 The Eddy Viscosity/Diffusivity Concept

The main idea behind Boussinesq’s eddy-viscosity concept, which assumes that, in

analogy to the viscous stresses in laminar flows, the turbulent stresses are proportional

to the mean velocity gradient. So, the Boussinesq’s hypothesis is used to model the

Reynolds stress term. The Reynolds stress tensor is computed as a product of eddy

viscosity and mean strain rate tensor [6].

ρu
′
ju
′
i = µt

(
∂ūi
∂xj
− ∂ūj
∂xi

)
− 2

3

(
K + νt

∂ūk
∂xk

)
δij (3.11)

The above expression can be further written as

ρu
′
ju
′
i = 2νtSij −

K

δij
(3.12)

where Sij is the mean rate of strain tensor, νt is the turbulence eddy viscosity,

K = 1/2*ρu
′
ju
′
i and δij is the Kronecker delta [23].

However, to perform simple computations, the eddy viscosity is often computed in

terms of mixing length which is analogous to the mean free path in a gas. The eddy

viscosity depends on the flow of fluid. Therefore, the eddy viscosity and mixing length

must be specified by an algebraic relation between eddy viscosity and length scales of

the mean flow. The models comprising of algebraic relation are known as zero equation

models i.e. Prandtl mixing length, Baldwin-Lomax and Cebeci-Smith are described in

the corresponding sections.
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3.4 Zero Equation Models

As mentioned earlier, the zero equation turbulence models implemented in the thesis

work are the models which by definition do not require the solution of any additional

equations and are calculated directly from the flow variables. These models are simple

to use and helpful for simpler geometry. In 1925, Prandtl proposed the mixing length

model for describing the momentum transfer by turbulent Reynolds stresses. There-

after, three modifications of mixing length model was proposed by Van Driest (1956),

Escudier (1966) and Corrsin and Kistler(1954) respectively.

Further, the concept of eddy-viscosity was even more developed by Cebeci and Smith

(1967). Later, Baldwin and Lomax(1978) proposed an alternative algebraic model to

eliminate some of the difficulty in defining a turbulence length scales from the shear

layer thickness apart from incorporating the eddy-viscosity concept of Cebeci-Smith

model. These models are discussed in the following sections.

3.4.1 Prandtl Mixing Length Model

In 1925, Prandtl proposed a mixing length hypothesis. The mixing length conceptu-

ally means that a fluid parcel will conserve its properties for a characteristic length,

before mixing with the surrounding fluid. According to Prandtl, mixing length may be

considered as the diameter of the masses of fluid moving as a whole in each individual

case. He also defined the mixing length as the distance traversed by a mass of this

type before it becomes blended with the neighboring masses [22]. He postulated the

shear stress as

τxy = νt

∣∣∣∣∂u∂y
∣∣∣∣ (3.13)

where the eddy viscosity, νt is given by

νt = l2mix

∣∣∣∣∂u∂y
∣∣∣∣ (3.14)

The mixing length, l = κy with the Karman constant κ=0.40 or 0.41 and the distance

from the wall y. This equation is valid only for wall bounded flows, additionally it

is restricted to smooth surfaces. However, the model fails to provide close agreement

with the measured skin friction for boundary layers. The mixing length relation is not

expected to be constant throughout the boundary layer. Thus, several modifications

to the equation have evolved which are described in the sections below [22].
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3.4.2 Van Driest

Van Driest proposed the first modification of the Prandtl mixing length by multiplying

the mixing length with a damping function. The expression for mixing length was an

outcome of good fit to the data as it rendered some theoretical support.

lmix = κy

(
1− e

−y+

A+
0

)
(3.15)

After a series of experiments, the value of A+
0 equal to 26 was found to give good

results. The Van Driest modification improves the description of the Reynolds stress

in the limit y → 0 [27].

3.4.3 Escudier Modification

In 1966, Escudier found that the predictive accuracy is improved by limiting the mixing

length a certain value. The maximum value of the mixing length in the Escudier

modification is given by

(lmix)max = 0.09 δ

δ is boundary layer thickness. Escudier’s modification is similar to the approximation

that is used in analyzing the free shear flows [27].

3.4.4 Corrsin and Kistler Modifications

Corrsin and Kistler proposed a modification as a result of the corollary of their exper-

imental studies of intermittency. It was found that upon approaching the free stream

from within the boundary layer, the flow is sometimes laminar and turbulent i.e. it is

intermittent. Hence, in this modification, the eddy viscosity is obtained by multiplying

the eddy viscosity of the Prandtl mixing length model by the Klebanoff function which

is given by

FKleb(y; δ) =
1[

1 + 5.5
(
y
δ

)6] (3.16)

The above expression gives measure of the effect of intermittency of flow [12].

3.4.5 Cebeci-Smith Model

This is a two layer model in which the boundary layer is considered to comprise an

inner and an outer layer. The eddy viscosity is calculated separately for each layer and

combined using
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νt =

{
νtinner if y ≤ ym

νtouter if y > ym

where ym is the smallest distance from the surface where νtinner is equal to νtouter . The

concept involving the calculation of ym is explained in the later sections. The inner-

region eddy viscosity is given by:

νtinner = l2mix

√√√√[(∂U
∂y

)2

+

(
∂V

∂x

)2
]

(3.17)

lmix = κy

(
1− e

−y+

A+

)
(3.18)

A+ =
26√(

1 + y
dP
dx

ρu2τ

) (3.19)

The coefficient A+ is different than the Van Driest value for an improvement of predic-

tive accuracy in boundary layers with nonzero pressure gradient. The eddy viscosity

in the outer region is given by:

νtouter = αUeδ
∗
vFKleb (3.20)

where, α=0.0168, Ue is the boundary layer edge velocity and δ∗v is the velocity thickness

given by

δ∗v =

∫ δ

0

(
1− U

Ue

)
dy (3.21)

For incompressible flows, it can be noted that velocity thickness is identical to displace-

ment thickness [21]. The FKleb is the Klebanoff intermittency function given by

FKleb(y; δ) =
1[

1 + 5.5
(
y
δ

)6] (3.22)

The model is suitable for high-speed flows with thin attached boundary-layers, typically

present in aerospace applications.

3.4.6 Baldwin-Lomax Model

In 1978, Baldwin and Lomax formulated a two layer algebraic equation model. It is

used in applications where the parameters like boundary layer thickness δ, velocity

thickness δ∗v cannot be easily determined. Similar to the Cebeci-Smith, this model

uses inner and outer layer eddy viscosity [6]. The inner and outer viscosity are selected
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in a similar criteria like the Cebeci-Smith model.

Here, again ym is defined as the smallest distance from the surface where νtinner is equal

to νtouter . Similar concept is adopted in calculation of the value of ym which is discussed

in the later sections. The inner viscosity is given by

νtinner = (lmix)
2|ω|

where , ω = magnitude of the vorticity vector in three dimensions. The vorticity pa-

rameter is used instead of the velocity gradient for determination of the eddy viscosity.

The mixing length is calculated by Van driest equation

lmix = κy
[
1− e−y+/A

+
0

]
(3.23)

The outer viscosity is given by

νtouter = αCcpFWakeFKleb(y; ymax/CKleb) (3.24)

where, Fwake = min (ymaxFmax; CwkymaxU
2
dif/Fmax)

Fmax = 1
κ

(max(lmix|ω|))

where, Fmax is maximum value of lmix|ω| and ymax is the distance at which this

maximum occurs for a given x-position. Here, α=0.0168, Ccp= 1.6, CKleb=0.3, Cwk=1,

κ =0.40 and A+
0 =26 respectively.

In this model there is no need to locate the boundary layer edge by calculating the outer

layer length scale in terms of the vorticity instead of the displacement. By replacing

Ueδ
∗
v in the Cebeci-Smith model by CcpFWake, we have

A) If FWake = ymaxFmax then δ∗v = y2maxω
Ue

B) If FWake =
CwkymaxU2

dif

Fmax
then δ =

Udif
|ω|

An important observation for pipe and channel flow is that subtle difference in a model’s

prediction for Reynolds stress can lead to much larger differences in velocity profile

predictions. This is a common accuracy dilemma with many turbulence models. Both

Cebeci-Smith and Baldwin-Lomax models have been fine-tuned for boundary layer flow

and therefore provide good agreement with experimental data for reasonable pressure

gradients and mild adverse pressure gradients.
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3.5 Numerical Model

After the derivation of the relevant mathematical equations mentioned earlier, a nu-

merical model is implemented to solve the developed equations. This is because the

equations are coupled and non-linear partial differential equations. These can be solved

by using the discretization schemes in space and time in a numerical model. Therefore,

a numerical simulator named as DuMux is used in the thesis to solve the equations and

obtain the results [4].

3.5.1 DuMux

DuMux is a generic framework which is used for simulation of multiphase fluid flow

and transport processes in porous media by the application of continuum mechanical

approaches. DuMux models the concepts, constitutive relations, discretizations and

solvers. Its objective includes delivering top computational performance, high flexibil-

ity, ability to run on single processor systems and highly parallel supercomputers. It

has C++ as its implementation language.

DuMux provides a framework for easy implementation of problems concerning porous

media flow problems with a variety of selection of spatial discretization schemes,

temporal discretization schemes and nonlinear solvers along with the concepts of

model coupling.

DuMux is a module of DUNE (the Distributed and Unified Numerics Environment).

DUNE provides an interface to many existing grid management libraries. It also pro-

vides set of finite element functions and routines for solving partial differential equations

[7].

3.5.2 Box method

In a previous study, the box method of discretization was used to model the turbulent

flows. In this method, the model domain is discretized with a finite element mesh

of nodes and elements. Thereafter, a secondary mesh is created by connecting the

midpoints and barycenteres of the elements surrounding the node to form a box around

it. The finite element mesh divides the box into subcontrol volumes. The finite volume

method is applied to each box so as to obtain the fluxes across the interfaces at the

integration points from the finite element approach.

This method uses the benefit of finite element method which can be used with un-

structured mesh and of finite volume method which is mass conservative. In the later

section of study, the results of box method are compared with the staggered grid to

draw some conclusions.
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3.5.3 Discretization In Space Using Staggered Grid

In the current study, a staggered grid discretization method is adopted in the problem

so as to prevent the occurrence of pressure oscillations. In this step, the problem

geometry is split into finite number of volumes. In the cell centered finite volume

method, the pressure and velocities are defined at the nodes of an ordinary control

volume.

Figure 3.1: A checker-board pressure field, from [18].

∂p

∂x
=
pe − pw
δx

=

(
pE+pW

2

)
−
(
pP+pW

2

)
δx

=
pE − pW

2δx
(3.25)

In the fig. 3.1, it is found that the discretized pressure gradients in equation 3.25

have a zero value at all the nodal points in spite of the pressure field exhibiting

spatial oscillations in both directions. This would render zero momentum source in

the discretized equations. This behavior is absolutely unphysical. Moreover, if the

velocities are also represented in grid nodes, the effect of pressure is not evident in

momentum equations. In order to solve the existing problem, a staggered grid is used.

For a staggered grid, the cell centered finite volume method is used for discretization

of the pressure at the center of control volume. The control volume is formed by the

elements of the grid. However, the velocities are defined at the cell faces in between

the nodes i.e. shifted by half the value of a cell and are indicated by arrows.

In the staggered grid arrangement shown in fig. 3.2, the pressure nodes coincide with

the cell faces of u-control volume. The pressure gradient term is given by

∂p

∂x
=
pP − pW
δxu

(3.26)

The checker board field with staggered grid arrangement is considered again and the

appropriate nodal pressure values are substituted in the (3.26). This yields non-zero

values of pressure in x-direction.

Thus, the staggering of the velocity components prevents an unrealistic behavior of
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Figure 3.2: A staggered grid arrangement, from [18].

the discretized momentum equation due to oscillating pressure values. Moreover, the

velocities are obtained at exactly the locations where they are required for the scalar

transport [18].

3.5.4 Discretization in time

In the thesis, an implicit time stepping scheme is used for time discretization. The

equations are solved for primary variables at new time level ti+1. The current time

level is represented as ti [2]. The storage term of each balance equation is given by

∂u

∂t
≈ ui+1 − ui

ti+1 − ti
= Ãi+1ui+1 (3.27)

Here, the vector u contains the unknowns and the Ã is the coefficient matrix. The

implicit method is adopted as it is unconditionally stable [3].

3.6 Notes on Implementation

In the implementation of the algebraic models, the knowledge of certain properties

among all the elements in a particular column of the discretized domain of flow is

required.
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3.6.1 General Notes

Figure 3.3: Wall elements in a domain.

In the program, at the beginning of a time step, the maximum velocity is evaluated

among all elements of each column. The wall element in the discretized domain is

shown in the fig. 3.3. The value of maximum velocity is stored at the upper or lower

wall element in each column. It depends on the closeness of the element to the wall in

that column. If the element containing maximum velocity is close to the bottom wall

as compared to the upper wall, then the maximum velocity will be stored in bottom

wall and vice-versa. Since, the problem under consideration is symmetric in nature,

the same values of maximum velocities are obtained for the same column.

The maximum velocity so obtained is essential to calculate the boundary layer thick-

ness and Reynolds number which are required in implementation of the 2nd and 3rd

modification of the Prandtl mixing length models, Cebeci-Smith and Baldwin-Lomax

models.

3.6.2 Concept in Implementation of the Cebeci-Smith and

Baldwin-Lomax Model

In the Cebeci-Smith model, it is required to obtain the values of ym so as to assign

the eddy viscosity a value equal to the inner or outer viscosity as discussed earlier.

ym is defined as the distance from the wall where the inner viscosity is equal to

outer viscosity. So, the value can be determined by equating these viscosities and
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solving for ym. However, solving in this manner is not easy due to complex nature

of the expressions for the viscosities. Therefore, another approach is adopted for

computation of ym. In this approach, the difference between both the viscosities are

determined for each element in the column. If the viscosities are equal, their difference

will be zero. Therefore, the aim is to search for elements in the column having lowest

value of this difference. However, it may be difficult to get a zero value. Therefore,

even the lowest absolute value of difference is also considered.

∆ν = min(νtouter − νtinner) (3.28)

In the program, the difference between both viscosities is named as compi. If the

value of compi for the next element in the same column is less than stored least

value, then compi is assigned this lesser value. The least value of compi among all

elements in each discretized column is stored in the wall element of the corresponding

column. Finally after evaluating all the elements, the wall distance of the element

having least value of compi in each column is assigned as ym for the corresponding col-

umn of elements. Thereafter, the eddy viscosity is determined for further computations.

Similar approach is adopted in the computation of ym for Baldwin-Lomax Model.

3.6.3 Structure of the Program

The program is created implementing the algorithm for the three modifications of the

Prandtl mixing length model, the Cebeci-Smith and Baldwin-Lomax model. The struc-

ture of the programs are explained in a convenient manner through a schematic rep-

resentation i.e. for the three modifications, Cebeci-Smith Model and Baldwin-Lomax

model.
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Figure 3.4: Structure of program for computation implementing three modification of
Prandtl Mixing Length model.
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Figure 3.5: Implementation of the Cebeci-Smith Model.
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Figure 3.6: Implementation of the Baldwin-Lomax Model.



Chapter 4

Results and Discussion

We must trust to nothing but facts: These are presented to us by Nature, and cannot

deceive. We ought, in every instance, to submit our reasoning to the test of experiment,

and never to search for truth but by the natural road of experiment and observation.

- Antoine Lavoisier, Elements of Chemistry -

In this chapter, the results are computed for a set of input parameters. Thereafter,

the results are obtained and analyzed for different cases. The analysis is performed in

two ways i.e. Analysis of each model Individually and Comparative analysis of all the

models. Finally, conclusions are derived based on the results.

4.1 Model Description

In the current work, the pipe is modeled in a two dimensional domain. The com-

putation of the zero equation models were performed using standard values of the

parameters as depicted below in the table.

Length Thickness Low veloc-

ity

Density Kinematic

viscosity

Time step

10m 0.2469m 2.5m/s 1.21kg/cm3 10−6m2/s 0.1s

End time Pressure Low Re High Re High ve-

locity

7s 105Pa 50 000 500 000 25m/s

The discretized cells that are considered range from values of 16 to 64 in each direction

for the problem. The inflow and initial velocity are constant over height, but set to

zero at the upper and lower boundaries, which is called no slip condition. This ensures

the momentum balance. On the right side of pipe, the velocity is set as an outflow

condition. On the right boundary the pressure is set as Dirichlet condition so as to

maintain mass balance.
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4.2 Individual Analysis

In this section, an effort is made to understand the fundamental characteristics of each

model through their outputs. The input values discussed earlier are used in performing

computations for all the models in this section.

4.2.1 Van Driest Modification

The Prandtl mixing length model does not approximate the viscous sub layer properly

especially at the wall. It considers the eddy viscosity in the viscous sublayer uniformly.

The eddy viscosity becomes zero only at the wall where y+ = 0. However, Van Driest

made the eddy viscosity decrease exponentially as one nears the wall through the

damping function instead of switching it on in the turbulent and sublayer regions

respectively.

Figure 4.1: Velocity profile in the Van Driest modification.

In the fig. 4.1, it can be noticed that the dimensionless velocities attain a higher

value with a coarse discretization of 32 elements compared to a fine discretization of

64 elements for the same value of Reynolds number. The friction velocity which is a

scale representative of velocities close to the solid boundary determines the value of

u+. The friction velocity significantly depends on the discretization of the mesh. This

might be a possible reason for such behavior of u+ with different mesh.
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Also, it can be noted that the velocity profiles with same discretization and Reynolds

number but at different lengths i.e. 0.3125m and 8.75m are found to be nearly similar.

However, the viscous region in the velocity profile of turbulent layer can not be

noticed. This is because the viscous layer region occurs for y+ less than 10. In the fig.

4.1, we do not obtain values of y+ less than 10 i.e. near the wall. This is because of

the uniform mesh of 32 elements used to discretize the flow in space has less elements

near the wall. In order to obtain less values of dimensionless wall distance, we need to

have more elements near the wall. But an increase in elements will lead to an increase

of computational cost. Therefore, to solve the problem a graded mesh is used.

In the graded mesh, the number of elements is not uniformly distributed along the

vertical direction of discretization in space. A total number of 32 elements in both

directions and a ratio of 1.7 in vertical direction is considered. It has more number

of elements near the wall and the height of each element is 1.7 times the height of

element exactly below it as shown in the fig. 4.2 below.

Figure 4.2: Graded mesh discretization in y axis in pipe.

With a graded mesh, we obtain the curves with less values of dimensionless wall distance

at different lengths of the pipe as shown in fig. 4.3. In this mesh, more number of

elements are located near the wall. Therefore, the wall distance of these elements are

less. The formula of dimensionless wall distance is given by:

y+ =
uty

ν
(4.1)

Hence, there is a decrease in the value of y+ with lesser values of y and the three

layers in turbulent flow become visible namely viscous sublayer, log layer and defect

layer in fig 4.3.

With higher Reynolds number, the velocities are higher which results in greater values

of dimensionless velocities. Therefore, the curves with higher Reynolds number are
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Figure 4.3: Plot obtained by Van Driest modification with the graded mesh of 32
elements and ratio of 1.7.

placed above the curves with low Reynolds number.

Figure 4.4: Plot of eddy viscosity obtained by Van Driest modification for an uniform
mesh of 64 elements.
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From the fig. 4.4, it is found that the eddy viscosity follows exponential law and

decreases as the wall is approached. However, it increases till a certain point and then

decreases till it reaches the mid thickness of the pipe. This behavior can be attributed to

the fact that eddy viscosity is dependent on the mixing length and velocity gradient.

The velocity gradient initially increases as one moves away from the wall and then

decreases as one approaches the center of pipe. Therefore, the eddy viscosity also

follows a similar pattern.

4.2.2 Escudier Modification

In the simple mixing length model, the mixing length is overestimated by the

expression κy in the outer layer. Therefore, the mixing length is limited to a value of

0.09*δ in Escudier modification.

Figure 4.5: Plot of mixing length vs pipe height for high Reynolds number with uniform
mesh of 64 elements at 5m.

The boundary layer thickness at a particular point in a flow is constant. Therefore, all

mixing length having values more than 0.09*δ will be limited to this value as observed

fig. 4.5 at this particular point.

In the fig. 4.6(a) and 4.6(b), we can observe that the Escudier modification with

uniform mesh of 64 elements does not give accurate results. However, the Escudier

modification with graded mesh gives more accurate solution as compared to uniform
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(a) Low Reynolds number (b) High Reynolds number

Figure 4.6: Comparison of velocity profiles by Prandtl simple and Escudier modifica-
tion.

mesh. This is because of more number of elements in the graded mesh near the wall

which improves the results near the wall region. The same behavior is also observed

in the Prandtl mixing length model with uniform mesh and graded mesh respectively.

Also, it can be observed that the Prandtl mixing length gives better results as compared

to Escudier modification for the experimental setup in consideration.

4.2.3 Corrsin and Kistler and Klebanoff Modification

It was observed through experiments by Corrsin and Kistler that the flow approaching

freestream is not fully turbulent in nature. It switches between laminar flow and

turbulent flow at irregular intervals. In order to counter the problem, an intermittency

function was introduced by Klebanoff. This function reduces the eddy viscosity so as

to model this effect.

From the fig. 4.7, it can observed that Klebanoff function has value of one at the wall.

This implies that the eddy viscosity has the same value and does not decrease in value

at wall. This is justified as the flow is fully laminar near the walls until the freestream

is reached. Therefore, the Klebanoff function does not reduce the eddy viscosity in

fully turbulent flows.

According to Corrsin and Kistler, as the flow moves away from wall and approaches

the freestream from the boundary layer, the switch between laminar and turbulent flow
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Figure 4.7: Klebanoff function for high Reynolds number in Corrsin and Kistler mod-
ification.

occur randomly.

(a) Low Reynolds number (b) High Reynolds number

Figure 4.8: Velocity profile by Corrsin and Kistler and Klebanoff modification.

However, the flow is still considered to be fully turbulent in previous models.

Therefore, the eddy viscosity should be reduced to model this intermittent laminar

effect. From the fig. 4.7, it can be noticed that the Klebanoff function decreases as
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the freestream is approached. This results in a decrease of the eddy viscosity as the

eddy viscosity is multiplied with the Klebanoff function which has a lower value near

freestream.

From the figures 4.8(a) and 4.8(b), it can be clearly seen that the Corrsin and Kistler

modification reproduces the experimental result best as compared to Prandtl and Es-

cudier modification.

Also it can be noticed that the velocity gradient obtained by Corrsin and Kistler mod-

ification is nearly similar to the experimental results as one approaches the freestream.

With all these observations, it can be inferred that indeed the flow is intermittently

turbulent in the outer turbulent boundary layer. Therefore, the reduction in eddy vis-

cosity by Klebanoff factor taking the laminar flow into account improves the solution.

4.2.4 Cebeci-Smith

The Cebeci-Smith is a two layer algebraic eddy viscosity model consisting of inner and

outer regions in the turbulent boundary layer with separate expression for kinematic

eddy viscosity in each of these regions.

In the fig. 4.9(a), the inner viscosity is plotted against the wall distance for different

mesh sizes. It is worthwhile to note the different values of the viscosities obtained by

the different sizes of the meshes used. This behavior can be understood by gaining an

insight to the formulation of inner viscosity. The formula for inner viscosity is stated

as.

νtinner = l2mix

√√√√[(∂U
∂y

)2

+

(
∂V

∂x

)2
]

(4.2)

Therefore, the inner viscosity depends on the mixing length and velocity gradient.

From the fig 4.9(a), it is evident that an increase in the grading of mesh increases is

accompanied with a decrease in the value of inner viscosity.

In a graded mesh of ratio 1.7, more elements are distributed near the wall. Therefore,

the velocity gradients have comparatively higher values near the wall for graded

mesh than uniform mesh as seen in fig. 4.10(a). In a graded mesh, the elements

near the wall region have less wall distances. The distances between two elements

dy is also very less especially in the region near the wall. This leads to an increase

in velocity gradient. The graded mesh have have high values of velocity gradients

i.e. (6000-8000)s−1 whereas the uniform mesh gives a maximum velocity gradient

of 2700s−1 as noticed in fig. 4.10(a). However, as the flow moves away from the

wall, the velocity gradient of the uniform mesh increases and graded mesh decreases.

Thereafter, they become nearly similar to each other. This is due to more number

of elements in uniform mesh as compared to graded mesh in the region considerably
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(a) Inner viscosity plot (b) Outer viscosity plot

.

Figure 4.9: Viscosities for High Reynolds number in Cebeci-Smith model

(a) Wall Distance vs velocity gradient (b) Mixing length vs inner viscosity

Figure 4.10: Plot for High Reynolds number in Cebeci-Smith model.

away from wall. These reasons may form the basis for decrease of inner viscosity with

an increase in grading of mesh in Cebeci-Smith model.

Also, from the fig. 4.10(b), it is interesting to note the resemblance in behavior
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of the inner viscosity with mixing lengths and inner viscosity with wall distance

in fig. 4.9(a) for the different mesh considered. This can be explained on the fact

that the mixing length is predominantly a function of the velocity gradient and

the velocity gradient further determines the behavior of the inner viscosity. So, this

might be a possible explanation for obtaining similar curves are obtained in these cases.

In the fig. 4.9(b), the outer viscosity is plotted against the wall distance for different

size of meshes at 38.125m. The formula of outer viscosity is stated below.

νtouter = αUeδ
∗
vFKleb

It is observed that the outer viscosity decreases with an increase in the wall distance.

This behavior can be attributed to the fact that the outer viscosity depends on the

Klebanoff function. In the fig. 4.11(a), it can be clearly seen that the Klebanoff function

follows a pattern similar to the outer viscosity when plotted against wall distance.

Also, it is observed that the values of outer viscosity increases with an increase in

the grading of the mesh. The results obtained with graded mesh differ a lot from the

results obtained with uniform mesh until the free stream is approached. This can

be explained on the fact that outer viscosity is directly proportional to the velocity

thickness and other parameters. In the fig. 4.11(b), it can be observed that velocity

thickness increases with an increase in grading of the mesh. Therefore, the outer

viscosity with a uniform mesh has a lower value due to lower value of the velocity

thickness. Therefore, these reasons might form the basis for such behavior of the outer

viscosity.

In the fig. 4.12, the eddy viscosity is plotted against the wall distance. Initially, the

eddy viscosity adopts the values of inner viscosity. The point at which the inner

viscosity becomes equal to the outer viscosity, the eddy viscosity switches to outer

viscosity. Upon comparison of the curves for inner viscosity and outer viscosity, it can

be found that the eddy viscosity takes the value of outer viscosity as compared to

inner viscosity after a certain wall distance.

In the fig. 4.13(a) and 4.13(b), the dimensionless wall distance is plotted against the

dimensionless velocity. There occurs a deviation near the end of the boundary layer as

can be seen from the plot. This is because, such a defect from the log-law in the outer

region of the boundary layer is also observed in various experimental results. Thus,

this region is named as ’defect layer’. As its name implies, the logarithmic profile, so

that there is a defect.

Also, as mentioned earlier, with an increase in grading of the mesh, the region of curve

near the wall is obtained. Furthermore, it is noticed that the curves of higher Reynolds

number are placed above the curves with lower Reynolds number.

This can be attributed to the higher values of dimensionless velocity with higher
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(a) Klebanoff funciton (b) Velocity thickness at 38.125m length of pipe

Figure 4.11: Plot for High Reynolds number in Cebeci-Smith model

Figure 4.12: Kinematic eddy viscosity plot with high Reynolds number in Cebeci-Smith
model.
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(a) Low Reynolds number (b) High Reynolds number

Figure 4.13: Logarithmic law for velocity at 19m.

Figure 4.14: Velocity profile for high Reynolds number.

Reynolds number as compared to lower Reynolds number at the same wall distances.

In the fig. 4.14, it can be observed that the Cebeci-Smith model produces more accurate

results as compared to the simple Prandtl mixing length model. This is because it uses
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inner viscosity and outer viscosity which causes better reproduction of velocities with

the exact solution. However, the results obtained by Cebeci-Smith model assume more

similarity with the experimental results after grading the mesh by a factor of 1.2.

4.2.5 Baldwin-Lomax

In this section, some of the properties of the model are highlighted to explain certain

behavior of the outputs. The input values as discussed earlier are considered for

producing outputs by the Baldwin-Lomax model.

In the fig. 4.15(a), it can be observed that the inner viscosity follows a pattern similar

to the Cebeci-Smith model i.e. it decreases upon increasing the grading of mesh.

(a) Inner viscosity plot (b) Outer viscosity plot

Figure 4.15: Viscosities for High Reynolds number in Baldwin-Lomax model

This can explained on the basis that inner viscosity in both the models have same

formulation. The reason for the similar behavior of the inner viscosity explained in

the Cebeci-Smith also holds true in this case too.

In the fig. 4.15(b), it is noticed that the outer viscosity decreases upon increasing

the grading in mesh. In other words, an increase in number of elements near the

wall produces relatively low values of outer viscosity. This can be better understood

better by following the computation steps in the Baldwin-Lomax model. With higher

grading, the elements and the corresponding wall distances are of small size in the

region near the wall. Therefore, the product of mixing length and vorticity which
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determines the value of Fmax also attains lesser values.

Fmax = 1
κ

(max(lmix|ω|))

This might be a possible explanation for the decrease in value of lmix|ω| with an increase

in grading of the mesh as noticed in fig. 4.16(a). But, the ymax being the wall distance

at which the Fmax attains maximum value remains constant in all the cases.

(a) lmix|ω| plot (b) Fwake plot

Figure 4.16: Plots for High Reynolds number in Baldwin-Lomax model

Fwake = min (ymaxFmax; CwkymaxU
2
dif/Fmax)

νtouter = αCcpFWakeFKleb(y; ymax/CKleb)

Now, the Fmax so computed further determines the value of Fwake.

So, it is again noticed that the value of the Fwake decreases as the grading of the mesh

increases in the fig. 4.14(b). Finally, the outer viscosity being proportional to Fwake

also decreases upon increasing the grading in mesh.

In the fig. 4.17(a), the eddy viscosities are plotted against the wall distances. The eddy

viscosity makes a change in adopting values from inner viscosity to the outer viscosity

at the distance ym where both the viscosities attain similar values as mentioned earlier.

The ym can be determined graphically by superimposition of the outer viscosity curve

on the inner viscosity curve as shown in fig. 4.17(b). Thereafter, ym can be computed

as the distance of point where the curve changes its shape significantly from the wall.

Moreover, the curve of eddy viscosity obtained in current case is in total agreement
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(a) Plot of Kinematic eddy viscosity (b) Superimposed plot of inner and outer viscos-
ity

Figure 4.17: Viscosities for High Reynolds number in Baldwin-Lomax model

(a) Low Reynolds number (b) High Reynolds number

Figure 4.18: Velocity profiles in Baldwin-Lomax model

with the curve of Baldwin-Lomax model.

In the fig. 4.18(a) and fig. 4.18(b), it can be seen that the velocity profile improves
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more towards the experimental results as the grading of mesh is increased.

With a higher grading, more elements are located near the wall. Therefore, the ve-

locity profile with graded mesh near the wall are more accurate as compared to the

uniform mesh. Also, the overall velocity profile tends to have more similarity with the

experimental results.

Also, it is necessary to note that the Cebeci-Smith model as discussed earlier renders

accurate velocity profiles with a grading of 1.2 as compared to Baldwin-Lomax with a

grading of 1.7.

4.3 Comparative Analysis

The objective of this section is to draw conclusions by making a comparison of the

results obtained by all the models.

4.3.1 All Models

The velocity profile of all the five models considered in the current study are analyzed.

The details of the input considered are similar to that discussed earlier.

(a) Uniform mesh of 64 elements (b) Graded mesh of ratio 1.7

Figure 4.19: Velocity profiles for high Reynolds number

In the plot 4.19(a),the velocity profiles obtained by all the method are compared for

high Reynolds number using an uniform mesh of elements. It is observed that the Van

Driest and Cebeci-Smith render results that are close to the experimental solution as

compared to other methods. As discussed earlier, the results obtained by Escudier
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and Baldwin Lomax differ a lot from experimental solution for the uniform mesh.

However, the Corrsin and Kistler modification gives better result as compared to the

Escudier and Baldwin-Lomax. This is due to the inclusion of intermittency factor in

the model which improves the result.

On a broader scale, the results obtained with uniform mesh by all the methods do

not produce accurate solution. The deviation from the experimental solution begins

as the flow begins to move away from the wall. This is because of less concentration

of elements near the wall. With high Reynolds number, there is development of the

turbulent boundary layer in addition to laminar boundary layer near the wall.

The turbulent boundary layer consists of regions marked with irrotational flows and

vortices. These vortices pump the low momentum fluid near the wall in upward

direction. This upwelling generates Reynolds shear stresses. Moreover, there is

occurrence of intermittent characteristics in the upper portion of the turbulent

boundary layer. Therefore, more number of elements are required near the wall to

simulate these behaviors and obtain relatively better results.

(a) Uniform mesh of 64 elements (b) Graded mesh of ratio 1.7

Figure 4.20: Velocity profiles for low Reynolds number

In the fig. 4.19(b), a graded mesh with ratio of 1.7 is used for comparison of the

velocity profiles for all the models under consideration with high Reynolds number.

This mesh has more number of elements distributed near the wall. From the fig.

4.19(b), it can observed that the results obtained by the graded mesh for all the models

are comparatively better than the previous case. Baldwin-Lomax and Corrsin-Kistler
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render the best results among all the models for graded mesh.

In the fig. 4.20(a), an uniform mesh is used to plot the velocity profiles for the

models with low Reynolds number. The results obtained by Cebeci-Smith and Van

Driest modification are more close to the experimental solution as compared to other

methods. The velocity profile of Escudier modification has a lot of deviation from

the experimental solution. This might be attributed to the fact that it is the simple

mixing length model with the mixing length limited to a value of 0.09δ. It does not

include the intermittency property of flow as it approaches the free stream, inner and

outer viscosities for turbulent behavior. The results produced by Baldwin-Lomax are

more accurate in the region near the wall and freestream. However, the solution by

Corrsin and Kistler modification are more close to the experimental solution near the

freestream.

In the fig. 4.20(b), a graded mesh with a ratio of 1.7 is used for the same low Reynolds

number. With a higher concentration of elements near the wall in the mesh, the velocity

profile is nearly similar to the experimental values near the wall for all the models

except the Van Driest and Cebeci-Smith model. Therefore, the results obtained by

graded mesh are comparatively better than the uniform mesh. Again, the Baldwin-

Lomax and Corrsin-Kistler render the best results among all the models.

4.3.2 Logarithmic Velocity profile

In this section, the logarithmic law of wall is obtained and analyzed for all the models

under consideration. In the fig. 4.21(a) and 4.21(b), the logarithmic velocity profile

of all the models in current study are plotted. It can be observed that the curves of

Baldwin-Lomax, Van Driest and Cebeci-Smith are nearly identical till the outer layer

of the log layer. Similar behavior is also observed for the Escudier modification and

Corrsin and Kistler modification.

On a general note, the Baldwin-Lomax reproduces the experimental result best among

all the models for both the Reynolds number. Even, the results obtained by Van-Driest

and Cebeci-Smith are very close to experimental solution but they deviate from the

experimental solution at higher velocities as noticed in the graphs.

Also, it is worthwhile to note that dimensionless velocities obtained by the Cebeci-

Smith, Van Driest and Baldwin-Lomax model are more than Escudier modification

and Corrsin and Kistler modifications.

4.3.3 Staggered and Regular Grid

In this section, comparison are made between staggered grid and Box method for the

Van Driest modification and the Baldwin-Lomax model.
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(a) Low Reynolds number (b) High Reynolds number

Figure 4.21: Logarithmic velocity profiles.

(a) Low Reynolds number (b) High Reynolds number

Figure 4.22: Velocity profiles comparison between staggered Grid and Box method for
Van Driest modification.
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(a) Low Reynolds number (b) High Reynolds number

Figure 4.23: Velocity profiles comparison between staggered Grid and Box method for
Baldwin-Lomax model.

In the fig 4.22(a) and 4.22(b), the velocity profiles are compared between box method

and staggered grid for the Van Driest modification. In an uniform mesh, with a low

Reynolds number, it can be observed that the velocity profile with a staggered grid is

more accurate than the box method upon comparison with the experimental results.

Even, with a uniform mesh and high Reynolds number, the velocity profile obtained

by staggered grid is better than box method especially near the wall. However, the

velocity profile obtained with graded mesh are nearly similar for the staggered grid

and box method.

In the fig. 4.23(a) and 4.23(b), the velocity profiles are analyzed between box method

and staggered grid for the Baldwin-Lomax model. In an uniform mesh, with low and

high Reynolds number, the velocity profile with staggered grid renders result that is

more close to the experimental results especially near the wall as compared to box

method. But again, with a graded mesh, the results obtained for staggered grid and

box method are nearly identical.

The advantage of staggered grids are more accurate pressure gradient and prevention

of the pressure oscillations. In the regular grid of box method, the pressure gradient is

approximated with two alternate grid points when a central difference scheme is used.

Therefore, a wavy pressure field is felt like a uniform pressure field by the momentum

equation. However, in a staggered grid, the pressure gradient is approximated by

the difference of pressures between two adjacent grid points. So, the pressure having
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(a) Low Reynolds number (b) High Reynolds number

Figure 4.24: Plot of Pressure with Pipe length for box method.

oscillatory behavior does not become an uniform pressure field and could not become

a possible solution. The discretized continuity equation given by:

un+1
i+1/2,j − u

n+1
i−1/2,j

∆x
+
vn+1
i,j+1/2 − v

n+1
i,j−1/2

∆y
= 0; (4.3)

contains differences of the adjacent velocity components which prevents a wavy velocity

field from the satisfying the continuity equation. Therefore, the accuracy of the solution

increases with the use of a staggered grid.

In the fig. 4.24(a) and 4.24(b), it can be seen that the pressure oscillations occur in

the box method for both Van driest and Baldwin-Lomax model respectively. However,

in fig. 4.25(a) and 4.25(b), it is observed that there is no pressure oscillations with

the staggered grid.

The staggered grid is known to prevent any occurrence of pressure oscillations. Stag-

gered grid automatically couples the grid scale to pressure to the remainder of the

solution. Therefore, it does not suffer from the problem of pressure oscillation.
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(a) Low Reynolds number (b) High Reynolds number

Figure 4.25: Plot of Pressure with Pipe length for Staggered grid.

4.3.4 Running Time

The running time of the algebraic models are compared for same set of input values

as discussed earlier but with an uniform mesh of 32 elements and Reynolds number of

500 000.

Model Time(s)

Prandtl 145.05

Van Driest 143.33

Escudier 133.22

Corrsin and

Kistler

144.51

Cebeci-

Smith

234.58

Baldwin-

Lomax

249.91

The Cebeci-Smith and Baldwin-Lomax models are found to take relatively more run-

ning time in comparison with the Prandtl mixing length and its three modifications.

The Cebeci-Smith and Baldwin-Lomax models have more additional parameters in

computation of eddy viscosities as compared to the Prandtl mixing length, Van Dri-

est, Escudier and Corrsin and Kistler modifications. Therefore, both the models are

computationally more expensive and have relatively more running time.



Chapter 5

Summary And Outlook

The trouble with research is that it tells you what people were thinking about yesterday,

not tomorrow. It’s like driving a car using a rear view mirror.

- Bernard Loomis -

5.1 Implementation and Analysis

The prime objective of the current study is the modeling and analysis of turbulence

in free flowing gas phase. In this regard, five different models of turbulence were

implemented through the framework of DuMux and using a staggered grid.

Initially, the analysis was performed for each of the models individually. The

characteristic features of the models were highlighted in the analysis. It included

behavior of the parameters like mixing length, inner viscosity, outer viscosity and

Klebanoff function. Further, an improvement in the accuracy of the results was

noticed upon progressing from Van Driest modification to Baldwin-Lomax model.

Firstly, in the Van Driest model, the exponential law of eddy viscosity was put into

practice. Secondly, in the Escudier modification, the restriction on the mixing length

was employed. Thirdly, in the Corrsin and Kistler and Klebanoff modification, the

intermittency of turbulent flow as it approaches free stream was applied through the

Klebanoff function. This resulted in more accurate results upon comparing with the

experimental values. Fourthly, the Cebeci-Smith model was also executed with the

inner and outer viscosities. Finally, the Baldwin-Lomax model consisting of additional

parameters was also realized.

Furthermore, all the models were analyzed in a combined manner. The models like

Baldwin-Lomax and Corrsin and Kistler modification performed the best among all

the models under consideration. Moreover, the logarithmic velocity profile of all the

models were analyzed too. Finally, a comparison was made between the staggered grid

and the box method especially for the Van Driest modification and Baldwin-Lomax
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models. It was found that the pressure oscillations observed in box method were

absent in the staggered grid. Also, the velocity oscillations were also reduced in the

staggered grid which lead to more stable results. Additionally, it was found that the

results obtained for low Reynolds number were relatively more accurate than the ones

obtained with high Reynolds number. The analysis was carried out with different

grading of the mesh and an attempt was made to understand the observed behaviors.

On a general note, it can be inferred that the algebraic models give good results for

simple flows. The algebraic models are fast and robust in computation. They require

information pertaining to the boundary layer properties.

5.2 Outlook

A possible field of research will be devising and implementing a method to model

separated flows by Cebeci-Smith and Baldwin-Lomax models. As the boundary layer

separates, it is necessary to solve the full Reynolds-averaged Navier-Stokes equation,

which includes all components of Reynolds stress tensor. Several schemes like MacCor-

mack schemes which are second order accurate in space and time can be used for this

purpose. This scheme involves a predictor step and a corrector step. Other schemes like

Jameson and Mavriplis can be used. It is a symmetrical scheme in which discretization

is performed by a Runge-Kutta method having five stages. It is a robust method which

gives good accuracy and prediction of separation region in modeling with Cebeci-Smith

and Baldwin-Lomax [8].

Another approach that can be used to calculate flows with separation region is by a

combination of the Baldwin-Lomax and Smagorinsky turbulence models. The Baldwin-

Lomax model can be used near the wall as it gives good result near the walls. Then,

from the end of inner layer to the core flow region, a mix of Baldwin-Lomax and

Smagorinsky model can be used for modeling of the flow.

With these implementations, it would be important to study different fields like

modeling the water hammer and flow over airfoil.

Another possibility of future work can be computations of results for different experi-

mental setup. The results so obtained can be compared with the experimental results

for the similar experimental setup.
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