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Abstract 

 
Mathematical and numerical aspects of free surface flows are investigated.  

 

On one hand, the mathematical analysis of some free surface flows is considered. A model 

problem in one space dimension is first investigated. The Burgers equation with diffusion has 

to be solved on a space interval with one free extremity. This extremity is unknown and 

moves in time. The main work is concerned with the simulation of the incompressible 

Newtonian fluid flow problem. The space discretisation is based on the s tabilized velocity-

pressure finite element method. The movement and the deformation of the domain are 

accounted for by employing the arbitrary Lagrangian-Eulerian (ALE) description of the fluid 

kinematics. The time discretisation is carried out by using implicit, explicit and semi implicit 

scheme. The stability and the convergence of time splitting scheme are investigated. A 

partitioned solution procedure is developed based on the Newton-Raphson methodology 

which incorporates full linearization of the overall incremental problem. Accuracy and 

stability of the solutions are demonstrated in example for which the analytical solutions are 

known. In the example, the Burger’s equation analogue to 1-D fluid flows is solved without 

and with FE mesh motion, to show that the mesh motion practically does not affect the 

solutions. All solutions presented show that the proposed algorithm is sufficiently accurate 

and stable. Since the algorithm is implicit, high accuracy of results can be achieved with a 

relatively large time step.A numerical example is provided to demonstrate the efficiency of 

the methodology by modeling large amplitude sloshing in a rectangular tank.  
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Chapter 1 
 

 

Introduction 

 

Flows with free surface find an important place in many engineering applications [1-

16]. Free surface flows find large number of industrial interests like, liquid sloshing in LNG 

tankers, chemical and food industry, diesel injectors, atomization, droplet-wall interaction, 

cavitation, Ink-jets and similar devices and involved complex  
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1.1  Motivation 

 
Numerical methods for solving free surface problems are of great importance in many 

engineering applications. Free surfaces are abundant in nature and are often can be applied to 

civil, mechanical and chemical engineering. Problems with free surfaces appear in sloshing in 

liquid storage tanks [1, 2, 3], fluid-structure interactions [4, 5, 6], blood flows in moving 

arteries [7],  immiscible multi- fluids problems [8, 9, 10], motion of glaciers [11],  viscoelastic 

flows [12, 13], mould filling [14, 15, 16] and many other domains. 

 

Free surface flows are investigated here, with particular emphasis on the process of 

sloshing in liquid storage tanks. Liquid storage tanks are important components of lifeline and 

industrial facilities. They are critical elements in municipal water supply and fire fighting 

systems, and in many industrial facilities for storage of water, oil, chemicals and liquefied 

natural gas. Behavior of large tanks during seismic events has implications far beyond the 

mere economic value of the tanks and their contents. If, for instance, a water tank collapses 

under earthquakes, loss of public water supply can have serious consequences. Similarly, 

failure of tanks storing combustible materials, under earthquakes, can lead to extensive 

uncontrolled fires. Many researchers have investigated the dynamic behavior of liquid storage 

tanks both theoretically and experimentally. Investigations have been conducted to seek 

possible improvements in the design of such tanks to resist earthquakes.  

Liquid storage tanks can be found in many configurations: elevated, ground-based, 

and underground. Steel ground-based tanks consist essentially of a steel wall that resists 

outward liquid pressure, a thin flat bottom plate that prevents liquid from leaking out, and a 

thin roof plate that protects contents from the atmosphere. It is common to classify such tanks 

in two categories depending on support conditions: anchored and unanchored tanks.  

  Anchored tanks must be connected to large foundations to prevent the uplift in the 

event of earthquake occurrence. However, improperly detailed anchors may damage the shell 

under seismic loading resulting in a ripped tank bottom. Hence, it is common, particularly for 

large size tanks, to support the shell on a ring wall foundation without anchor bolts and to 

support the bottom plate on a compacted soil though, sometimes, ring walls are omitted. 

Based on the orientation of the axis of symmetry, anchored tanks are either horizontal or 

vertical. Circular vertical tanks made of carbon steel are more numerous than any other type 

because they are efficient in resisting liquid hydrostatic pressure mostly by membrane 

stresses, simple in design, and easy in construction.  

 

 

 
 



11 
 

1.2 Damage to Storage tanks in earthquakes 

 

Research on seismic response and behavior of liquid storage tanks is a matter of 

special importance, not only because of the economic factors, but also because of the 

consequences that result from failing tanks. Without an assured water supply, uncontrolled 

fires may cause enormously more damage than the earthquake itself, as it happened 1906 in 

the great San Francisco (USA) or 1995 in the earthquake of Kobe (Japan).  

 

Spillage of toxic chemicals or liquefied gases from the damaged tanks can lead to 

disastrous effects in populated areas. The seeping of oil into the ground can ruin the ground 

water, so happened 1978 in Japan. Failure of tanks containing high inflammable products can 

lead to extensive fires, as occurred following the Nigata and Alaska of 1964, or the 

earthquake in Turkey on 17.8.1999 when over 17100 people died.  

 

It becomes very important to study the liquid storage tank, when these liquid storage 

tanks are subjected to earthquakes, they suffer significant damage It becomes important to 

study and understand the behavior of tank under these conditions and various failures modes. 

The major damages observed in the liquid storage tanks are “Elephant foot” and “Diamond 

shape” buckling,. “Uplifting of tank, “Damage and collapse of tank roofs”. The seismic 

design standards have been revised several times to improve the performance. Because of cost, 

ground supported liquid storage tanks are often not fixed to their foundation, even in seismic 

areas. In this work we will study and understand the effect of sloshing on the tank. Tanks that 

are not provided with sufficient freeboard can be damaged by the sloshing waves.  

 

 

In the present study, we model one dimensional free surface problem using burgers 

equation and understand the problem in moving domain framework. The goal is to examine 

the formulations of the non- linear liquid sloshing behavior for a one dimensional and two 

dimensional problems. Sloshing waves of high amplitude often cause damage to the roofs of 

tanks and render them temporarily unserviceable. As a consequence, liquid spillage over the 

roof may either result in fires or in the loss of water supply used in putting out fires.  It can be 

seen that the most commonly reported damage to above ground prestressed concrete tanks is 

due to sloshing. The cause of this damage is mainly due to the liquid sloshing of oil storage 

tanks excited by long-period strong ground motion.  
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The  main objective of the thesis is concerned with the simulation of free surface flows 

with a focus  to develop 1 dimensional and 2 dimensional problems of incompressible 

Newtonian fluid flow (sloshing of liquid storage tanks, were in the surface tension presence is 

neglected). The aimed application is the representation of sloshing in liquid storage tank. To 

reach this goal, it is first necessary to choose the right models and develop stable and efficient 

enough algorithm. 

 

 

1.3  Outline 

 

Thus, the outline of this dissertation is as follows: 

 

This thesis consists of two different parts. In a first part, a problem related to this 

model is investigated from a theoretical point of view. The second part focuses on the 

simulation of such free surface flows. Many methods exist in the literature to treat free surface 

problems. References appearing in this work, and especially in this introduction, give only a 

non-exhaustive list of examples. 

 

  

 
Figure 1: Damaged Liquid Storage tank (A) due 

to sloshing, Ref Carleton University 

Figure 2: Damaged Liquid Storage tank (B) due to 

sloshing Ref: Carleton University  
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The first part of this thesis (chapters 1 and 2) is devoted to theoretical studies related 

to free surface flows. 

 

In chapter1, main motivation behind this work is explained and it explains why there 

is need to study the effect of sloshing on liquid storage tanks this is done mathematically by 

using the one dimensional burgers equation with the viscous term. The study of burgers 

equation with a free extremity is carried out in a fixed and a moving domain framework.  

 

 In chapter 2, a one-dimensional model problem for the velocity u is first investigated.  

This model is a one-dimensional simplification of the free surface problem. It consists of 

Burgers' equation with an additional diffusion term in a space interval with one free extremity. 

This extremity is unknown and moves in time. Surface tension effects are not taken into 

account. A zero force boundary condition is thus enforced on the free extremity of the interval. 

Other results for the Burgers equation with a free surface can be found in [18, 19] for instance.  

 

 

The fluid flow considered is governed by the incompressible Burgers equation and 

modelled by employing stabilized equal order velocity–pressure finite elements and for the 

temporal discretisation the explicit, implicit and semi- implicit method is employed.  The 

resulting nonlinear equations are solved by means of a novel partitioned solution procedure, 

which is based on the Newton–Raphson methodology and incorporates full linearisation of 

the overall incremental problem. In this chapter the motion of the fluid is assumed to be fixed 

under dirichlet boundary conditions, which fix the value of the field on the surface.  

 

 

In chapter 3, the motion of the fluid domain is accounted for by an Arbitrary 

Lagrangian–Eulerian (ALE) [20-35] strategy. The domain of computation is stretched and re-

meshed at each time step. For flows in complex topological domains, re-meshing can be 

difficult since the deformation of the liquid domain is large. The solution of free surface flow 

problems may be regarded as a first step towards the modeling of fluid-structure interactions 

problem, where the coupling is the more complex, including also the equations governing 

solid deformations. 
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The second part of this thesis (chapters 4 and 5) is devoted to study of variation of 

viscosities in unsteady flow and numerical example related to free surface flows. 

 

  In chapter 4, the study of shock formation by varying the viscosity values provided by 

the time evolution of a sinusoidal wave profile under fixed Cartesian grid and a domain 

accounted for by an ALE strategy is carried out and we can carry out a instability study by 

adding others terms to the Burgers' equation. In chapter 5, an example of two-dimensional 

and axisymmetric free surface flows have been used for the verification of the computational 

strategy. The numerical results obtained for a selection of problems are presented. The 

example considers two-dimensional small and large amplitude sloshing of a fluid in a 

rectangular tank. 
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Chapter 2 
 

 

Burgers Equation: Fixed Mesh Framework 

 
A one-dimensional simplified model of a free surface problem is considered in this 

chapter, namely the Burgers equation with an additional diffusion. This problem is a 

simplification in one space dimension of the Navier-Stokes equations with a free surface 

encountered in [36, 37]. Space and time discretisation are investigated (see also [38-44] for 

instance). Here the Cartesian grid movement is fixed and the numerical results are obtained 

for the same. 
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2.1 Computational Method 

 

In this chapter the computational method for fluid flow is explained. First, the 

mathematical equations are stated that describe the flow including the motion of the free 

surface. Secondly the discretisation in space and the governing equations are discussed. 

Finally, the temporal discretisation is explained. Phenomenon involving free surface are found 

extensively in nature and in most engineering applications in many interdisciplinary fields. 

Due to the complexity of the equations involved in the motion of a fluid, it is only possible to 

obtain analytical solutions for a few simple problems, often by using simplifications. The 

numerical treatment of free surface problems is highly interesting but complex because the 

computational domain is continuously moving. Although the underlying physics of free 

surface flows is understood, the numerical treatment differs with respect to handling the 

moving boundaries at the free surface. Numerical simulations of the viscous free surface 

flows are well established for the velocity formulation and the results have been obtained 

using various numerical schemes such as the finite difference method (FDM) [45,46], the 

finite element method (FEM) [47-52] and the finite volume method (FVM) [53]. 

 

2.2 Mathematical Model 

 

Burgers equation is a one-dimensional case of the Navier-Stokes momentum equation, 

when the pressure gradient and the forcing term are neglected, and is given as follows.  

 
 

2

2
0

u u u
u

t x x
             0 x L                                                       (1) 

 

Equation (1) is parabolic when the viscous term is included. If the viscous term is 

neglected, the remaining equation is composed of the unsteady term and a nonlinear 

convection term. This results in a hyperbolic equation.  Dirichlet conditions will be applied on 

the boundaries, that is, x=0 and x=L such that the value of the quantity u is known. The above 

equation can be viewed as a nonlinear wave equation where each point on the wave front can 

propagate with different speed.  
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A consequence of the changing wave speed is the coalescence of characteristics and the 

formation of discontinuous solution similar to shock waves in fluid mechanics. These 

discontinuities are studied with the simple one dimensional model in chapter 3.  

The first step for a finite element space discretisation it to introduce a weight function w(x) 

that is arbitrary along the domain, but zero at the boundary with Dirichlet conditions (w(0) = 

w(L) = 0). Then, the weak form of the burgers equation becomes: 

2

2
0

u u u
w dx w u dx w dx

t x x
                                                  (2) 

Applying integration by parts on the second order derivative term, taking the constants out 

of the integral and knowing that the weight function is zero at the boundaries,                                            

Eq. (2) may be rewritten as: 

0
u u w u

w dx w u dx dx
t x x x

      (3) 

Equation (3) is the weak form of the unsteady Burgers equation modeling the 

incompressible fluid flow free surface problem. We use a stabilized equal order velocity-

pressure finite element formulation adapted to a fixed domain. The stabilization technique 

employed was introduced by Hughes and co-workers [38-40] and then further developed by 

Tezduyar and others [41-44]. It enhances stability of the velocity field in the advection 

dominated regions of the domain and at the same time enables the use of computationally 

convenient equal order finite elements for spaces for velocity and pressure fields. The 

formulation used in the work is referred to as Standard Galerkin and Petrov-Galerkin methods 

[5]. Such methods have become standard in Eulerian finite element formulations and have 

been applied to various problems in fluid mechanics [38]. A review of a var iety of 

stabilization techniques may be found in [39] 
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2.3 Discretization in Space using FEM Technique 

2.3.1 Standard Galerkin Method 

 

The Standard Galerkin method is the most widely used method for the weight function 

in the finite element method. The reason lays in its simplicity, where the weight function w is 

replaced by the shape function Ni, interpolation function. The weight function and its 

derivative may be written as: 

( )
n

i i

i

w x N w      and      
n

i
i

i

dNdw
w

dx dx
                                                         (4) 

 

Different shape functions can be chosen for the one-dimensional finite element 

problem but, in this work it will be adopt only linear shape functions. Applying the Galerkin 

method in Eq. (3) the following expression is obtained: 

1 1 2 2 0
ji i

j i j i j j

NN Nu u
u dx N N u u dx N N u u dx u dx

t x x x x
    (5)                       

For a two-noded element in the reference space with linear interpolation of the shape 

functions may be written as: 

1 2

1 1
(1 ) and (1 )

2 2
N N                                                       (6) 

with the mapping from the current element to the reference element as:  

2 1

1
( )

2 2

h
dx x x d                                                                                     (7) 

Substituting equations (6) and (7) into Eq.(5), integrating over the reference element 

size (-1≤ x ≤ 1) and rewriting in a matrix form, the above equation becomes: 

1 1

1 16

e h
A  ;  

1 1

1 12

e u
C    and    

1 1

1 1

e

h
K                                   (8) 

By assembling together contributions from all elements we find the matrix equation  
 

[ ] 0
u

u
t

A C K                                                      (9) 
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2.3.2 Petrov-Galerkin Approximation 

 

Different from the standard Galerkin method, the Petrov-Galerkin uses a weight 

function different from the shape function. The most used Petrov-Galerkin weight function is 

the discontinuous function defined as: 

( )
( ) ( )

2

n
i

i

i

dN xh u
w x N x

dx u
                                                                       (10) 

Substituting Eq.(10) into the weak form of the convection-diffusion problem in Eq.(3) 

the following equation is obtained: 

( ) ( )
( ) ( ) 0

2 2e e

n n
j ji i i

i j i

i j

dN dNdN x dN dN xh h
u N x u N x dx

dx dx dx dx dt
  (11) 

 

1 1 2 2

2

2

2 2

0
2

i i i
j i j i j

ji i
j

N N Nh u h u
u dx N N u u dx N N u u dx

t x x x x

NN Nh
u dx

x x x
                      

(12) 

 Once again the result of the quantity variable u in each node may be obtained by 

solving the system of equations. It is possible to see that the diffusion matrix was not changed 

when implementing the Petrov-Galerkin method. Since it was implemented a linear shape 

function, the second derivative of the shape function is zero and, therefore, the value of the 

derivative dNi/dx is the same for both Galerkin and Petrov-Galerkin methods. 

We can see that with = 0, the standard galerkin approximation is recovered.                         

An optimal value α of may be obtained as well as the limit of α for which oscillations don’t 

occur. The optimal value was used throughout this work and may be defined as: 

1
cothopt Pe

Pe
                                                                                (13) 

It is important to notice that, since the constant α cancels for the internal nodes during 

the assembly of the elements, the only terms affected by the constant α are the non-diagonal 

terms in the convective matrix. The same result is obtained when introducing the balancing 

diffusion technique. The results obtained with the code written in Matlab, comparing the 

artificial diffusion and the Petrov-Galerkin stabilization methods with the standard Galerkin 

finite element method will be shown in the next section.  
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2.4  Temporal Discretization 

For unsteady processes the physical quantities in addition to the spatial dependence 

also depend on the time t. In many practical applications the processes under consideration are 

unsteady and thus require for their numerical simulation the solution of time- dependent 

model equations. 

 

2.4.1  Explicit Method 

 

Here time discretisation is carried out using the explicit Euler method [56], which is obtained 

by approximating the time derivative at time level, tn by means of a forward differencing 

scheme: 

 
1

( ) ( )
n n

n

n

n

u u u
t u

t t
        (14) 

 

 

This corresponds to an approximation of the time derivative of the components ui of u at the 

time tn by means of the slope of the straight line through the points ui
n and ui

n+1. 

 

 
 

 
 

 
 
 

 
 

 

Figure 2.1: Approximation of time derivative with 
explicit  Euler  method [56] 

Figure 2.2: Procedure and flow of informat ion for explicit 

Eu ler method [56] 
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2.4.2  Implicit Method 

 
Approximating the time derivative at time tn+1 by a first order backward difference 

formula results in the implicit Euler method [56]. 

 
1

1

1( ) ( )
n n

n

n

n

u u u
t u

t t
        (15) 

 

 

 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 

We have integrated the explicit and implicit Euler methods as well as the Crank- 

Nicolson method into a single code in a simple way by introducing a control parameter θ  

 
1

1( ) (1 ) ( )
n n

n n

n

u u
u u

t
        (16) 

 
 
 

Figure 1.3: Approximation of time derivative with 
implicit Euler method [56] 

Figure 2.4: Procedure and flow of information for implicit Euler 
method [56]  

Figure 2.5: Approximation of time derivative with 
semi implicit crank nicholson method [56] 
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This approach in the literature is often called θ-method. For θ = 0 and θ = 1 the explicit 

and implicit Euler methods, respectively, result. θ = 1/2 gives the Crank-Nicolson method 

[56]. Valid time discretisation is also obtained for all other values of θ in the interval [0, 1]. 

 

2.5 Newton Raphson Procedure 

The burgers equation is non- linear the equation and has to be solved using a suitable 

iteration procedure. There is a variety of different methods through which the numerical 

solution of non- linear equations can be obtained. In practice, the most commonly employed 

iteration procedure is the Newton-Raphson method, which we briefly present below. 

 
To incorporate full linearization of the problem and to achieve quadratic convergence 

of the solution for all unknowns the Newton-Raphson method is employed. The Newton-

Raphson iteration procedure can be described as follows.  Let us consider a differentiable 

function ( )f x be a on some closed interval and we want to find the value of x for which 

( )f x =0. If we have an approximation to the root of the function, say nx , then by taking a 

linear approximation of Taylor series expansion of f  about nx
   (i.e. the first two terms) we 

get the tangent line to ( )nf x at the point nx which reads 

 
'( ) ( ) ( )n n ny f x x x f x          (17) 

 

The point where this tangent line crosses the x  axis is denoted by 1nx and represents 
an improved approximation to the root 

 

 
 

 
 
 

 
 
 

 
 

 
 

 

 
 

 
 
 

 
 

 

Figure 2.6: Newton Raphson Method  
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The process is repeated until the method converges, i.e. a desired approximation to x is 

achieved. This enables us to express the method, mathematically, as follows 

 
1

'( ) ( )

n n

n n

x x x

f x x f x
          (18) 

 

 

The Newton-Raphson method converges very quickly if  '( ) 0nf x  holds and an 

approximation nx  are reasonably close to the root. The process is terminated when the 
solution approximations become identical up to the specified number of decimal places. In 
order to generalize the algorithm for the case when we are dealing with a n-dimensional 

vector function ( )xF  we have to employ a Jacobian matrix of F . The Jacobian matrix of F  

consists of first order partial derivatives of the vector function ( )F x and can be expressed as 

follows 

1 1

1

1

'( )

n

i

j

n n

n

f f

x x
f

x
f f

x x

F x         (19) 

 
 

We, define the Newton Raphson algorithm as follows: 
 

1 ,

'( ) ( ).

n n

n n

x x x

F x x F x
         (20) 

 
The termination point of an iteration process is determined through an established criteria and 

the level of accuracy required.   

 

Newton- Raphson Algorithm in steps: For a given time step 

1. Predict  initial free surface velocity  

2. Free surface solver 

3. Compute residual 

4. Check for  convergence 

5. Compute linearization and solve system of equations 

6. Update the free surface velocity 

7. Go to 2 

The above solution procedure is repeated until the prescribed number of time steps is reached.  
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2.6  Numerical Results 

In order to validate our algorithm for the numerical simulation of the free surface flow 

in 1-D, we have considered burgers equation in fixed frame work. We study the time 

evolution of the fluid flow.  

An analytical solution for this problem may be found as: 

/ /

/1

ux k ul k

exact uL k

e e
u

e





       (21) 

 

The numerical analysis was carried out for Standard Galerkin and Petrov Galerkin 

method discretisation in space and implicit and explicit method in time and each one of the 

methods described for three cases of Peclet number.  First two case with Pe < 1 and another 

case with Pe > 1.   

The finite element code with the discretisation in space using Galerkin method and in 

time using backward Euler, Crank Nicholson and forward Euler was first run for a viscosity 

 = 0.5 and number of elements n= 20 resulting in Pe = 0.5. For the second case it was used a 

kinematic viscosity  = 0.25 and number of elements n=20 resulting in Pe = 1. For the third 

case it was used a viscosity  = 0.125 and number of elements n=20 resulting in Pe = 2. The 

results obtained for Galerkin finite element method for cases 1, 2 and 3 are shown in Fig. 

below. 
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Standard Galerkin in space and Backward Euler in time, Pe = 0.5  

 

  

Figure 2.7: Velocity v/s Position, Numerical Soln,  

Pe=0.5 

Figure 2.8: Comparison of  Numerical with Exact 

Solution, Pe=0.5 

 
Figure 2.9: Surface Plot, Pe=0.5 
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Standard Galerkin in space and Backward Euler in time, Pe = 1  

 

 

 

Figure 2.10: Velocity v/s Position, Numerical Soln,  Pe=1  Figure 2.11: Comparison of  Numerical with Exact 

Solution, Pe=1 

 
Figure 2.12: Surface Plot, Pe=1 
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Standard Galerkin in space and Backward Euler in time, Pe = 2  

 

  

Figure 2.13: Velocity v/s Position, Numerical So ln,  

Pe =2 

Figure 2.14: Comparison of  Numerical with Exact 

Solution, Pe=2 
 

  

Figure 2.15: Surface Plot, Pe=2 
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Standard Galerkin in space and Crank Nicholson in time, Pe = 0.5 

 

 

  

Figure 2.16: Velocity v/s Position, Numerical So ln,  

Pe=0.5 
Figure 2.17: Comparison of  Numerical with Exact 

Solution, Pe=0.5 

 

Figure 2.18: Surface Plot, Pe=0.5 
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Standard Galerkin in space and Crank Nicholson in time, Pe = 1 

 

  

Figure 2.19: Velocity v/s Position, Numerical So ln,  

Pe=1 
Figure 2.20: Comparison of  Numerical with Exact 

Solution, Pe=1 

 

Figure 2.21: Surface Plot, Pe=1 

 

 

 

 

 

 

 

 



30 
 

Standard Galerkin in space and Crank Nicholson in time, Pe = 2 

 

 

 

Figure 2.22: Velocity v/s Position, Numerical So ln,  

Pe=2 
Figure 2.23: Comparison of  Numerical with Exact 

Solution, Pe=2 

 

Figure 2.24: Surface Plot, Pe=2 
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Standard Galerkin in space and Forward Euler in time, Pe = 2 

 

 

Figure 2.25: Velocity v/s Position, Numerical So ln,  Pe=2 
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Petrov Galerkin in space and Backward Euler in time, Pe = 0.5  

 

 

 

Figure 2.26: Velocity v/s Position, Numerical So ln,  

Pe=0.5 

Figure 2.27: Comparison of  Numerical with Exact 

Solution, Pe=0.5 

 
Figure 2.27: Surface Plot, Pe=0.5 
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Petrov Galerkin in space and Backward Euler in time, Pe = 1  

 

  

Figure 2.29: Velocity v/s Position, Numerical So ln,  

Pe=1 

Figure 2.30: Comparison of  Numerical with Exact 

Solution, Pe=1 

 
Figure 2.31: Surface Plot, Pe=1 
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Petrov Galerkin in space and Backward Euler in time, Pe = 2  

 

  

Figure 2.32: Velocity v/s Position, Numerical So ln,  

Pe=2 

Figure 2.33: Comparison of  Numerical with Exact 

Solution, Pe=2 

 
Figure 2.33: Surface Plot, Pe=2 
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Petrov Galerkin in space and Crank Nicholson in time, Pe = 0.5 

 

  

Figure 2.34: Velocity v/s Position, Numerical So ln,  

Pe=0.5 

Figure 2.35: Comparison of  Numerical with Exact 

Solution, Pe=0.5 

 
Figure 2.36: Surface Plot, Pe=0.5 
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Petrov Galerkin in space and Crank Nicholson in time, Pe = 1 

 

  

Figure 2.37: Velocity v/s Position, Numerical So ln,  

Pe=1 

Figure 2.38: Comparison of  Numerical with Exact 

Solution, Pe=1 

 
Figure 2.39: Surface Plot, Pe=1 
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Petrov Galerkin in space and Crank Nicholson in time, Pe = 2 

 

  

Figure 2.40: Velocity v/s Position, Numerical So ln,  

Pe=2 

Figure 2.41: Comparison of  Numerical with Exact 

Solution, Pe=2 

 
Figure 2.42: Surface Plot, Pe=2 
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Convergence of the method 

 

It important to understand the convergence of the Newton-Raphson scheme to see that 

the implementation of the method is employed very well and the solution converges quickly. 

The Newton- Raphson method is well known by exhibiting the quadratic convergence if the 

initial approximation lies in a close vicinity of the exact solution.  

 

  

Figure 2.43: Convergence Plot: Newton Raphson Figure 2.44:  Total Number o f Iterat ions v/s Time  

 
 

Stability 

 
We have observed that, the Forward Euler method is unconditionally unstable; this 

scheme will not produce any solution at any circumstances. Thus, it is essential is avoid such 

schemes. The instability is developed by the negative dissipation added by the discretisation. 

In comparison with the Backward Euler and Crank Nicholson methods are more accurate and 

also unconditionally stable. 

 

Discussion 

 
We can see a distinct stabilization when we increase the Pectlet number beyond one. 

The biggest advantage of Petrov-Galerkin method over traditional Galerkin is that the method 

will give stable solutions even for Peclet number greater than 1. We can see clearly the 

oscillation and hence the unstable solution when the Pe number is higher than one for 

Galerkin method. 

The poor performance of Galerkin finite element method for convection dominated 

transport has a remedy by the use of Petrov-Galerkin method, where the weighting functions 

are a combination of global interpolation function and their derivatives. This modification 

biases the resulting equations in a particular direction and gives us overall stability. 
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Chapter 3 

 

 

 

Burgers Equation: Moving Mesh Framework 

 
The work in this chapter is concerned with the simulation of incompressible 

Newtonian fluid flow problems. The computational framework is based on the stabilized 

velocity finite element method. The movement and deformation of the computational domain 

are accounted by employing the arbitrary Lagrangian- Eulerian (ALE) [69] strategy. A 

partitioned procedure is based on the Newton- Raphson methodology is incorporated for full 

linearization of the problem. 
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3.1  Incompressible Newtonian fluid flow on a moving domain 

 

The algorithms of continuum mechanics make use of three distinct types of 

description of motion: the Lagrangian description, the Eulerian description and the ALE 

description. Lagrangian algorithms, in which each individual node of the computational mesh 

follows the associated material particle during motion, are mainly used in structural 

mechanics. The Lagrangian description allows easy tracking of free surfaces and interfaces  

between different materials. Its weakness is its inability to follow large distortions of the 

computational domain without recourse to frequent remeshing operations. Eulerian 

algorithms are widely used in fluid mechanics. Here, the computational mesh is fixed and the 

fluid moves with respect to the grid. The Eulerian formulation facilitates the treatment of 

large distortions in the fluid motion and is indispensable for the simulation of turbulent flows. 

Its handicap is the difficulty to follow free surfaces and interfaces between different materials 

or different media (e.g., fluid-fluid and fluid-solid interfaces). 

 
ALE algorithms are particularly useful in flow problems involving large distortions in 

the presence of mobile and deforming boundaries. Typical examples are problems describing 

the interaction between a fluid and a flexible structure and the simulation of metal forming 

processes. The key idea in the ALE formulation is the introduction of a computational mesh 

which can move with a velocity independent of the velocity of the material particles. With 

this additional freedom with respect to the Eulerian and Lagrangian descriptions, the ALE 

method succeeds to a certain extend in minimizing the problems encountered in the classical 

kinematical descriptions, while combining at best their respective advantages.  

 
ALE methods were first proposed in the finite difference context where original 

developments were made, among others, by Noh [69], Trulio [69] and Hirt, Amsden and 

Cook [69]; The method was subsequently adopted in the finite element context and early 

applications are to be found in the work of Donea, Fasoli-Stella and Giuliani [69], Belytschko, 

Kennedy and Schoeberle [69], Belytschko and Kennedy [69] and Hughes, Liu and 

Zimmermann [69]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 

 

 

3.2  ALE Kinematics 

 

In the ALE description of motion, neither the material RX nor the spatial Rx 

configuration is taken as the reference. Thus, a third domain is needed: the referential 

configuration RX where reference coordinates x are introduced to identify the grid points.  

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Figure 3.1: Lagrangian description of motion [69] 

Figure 3.2: The motion of the ALE computational mesh is independent of the material motion [69] 
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An arbitrary Lagrangian–Eulerian (ALE) description is used to account for the 

deformation of the fluid domain which arises from the displacement and deformation of the 

solid structure. Some of the first researchers to demonstrate the potential of this approach are, 

among others, Hirt et al. [20], Hughes et al. [21], Donea [22], Ramaswamy and Kawahara 

[23,24], Huerta and Liu [25], Soulaimani et al. [26]. More recent publications are e.g. [27–

30]. A related strategy based on the space–time finite element formulation on moving 

domains has been developed by Tezduyar et al. [31,32], Masud and Hughes [34] and Hansbo 

[35]. In all the above strategies the movement of the fluid finite element mesh is governed by 

an appropriate algorithm, thus maintaining a good mesh quality despite substantial 

deformation of the fluid domain. 

 

3.3 Mathematical Model 

 

Burgers equation is a one-dimensional case with ALE of the Navier-Stokes 

momentum equation, when the pressure gradient and the forcing term are neglected, and is 

given as follows. 

 
 

2

2
ˆ( ) 0

u u u
u v

t x x
             0 x L                                                       

(22) 

The velocity difference ˆu v  is denoted as the convective velocity. In the framework 

of the finite element method, the moving reference frame is identified with the finite element 
mesh. The Eulerian or Lagrangian representations of the material time derivative of u are 

easily recovered by setting ˆ 0v   or v̂ u , respectively. 

 

 

3.4 Finite element formulation 

 
The formulation used in this work to discretise in space is similar to the one employed 

in equation (5, 12, 16), but has been extended to incorporate modifications required in the 

ALE framework. 
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For Standard Galerkin Method: 

 

1 1 2 2
ˆ ˆ( ) ( )

0

i
j i j i j

ji
j

N u u
u dx N N u v u dx N N u v u dx

t x x

NN
u dx

x x

  

 (23) 

 
For Petrov Galerkin Method: 

 

1 1

2 2

2

2

ˆ( )
2

ˆ( )
2

0
2

i i
j i j

i
i j

ji i
j

N Nh u
u dx N N u v u dx

t x x

Nh u
N N u v u dx

x x

NN Nh
u dx

x x x

     (24) 

 

3.5 Temporal Discretization 

 
We have provided with comparison of explicit and implicit time intergartion schemes 

with respect to the Newtonian free surface flow. The generic formulation called as the θ-

method is employed and  numerical results are obtained for θ = 0 and θ = 1 (the explicit and 

implicit Euler methods), and θ = 1/2 (the Crank-Nicolson method). This is same as the 

equation (16) used for time discretisation of the burgers equation in a fixed domain. 

 

      

1
1( ) (1 ) ( )

n n
n n

n

u u
u u

t
 

 

3.6 Mesh Update 

 

In this method the mesh is neither connected to the material as in the case of 

Lagrangian nor fixed to the spatial coordinates system as in the case of Eulerian method. Here 

the mesh is prescibed in a arbitary manner by defining the mesh velocity.  
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Due to this the remapping of the state variables becomes necessary and is one of the 

important step along with the computation of mesh velocity in ALE approch. The work of 

Ramaswamy and Kawahara [23] describes the detailed applicaion of ALE for free surface 

flow using FEM. A simple midpoint scheme is carried out in this work for the mesh update.   

 

 

1 1

1
( )n n n nu x x v

t
         (25) 

 

 

3.7 Numerical Results 

In order to numerically solve fluid flow problems with displacements of the 

boundaries, one of the most attractive approaches is the so-called arbitrary Lagrangian–

Eulerian (ALE) formulation. It is specifically suitable for the fluid–structure interaction 

problems because the moving mesh of the fluid domain can be attached to the structural 

boundary and the compatibility between the fluid and the solid domains can be 

conveniently handled. Various computational algorithms have been introduced within the 

ALE formulation, ranging from the explicit to the fully implicit algorithms. Here, we 

overview some of the typical algorithms and briefly point out their specific features 

relevant to our study. 

 

One important observation, which can be made here is that, the Burger’s equation 

analogue to 1-D fluid flows which is solved without and with FE mesh motion, shows 

that the mesh motion practically does not affect the solutions. The numerical model is 

developed for simulation of incompressible viscous free surface flow.  

 

As in the case of Burgers equation in fixed mesh framework, here also we carried 

numerical analysis with Standard Galerkin and Petrov Galerkin method discretisation in 

space and  implicit and explicit method in time and each one of the methods described for 

three cases of Peclet number.  First two case with Pe < 1 and another case with Pe > 1.   

 

The ALE formulation is employed and we make a initial guess of the mesh velocity. 

The analysis is performed with the same three cases used in fixed frame work of Burgers 

equation with a kinematic viscosity  = 0.5, 0.25, 0.125 and number of elements n= 20 

resulting in Pe = 0.5, 1, 2. The results obtained for Galerkin finite element method for 

cases 1, 2 and 3 are shown in Fig. below. 
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Standard Galerkin in space and Backward Euler in time, Pe = 0.5 

 

  

3.3: Velocity v/s Position, Numerical So ln,  Pe=0.5 Figure 3.4: Comparison of  Numerical with Exact 

Solution, Pe=0.5 

  

Figure 3.5: Surface Plot, Pe=0.5 

 

Figure 3.6: Surface Plot XZ view, Pe=0.5 
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Standard Galerkin in space and Backward Euler in time, Pe = 1 

 

  

3.7: Velocity v/s Position, Numerical So ln,  Pe=1 Figure 3.8: Comparison of  Numerical with Exact 

Solution, Pe=1 

  

Figure 3.9: Surface Plot, Pe=1 

 

Figure 3.10: Surface Plot XZ view, Pe=1 
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Standard Galerkin in space and Backward Euler in time, Pe = 2 

 

  

3.11: Velocity v/s Position, Numerical Soln,  Pe=2 Figure 3.12: Comparison of  Numerical with Exact 

Solution, Pe=2 

  

Figure 3.13: Surface Plot, Pe=2 

 

Figure 3.14: Surface Plot XZ view, Pe=2 
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Standard Galerkin in space and Crank Nicholson in time, Pe = 0.5 

 

  

3.15: Velocity v/s Position, Numerical Soln,  Pe=0.5 Figure 3.16: Comparison of  Numerical with Exact 

Solution, Pe=0.5 

  

Figure 3.17: Surface Plot, Pe=0.5 

 

Figure 3.18: Surface Plot XZ view, Pe=0.5 
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Standard Galerkin in space and Crank Nicholson in time, Pe = 1 

 

  

3.19: Velocity v/s Position, Numerical Soln,  Pe=1 Figure 3.20: Comparison of  Numerical with Exact 

Solution, Pe=1 

  

Figure 3.21: Surface Plot, Pe=1 

 

Figure 3.22: Surface Plot XZ view, Pe=1 
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Standard Galerkin in space and Crank Nicholson in time, Pe = 2 

 

  

3.23: Velocity v/s Position, Numerical Soln,  Pe=2 Figure 3.24: Comparison of  Numerical with Exact 

Solution, Pe=2 

  

Figure 3.25: Surface Plot, Pe=2 

 

Figure 3.26: Surface Plot XZ view, Pe=2 
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Petrov Galerkin in space and Backward Euler in time, Pe = 0.5  

 

 

 

3.27: Velocity v/s Position, Numerical Soln,  Pe=0.5 Figure 3.28: Comparison of  Numerical with Exact 

Solution, Pe=0.5 

 

 

Figure 3.29: Surface Plot, Pe=0.5 

 

Figure 3.30: Surface Plot XZ view, Pe=0.5 
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Petrov Galerkin in space and Backward Euler in time, Pe = 1  

 

  

3.31: Velocity v/s Position, Numerical Soln,  Pe=1 Figure 3.32: Comparison of  Numerical with Exact 

Solution, Pe=1 

  

Figure 3.33: Surface Plot, Pe=1 

 

Figure 3.34: Surface Plot XZ view, Pe=1 
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Petrov Galerkin in space and Backward Euler in time, Pe = 2  

 

  

3.35: Velocity v/s Position, Numerical Soln,  Pe=2 Figure 3.36: Comparison of  Numerical with Exact 

Solution, Pe=2 

  

Figure 3.37: Surface Plot, Pe=2 

 

Figure 3.38: Surface Plot XZ view, Pe=2 
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Petrov Galerkin in space and Crank Nicholson in time, Pe = 0.5 

 

 

 

3.39: Velocity v/s Position, Numerical Soln,  Pe=0.5 Figure 3.40: Comparison of  Nu merical with Exact 

Solution, Pe=0.5 

  

Figure 3.41: Surface Plot, Pe=0.5 

 

Figure 3.42: Surface Plot XZ view, Pe=0.5 
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Petrov Galerkin in space and Crank Nicholson in time, Pe = 1 

  

3.43: Velocity v/s Position, Numerical Soln,  Pe=1 Figure 3.44: Comparison of  Numerical with Exact 

Solution, Pe=1 

  

Figure 3.45: Surface Plot, Pe=1 

 

Figure 3.46: Surface Plot XZ view, Pe=1 
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Petrov Galerkin in space and Crank Nicholson in time, Pe = 2 

 

  

3.47: Velocity v/s Position, Numerical Soln,  Pe=2 Figure 3.48: Comparison of  Numerical with Exact 

Solution, Pe=2 

  

Figure 3.49: Surface Plot, Pe=2 

 

Figure 3.50: Surface Plot XZ view, Pe=2 

 

 

 

 

 

 

 



57 
 

Convergence of the method 

 

We can deduce that the Petrov-Galerkin method also exhibits quadratic 

convergence, which is easily observed by looking at the cases considered above. 

Furthermore, we can conclude from the results presented in this section that the Petrov-

Galerkin scheme with the Newton-Raphson procedure provides desired, numerical, 

stability regardless of the number of elements used in finite element discretisation. The 

oscillations are eliminated and numerical accuracy is improved.  

 

  

Figure 3.51: Convergence Plot: Newton Raphson Figure 3.52:  Total Number o f Iterat ions v/s Time  

 
 

Stability 

 
As found in the case of fixed mesh framework, here also we have observed that, the 

Forward Euler method is unconditionally unstable; this scheme will not produce any 

solution at any circumstances. Thus, it is essential is avoid such schemes. The instability 

is developed by the negative dissipation added by the discretisation. In comparison with 

the Backward Euler and Crank Nicholson methods are more accurate and also 

unconditionally stable. 
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Discussion 

 
An implicit algorithm for incompressible fluid flow solution using the arbitrary 

Lagrangian–Eulerian (ALE) formulation is employed to investigate solution accuracy 

and stability of the 1-D Burgers equation. Accuracy and stability of the solutions are 

demonstrated in example for which the analytical solutions are known. In the example, 

the Burger’s equation analogue to 1-D fluid flows is solved without and with FE mesh 

motion, to show that the mesh motion practically does not affect the solutions and this 

also is the set as a benchmark problem for study of free surface flow problem. All 

solutions presented show that the proposed algorithm is sufficiently accurate and stable. 

Since the algorithm is implicit, high accuracy of results can be achieved with a relatively 

large time step. As observed in the case of fixed mesh, the solution is not stable for Pe > 

1 for Galerkin method and we use the Petrov Galerkin method to obtain stable results.  
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Chapter 4 

 
 

Dynamics of Liquid Sloshing 

 
A shock/hydraulic jump in a free surface can have a major impact and have a high 

impact on the structure containing them. It becomes interesting to study the unsteady flows 

with shock formation which is provided by the time evolution of a sinusoidal wave. 

Understand the effect of dissipative term on the shock formation. Carry out an instability 

study to undertand the physical behavior of the burgers equation.  
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4.1  Shock Formation 

As discussed in the introduction chapter the storage liquid tanks are usually mounted 

on the ground in two different ways: unanchored and anchored. Large-sized unanchored tanks 

with flat bases usually experience different kinds of damage under the action of ground 

motions. The best known damages are the elephant foot bulge, which takes the form of 

buckling at the bottom part of the tank, and cracks at the corner of the bottom plate-shell. 

Both classes are related to uplifting of the bottom plate and thus involve strong nonlinearity 

due to the   associated large displacement and the separation between the bottom plate and 

foundation for unanchored tanks. The failure and damage of liquid tanks under earthquake 

excitations have been studied by many civil engineers, Shibata, et al., [57, 58] Shepherd, [59], 

Hanson, [60], Haroun and Housner, [61-63] Niwa and Clough, [67,68], Haroun and Mourad, 

[65], and  Hatano and Konno [66]. The main area of study was to numerically estimate the 

hydrodynamic pressure. 

 
When an impulsive acceleration acts on a liquid, this can result in impact 

hydrodynamic pressure of the free surface on the tank walls. This can also occur during 

maneuvering or docking of spacecraft in an essentially low gravity field. The methods for 

estimating these impacts and the hydrodynamic pressure are not well developed yet and they 

are mainly identified through experimental studies.  When the hydraulic jumps or traveling 

waves are present, it leads to extremely high impact pressures on the tank walls.  A hydraulic 

jump/shock [55] may occur in a liquid container undergoing oscillatory motion if the liquid 

height is relatively shallow and the 

excitation frequency is close to the natural frequency of the free surface.  

 
The hydraulic jump/ shock could create localized high impact pressures on the 

container walls, which has a direct effect on the container dynamics and may result in 

structural damage. This hydraulic jump is a nonlinear phenomenon, analogous to the shock 

wave appearing in one-dimensional gas flow under similar resonance conditions. This 

movement will have an impact on the stability of the storage tank.  
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When a tank is subjected to sinusoidal excitation of a liquid tank, a hydrodynamic 

jump may be formed in the neighborhood of the resonance frequency. The jump usually 

moves back and forth between the walls of the tank. Verhagen and WijnGaarden [55] 

employed a theory for one-dimensional gas flow to study the fluid oscillations experiencing a 

hydraulic jump in a  rectangular tank. This theory was originally developed by Betchov [55], 

Chu and Ying [55], and Chester [55]. Figure shows a schematic diagram of a rectangular 

container of width  filled with liquid to a level h. The container is allowed to oscillate about 

axis Y, through O, with a small pitching angle sin t . The breadth of the container in 

the Y-direction is large enough for the flow to be described as two-dimensional. The 

undisturbed liquid free surface is located at Z = H, while the surface elevation measured from 

this level is denoted by 
  

 
 

4.2  Physical Behaviour of Burgers Equation 
 

If the viscous term is dropped from the Burgers' equation the nonlinearity allows 

discontinuous solutions to develop. The way that this can occur is illustrated schematically in 

the following figure [54]. A wave is convecting from left to right and solutions for succesive 

times are indicated. Points on the wave with larger values of u convect faster and 

consequently overtake parts of the wave convecting with smaller values of u.  As seen the top 

of the wave is moving faster than the root and as a result the top travels much faster. This 

leads to shock formation. Hence it becomes necessary to postulate a shock accross which u 

change discontinuously to have a unique solution and so a physically result.  

 

 
 

 
 
 

 

Figure 4.1, Rectangular container part ially filled with liquid under pitching excitation [55]. 
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The comparable wave development for the 'viscous' Burgers' equation is shown in the 

following figure. The effect of the viscous term is twofold. First , it reduces the amplitude of 

the wave for increasing time. Second, it prevents multivalued solutions from developping. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The above features make Burgers' equation a very suitable model for testing 

computational algorithms for flows where severe gradients or shocks are anticipated.  

 
 
 

 

 

Figure 4..2.1,  Shock wave in inviscid flow- a physical  representattion [69].  

 

Figure 4.2.2, Viscous flow [69]. 
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4.3  Discretization Methods 

We have choose to solve the Burgers' equation using a finite-element technique for the 

spatial discretisation and for temporal we have used the explicit scheme, which is easy to 

program but fails to give a correct solution when the viscosity is too low. Indeed stability 

conditions need to be respected. To avoid unstable solutions, we have programmed an implicit 

Euler method and also an implicit Crank-Nicholson method [45-52]. 

4.4  Numerical Results 

At the beginning of the simulation we disturb the flow with a flow
0 sin(2 / )u u x l , 

we can observe that that the fastest fluid catches up with the slowest one so that to create a 

velocity break. This phenomenon is called shock. The equation is discretized in space using 

Galerkin and in Time with Crank Nicholson method.  

It becomes very important to study these phenomena, since this can lead to many 

disasters. One such problem is sloshing in tank and here with the numerical results we try to 

understand the effect of the viscous term in non- linear Burgers equation. 

Below figures gives the evolution of the solution. Each point propagates with a 

different speed and leads to the formation of a shock. This shock is then damped owing to the 

dissipative term. We have obtained the numerical results for a sinusoidal wave profile, with 

two different amplitude cases and by varying the viscous term for the same.  

The shock formation process is seen for four different viscosity values ranging from 

0.1 to 0.0001. If the viscosity is too low 0.0001, a wiggle appears and eventually causes the 

solution to blow up. For lower viscosities, we may have to you some other numerical schemes 

must be used. By increasing the viscosity, the expected shock fades. We can carry out a 

instability study by adding others terms to the Burgers' equation. The numerical simulation is 

carried out with 100 elements. 
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Shock formation process with amplitude 0.3 

 

Figure 4.3: Velocity v/s Position, Viscosity=0.1 

 

Figure 4.4: Velocity v/s Position, Viscosity=0.01 
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Figure 4.5: Velocity v/s Position, Viscosity=0.001 

 

Figure 4.6: Velocity v/s Position, Viscosity=0.0001 

 

In the following above figure viscosity 0.0001 m2/s: at the top and the bottom 

of the shock wiggles appears. 
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Shock formation process with amplitude 0.5,  

 

Figure 4.7: Velocity v/s Position, Viscosity=0.1 

 

  

Figure 4.8: Velocity v/s Position, Viscosity=0.01 
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Figure 4.9: Velocity v/s Position, Viscosity=0.001 

 

Figure 4.10: Velocity v/s Position, Viscosity=0.0001 
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Discussion 

The shock starts to appear as the viscosity values lend lower. So the viscous term in 

Burgers equation has a major role to play in the understanding of the shock formation.  

The Implicit Crank-Nicholson scheme proves to be efficient to solve burgers' 

equations. However for too low viscosities others schemes must be used. This work shows 

that instabilities can have numerical and physical reasons. Paying attention to both problems 

is then required.  

The Burgers' equation allows understanding the process of shocks formation. The 

effect of the viscous term is to reduce the amplitude of the wave for increasing time and then 

can prevent shocks from forming. This simple model helps us understand the concept of 

behavior of the liquid under excitation.  
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Chapter 5 

 
 

2-D Sloshing in Rectangular Tank 

 
The example considers small and large sloshing of a fluid in a two dimensional 

rectangular tank. The study is carried out with the formulation of the problem and then the 

numerical results are obtained for the same.  
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5.1  Introduction 

 

 Many applications in fluid mechanics have problems in which the fluids are not 

contained in a fixed domain. The area which is covered by the fluid may change continuously. 

Then we need to evaluate the free surface part of the problem, and one can speak about 

sloshing in tank as one of the example for free surface flow. Analytical approaches used to 

predict the dynamic response of liquid-filled tanks have difficulties in handling some special 

types of tank geometry. Numerical methods are useful when the container walls are not 

vertical and straight or when the liquid wave heights are large. The main computational 

methods which are used in practice today are (1) the finite difference (FD) [45, 46], (2) the 

finite element (FE) [47-52], (3) finite volume (FV) [53] and (4) the boundary element (BE). 

The BE method is convenient for studying liquid sloshing behavior because both the FD and 

FE methods require very long computational time and a large amount of input data. By 

accuracy of the results are very important and generally FE method results agreed fairly with 

the experimental measurements compared to the other FD and BE and even FV is very 

commonly used in practice for the sloshing dynamics today.  

 
In this chapter, a computational framework is presented for modeling of a free surface 

fluid flow. The main area of focus is on the incompressible Newtonian fluid flow at relatively 

low Reynolds numbers. The motion of the fluid domain is determined by the motion of the 

free surface. For the modeling of the incompressible fluid flow we use a stabilized equal order 

velocity–pressure finite element formulation adapted to a moving domain. The stabilization 

technique employed is same as in the mentioned and discussed in the previous chapters. The 

formulation used in this work is referred to as the Galerkin/least-squares stabilization 

technique, which under certain conditions becomes equivalent to the combined streamline-

upwind/- and pressure-stabilizing/Petrov–Galerkin method [32-35].  

 
An arbitrary Lagrangian–Eulerian (ALE) [69] description allows the mesh in the 

interior of the domain to move independently of the fluid. Thus it is possible to maintain 

reasonably shaped meshes and to describe the boundaries accurately at the same time. In all 

the above strategies the movement of the fin ite element mesh is governed by an appropriate 

algorithm, thus maintaining a good mesh quality despite substantial deformation of the fluid 

domain. 

 
As discussed in detailed in the chapter 2, the velocity difference ˆu v  is denoted as 

the convective velocity. Here the grid points can be moved independently of the fluid motion. 

This strategy allows us to study the problem even when there is substantial deformation of the 

fluid domain. 
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The integration in time is carried out by using the generalized α method this method 

belongs to the class of discrete and implicit single step integration schemes. For linear 

problems the scheme can be shown to be second order accurate and unconditionally stable. 

Furthermore, the generalized α method was originally developed for the second order 

problems arising in solid dynamics by Chung and Hulbert [70], and later adapted to the first 

order problems typically encountered in Eulerian fluid dynamics by Jansen et al. [71]. For a 

detailed study of the generalized α method in the context of the stabilized Eulerian finite 

element formulation we refer to [71].  

 

Finally to compute the final set of unknowns at the current time instant we need to 

develop an efficient solution procedure. Here a Newton-Raphson procedure [4], which 

incorporates the full linearization of the incremental problem and hence exhibits 

asymptotically quadratic convergence of the solution for all unknowns. 

 

 

 

5.2  Governing Equation 

We can formulate the momentum conservation law and continuity  equation for the 

incompressible flow in the referential description as 

ˆ ˆ
ˆ   ( ( )( ) ) 0x xu u u v f         ˆ( , )x t        

 (26) 

ˆ 0x u ˆ( , )x t           (27) 

where ρ, f  and r represent, respectively, the fluid density, the volume force vector and the 

Cauchy stress tensor. The time interval is bound within I = [0, T]. Now the constitutive 

equation gets restricted to, 

ˆ2 s

xp uI           (28)
 

where I is the second order identity tensor,µ is the fluid viscosity and p is the pressure 

gradient. The boundary conditions are given as below: 

ˆ0, ( , ) gu g x t           (29)
 

ˆ
ˆ0, ( , )n hh x t           (30)

 

ˆ
ˆ0, ( , )n freex t           (31)
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ˆ ˆ ˆ( ) 0, ( , ) freeu v n x t         (32)
 

,g h and
 

n̂  are the prescribed velocity and the traction vectors and the current outward normal 

unit vector of the boundary, which is given by positions x̂  of the boundary. For the free 

surface free  the velocity v̂  of the reference frame and the position x̂  need to staisfy Eq. (32), 

which will ensure that no fluid particles flow across this part of the boundary . 

 

 

 

 

 

 

 

 

 

 

 

 

5.3  Finite element formulation 

A stabilized velocity-pressure finite element formulation of the problem is described below 

( , ; , ) ( , ; , ) 0h h h h h h h h

Gal StabG u p q G u p q        (33) 

 

This is the variational form of the standard Galerkin terms, to which a stabilized term of the 

momentum equation is added. 

ˆ

ˆ ˆ

ˆ( , ; , ) ((   ( ( )( ) )

: ( , ) ( ))

h

h
h

h h h h h h h h h

Gal x

h h h h h h h h

x x

G u p q u u u v f

u p q u dv h da
    (34)

 

 

Figure 5.1,  Mappings and configurations in ALE description [4]. 
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ˆ ˆ

1

ˆ ˆ

ˆ( , ; , ) [ ( )( ) ]

ˆ ˆ[ ( )( ) )( ) ]

el

e

n

h h h h h h h h

Stab u x p x

e

h h h h h h h

x x

G u p q u v q

u u u v f u v p dv

     (35) 

 

In this above Eq. (35), there is no viscous term. To implement the methodology we 

shall follow the example [4] and employ two parameters, here denoted as 
u

 and p . We 

treat both the stabilisation parameter seperately and these are defined below: 

1

2

1

2

ˆ
, ,Re ,

2ˆ2
1

Re

e e e

ee

e e

e

u v hh
z z

u v
    (36) 

The  
u

 and p .are constant within every element and hence the stabilization terms 

are discountinuous across the inter element boundaries, which in turn explains the summation 

of intergralas in Eq.(36) 

 

5.4  Motion of the finite element mesh 

We can see that the motion in mesh is arbitary, except for the outline. On the free 

surface Eq.(32) has to be satsisfied, but still there may be some tangential movement of the 

boundary nodes undertermined. On the non free surface we can prescribe the motion of the 

nodes normal to the current configuration of the boundary. We can also note that some 

regions may not need to get adapted to the new geometry and we can have fixed boundary in 

space. Here we can set the mesh velocity as zero and the flow problem with be Eulerian.  

5.4.1 Motion of the Internal Nodes 

 

We use following two techniques [4],  for the motion of the internal nodes: 

Pseudo-elastic technique: Here the mesh is assumed to represent an elastic solid body. A 

standard Lagrangian finite element technique typically employed in solid mechanics can then 

be used to adapt mesh to the new geometry of the domain. For small distortions of the 

geometry the linear elastic model is sufficient. In the presence of large deformations of the 

fluid domain a hyperelastic model may be more suitable.  
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Optimization of mesh quality: The mesh can be moved in such a way that its quality, with 

respect to a certain criteria, is optimal at all times. We have chosen a criteria which satisfies 

the following condition and is the version used in [4].  

 

1

,
eln e

out

e
e in

r
W MIN

r
          (37) 

 

The quantities e

inr and e

outr  denote the inner and the outer radii of a triangular or 

tetrahedral finite element. This methodology renders acceptable meshes even for much 

distorted geometries. Both methods can be fully linearised and thus enable the employment of 

the Newton–Raphson procedure to solve for the new nodal positions. 

 

 

5.4.2 Motion of nodes on the free surface 

 

Lagrangian description: The most straightforward approach to satisfy (32) is the purely 

Lagrangian description of the free surface, But this often very quickly leads to distortion 

of the surface mesh. 

 

Optimization of surface mesh quality: This is the approach adopted in this work. Similar to 

the methodology for the internal nodes, the surface mesh may be moved such that certain 

quality criteria are met. 

 

Combination with internal node algorithm: The third option to determine the motion of the 

boundary nodes simply consists in treating (32) as a boundary condition for the update 

algorithm of the internal nodes. This, however, requires a rather tedious elimination 

procedure in the mesh solver of the surface degrees of freedom and has not been further 

investigated in this work. 

 

 

5.5  Integration in time 

 
Here we have suggested the generalized method [70] for the two dimentional 

sloshing problem. This method has proved it is very efficient and robust alternative to the 

more expensive time finite element method. 
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The generalized  method is given by [71]: 

 

1 1

1

1

(1 ) ,

(1 ) ,

(1 ) ,

m

f

h h h h

n n n n

h h h

n m n m n

h h h

n f n f n

u u t u t u

u u u

u u u

       (38) 

 

( , ; , ) ( , ; , ) 0h h h h h h h h

Gal StabG u p q G u p q        (39) 

 

The above is the semi discrete form of the finite element formulation. Where , m
 and f are 

the integration parameters. The integration parameters are reduced to one independent control 

variable as follows: 

 

31 1 1
, , ,

2 2 1 1
m f m f

      (40) 

 

Foe detailed study of this method we can refer [72].  
 

 

5.6  Mesh Update 

 

The configuration ˆh

nx  and the velocity field ˆh

nv  at the discrete time instants tn, n = 0, 1, 

2. . . Nt imes are introduced. In this work, ˆh

nx and ˆh

nv are related by a simple generalized midpoint 

scheme 
 

1 1

ˆ1 1
ˆ ˆ ˆ ˆ( ) ,

ˆ ˆ

h h h h

n n n nv x x v
t

         (41) 

 

where ˆ  is the intergration parameter. The following expressions are then employed in the 

weak 

form (39). 
 

1

1

ˆ ˆ ˆ(1 ) ,

ˆ ˆ ˆ(1 ) ,

f

f

h h h

n f n f n

h h h

n f n f n

x x x

v v v
         (42) 
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5.7  Solution Algorithm 

 

We can use one of the following startegy for obtaining the soultion for the sloshing 

problem 

 

Monolithic approach: A solution procedure is performed on a complete system in terms of all 

unknowns. The strongly coupled problem is normally solved by applying an iterative 

procedure until the desired accuracy is achieved. This methodology yields a very large system 

matrix, which also tends to be badly conditioned.  

  

Partitioned solution procedure: The three components of the problem are solved sequentially, 

thereby communicating intermediate results between them. We introduce the following 

terminology: Note that each of the solvers fluid, free surface and mesh requires the 

application of a nonlinear solution procedure, such as the Newton–Raphson method, to 

overcome the nonlinearities of the problem. The considerable difficulty posed by the 

partitioned methodology consists in finding an appropriate sequence of the three solvers and 

in passing the appropriate information between them. The resulting lack of accuracy often 

adversely affects the stability and leads to a restriction of the method to small time steps. Such 

staggered solution procedures may be improved by interfield iteration. However, the 

convergence of the residuals tends to be poor especially for large systems.  

 

Mixed strategies: The degree of coupling of the problem may be reduced by various 

combinations of implicit and explicit time integration schemes applied to different parts of the 

solution domain. Such approaches may again adversely affect the stability and impose severe 

restrictions on the time step size, especially for problems with large deformation of the free  

surface. 

 

In this work, a iterative partitioned solution [4] methodology is followed, which 

enables the computation of the solution of the discretized problem up to the desired accuracy. 

The algorithm represents, in fact, an application of the Newton–Raphson procedure, and thus, 

it exhibits quadratic rate of asymptotic convergence.  

 
 

 
Iterative partitioned solution procedure 

 

1. Predict the free suface velocity, initial velocity and pressure at n+1 time step on the 

basis of the know solution at time step n.  
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2. Free surface solver 

3. Mesh solver 

4. Fluid solver: compute residual 

5. Check for the tolerance and then exit 

6. Fluid solver: compute linearization, solve system, update for free surface velocity, 

initial velocity amd the pressue. 

7. Go to 2 

 
 

 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 

Figure 5.2, Finite elemenet mesh with free surface and fluid stiffness matrix [4].  
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5.8 Large amplitude sloshing 

 

A rectangular container is considered. It is subjected to a periodic displacement in  x- 
direction. This is achieved by treating the horizontal motion of the finite element nodes at the 

vertical boundaries of the container in a lagrangian manner. The x- velocity of these nodes is 
prescribed as sin( )u A t . The horizontal position of the container oscialltes with the 

amplitude A and the frequency  / (2 )f . 

 

Initiallt, the fluid is at rest and in equilibrium. The motion of the mesh is based on the pseudo-
elastic methodology. We have plotted the figure for the configuration of the mesh and 
pressure isolines at different time instants. We also have plotted a graph for y v/s . 

 
 

 

 

 

Figure 5.3, Large Amplitude Sloshing, Problem description [4].  
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Figure 5.4 :Mesh at time instant 96.3 s, =1.5 Figure 5.5 :Mesh at time instant 96.168 s, =1.5 

 

 

 

 

  

 

Figure 5.6: Mesh, Pressure Isoline at time instant 

6.4817 s, =1.5 

Figure 5.7: Mesh, Pressure Isoline at time instant 

5.4235 s, =1.5 
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Large amplitude sloshing,: The graph displays the amplitudes of the bubble and the 

spike for the different frequencies. A lock in phenomena is clearly captured at frequency =1.5 

for the material density of water. Another for the LNG we can see that the phenomena is 

occurring close to 1.6. 

 

For density of water 

 

 

Figure 5.8: Displacement v/s Velocity plot 
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For density of LNG 

 

 

 

Figure 5.9: Displacement v/s Velocity plot 

 

Discussion 

 

In order to validate our algorithm for the numerical simulation of free surface flows, 

we have considered a classical two-dimensional space sloshing problem with small 

deformations. A uniform flow field is subjected on its free surface to an external traction. We 

study the time evolution of the free surface and of the fluid flow. The sloshing problem 

consists in looking at the free oscillations of a liquid contained in a two-dimensional tank of 

unit width and height. 
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Chapter 6 
 

Conclusion and Further Research 

 

6.1  Conclusions 

The preceding chapters have presented a 1-D model for Burger equation in fixed and 

moving mesh framework to study the free surface flow problem with emphasis on sloshing in 

liquid storage tanks. 

We have developed a numerical model to simulate incompressible viscous free surface 

flow (sloshing problem). The model is based on Burgers equation for fluid flow equations. 

The effective numerical algorithm has been developed which combines the Finite element 

method and the Finite difference methods to solve the governing equations at the boundary 

and the interior of the computational domain using an ALE scheme. The numerical results 

show that the formulation gives accurate results.  

 The numerical solutions obtained for fixed mesh framework using burgers equation 

are accurate and show good agreement with the analytical solution.  

 

 A partitioned solution procedure is developed based on the Newton-Raphson 

methodology which incorporates full linearization of the overall incremental problem. 

The Newton method has been proven as the most powerful method given its quadratic 

convergence. As a matter of fact, this method should be preferred. 

 

 The Burger’s equation analogue to 1-D fluid flows is solved without and with FE 

mesh motion, to show that the mesh motion practically does not affect the solutions. 

All solutions presented show that the proposed algorithm is sufficiently accurate and 

stable.  

 

 The implicit algorithm showed that high accuracy of results can be achieved with a 

relatively large time step. The implicit schemes (Backward Euler and Crank Nicholson) 

where unconditionally unstable in comparison with the forward Euler scheme which 

showed lot of oscillations and instability.  
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 A numerical example is provided to demonstrate the efficiency of the methodology by 

modeling large amplitude sloshing in a rectangular tank.  This gives evidence of 

accuracy, robustness and efficiency of the computational strategy.  

 

 The effect of viscous term on Burgers equation was analyzed and the process of shock 

formation gave an insight into the effect of sloshing with large amplitudes.  

 

6.2 Recommendations for further research 

 

 Extend the solution algorithm to incorporate the fluid structure interactions.  

 

 Develop various models for different types of Liquid Storage Tanks and carry out 

analysis for the same. 

 

 Consider the effect of surface tension into the current model.  

 

 Compare the results obtained with external available software packages like Ansys etc  
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Appendices 
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List of Symbols and Abbreviations  
  

Abbreviation      Description 

 

LNG       Liquefied Nitrogen Gas 

ALE       Arbitrary Lagrangian Eulerian 

FEM       Finite Element Method 

FDM       Finite Difference Method 

FVM       Finite Volume Method 

u        Solution variable 

μ       Dynamic Viscosity 

w(x)       Weighting function 

Ni       Shape function 

ξ       Reference element dimension 

h (or) l       element length 

Pe                   Peclet number 

α        Constant in the Petrov-Galerkin Weight      

 t       Time  

x       Space dimension 

f(x)       Differentiable function 

L       Maximum length of the domain 

 ν       Kinematic viscosity 

a       Convective velocity 

F       Jacobian matrix 

∆t       Time step 

Φ       Pitching angle 
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η       Surface elevation 

BE       Boundary Element 

σ       Cauchy stress 

p       Normal pressure 

I       Identity tensor 

ρ       Density 

ρ∞       Free stream density  

Re       Reynolds number 

γ       Integration parameter 

αm       Integration parameter 

αf       Integration parameter 

ˆh

nv
       Velocity field 

tn       time instance 

ˆh

nx
       Mesh configuration 

       Boundary 

n̂        Outward normal unit vector 

GGal       Function of Galerkin terms 

GStab       Function of Stabilization terms 
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