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Summary
The study investigates the coupled problem of electrostrictive fluids. A hp finite
element method is used for the numerical analysis. Initially the individual fields
of electrostatics and fluids are analysed. Firstly the benchmarking simulations
for the electrostatics field are done and exponential convergence for the solu-
tions is obtained. Next the fluid field is analysed. Initially the Navier-Stokes
equations are simplified using appropriate assumptions to obtain Stokes flow
equations. Afterwards, an equivalence between the Stokes flow equation and
the linear elasticity equation is established for the limiting case of Poisson’s ratio
ν → 0.5. The penalty function formulation and the mixed approach for penalty
formulation are used to obtain solution for the Stokes flow problem. Again the
hp discretization is used and exponential convergence for all the benchmark
problems is obtained.

After benchmarking the solvers for electrostatics and the fluid field, the cou-
pled problem is analysed. Initially the governing equations for both the fluid and
electrostatics fields are written. Next, the coupling mechanism involved in the
case of electrostrictive fluid is elucidated clearly. Briefly, it can be described as
follows. When the electrostatics field is analysed, the unknown potentials ϕ are
obtained. Using the ϕ, the electric field is computed. This electric field induces
a stress known as the electrostrictive stress, which then acts as a source term
in the fluid problem. The coupled problem thus uses a staggered scheme for
the coupled solution, since it is a one-way coupling. Furthermore, benchmark-
ing simulations are carried out and exponential convergence for the solutions is
obtained. As a novel exercise, a coupled problem is created and solved. Find-
ings from this result are elaborated and current applications of this work are
described.
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Chapter 1

Introduction

1.1 Introduction

Coupled problems in applied mechanics are generally defined as those requiring the

solution of more than one physical process in order to represent the overall system

adequately [4]. So, it is important to have an understanding of each of the physics

involved. In this thesis a coupled analysis of a electrostrictive fluid is done. An

electrostrictive fluid is a dielectric fluid which deforms under the application of an

electric field. A simplification is used in this thesis for solving fluid flows where the

Stokes flow is used instead of full system of Navier Stokes equations. And the elec-

tromagnetic behavior is also simplified by restricting consideration to electrostatics.

Even with such simplification, the work in this thesis can be directly applied to to

applications such as the CPU cooling liquids and micro motors, electroosmotic flows

etc.

Some of the examples of electrostrictive fluids are described as follows. In the

micro motor application [5] the Electro-Conjugate Fluids (ECF) are used. What

actually happens here is that, the dielectric fluid moves to a region of higher energy-

density countering normal fluid movement from high to low pressure. An example of

such motor is shown in Figure 1.1.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Micro motor which uses electro-conjugate fluids and a flexible electronic

chip

Another example would be in the case of electro-rheological fluid application in the

case of flexible electronics. Here the fluid viscosity is a function of the electric field.

When Electric field is applied to the fluid, its viscosity goes up rapidly and it tends to

behave almost like a solid. Such phenomena are also used in making body armors for

combat forces. An example of a flexible electronic chip is shown in Figure. 1.1. More

recently the company Kronos air technology [6] are researching on electrostrictive

fluid accelerators for a method of controlling fluid flows for commercially useful airflow

rates. Potential applications include air purifiers, CPU coolers, electro-acoustics etc.

Another important application is in the fluid mixing problem in laminar flow

systems. In microfluidic systems, diffusion is often negligible compared to advection

in the flow. Conventional methods, applied to create mixing in macro-scale fows,

require sufficiently large Reynolds numbers, and become ineffective when applied to

micro-scale flows [7]. As a consequence, alternative techniques to enhance mixing

efficiency in small systems are required. This is done using the phenomenon of

electroosmotic flows, which is a direct application of the work done in the project

along with some minor extensions. An example of the recent research work done at

Technical University of Darmstadt [1] is shown in Figure. 1.2.
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Figure 1.2: Electroosmotic flow over super-hydrophobic surface [1]

It is a flow over a super-hydrophobic surface which has both no-slip walls and

slipping walls. The flow is under the influence of an electric field. In micro channel

flows, such a surface could be effective as reduce the effect of the no-slip walls, which

impede the flow. However, simulations are required to know exactly how far the

electric field helps to obtain optimal fluid flow in these channels and it remains an

open question in this case.

Experimental investigation of such phenomena are very expensive and is not possi-

ble in some cases, so a numerical solution for such problems are an effective alternative

to analyse such phenomena. Due to the above mentioned applications, motivation

for solving such challenging problems drives the work done in the thesis.

The key steps to be identified for a coupled simulation are defined as follows

1. Physical problem to be analysed.

2. Understand the physics involved and what the coupling mechanisms are.

3. Be able to accurately predict each of the physics independently.

4. Formulate a procedure which takes full account of all coupling mechanisms in-

volved.

Furthermore, coupled systems fall into two categories [8]. The first case is where

the coupling occurs on domain interfaces, i.e. via the boundary conditions imposed

at the interfaces. The second case is where the domains of the individual problems

overlap and the coupling occurs through the governing differential equations describ-

ing different physical phenomena. In this thesis the coupled problem comes under

second case. Furthermore, coupling in a problem can be strong or weak. A strong



CHAPTER 1. INTRODUCTION 4

coupling is where each subsystem causes a response in all other subsystems. A weak

coupling may involve the effect of one subsystem on another but not viceversa.

1.2 Numerical technique - hp finite element method

The above discussion involved the challenging problems in physics which are not easy

to recreate as an experiment. Moreover, modeling of such phenomena is difficult since

these mechanisms are highly non-linear in nature and most of the cases do not have

an analytical solution. Hence a numerical method is required to accurately predict

the behavior of each of the physics involved in the coupled problem as well as the

coupling mechanisms that exists between them. It is well established that the finite

element method is a powerful method for the analysis of both electrostatics and fluid

flow.

Usually lower order approximations are employed, but in the quest for higher

levels of accuracy, higher order elements are used. Traditional higher order finite

element methods have been discussed in the wide range of technical literature such

as [9, 10]. Since technology has improved in the area of computer power, it is now

become affordable that higher order solutions are routinely undertaken. In order to

obtain highly accurate solutions, one must perform certain extensions or refinements

of the finite element discretization. The refinement of the mesh spacing is called h

refinement and the one based on increasing the polynomial degree of elements is called

the p refinement and if we do both these refinements simultaneously, then it is called

hp refinement. In the case of a smooth problem, p refinement alone is the best strategy

as it results in exponential convergence of the solution. However in certain class of

problems employing h refinement at certain regions of the domain, for example in the

presence of a singularity in the domain, proves to be better. An optimal combination

of h and p refinement is particularly useful to obtain a exponential convergence for

wide variety of industrial problems which contain singularities as well as regions with

smooth solutions. When both h and p are simultaneously refined, it is known as the

hp finite element method.



CHAPTER 1. INTRODUCTION 5

1.2.1 Higher order shape functions in one dimension

In the higher order approximations, there are two different type of shape functions

which can be employed. The first type is the nodal type of shape function. In the

nodal type of shape functions, each level of approximation results in completely new

shape functions, hence the equation set has to be entirely reevaluated [9]. The other

approach is by the way of hierarchical shape functions. The name hierarchical re-

sults from the fact that successive higher order refinements are additive in nature.

If hierarchical forms of shape functions are employed, then as the approximation is

refined, new basis functions are added to the existing set and the matrices produced

at the previous stage need not be recomputed. If the chosen functions are orthogo-

nal(or close to) in their inner product, there is better conditioning of the resulting

matrices. Furthermore the coupling between equations disappear if completely or-

thogonal trignometic trial functions and Galerkin method is used and the matrix

forms a highly diagonal structure [9]. Most of the recently developed higher order

formulations employ hierarchical forms due to their advantage in terms of the ease of

efficient computing. The one dimensional shape functions are introduced below, in

order to provide a clarity on the difference in the approaches to higher order shape

functions.

In the nodal approach the degrees of freedom correspond to specific solution

points. Using the Lagrange interpolation polynomial, the element shape functions

for the linear, quadratic elements are stated as follows. In terms of the normalized

local element coordinate ξ, which is defined within the range −1 ≤ ξ ≤ 1, the linear

shape functions which is associated with the nodes ξ = ±1 are defined as

N0 = −ξ − 1

2
,
dN0

dξ
=

1

2
(1.1)

N1 = −ξ + 1

2
,
dN1

dξ
=

1

2
(1.2)

For the quadratic shape functions which are associated with the nodes at ξ = ±1
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and ξ = 0, are

N0 = −ξ(ξ − 1)

2
,

dN0

dξ
= −ξ +

1

2

N1 = −(ξ − 1)(ξ + 1),
dN1

dξ
= −2ξ

N3 =
ξ(ξ + 1)

2
,

dN2

dξ
= ξ +

1

2

(1.3)

Now, if the the order is continually increased, then this approach could be able to

obtain the cubic shape function and so on. Also, when the order is increased, im-

proved results are obtainable with smaller number of total unknowns [9] as compared

to lower order elements. However, this would require new set of associated nodes for

each new order, which leads to completely new set of shape functions. This, in a con-

text of a problem would lead to new definitions of the stiffness matrix for successive

increase in the order of the elements. This would be a computationally expensive

approach. Now, regarding the hierarchical shape function, the previous order of ap-

proximation is retained and a new function is added. Denoting this shape function

as version 1, in terms of ξ it can be defined as

Np = α0 + α1ξ + α2ξ
2 + ...+ αpξ

p (1.4)

The linear shape functions are the same as defined before. However, to obtain the

quadratic shape function, the additional shape function is needed as

N2 = α0 + α1ξ + α2ξ
2 (1.5)

which is such that N2 = 0 at ξ = ±1. This leads to α1 = 0 and α0 = −α2. Choosing

N2 = 1 when ξ = 0, then the additional quadratic shape function can be written as

N2 = 1− ξ2,
dN2

dξ
= −2ξ (1.6)

Similarly the additional cubic shape functions can be obtained. Therefore, in terms

of programmability, the hierarchical approach is better than the nodal approach for

higher order shape functions. However, the above mentioned hierarchical shape func-

tion does not do well in terms of conditioning of the stiffness matrix as it is shown in



CHAPTER 1. INTRODUCTION 7

the appendix. In the derivation of hierarchical shape functions, there exists a freedom

in choosing the co-efficient that corresponds to the new additional parameter [11].

So, one can derive new hierarchical shape functions which have better conditioning

properties. An alternative description of the shapefunctions for p ≥ 2 is given by

Np(ξ) =


1

p!
(ξp − 1)

1

p!
(ξp − ξ)

,
dNp

dξ


1

p!
(pξp−1)

1

p!
(pξp−1 − 1)

(1.7)

where p≥ 2 is the order of the polynomial. A further alternative is where the shape

functions are defined as the integral of the Legendre polynomials. The Legendre

polynomials are defined as

Pp(ξ) =
1

(p− 1)!

1

2p−1

dP p

dξp
[(ξ2 − 1)p] (1.8)

and corresponding shape functions are

Np(ξ) =
1

2p− 1

(
Pp(ξ)− Pp−2(ξ)

)
,
dNp

dξ
(ξ) =

1

2p− 1

(
dPp

dξ
(ξ)− dPp−1

dξ
(ξ)

)
(1.9)

As a precursor to the thesis, a finite element analysis using the above mentioned shape

functions was done using an existing code which solves the Helmholtz equation in 1D.

The MATLAB code in [11] was used for this purpose. Higher order shape functions

are used and the difference between h refinement and p refinement are elaborated.

The difference between nodal and hierarchical shape functions are noted from the

results obtained. Also the effect of condition number is discussed in the context of h

and p refinement. These results are described in the appendix.

1.2.2 Overview of the coupling mechanisms

There are different coupling mechanisms depending on whether the problem is strongly

coupled or weakly coupled. Generally a solution procedure must be accurate, robust

and computationally efficient. Some of the methods which can be used for solving a

coupled problem, like the one described in the thesis, could be a block Gauss-Seidel

method, where numerical implementation of coupling involves solving each problem
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system separately in an iterative fashion such that any change in one system causes

a response in the other system. Another way to resolve the coupled problem is by

using the Newton-Rapshon method, where numerical implementation of this type

involve solving both the systems which are coupled, simultaneously using a single

block matrix.

1.3 Aim, overview and work to be done

1.3.1 Aim of the thesis

This thesis aims to to develop a coupled 2D finite element solver with hp discretization

for the electrostrictive fluid. When the domains of electrostatics and fluid mechanics

overlap in the coupled system, the variables on each domain have an interdependence.

The electric field output from the electrostatics solver affects the stresses in the fluid

mechanical system.

As such, the thesis can be split in to three tasks. Firstly the finite element

analysis of the electrostatics problem, secondly the finite element analysis of the fluid

mechanics problem and finally the coupled electrostrictive fluid problem. A hp finite

element methodology will be employed for both the solution of the electrostatics

and fluid flow problems. In particular, a penalty function formulation and mixed

approach for the penalty formulation is utilized for solving the fluid problem and it

is hoped that the hp discretization will overcome the problem of volumetric locking.

The coupled solution will employ a staggered scheme where first, electrostatic fields

are computed and subsequently the stresses induced by them are computed and they

are used as a source term for the Stokes flow solution. An advanced starting point

was provided through existing hp finite element solvers for both electrostatics and

linear elasticity.

1.3.2 Overview of the thesis

The thesis is structured into five parts. The chapter 1 and chapter 5 deal with

introduction and conclusions respectively, and chapters 2, 3 and 4 deal with the



CHAPTER 1. INTRODUCTION 9

work done in the thesis. The following description of the chapters lead to a general

overview to the reader.

Chapter 1 In this chapter the need for coupled analysis is explained with some

examples and significance of higher order finite element methods is elaborated,

the results of which elucidates the the reasons for higher order versions of the

finite elements.

Chapter 2 This chapter deals with the finite element formulation of the electrostat-

ics problem. The benchmark numerical simulations for the same are performed,

showing convergence for h and p refinement.

Chapter 3 In this chapter the finite element analysis of the fluid mechanics problem

is performed. The particular problem chosen for the analysis is the Stokes flow.

Its connection to the problem of linear elasticity is described in particular the

penalty function method and the mixed method for penalty formulation are

used for the simulations. The benchmark numerical simulations are performed

for h and p refinement.

Chapter 4 In this chapter, the coupled phenomena of electrostatics field and fluid

field are simulated. The boundary value problems of both the fields are written

initially. Next the coupling mechanism is explained and the finite element for-

mulation is shown. Following that, the algorithm implemented in the project is

shown. Later the benchmark problem is explained. Next a numerical example

is defined, which considers the coupling of the benchmark problems in elec-

trostatics and fluid mechanics. Later the numerical results are shown for the

benchmark problem along with the convergence analysis. Lastly the simulation

results for the numerical exercise is shown along with some findings.

Chapter 5 This chapter deals with the conclusion and summary of the thesis. It

also sheds light on further extension of the research.
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1.3.3 Work to be done

The following tasks are to be done along the course of the thesis.

1 Perform benchmark numerical simulations for the electrostatics using the provided

hp FEM code.

2 To extend the hp FEM code, in order to compute the electric field at each inte-

gration point and make a provision in the code for permittivity to be inputted

as a tensor.

3 Perform benchmark numerical simulations for penalty function method and mixed

approach for penalty formulation using the provided code.

4 To make arrangements in the code for inputting velocity boundary conditions for

the Poiseiulle’s flow at the higher order edges.

5 To input the source term for the benchmark problem and accordingly put the exact

solutions where necessary.

6 Perform benchmark numerical simulations after doing the above mentioned mod-

ifications of the code provided. Also write generalized postprocessing scripts

to extract data at any point for plotting velocity curves in order to benchmark

the lid driven cavity problem.

7 To completely implement the one-way coupled solver for the electrostrictive fluid

problem.

8 To benchmark the coupled solver with convergence plots.

9 To create and solve a numerical exercise.



Chapter 2

Analysis of the Electrostatics field

2.1 Introduction

In this chapter the finite element method for the electrostatic problem is analyzed.

The electrostatic phenomena is well known to be dealing with stationary or slow

moving charges. Such phenomena arises from the forces that the charges exert on

each other. Detailed literature of electrostatics may be obtained in [12, 13]. First of

all in order to formulate a problem in electrostatics, one must know the important

equation called the Gauss’s law, which is one of the four Maxwell’s equations. If Ω

is the domain and ∂Ω is the boundary, the Gauss’s law is stated as ”the flux of the

electric displacement vector through any surface is equal to the total charge on that

surface”. ∫
∂Ω

n · DdS =

∫
Ω

ρvdV (2.1)

where D is the electric displacement vector and ρv is the volume charge density. The

electric displacement vector can be written as D = ϵE where ϵ is the permittivity

and E is the electric field. The permittivity can be written as ϵ = ϵ0ϵr where ϵ0 is

the dielectric permittivity of vacuum and ϵr is the relative dielectric permittivity of

the medium. Now, by applying the divergence theorem on eq. ( 2.1) the differential

form of the Gauss’s law is obtained as

∇ · D = ρv (2.2)

It is known that ∇×E . The electric field E can be rescaled and written as E = ϵ
1/2
0 E .

In vector calculus any field whose curl is equal to zero (and whose gradient is not

11
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equal to zero in some points in space), can be represented as the gradient of some

other scalar field [14]. And the scalar is known as the scalar potential of the vector

field. Therefore the electrostatic field can be expressed as

E = −∇ϕ (2.3)

where ϕ is the electrostatic potential. It is noted that, depending on the material

analyzed, the permittivity may vary. Before delving in to the finite element method

for electrostatics the electrostatics boundary value problem has to be defined. Using

eq. (2.2) and eq. (2.3) the Boundary Value Problem (BVP) can be written as

∇ · (ϵr∇ϕ) = −ρv in Ω

ϕ = ϕD on ∂ΩD

n · (ϵr∇ϕ) = fN on ∂ΩN

(2.4)

where Ω is the domain, ∂ΩD is the Dirichlet boundary and ∂ΩN is the Neumann

boundary. For a two dimensional case it is shown in Figure. 3.1. It is assumed that

Ω

�
∂Ω

D
∂Ω

Figure 2.1: Definition of the domain and boundaries of the problem

the medium used for this problem is linear and isotropic. So that ϵr is taken as a

scalar function of the position. If Ω consists of more than one material, this BVP

should be supplemented by material interface conditions.

2.2 Weak form and finite element formulation

In this section the weak form of the problem is derived and its corresponding finite

element formulation is done along with some discussion on static condensation. The
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trial and test spaces for the electric potential are the H1 space . It is the function

space containing a set of functions which are, together with their first derivatives,

square-integrable in Ω. Function spaces definitions are given the appendices. First

the integral of the governing equation is taken over the entire domain and it is

multiplied with the weighting function, so the following is obtained∫
Ω

(∇ · (ϵr∇ϕ)wdΩ = −
∫
Ω

ρvwdΩ (2.5)

but in order to integrate by parts ∇ · (ϵr∇ϕ)w = ∇ · [(ϵr∇ϕ)(w)]− (ϵr∇ϕ) · ∇w

Therefore∫
Ω

∇ · (ϵr∇ϕw)dΩ−
∫
Ω

ϵr∇ϕ · ∇wdΩ = −
∫
Ω

ρvwdΩ (2.6)∫
Ω

∇ · (ϵr∇ϕw)dΩ +

∫
Ω

ρvwdΩ =

∫
Ω

ϵr∇ϕ · ∇wdΩ (2.7)

Now by using divergence theorem the above equation becomes∫
Ω

ϵr∇ϕ · ∇wdΩ =

∫
∂ΩN

n · ϵr∇ϕwdΩ +

∫
Ω

ρvwdΩ (2.8)

For simplicity only pure Neumann’s case is considered, so the problem presents itself

as to find ϕ ∈ H1(Ω) such that∫
Ω

ϵr∇ϕ · ∇wdΩ =

∫
∂ΩN

n · ϵr∇ϕwdΩ +

∫
Ω

ρvwdΩ ∀w ∈ H1(Ω) (2.9)

Following the finite element method ϕ is expanded as

ϕ ≈ ϕH =
M∑
i=1

ϕiNi(x, y) (2.10)

It is known that by Galerkin’s method the weighting functions are chosen as the

shape functions themselves [15] i.e. Ni(x, y). If eq. ( 2.10) is substituted in eq. (2.9),

M∑
j=1

ϕj

∫
Ω

ϵr∇Nj · ∇NidΩ =

∫
∂ΩN

n · ϵr∇ϕNidΩ +

∫
Ω

ρvNidΩ i = 1, 2, 3...M (2.11)

The above equation can be written as a linear system of equations as follows

KΦ = r (2.12)
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where Φ = (Φ1,Φ2, ...,ΦM)T and corresponding entries in K and r are given as

Kij =

∫
Ω

ϵr∇Nj · ∇NidΩ, ri =

∫
∂ΩN

n · ϵr∇ϕNidΩ +

∫
Ω

ρvNidΩ (2.13)

whereK is the global stiffness matrix and r is the right hand side vector. In particular

K =
E∧

e=1

ke (2.14)

and

r =
E∧

e=1

re (2.15)

where e represents each element, E represents the total number of elements and
∧

represents the assembly of the element stiffness matrices. The formulation is not

yet complete unless the finite element shape functions are defined, hence they are

explained in the next subsection.

2.2.1 Finite element shape functions

The domain is discretized into a set of non-overlapping generic elements. Either

quadrilaterals or triangles are used. The shape functions are generally defined on the

reference elements and then mapped on to the general element using a linear(bilinear)

mapping. Since a hp discretization is used, the choice of the shape function is different

from the choice of the function used for mapping.

The area coordinate or the barycentric coordinates are associated with each ver-

tex. The property of such barycentric coordinates is that they have a value of 1 at the

vertex with which they are associated and zero elsewhere. The reference triangular

element is shown in Fig. 2.2
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ŷ

(1, 0)( 1,0)−

(0, 3)

2

13

Figure 2.2: Reference triangular element

and the corresponding area coordinates are defined as

λt
1 =

1

2
√
3
(
√
3 +

√
3x̂− ŷ) (2.16)

λt
2 =

ŷ√
3

(2.17)

λt
3 =

1

2
√
3
(
√
3−

√
3x̂+ ŷ) (2.18)

Furthermore, for quadrilaterals, the reference element is shown in Fig. 2.3

(1,0)

21

34

ŷ

x̂(0,0)

(1,1)(0,1)

Figure 2.3: Reference quadrilateral element

and the corresponding area coordinates are defined as

λq
1 = (1− x̂)(1− ŷ) (2.19)

λq
2 = x̂(1− ŷ) (2.20)

λq
3 = x̂ŷ (2.21)

λq
4 = (1− x̂)ŷ (2.22)
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where x̂ and ŷ are the reference coordinates. The area coordinates stated above cor-

respond to the lowest order elements in both the nodal and heirarchical approaches.

Next the the higher order edge functions and interior functions employed in the

code are presented. The relevant basis functions used in the code was developed by

Schöberl and Zaglmayr [16]. Over a reference triangle the electrostatic potential is

approximated in terms of vertex, edge and interior functions corresponding to the

polynomial order p

ϕ =
3∑

v=1

ϕvλ
t
v︸ ︷︷ ︸ +

3∑
e=1

p−1∑
i=1

ϕe
iN

e
i︸ ︷︷ ︸ +

p−3∑
i=0

p−3∑
j=0

ϕI
i,jN

I
i,j︸ ︷︷ ︸ (2.23)

vertex edge interior

It is to be noted at this juncture that for order p = 1, only the vertex shape function

are needed and that the edge and the interior shape functions are not, and further-

more, the edge and interior shape functions are utilized only when orders p > 1 are

used. The edge shape functions defined in the above equation are expanded

N e
i = li+1

(
se
te

)
(te)i+1 (2.24)

where s1 =
1

2
ŷ
√
3− 1

2
− 1

2
x̂, s2 =

1

2
− 1

2
x̂− 1

2
ŷ
√
3, s3 = x̂ and

t1 =
1

2
+

1

2
x̂+

1

6
ŷ
√
3, t2 =

1

2
− 1

2
x̂+

1

6
ŷ
√
3, t3 = 1− 1

3
ŷ
√
3 and li+1 is the integrated

Legendre polynomial of degree i+ 1.

Also the interior shape functions are expanded as

N I
i,j = li+2

(
SI

tI

)
(tI)i+2λt

3lj(λ
t
3 − λt

2 − λt
1) (2.25)

where sI = λt
2 − λt

1 and tI = λt
1 + λt

2

It is also imperative to know about the intrinsic orientation and numbering of the

edges over the reference element. These data are prescribed as it is shown in Figure.

2.4.
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ŷ

x̂

2

13

12

3

Figure 2.4: Intrinsic orientation and numbering of the edges in the triangular refer-

ence element

Now the corresponding electrostatic potential is defined over the reference quadri-

lateral as

ϕ =
4∑

v=1

ϕvλ
q
v︸ ︷︷ ︸+

4∑
e=1

p−1∑
i=1

ϕe
iN

e
i︸ ︷︷ ︸+

p−2∑
i=0

p−2∑
j=0

ϕI
i,jN

I
i,j︸ ︷︷ ︸ (2.26)

vertex edge interior

The corresponding edge functions are defined as

N I
i,j = li+1(ξe)λe (2.27)

where λ1 = 1− ŷ, λ2 = ŷ, λ3 = x̂, λ4 = 1− x̂ and ξ1 = 2x̂−1, ξ2 = 1−2x̂, ξ3 = 2ŷ−1,

ξ4 = 1− 2ŷ

and the corresponding interior shape function is

N I
i,j = li+2(2x̂− 1)lj+2(2ŷ − 1) (2.28)

As for the triangle, the numbering and intrinsic orientation of the edges are prescribed

as shown in the Figure. 2.5. Next the mapping between the reference and physical

element is described.
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21

34
ŷ

x̂
1

2

34

Figure 2.5: Intrinsic orientation and numbering of the edges in the quadrilateral

reference element

2.2.2 Element integral evaluation

In this section the approximation of the element integrals using gauss quadrature is

done. Previously the stiffness matrix and the right hand side vector were defined in

eq. (2.13). Now the same equation for each element is written as

ke
ij =

∫
Ωe

ϵr∇Ni · ∇NjdΩe (2.29)

rei =

∫
∂ΩN

e

n · ϵr∇ϕwdS +

∫
Ωe

ρvwdΩe (2.30)

Now it is important to note that integration over the physical coordinates (x,y) is

needed instead of reference coordinates (x̂, ŷ) where the shape functions are currently

defined. So one needs to do provide a mapping from reference coordinates to physical

coordinates. A linear mapping for triangle is done as it is shown in Figure. 2.6.

ŷ

x̂

2

13

1

2

3

x

y

Figure 2.6: Linear mapping for triangle from reference to physical coordinates
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where  x

y

 =
3∑

i=1

λt
i

 xi

yi

 (2.31)

And a bilinear mapping is used for quadrilateral as shown in Figure. 2.7.

21

34

ŷ

x̂

x

y

2
1

3

4

Figure 2.7: Bilinear mapping for quadrilateral from reference to physical coordinates

where  x

y

 =
4∑

i=1

λq
i

 xi

yi

 (2.32)

After mapping of the constitutive variables of the element stiffness matrix which

depend on the spatial coordinates, the element stiffness matrix looks like this

ke
ij =

∫
Ωe

ϵr(J
−T ∇̂Ni) · (J−T ∇̂Nj)|J |dΩe (2.33)

where J is the Jacobian matrix shown below

J =


∂x

∂x̂

∂x

∂ŷ
∂y

∂x̂

∂y

∂ŷ

 (2.34)

Now by writing the element stiffness matrix by using gauss quadrature, it takes the

form

ke
i,j ≈

nip∑
n=1

ϵr((J
−T (x̂, ŷ)∇̂Ni(x̂, ŷ)) · (J−T (x̂, ŷ)∇̂Nj(x̂, ŷ))|J(x̂, ŷ)|)wn (2.35)
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where wn is the gauss weight and (x̂, ŷ) is the gauss point and nip is the number of

gauss points per element.

2.3 Static Condensation

By numbering the degrees of freedom in a consistent manner and grouping all vertex

functions, edge based functions and all the vertex functions, the structure of K

becomes

K =


KV V KV E KV I

KEV KEE KEI

KIV KIE KII

 (2.36)

where V is the number of non-Dirichlet points in the mesh, E is (p−1) times number

of non-Dirichlet edges in the mesh and I ≃ (p− 2)(p− 2) times number of elements

in the mesh. The interior degrees of freedom depend only on the value of the vertex

and edge degrees of freedom for the element in consideration. This allows them to

be eliminated using a process called static condensation. This process also reduces

the size of the linear system. Denoting the group V , E by C, then the problem can

be written as

KΦ = b (2.37)

Now expanding the terms implies KCC KCI

KIC KII

 ΦC

ΦI

 =

 bC

bI

 (2.38)

Now eliminating ΦI yields

K̃CCΦ = b̃C (2.39)

where

K̃CC = KCC −KCIK
−1
II KIC (2.40)

b̃C = bC −KCIK
−1
II bI (2.41)

Now ΦI can be found using

ΦI = K−1
II bI −K−1

II KICΦC (2.42)
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2.4 Analytical solution for benchmark example

The rectangular trough of infinite length in the z direction is taken to be the elec-

trostatic benchmark problem. It is described in Figure. 2.8. It is noted that it

has singularities in the top corners due to adjacent edges having Dirichlet boundary

conditions.

V volts
y

x

0 volts 0 volts

0 volts x=b

y=a

Figure 2.8: Electrostatics problem - conducting trough

According to [17], the following procedure is followed to obtain the analytical

solution for the BVP. If the permittivity ϵr is kept constant over the whole region

with no variation in the z direction, the governing equation for the problem can be

written in terms of the x and y coordinates as

∂2ϕ

∂x2
+

∂2ϕ

∂y2
= 0 (2.43)

Using the method separation of variables, ϕ can be written as

ϕ = X(x)Y (y) (2.44)

Therefore,

Y X
′′
+XY

′′
= 0 (2.45)

−X
′′

X
=

Y
′′

Y
= λ (2.46)

where λ is a constant since the left hand side (LHS) is a function of X and right

hand side (RHS) is a function of Y only. Considering the three cases λ = 0, λ < 0
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and λ > 0, the problem can be solved. First put λ = 0, then from eq. (2.45)

X = Ax+B (2.47)

Now the boundary condition reads X(x = 0) = 0, X(x = b) = 0. Therefore

X(x = 0) = B = 0 (2.48)

X(x = b) = Ab = 0 ⇒ A = 0 (2.49)

Therefore it is inferred that X is zero. But it cannot be so the case and so λ ̸= 0.

Considering the next case λ < 0, putting λ = −α2 implies

d2X

dx2
− α2X = 0 (2.50)

Therefore after integration the solution is

X = A1e
αx + A2e

−αx (2.51)

Since it is known that

sinhαx =
eαx − e−αx

2
(2.52)

coshαx =
eαx + e−αx

2
(2.53)

Therefore X becomes

X = B1 coshαx+B2 sinhαx (2.54)

where B1 = A1 + A2 and B2 = A1 − A1. Now the boundary condition reads X(x =

0) = 0, X(x = b) = 0. Applying the boundary condition it is seen that

X(x = 0) = B1 = 0 (2.55)

X(x = b) = B2 sinhαb = 0 ⇒ B2 = 0 (2.56)

However, once again X = 0, so this case can be ignored. Therefore for obtaining the

correct solution λ has to be greater than zero. Setting λ as α2 implies

d2X

dx2
+ α2X = 0 (2.57)
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Therefore, the solution becomes

X = A1 cosαx+ A2 sinαx (2.58)

Again the boundary condition read X(x = 0) = 0, X(x = b) = 0, so A1 = 0 and

sinαb = 0, where α is expressed as

α =
nπ

b
, n = 1, 2, 3, 4... (2.59)

It is to be noted that if n = 0, the equation once again leads to incorrect solution.

Also if n is negative it gives the same solution as when it is positive. Therefore

λ = α2 =
n2π2

b2
, n = 1, 2, 3, 4... (2.60)

Next Y
′′ − λY = 0 can be solved in the same lines as X and thus solution is found

to be dependant on

Yn = Bn sinh
nπ

b
(2.61)

Therefore there are n such solutions, ϕn, which can be written as

ϕn = Cn sin
nπx

b
sinh

nπy

b
(2.62)

In general a particular solution is given by a linear combination of Φn

ϕ =
∞∑
n=1

Cn sin
nπx

b
sinh

nπy

b
(2.63)

Now the boundary condition reads ϕ(x, a) = V. Then Cn is found to be

Cn =


4V

nπ sinh
nπa

b

n is odd

0 n is even

(2.64)

In the problem if V = 1, then the potential ϕ can be written as

ϕ =
4

π

∞∑
n=1,3,5

sin
nπx

b
sinh

nπy

b

n sinh
nπa

b

(2.65)
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2.5 Numerical results and discussion

The first step involves a pre processing stage, where the mesh is generated. Firstly a

uniform mesh with triangles is used. A typical mesh of spacing h = 0.1 is shown in

Figure. 2.9.

Figure 2.9: Uniform triangulated mesh

Next at the solver stage, it is reminded that the finite element method with hp

discretization is used to solve the electrostatics BVP. The details of the formulation

were shown earlier. The solution is obtained using the finite element method and

the sets of results obtained are shown subsequently and they are qualitatively and

quantitatively observed and conclusions are drawn based on different factors. Con-

sidering a uniform meshes with elements of uniform order, the contour plot of the

electrostatic potential is shown in the Figure. 2.10.
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Figure 2.10: Contour plot of the electrostatic potential

It can be observed that there are two singularities present at the top two corners.

The vector plot of the gradient of electrostatic potential is shown in Figure. 2.11.
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Figure 2.11: Vector plot of the gradient of the electrostatic potential

In order to show the accuracy of the results, the error has to be measured. The

L2 norm of the error is used for representing the error between exact values of the

potential and the numerical value [15]. The norms are defined in the appendix.

In order to know the rates of convergence for h, p and hp-refinements, simulations

are performed and the results are shown in the following figures. A mesh with
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triangular discretization is used and Figure. 2.12 shows the L2 norm of the error in

the electrostatic potential while performing h refinement for orders 1, 2, 3 and 4.
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Figure 2.12: Convergence plot for h refinement
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Figure 2.13: Convergence plot for h refinement
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Figure 2.14: Non uniform mesh for the given electrostatics problem

It is observed that the convergence is algebraic since the convergence curves are

straight lines. Next the Figure. 2.13 shows the same error but now with p refinement

for mesh spacings h = 0.05, 0.1 and 0.2. The convergence appears to be exponential

but the error drops to the same level as it does during h refinement. This trend is

expected since there are two singularities present at the top two corners. However,

if h and p refinements are used simultaneously with a non uniform mesh, then the

convergence is expected to be faster. The non uniform mesh is shown in Figure.

2.14. It is observed that the error in this case dropped to the orders of 10−6 at the

first step i.e. for the order 2. However the simulation could not be proceeded further

since the number of terms in the infinite series of the analytical solution exceeded the

threshold of computing power in the stand alone machine in usage. Since for order 2

the error has dropped down so low, it can be concluded that exponential convergence

would have been achieved. Thus it can be ascertained that, in the the presence

of singularities, a combination of h and p refinement would result in exponential

convergence. Next chapter deals with the analysis of the fluid mechanics problem.



Chapter 3

Analysis of the fluid field

3.1 Introduction

In this chapter the finite element method with hp discretization will be applied for

the solution of a Stokes flow problem. Initially the governing equations for Stokes

flow are discussed. Next the standard mixed formulation is explained followed by two

different solution strategies, namely the penalty function formulation and the mixed

formulation with slight compressibility. Benchmarking simulations are done for three

cases namely the Poiseiulle’s flow through a duct, a problem with a prescribed body

force and for a lid driven cavity problem.

3.2 Governing Equations and problem definition

First the Navier-Stokes equations are introduced. The domain to be analyzed can be

considered as Ω and the boundary to be Γ = ∂Ω which is assumed to be a regular

and continuous surface. The Navier Stokes equations for a time dependant viscous

fluid flow problem is given as follows.

ρ(ut + (u · ∇)u)− µ∇2u− µ∇(∇ · u) +∇p = ρb in Ω (3.1)

where v is the velocity, ρ is the density, µ is the dynamic viscosity and b is the body

force. If incompressible flow is considered, then

∇ · u = 0 in Ω (3.2)

Now, substituting eq. (3.2) in eq. (3.1) results in

ρ(ut + (u · ∇)u)− µ∇2u+∇p = ρb (3.3)

28
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Since the flow considered is steady and since the Stokes flow involves highly viscous

flow, the time term ut and the convective term (v·∇)v in eq. (3.3) can be ignored and

the the resulting equations are the time independent Stokes flow governing equations

−µ∇2u+∇p = f in Ω

∇ · u = 0 in Ω
(3.4)

In the eq. (3.4), the right hand side term can be given as f = ρb, representing the

body force. The eq. (3.2) is still required as a constraint. This form of the equations

is known as the velocity pressure form. An alternative form would be the stress

divergence form, which would be used later.

3.2.1 Strong form of the problem

The Boundary Value Problem (BVP) for the Stokes flow in the velocity pressure form

can be written as

−µ∇2u+∇p = f in Ω

∇ · u = 0 in Ω

u = uD on ∂ΩD

t = −np+ µ(n · ∇)u on ∂ΩN

(3.5)

where t is the traction, uD is the velocity at the Dirichlet boundary, Ω is the domain,

∂ΩD is the Dirichlet boundary and ∂ΩN is the Neumann boundary. The problem

domain is shown in Figure. 3.2.1.

Ω

�
∂Ω

D
∂Ω

Figure 3.1: Definition of the domain and boundaries of the problem
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Three different formulations are presented subsequently. The first formulation

is the standard mixed formulation where the incompressibility constraint is strictly

imposed and the solutions are obtained for both the velocities and the pressure. The

next formulation is the penalty function formulation where the the fluid is treated as

nearly being incompressible and solution is obtained for the velocities, with pressure

being computed using a post processing setup. The third formulation is a mixed

formulation, which is also a penalty type method, where the fluid is treated as be-

ing nearly incompressible, however the solution obtained for both velocities and the

pressure. Next a brief discussion on standard mixed formulation is presented.

3.3 Standard mixed formulation

The standard mixed formulation is only briefly discussed since the work in the thesis

mostly involves the use of other methods, which are discussed after this section. In the

standard mixed formulation for Stokes flow, solutions are obtained for both velocity

and pressure, while maintaining strict incompressibility constraint. The strong form

of the problem is written in eq. (3.5). Next the weak form of the problem is presented.

3.3.1 Weak form of the problem

The trial and test spaces for the velocity and the pressure are defined as

V = {u ∈ (H1(Ω)),u = uD on ∂ΩD} (3.6)

W = {w ∈ (H1(Ω)),w = 0 on ∂ΩD} (3.7)

Z = {p ∈ L2(Ω),

∫
Ω

pdΩ = 0} (3.8)

where H1 is the function space whose components are functions which are, together

with their first derivatives, square-integrable in Ω and L2 is the function space con-

taining a set of functions which are square-integrable in Ω.Function spaces definitions

are given the appendices. From the strong form of the problem previously defined

before, its integral is taken over the entire domain Ω and multiplied with the velocity
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weighting function w and the pressure weighting functions q which results as∫
Ω

−µ(∇2u) ·wdΩ +

∫
Ω

w · ∇pdΩ =

∫
Ω

w · fdΩ (3.9)

∫
Ω

q(∇ · u)dΩ = 0 (3.10)

The eq. (3.9) can be simplified as follows∫
Ω

−µ(∇ · ∇u) ·wdΩ +

∫
Ω

w · ∇pdΩ =

∫
Ω

w · fdΩ (3.11)

but it is known that

∇ · ((∇u)w) = (∇ · ∇u) ·w+ (∇w : ∇u) (3.12)

and

∇ · (wp) = w · ∇p+ p(∇ ·w) (3.13)

Therefore eq. (3.11) becomes∫
Ω

∇w : µ∇udΩ−
∫
Ω

µ∇· ((∇u)w)dΩ+

∫
Ω

∇· (wp)dΩ−
∫
Ω

p(∇·w)dΩ =

∫
Ω

w · fdΩ

(3.14)

Applying divergence theorem to the corresponding terms in eq. (3.14) implies∫
Ω

∇w : µ∇udΩ−
∫
Ω

p(∇ ·w)dΩ =

∫
Ω

w · f+
∫
∂ΩN

w · tdΩ (3.15)

where ΩN is the Neumann boundary and t is the tractions, which is defined as

t = −np+ µ(n · ∇)u (3.16)

So the weak form can be stated as Find u ∈ V and p ∈ Z such that ∀ w ∈ W and

q ∈ Z

a(u,w)− (∇ ·w, p)Ω = (w, f)Ω + (w, t)∂ΩN
(3.17)

b(u, q) = 0 (3.18)
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where

a(w,u) =

∫
Ω

∇w : µ∇u (3.19)

(∇ ·w, p)Ω =

∫
Ω

p(∇ ·w)dΩ (3.20)

b(u, q) =

∫
Ω

q(∇ · u)dΩ (3.21)

(w, f)Ω =

∫
Ω

w · fdΩ (3.22)

(w, t)∂ΩN
=

∫
∂ΩN

w · tdΩ (3.23)

3.3.2 Galerkin formulation

The Galerkin counterpart of the weak form can be given as Find uhp ∈ Vhp and

php ∈ Zhp such that ∀ whp ∈ Whp and qhp ∈ Zhp

a(uhp,whp)− (∇ ·whp, php) = (whp, f) + (whp, t) (3.24)

b(uhp, qhp) = 0 (3.25)

where subscript hp denotes the descretization and where Vhp ⊂ V, Whp ⊂ W

and Zhp ⊂ Z. In the standard mixed formulation, there is a stability condition to be

satisfied, known as the Babuska-Brezzi condition [2]. For the condition to be satisfied,

and for the flow to be stable, there must be a two order difference in approximation

of velocity and pressure. Further details of standard mixed formulation can be found

in [15] and in [2].

The standard mixed formulation is not pursued further due to time limitations

the thesis. Other formulations which are are used in the thesis are discussed in the

following sections.
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3.4 Equivalence between elasticity equation and

Stokes equation

Before introducing the penalty function formulation and the mixed formulation, the

equivalence between linear elasticity equation for an incompressible material and the

Stokes flow equation is established. The governing equation for linear elasticity is

stated as

∇ · σ + f = 0 in Ω (3.26)

where σ is the stress in the material and f is the body force. If the material is

incompressible, the displacements must also satisfy ∇ · u = 0. The constitutive

equation for incompressible linear elasticity can be stated [15] as

σ = −pI + 2µ∇Su (3.27)

where p is the hydrostatic pressure, µ is the shearing modulus, ∇Su is the symmetric

component of the gradient of displacements. Substituting eq. (3.27) in eq. (3.26)

results in the following equation

−µ∇2u+∇p = f (3.28)

Considering eq. (3.4) and eq. (3.28), it is observed that, these equations are identical

except for the definitions of the variables. If the variable µ is taken to be the viscosity

of the fluid and if the variable u is taken to be the velocity of the fluid, then the eq.

(3.4) is called the velocity pressure form and the eq. (3.26) is known as the stress

divergence form of the Stokes flow governing equations [2].

The requirement that ∇ · u = 0 is rarely imposed in the linear elasticity and

instead the concept of almost incompressible materials is often considered. In this

case, material with Poisson’s ratio close to 0.5 are considered. These materials have

finite but small value of ∇ · u. In the limiting case of ν = 0.5, ∇ · u = 0. Thus

by appropriate choice of the Poisson’s ratio, the solution of linear elasticity can be

viewed as a regularized Stokes flow solver which has a property that ∇ · u → 0 as

ν → 0.5. This is described in detail in the next section.
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3.5 Penalty function formulation

In the penalty function formulation, the constitutive equation given in eq. (3.27) is

written as

σλ = −pλI + 2µ∇Suλ (3.29)

in which

pλ = −λ∇ · uλ (3.30)

where λ > 0 acts as a regularization parameter. This parameter is related to the

Poisson’s ratio in a way that, as λ → ∞, ν → 0.5. Thus the incompressibility

condition can therefore be dropped from the strong form of the problem. The strong

form of the problem can be written for the penalty function formulation of Stokes

flow as

∇ · σλ + f = 0 in Ω

uλ = uD on ∂ΩD

σλ · n = t on ∂ΩN

(3.31)

According to [18], as λ → ∞ uλ → u in H1 and pλ → p in L2. So if λ is selected

sufficiently large then uλ and pλ differ negligibly from u and p for the Stokes flow

problem [18]. The advantage of penalty function method is that the additional un-

known p is eliminated and the necessity for solving the incompressibility condition is

removed. Numerically it is simpler to implement as the problem requires only u to

be discretized. In this section it is convinient to omit the λ superscripts.

3.5.1 Weak form of the problem

The trial and test spaces for the velocities are defined as

V = {u ∈ (H1(Ω)),u = uD on ∂ΩD} (3.32)

W = {w ∈ (H1(Ω)),w = 0 on ∂ΩD} (3.33)

From the strong form of the problem defined before in eq. (3.31), its integral is

taken over the entire domain Ω and multiplied with the velocity weighting function
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w which results as

−
∫
Ω

w · (∇ · σ)dΩ =

∫
Ω

w · fdΩ (3.34)

for integrating by parts, the term w · (∇ · σ) can be written as

w · (∇ · σ) = ∇ · (σw)−∇w : σ (3.35)

therefore eq. (3.34) can be re-written as∫
Ω

∇w : σdΩ =

∫
Ω

w · fdΩ +

∫
Ω

∇ · (σw)dΩ (3.36)

but using divergence theorem and the fact that n ·σ = ton∂ΩN . Therefore eq. (3.36)

can be written as ∫
Ω

∇w : σdΩ =

∫
Ω

w · fdΩ +

∫
∂ΩN

w · tdΩ (3.37)

Now using the constitutive equation from eq. (3.27), the variational problem could

be written as∫
Ω

∇sw : C : ∇sv−
∫
Ω

λ(∇ · u)(∇ ·w)dΩ =

∫
Ω

w · fdΩ +

∫
∂ΩN

w · tΩ (3.38)

where C is the fourth order constitutive tensor called the viscosity matrix. Now, the

weak form of the BVP is stated as Find u ∈ V such that ∀ w ∈ V

c(w,u) = (w, f)Ω + (w, t)∂ΩN
(3.39)

where

c(w,u) =

∫
Ω

∇sw : C : ∇su∂Ω−
∫
Ω

λ(∇ · u)(∇ ·w)dΩ (3.40)

(w, f)Ω =

∫
Ω

w · fdΩ (3.41)

(w, t)∂ΩN
=

∫
∂ΩN

w · tdΩ (3.42)
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3.5.2 Galerkin formulation and matrix problem

The Galerkin’s counterpart of the weak formulation can be given as Find uhp ∈ Vhp

such that ∀ whp ∈ Whp

c(uhp,whp) = (whp, f)Ω + (whp, t)∂ΩN
(3.43)

where Vhp ⊂ V and Whp ⊂ W. Following the finite element method, uhp can be

expanded as

uhp =
M∑
i=1

Ni(x, y)ui (3.44)

where the M is the number of basis functions. The weighting functions are chosen

as the shape functions themselves. Now the matrix problem reads as

KU = f (3.45)

where

K =
E∧

e=1

k(e),ab (3.46)

where e represents each element, E represents the total number of elements,
∧

repre-

sents the assembly of the element stiffness matrices and k(e),ab represents the element

stiffness matrix, which can be written as

k(e),ab =

∫
Ωe

BaTDBbdΩ (3.47)

where B is given as

Ba =


∂Na

∂x
0

0
∂Na

∂y
∂Na

∂y

∂Na

∂x

 (3.48)

and the material properties matrix D [15] is given as

D = Dλ +Dµ (3.49)
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where Dλ and Dµ are given as

Dλ = λ


1 1 0

1 1 0

0 0 0

 (3.50)

Dµ = µ


2 0 0

0 2 0

0 0 1

 (3.51)

Therefore, it can be seen that the ke can be written as

ke = k
(e),ab
λ + k(e),ab

µ (3.52)

where

k
(e),ab
λ =

∫
Ωe

BaTDλB
bdΩ (3.53)

k(e),ab
µ =

∫
Ωe

BaTDµB
bdΩ (3.54)

It is because of the fact that
λ

µ
≫ 1 the kλ

e term tends to be large and it attempts

to maintain the volumetrically stiff behavior [15]. And this contributes to the phe-

nomenon of volumetric locking. This is alleviated by the use of a hp discretization.

Furthermore the relevant basis functions used are the same as in the electrostatics

problem, which were taken from Schöberl and Zaglmayr [16]. The numerical bench-

mark results for this method will be shown subsequently. Next a mixed finite element

approach of the penalty formulation of Stokes flow is presented.

3.6 Mixed approach for the penalty formulation

of Stokes flow

This is a mixed approach for the elasticity system. Equivalence between penalty

function formulation and elasticity system as ν → 0.5 is discussed already in the

previous sections. In this method the problem is solved for both velocity and pressure,
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therefore weighting and trial solution spaces are introduced for the pressures also.

This method can be viewed as a perturbed Lagrangian method [19]. The pressure

variable is introduced as an independent unknown. The pressure variable p can be

interpreted as the hydrostatic pressure only in the incompressible case [15] as

p = −tr(σ)/2 (3.55)

If a compressible case is considered, according to the constitutive equation given in

eq. (3.27),

−tr(σ)/2 = −(λ+ 2µ/2)∇ · u (3.56)

where u is the velocity but λ + 2µ/2 can be viewed as the bulk modulus κ. Thus if

the flow is nearly incompressible, λ ≈ κ. In view of the above discussion the strong

form of the problem in this formulation can be written as

∇ · σ + f = 0 in Ω

∇ · u+ p/κ = 0 in Ω

u = uD on ∂ΩD

σ · n = t on ∂ΩN

(3.57)

3.6.1 Weak form of the problem

The trial and test spaces for the velocities and pressure are defined as

V = {u ∈ (H1(Ω)),u = uD on ∂ΩD} (3.58)

W = {w ∈ (H1(Ω)),w = 0 on ∂ΩD} (3.59)

Z = {p ∈ L2(Ω)} (3.60)

w ∈ W is the weighting function for the velocity and q ∈ Z is the weighting function

for the pressure. The weak form is obtained as follows.

−
∫
Ω

w · (∇ · σ)dΩ =

∫
Ω

w · fdΩ (3.61)
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−
∫
Ω

q(∇ · v+ p/κ)dΩ = 0 (3.62)

Considering eq. (3.61), for integrating by parts, the term w(∇ · σ) can be written as

w · (∇ · σ) = ∇ · (σw)−∇w : σ (3.63)

therefore eq. (3.61) can be re-written as∫
Ω

∇w : σdΩ =

∫
Ω

w · fdΩ +

∫
Ω

∇ · (σw)dΩ (3.64)

but using divergence theorem and the fact that n · σ = t on ∂ΩN . Therefore eq.

(3.64) can be written as∫
Ω

∇w : σdΩ =

∫
Ω

w · fdΩ +

∫
∂ΩN

w · tdΩ (3.65)

Now using eq. (3.27), which is the constitutive law the variational problem can be

written as∫
Ω

∇sw : C : ∇sv−
∫
Ω

p∇ ·wdΩ =

∫
Ω

w · fdΩ +

∫
∂ΩN

w · tΩ (3.66)

Now the weak form of the BVP is stated as follows: Find u ∈ V and p ∈ Z such that

∀ w ∈ W and q ∈ Z

d(u,w)− (∇ ·w, p)Ω = (w, f)Ω + (w, t)∂ΩN
(3.67)

−(q,∇ · u+ p/κ)Ω = 0 (3.68)

where

d(w,u) =

∫
Ω

∇sw : C : ∇su (3.69)

(∇ ·w, p)Ω = −
∫
Ω

p∇ ·wdΩ (3.70)

(q,∇ · u+ p/κ)Ω =

∫
Ω

q(∇ · u+ p/κ)dΩ (3.71)

(w, f)Ω =

∫
Ω

w · fdΩ (3.72)

(w, t)∂ΩN
=

∫
∂ΩN

w · tdΩ (3.73)
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3.6.2 Galerkin formulation and matrix problem

The Galerkin’s counterpart of the weak formulation can be given as Find uhp ∈ Vhp

and php−1 ∈ Zhp−1 such that ∀ whp ∈ Whp and qhp−1 ∈ Zhp−1

d(uhp,whp)− (∇ ·whp, php)Ω = (whp, f)Ω + (whp, t)∂ΩN
(3.74)

and

−(qhp−1,∇ · uhp + php−1/κ)Ω = 0 (3.75)

where Vhp ⊂ V and Whp ⊂ W and Zhp−1 ⊂ Z. Following the finite element method,

uhp =
M∑
i=1

Ni(x, y)ui (3.76)

php−1 =
N∑
i=1

Ñi(x, y)pi (3.77)

and the weighting functions are chosen as the shape functions. Substitution of the

expansion into the Galerkin formulation leads to the matrix equations in partitioned

form, and solutions can be obtained for both velocities and pressure. The global

matrix equation looks like Kc Kup

Kpu Kpp

u

p

 =

R

0

 (3.78)

Each block component of the global stiffness matrix is shown below

Kc =
E∧

e=1

kc
(e),ab (3.79)

Kup =
E∧

e=1

kup
(e),ab (3.80)

Kpu =
E∧

e=1

kpu
(e),ab (3.81)

Kpp =
E∧

e=1

kpp
(e),ab (3.82)
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Each elemental matrices are defined one by one as follows

kc
(e),ab =

∫
Ωe

BaTDBbdΩ (3.83)

where D is defined as

D = µ


2 0 0

0 2 0

0 0 1

 (3.84)

and the rest of the element matrices are

kupe = −
∫
Ωe

(∇Na)Ñ bdΩ (3.85)

kpue = −
∫
Ωe

Ña(∇N b)TdΩ (3.86)

kppe = −
∫
Ωe

ÑaÑ bdΩ (3.87)

The hp discretization is used and relevant basis functions used are the same as before.

Furthermore, the order of interpolation for the pressure is one order less than the

velocity. From this point in this chapter, the following notations are used

A = Penalty function formulation

B = Mixed approach for penalty formulation

In order to differentiate the two approaches which were used for simulation, the

conditioning of the element stiffness matrix is analyzed for increasing polynomial

order for an optimal choice of Poisson’s ratio of 0.4999999. The observation this

time is by the way of calculating the eigenspectrum of the element stiffness matrix

and plotting it in the real and imaginary plane. It is shown in Figure. 3.2. The

discretization is for quadrilaterals and the formulation used for this plot is method

A. It can be noticed that the eigenvalues always lie at the origin or in the positive

side of the real line, which means that the matrix is always positive semi definite.

Moreover, when the order is increased, the width of the eigenspectrum remains same.

However, one must notice that, the order of the eigenvalues is found to be 107.
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Another observation is that, as the order is increased, the number of eigenvalues

clustered near zero increases. The matrix is singular as boundary conditions have

not yet been imposed.
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Figure 3.2: Eigenvalues from the element stiffness matrix for different orders-mixed

method
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Figure 3.3: Eigenvalues from the element stiffness matrix for different orders-penalty

function method

A similar plot is shown in Figure. 3.3 for method B using the same Poisson’s ratio

of 0.4999999 and a quadrilateral discretization. It can be seen that the eigenvalues

are on both sides of the real line, implying that the matrix is indefinite. One can

again notice that the width of the eigenspectrum remains approximately constant as

the order increases, but there are increasing number of eigenvalues clustered around
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zero. However, the major observation would be that, the value of the eigenvalues in

the case of the method A is of the order 107, whereas the eigenvalues found in the

method B is only 101. This means that the conditioning of the stiffness matrix in

the method B is much better than the method A. So the method B alleviates the

ill-conditioning of the stiffness matrix occurring in the method A.

3.7 Benchmark examples

Three benchmark problems are considered. The first two have analytical solutions

and the final problem is benchmarked against reference solutions given in the liter-

ature. The first considers Poiseiulle’s flow through a duct, which is a simplification

of the Stokes flow problem. The second is a flow inside a square cavity and it has a

forcing term on the right hand side of the Stokes equations, which induces a swirling

flow inside the cavity. The third benchmark problem is the lid driven cavity problem

which is a major example for validation of most of the existing Computational Fluid

Dynamics (CFD) solvers. It does not have an analytical solution, but many numeri-

cal results are available in the literature which permit comparisons to be made. The

first two problems which have analytical solutions are described as follows.

3.7.1 Poiseiulle’s flow through a duct

For this benchmark problem, a rectangular duct is taken for analysis as shown in

Figure. 3.4. The upper and the lower surfaces are the walls and flow moves from left

to right.

y

y = 2b

xx = a

1 ( )v y

Figure 3.4: Poiseiulle’s flow problem
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The momentum equation for Stokes flow is

−µ∇2v+∇p = f in Ω (3.88)

In the the Poiseiulle’s flow case, the velocities components in the x and y directions,

v1 and v2 respectively, and the pressure satisfy the following relationships

v2 = 0 (3.89)

∂v1
∂x

= 0 (3.90)

∂p

∂y
= 0 (3.91)

p = p(x) (3.92)

Therefore eq. (3.88) simplifies to

µ
∂2v1
∂y2

− ∂p

∂y
= 0 (3.93)

Substituting
∂p

∂x
= k, a constant, implies

µ
∂2v1
∂y2

= k (3.94)

but it is known that v1 = f(y) and therefore the partial derivative can be replaced

with a standard derivative. Using the notation
∂2v1
∂y2

=
d2v1
dy2

,

d2v1
dy2

=
k

µ
(3.95)

In order to obtain the analytical solution, the above equation is integrated twice

which implies

v1(y) =
k

2µ
y2 + C1y + C2 (3.96)

where C1 and C2 are constants of integration. Now the no slip boundary conditions

are applied, v1(0) = 0 and v1(2b) = 0, which implies C1 =
kb

µ
and C2 = 0. Therefore

the analytical solution for this problem is

v1 =
k

µ
y

(
y

2
− b

)
(3.97)
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3.7.2 Stokes flow with a prescribed body force

The problem at hand is the square domain shown in Fig. 3.5.

u=v=0y

y = a

xx = a

u=v=0 u=v=0

u=v=0

Figure 3.5: Problem domain

If the components of the body force are prescribed as

b1 = (12− 24y)x4 + (−24 + 48y)x3 + (−48y + 72y2 − 48y3 + 12)x2

+(−2 + 24y − 72y2 + 48y3)x+ 1− 4y + 12y2 − 8y3
(3.98)

b2 = (8− 48y + 48y2)x3 + (−12 + 72y − 72y2)x2 + (4− 24y + 48y2−

48y3 + 24y4)x− 12y2 + 24y3 − 12y4
(3.99)

Then the stationary Stokes problem has a closed-form analytical solution [2]. For

µ = 1 [2] the exact solution for this problem is

v1(x, y) = x2(1− x)2(2y − 6y2 + 4y3) (3.100)

v2(x, y) = −y2(1− y)2(2x− 6x2 + 4x3) (3.101)

p(x, y) = x(1− x) (3.102)

3.7.3 Lid driven cavity problem

The lid driven cavity problem with the boundary conditions is shown in Figure. 3.6.
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u=U, v=0y

y = a

xx = a

u=v=0 u=v=0

u=v=0

Figure 3.6: Lid driven cavity problem domain

The movement of the lid creates a low pressure zone inside the cavity and it causes

the flow to develop circulation zones. It does not have any analytical solution, hence

the results are to be compared with the available literature. The numerical results

for all the benchmark problems described above will be discussed in the next section.

3.8 Numerical results and discussion

In this section the numerical results for the benchmark examples are shown and are

compared with the benchmark solutions. The domain is discretized into a set of

non-overlapping generic elements. Both quadrilaterals and triangles are used. Uni-

form meshes are considered for all the benchmark problems. A convergence analysis

is done for both the formulations and for both discretizations, i.e. triangles and

quadrilaterals. In order to show the accuracy of the results, the error has to be

measured. Thus in the case of problems with analytical solution, the L2 norm of the

error is used, which is shown in the appendix. The convergence analysis is done for

both the velocity and the pressure variables. The benchmark results are described

in order of the problems presented in the previous section.
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3.8.1 Results for Poiseiulle’s flow through a duct

The first problem considered is the Poiseiulle’s flow through a duct. The viscosity is

chosen to be 100. The result is for a penalty function formulation with a quadrilateral

mesh and uniform mesh spacing size function h = 0.2 and with quadratic order. The

contour plot for the horizontal component of velocity is shown in the left in Figure.

3.7. The computed pressure is shown in the right in Figure. 3.7. Both profiles are

behaving as expected. The result shown is convincing as it is conforming with the

actual physics since the analytical solution is also of quadratic order. Figure. 3.8

shows a vector plot of the horizontal component of the velocity. It is observed to be

parabolic as expected.

Next the convergence analysis is done for both methodsA andB for the velocities.

The value of ν is taken to be 0.4999999. First the convergence is shown for the method

A for h and p refinements, and h refinements are for various orders p = 1, 2, 3 and

4, and p refinement is for various mesh spacings h = 0.05, 0.1, 0.2 and 0.3. The

results for penalty function method are shown in Figure. 3.9 and Figure. 3.10. These

figures show convergence of the error on a logarithmic scale for both triangles (left)

and quadrilaterals (right). One can observe that there is no convergence in the case

of h refinement for the first order with triangles as the locking occurs, but as the

order is increased 2, the error drops to 10−7, however there is no further drop in error

with further h refinement since the analytical solution is also quadratic.

Next the convergence for method B for h and p refinements are shown in Figure.

3.11 and in Figure. 3.12. It can be observed for h refinement, that for the 1st

order the convergence is not appreciable, and it is seen, that as the order increases,

further h refinements are seen to be lying along a same line. Once again this is

due to the fact that the analytical solution is quadratic. For the p convergence it

is seen that the convergence is exponential, upto order 2 and then it stagnates on

the same line. The trend is the same for all mesh spacings as shown in the figure.

Thus it can be ascertained that the results are conforming well with the analytical

solution. Furthermore the locking phenomenon does not occur for method B during
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h refinements in both triangles and quadrilaterals. All p refinements show that,

with second order elements and above, the solution is optimal. The maximum error

achieved for both methods A and B is dictated by the choice of the value of the

Poisson’s ratio ν, the effect of which will be shown soon.

The profile of velocity is obtained at the vertical center of the duct is shown in

Figure. 3.13. It is seen that for order p = 2 and h = 0.2 the resulting velocity profile

exactly matches with the analytical solution.
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Figure 3.8: Horizontal velocity vector plot
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Figure 3.9: h convergence for triangles and quadrilaterals in method A for velocity
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Figure 3.10: p convergence for triangles and quadrilaterals in method A for velocity
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Figure 3.11: h convergence for triangles and quadrilaterals in method B for velocity
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Figure 3.12: p convergence for triangles and quadrilaterals in method B for velocity
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Figure 3.13: Comparison of horizontal velocity profile with exact solution

3.8.2 Results for Stokes flow with a prescribed body force

Next the numerical results for benchmark problem of the Stokes flow with prescribed

body force is analyzed. The contour plot of the horizontal velocity is shown in Figure.

3.14. The countour plot is shown for method B for triangles with order 4 and with

mesh spacing h as 0.1 The velocity vector plot for the same is given in Figure. 3.15.

It is seen that there is a low pressure region created at the geometric center and a

symmetric swirling flow pattern is observed. Next the pressure contour for the same

mesh is shown in Figure. 3.16. It matches very well with exact solution obtained in

[2] and is shown in Figure. 3.17.
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Now the convergence analysis for velocity is done for this problem. First the

convergence results for the method A are described in Figure. 3.18 and in Figure.

3.19. It can be observed that for h refinement using both triangular and quadrilateral

meshes, that the convergence is algebraic, and locking is observed for the 1st order

elements in quadrilaterals. One will also observe that, the error w.r.t h refinement for

quadrilateral mesh with order 4 is already at the optimum value because of the choice

of ν. Further h refinement leads to increase in the error due to the ill-conditioning

of the system matrix. With p refinement, exponential convergence is obtained.

Next the results of method B are shown in Figure. 3.20 and in Figure. 3.21. Both

the convergence for triangles and quadrilaterals are shown in these figures. It can be

observed that the p convergence for the quadrilaterals, for all the meshes stagnates

at order 4 but for triangles it requires order 7. The reason being that, due to the

tensor product structure of the problem and since quadrilaterals are already bilinear

in nature at the lowest order case and that for higher order, the quadrilaterals are

able to reproduce solution of the form f(x)f(y) with both f(x) and f(y) of degree

p, the accurately capture the solution at the order 4. In the case of triangles, which

don’t have a tensor product structure, they capture the solution only with elements

of order 7 or more. Apart from the above discussion, the other observation is that

the p convergence for different mesh spacings are exponential for both triangles and

quadrilaterals. The h convergence is algebraic.

Next the variation in L2 norm of numerical error in velocity solution is studied for

various values of the Poisson’s ratio, keeping other parameters constant. The method

B is used and the discretization consists of a mesh of uniformly sized triangles with

spacing h = 0.1 and order p = 4. The Figure. 3.26 shows the Poisson’s ratio vs the

error, with error in logarithmic scale. It can be inferred that, as the Poisson’s ratio

goes closer to 0.5, the error drops down steeply, and this requires further magnification

of the region representing the Poisson’s ration very near to 0.5. The zoomed region is

shown in Figure. 3.27. The plot now is in logarithmic scale in Poisson’s ratio and the

error to capture the change in the plot effectively. It can be observed that the error
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decreases to some point close to 0.5 and then increases. The reason for the increase

in error is due to the ill-conditioning associated with the choice of ν very close to

0.5. In the limiting case of ν = 0.5, the matrix is singular. The optimal value of the

Poisson’s ratio found from this plot is employed for all the simulations.

The convergence analysis for pressure is subsequently shown for methods A and

B. From figure. 3.22 it is observed that h convergence for triangles is algebraic and

is very slow and at the maximum only one order reduction in magnitude can be seen,

whereas there is no h convergence for quadrilaterals. The Figure. 3.23 shows the p

convergence for the methodA. For the triangles there is only a one order of magnitude

fall, whereas for quadrilaterals there is a two order of magnitude fall, but for both the

discretizations, the the convergence does not go down beyond 10−2, as the order p is

increased. Next the h convergence for method B is shown in Figure. 3.24. For both

triangles and quadrilaterals, the convergence is algebraic and it there is one order of

magnitude fall. But it is better than the method A for the quadrilaterals since, in

the method A, there was no h convergence for quadrilaterals. Next the Figure. 3.25

shows the p convergence for pressure in the method B. It can be seen for triangles

that the convergence is not rapid and it stops around 10−1, which is not good, and is

similar to the method A. However, the p convergence for quadrilaterals is better than

the method A, as it can be observed that for the mesh spacing 0.05, there is 3 order

fall upto 10−3. Furthermore the convergence for the pressure is not very satisfactory

since, it is not the the hydrostatic pressure, i.e. the incompressible constraint is not

strictly imposed.
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Figure 3.17: Pressure plot in the domain (exact) as in [2]
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Figure 3.18: h convergence for triangles and quadrilaterals in method A for velocity
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Figure 3.19: p convergence for triangles and quadrilaterals in method A for velocity
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Figure 3.20: h convergence for triangles and quadrilaterals in method B for velocity
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Figure 3.21: p convergence for triangles and quadrilaterals in method B for velocity
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Figure 3.22: h convergence for triangles and quadrilaterals in method A for pressure
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Figure 3.23: p convergence for triangles and quadrilaterals in method A for pressure
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Figure 3.24: h convergence for triangles and quadrilaterals in method B for pressure
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Figure 3.25: p convergence for triangles and quadrilaterals in method B for pressure
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Figure 3.27: Logarithm of error vs the logarithm of (ν − 0.5) [zoomed]

3.8.3 Results for lid driven cavity problem

Now the numerical results of benchmark problem of Lid driven cavity is analyzed.

The method B is used with a triangular mesh. Since this problem does not posses an

analytical solution, the established benchmark numerical results in the literature are

used to compare with the computed solution. First the contour plot of the horizontal

velocity is shown in Figure. 3.28. If looked closely, it can be observed that there is

a primary vortex formed at the center. It can be clearly seen in the vector plot in

Figure. 3.29. Next the Figure. 3.30, the computed profile of horizontal velocity along

the vertical geometric center is compared with the literature [2]. The numerical result
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matches exactly with the literature profile [2]. Next the result is compared with the

other standard references in the literature in Figure. 3.31. Although the numerical

result is compared directly with the Navier Stokes solutions given in the literature, it

is to be noted that as the Reynolds number decreases the computed velocity profile

coincides more with the profile in the literature. Furthermore, the same velocity

profile is computed for increasing order and compared with the reference. It is shown

in Figure. 3.32. It can be noted in this figure that, as the order increases, the

numerically computed velocity profile matches well with the literature profile [2].

Thus the results are discussed in detail for the validation of the solver with the

benchmark problems. Nice convergence of all the problems considered shows that

the code has been successfully benchmarked.
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Chapter 4

Analysis of the coupled problem

4.1 Introduction

Chapter 2 and chapter 3 involve the analysis of the individual fields of electrostatics

and fluid mechanics. In this chapter, the coupled problem of electrostrictive fluids

is treated, where the electrostatics field and fluid mechanical field is coupled, the

fluid being a dielectric. Initially the equations governing electrostatics and fluid

mechanics are once again introduced. Next the equations governing the coupled

problem is presented and the finite element formulation is described. The algorithm

for the coupled solution is presented next and finally a series of numerical examples

are presented and simulation results are shown.

4.2 Governing equations of electrostatics and fluid

mechanics

As a precursor to this chapter, a reminder of the governing equation of electrostatics

and fluid mechanics are presented. The strong form of electrostatics problem is shown

below

∇ · (ϵr∇ϕ) = 0 in ΩE

ϕ = ϕD on ∂ΩD
E

n · (ϵr∇ϕ) = fN on ∂ΩD
E

(4.1)

where ϕ is the electrostatic potential, ϵr is the relative permittivity, ΩE is the elec-

trostatic domain, ∂ΩD
E is the Dirichlet boundary and ∂ΩN

E is the Neumann boundary

in the domain and the complete electrostatic boundary is ∂ΩE = ∂ΩD
E ∪ ∂ΩN

E . Once

62
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the ϕ is determined, the scaled electric field can be computed by E = −∇ϕ. Next

the strong form of the fluid mechanics problem is shown below

−µ∇2u+∇p = f in ΩF

∇ · u = 0 in ΩF

u = uD on ∂ΩD
F

t = −np+ µ(n · ∇)u on ∂ΩN
F

(4.2)

where u is the velocity, p is the pressure, µ is the dynamic viscosity, t is the traction,

uD is the velocity at the Dirichlet boundary, ΩF is the fluid mechanics domain, ∂ΩD
F

is the Dirichlet boundary and ∂ΩN
F is the Neumann boundary in the domain and the

complete fluid mechanical boundary is ∂ΩF = ∂ΩD
F ∪ ∂ΩN

F .

4.3 The electrostrictive fluid problem

Electrostriction is an effect which arises when the domains of the electrostatics and

fluid mechanics intersect, as it is shown in Fig. 4.1.

E
Ω

F
Ω

E F
Ω Ω∩

Figure 4.1: Problem domain for electrostriction

In the coupled problem ΩE ∩ ΩM ̸= 0. The term electrostriction comes from the

property of the dielectric medium, which deforms under the application of an electric

field. So, in the electrostrictive fluid problem, when the electric field is applied, there

is a deformation in the fluid. This effect can be represented by a source term on the
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right hand side of the momentum equation of the fluid, which can be written as

f̃ = fE + f (4.3)

where f̃ is the total body force of the problem, which is a combination of the body

force in the fluid mechanics domain, f and the body force due to the electrostrictive

effect, fE. The electrostrictive body force is given as

fE = ∇ · σE (4.4)

where σE is the stress acting due to the electric field. In this particular case of an

electrostrictive fluid, it can be expanded [20] as

σE = (σE)0 + (σE)F (4.5)

The term (σE)0 denotes the Maxwell stress and accounts for the effects associated

to the existence of an electric field in free space and the term (σE)F is due to the

existence of a dielectric material perturbing the free space [21]. The term (σE)0 can

be written as

(σE)0 = ϵ0E ⊗ E − ϵ0
2
(E · E)I (4.6)

where E is the electric field vector. The eq. (4.6) can also be re-written in terms of

the rescaled electric field vector as

(σE)0 = E⊗ E− 1

2
(E · E)I (4.7)

The other part (σE)F can be written as

(σE)F = ϵ0(ϵr − 1)E ⊗ E − ϵ0
2
(ϵr − 1)(E · E)I (4.8)

which can be re-written interms of rescaled electric field as

(σE)F = (ϵr − 1)E⊗ E− 1

2
(ϵr − 1)(E · E)I (4.9)

Therefore the electrostrictive stress σE in terms of the rescaled electric field becomes

σE = ϵrE⊗ E− ϵr
2
(E ·E)I (4.10)
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This solution in eq. (4.10) is obtained by substituting dielectric constants ϵ1r = 0 and

ϵ2r = 0 into the form of (σE)0 and (σE)F for the general electrostrictive material as

described by Gil and Ledger [21]. Next the strong form of the problem is shown.

4.3.1 Strong form of the problem and Galerkin formulation

Since a partitioned approach is used, one must first obtain the solution for the elec-

trostatic problem and then solve the electrostrictive fluid problem. Hence the strong

form of the electrostatics problem has to be defined first. It is defined once again as

∇ · (ϵr∇ϕ) = 0 in ΩE

ϕ = ϕD on ∂ΩD
E

n · (ϵ∇ϕ) = fN on ∂ΩD
E

(4.11)

Next the strong form of the electrostrictive fluid problem can be stated as follows

−µ∇2u+∇p = f̃ in ΩF

f̃ = f in ΩF \ (ΩF ∩ ΩE)

f̃ = f+∇ · σE in ΩF ∩ ΩE

σE = ϵrE⊗ E− ϵr
2
(E · E)I in ΩF ∩ ΩE

u = uD on ∂ΩD
F

t̃ = t+ n · σE on ∂ΩN
F ∩ ∂(ΩF ∩ ΩE)

t̃ = t on ∂ΩN
F \ (∂ΩN

F ∩ ∂(ΩF ∩ ΩE))

(4.12)

where t̃ is the traction vector which is equal to t+ n · σE on the part of Neumann

boundary for the fluid problem that intersects with the electrostatic domain and equal

to t everywhere. Two different formulations discussed in the previous chapter are used

for analysis, namely the penalty function formulation and the mixed approach for

the penalty formulation, which would be called as mixed method in this chapter for

convenience. Their respective weak forms are shown in the subsequent section.
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4.3.2 Weak form of the problem

Initially the weak form of the electrostatic problem is defined. The trial and test

spaces for the electric potential is given as

X = {ϕ ∈ (H1(ΩE)), ϕ = ϕD on ∂ΩD
E} (4.13)

Y = {ϕ ∈ (H1(ΩE)), ϕ = 0 on ∂ΩD
E} (4.14)

(4.15)

Hence the weak form can be stated as

find ϕ ∈ X such that

(ϵr∇ϕ,∇w)ΩE
=

∫
∂ΩN

E

n · ϵr∇ϕwdΩ + (ρV , w)ΩE
∀w ∈ Y (4.16)

where

(ϵr∇ϕ,∇w)ΩE
=

∫
ΩE

ϵr∇ϕ · ∇wdΩ (4.17)

(ρV , w)ΩE
=

∫
ΩE

ρvwdΩ (4.18)

Next the weak form for the electrostrictive fluid is written. The trial and test spaces

for the velocity and the pressure are defined as

V = {u ∈ (H1(ΩF )),u = uD on ∂ΩD
F } (4.19)

W = {w ∈ (H1(ΩF )),w = 0 on ∂ΩD
F } (4.20)

Z = {p ∈ L2(ΩF )} (4.21)

This weak form of the problem for the penalty and mixed method, follows in the

same veins to the one shown in the previous chapter except that, this time there is

the additional two components in the right hand side due to electrostriction. Hence,

the weak form for the penalty function formulation can be written as

find u ∈ V such that ∀ w ∈ W

a(u,w)ΩF
= (w, f)ΩF

+ (w, t)∂ΩN
F
+ b(σE,w)ΩE∩ΩF

+ c(σE,w)∂(ΩE∩ΩF ) (4.22)
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where

a(u,w)ΩF
=

∫
ΩF

∇sw : C : ∇su∂Ω−
∫
ΩF

λ(∇ · u)(∇ ·w)dΩ (4.23)

(w, f)ΩF
=

∫
ΩF

w · fdΩ (4.24)

(w, t)∂ΩN
F

=

∫
∂ΩN

F

w · tdΩ (4.25)

b(σE,w)ΩE∩ΩF
=

∫
ΩE∩ΩF

σE : ∇wdΩ (4.26)

c(σE,w)∂(ΩE∩ΩF ) =

∫
∂(ΩE∩ΩF )

w · (σEn)dΩ (4.27)

Similarly the weak form for the mixed method, where the solution is obtained for

both velocities and pressure, can be written as

find u ∈ V and p ∈ Z such that ∀ w ∈ W and q ∈ Z

d(u,w)ΩF
− (∇ ·w, p)ΩF

= (w, f)ΩF
+ (w, t)∂ΩN

F
+ e(σE,w)ΩE∩ΩF

+ f(σE,w)∂(ΩE∩ΩF )

(4.28)

−(q,∇ · u+ p/κ)ΩF
= 0 (4.29)

where

d(u,w)ΩF
=

∫
ΩF

∇sw : C : ∇su (4.30)

(∇ ·w, p)ΩF
=

∫
ΩF

λ(∇ · u)(∇ ·w)dΩ (4.31)

(q,∇ · u+ p/κ)ΩF
=

∫
ΩF

q(∇ · u+ p/κ)dΩ (4.32)

(w, f)ΩF
=

∫
ΩF

w · fdΩ (4.33)

(w, t)∂ΩN
F

=

∫
∂ΩN

F

w · tdΩ (4.34)

e(σE,w)ΩE∩ΩF
=

∫
ΩE∩ΩF

σE : ∇wdΩ (4.35)

f(σE,w)∂(ΩE∩ΩF ) =

∫
∂(ΩE∩ΩF )

w · (σEn)dΩ (4.36)
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4.3.3 Galerkin formulation

The Galerkin finite element approximation of the weak form for the electrostatics

problem can be stated as

find ϕhp ∈ Xhp such that

(ϵr∇ϕhp,∇whp)ΩE
=

∫
∂ΩN

E

n · ϵr∇ϕhpwhpdΩ + (ρV , whp)ΩE
∀whp ∈ Yhp (4.37)

where Xhp ⊂ X and Yhp ⊂ Y . Likewise, the Galerkin counterpart for the weak form

of the penalty function formulation is stated as

find uhp ∈ Vhp such that

a(uhp,whp)ΩF
= (uhp, f)ΩF

+ (whp, t)∂ΩN
F
+ b(σE(ϕhp),whp)ΩE∩ΩF

+c(σE(ϕhp),whp)∂(ΩE∩ΩF )

(4.38)

∀ whp ∈ Whp. Similarly the Galerkin counterpart for the weak form of the mixed

method is stated as

find uhp ∈ Vhp and php−1 ∈ Z such that

d(uhp,whp)ΩF
− (∇ ·whp, php−1)ΩF

= (whp, f)ΩF
+ (whp, t)∂ΩN

F

+e(σE(ϕhp),whp)ΩE∩ΩF
+ f(σE(ϕhp),whp)∂(ΩE∩ΩF )

(4.39)

and

−(qhp−1,∇ · uhp + php−1/κ)ΩF
= 0 (4.40)

∀ whp ∈ Whp and qhp−1 ∈ Zhp−1 where Vhp ⊂ V and Whp ⊂ W and Zhp−1 ⊂ Z.

Next the algorithm implemented in the project for the coupled solver is shown.

4.4 Coupled solver strategy

As was explained at the beginning of this chapter, the coupling of the electrostatics

and fluid mechanical fields is due to the source term appearing in the governing

equation of Stokes flow, which is due to the electrostrictive effects. The source term

being ∇ · σE. The electrostrictive stress σE is a function of the electric field, which,

in turn, is a function of the electrostatic potentials. The form of the coupling in this
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case is one-way since the computed velocities and pressure for the electrostrictive

fluid does not affect the electrostatic field. In other words the permittivity in the

electrostatic field is invariant to the velocity and pressure field. The algorithm which

is implemented is shown below.

Algorithm 1 One-way coupling algorithm
◃ Input ϵr

◃ Compute ϕhp in the electrostatics field problem

◃ Compute E = −∇ϕhp

◃ Set σE = ϵrE⊗ E− ϵr
2
(E · E)I

◃ Compute uhp by solving eq. (4.38) or eq. (4.39)

4.5 Benchmark example

The benchmark example chosen for this problem is illustrated in Figure. 4.2, which is

case of an infinite fluid domain with rigid dielectric insert subjected to unidirectional

compression(t) and uniform Electric field (E) in the infinity. Also in the same figure,

the permittivity of the insert and the fluid domain are explicitly denoted. This

benchmark example is very similar to the one shown in [21], where an infinite linear

elastic plate is subjected to unidirectional tension. In [21], an analytical solution

for the coupled solution of an electrostrictive plate under the assumption of one-

way coupling between linear elasticity and electrostatics was derived. Based on the

analogy shown in chapter 3 between Stokes flow and linear elasticity, one uses this

analytical solution as an approximate analytical solution for the coupled problem of

electrostrictive fluid in this domain by choosing ν ≈ 0.5.
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Figure 4.2: Benchmark problem for electrostriction

In order to simulate the coupled problem, a finite domain is chosen from the

infinite domain. It is shown in Figure. 4.3. Initially the electrostatics problem is

solved, where the exact solution of the electric potential ϕ is applied on the Dirichlet

boundary. Subsequently for the electrostrictive fluid problem, the analytical tractions

are applied on the Neumann boundary.
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∂Ω

7
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Figure 4.3: Finite domain for electrostriction benchmark problem

From the Figure. 4.3, the domains and boundaries of the electrostatics and the

fluid problem are defined as follows. The domains and boundaries for electrostatics

problem are given as

ΩE = Ω1 ∩ Ω2

∂ΩE = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4 ∪ ∂Ω5 ∪ ∂Ω7
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and subsequently the domains and boundaries for the fluid problem are given as

ΩF = Ω1

∂ΩF = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4 ∪ ∂Ω5 ∪ ∂Ω6

Next the input values for the benchmark problem is defined,

R = 1

E∞ = 1

ϵfr = 2

ϵhr = 1

where R is the radius of the dielectric insert and where ϵfr and ϵhr are the permittivities

of the fluid and the dielectric insert respectively. Furthermore, symmetry boundary

conditions are applied along the symmetry plane and zero displacement conditions

are applied at the interface of the fluid domain and the rigid insert. Moreover, the

Poisson’s ratio used in the simulation is ν = 0.4999. Next, the numerical results for

this benchmark problem will be shown after the next section.

4.6 Numerical exercise

In this section a novel coupled electrostrictive fluid problem is defined and corre-

sponding numerical results are shown later. The benchmark problem for electrostat-

ics, shown in chapter 1 and the lid driven cavity fluid problem, shown in chapter

3 are combined together to create this new coupled problem. The problem in the

Figure. 4.4 will be solved.
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Figure 4.4: Domain and boundary conditions of the numerical example
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Figure 4.5: Finite domain for numerical exercise

From the Figure. 4.5, the domains and boundaries of numerical exercise are

defined as follows. The domains and boundaries for electrostatics problem are given

as

ΩE = Ω1

∂ΩE = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4

and subsequently the domains and boundaries for the fluid problem are given as

ΩF = Ω1

∂ΩF = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4
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The findings of the simulation results of this problem will be shown in the next

section.

4.7 Numerical results and discussion

First the numerical results for the benchmark problem is shown. The domain is

discretized with unstructured mesh of triangular elements with uniform spacing h =

0.4 and order p = 1, 2, 3, 4 are applied. Furthermore, the geometry of the circular

insert is represented exactly using the blending functions [10]. A typical mesh with

spacing h = 0.4 is shown in Figure. 4.6.

Figure 4.6: Mesh with uniform spacing of h = 0.4

The error is measured in the L2 norm, the definitions of which are given in the

appendix. The contour plot of the electric field for mixed method, with h = 0.4 and

p = 2 is shown in Figure. 4.7. Also the velocities with the same order and spacing

for mixed method is shown in Figure. 4.8.
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Figure 4.7: Contour plot of the electric field

Figure 4.8: Contour plot of the velocity

The convergence plot for velocities is shown for the penalty function formulation

and the mixed method in the Figure. 4.9. In both the cases a p refinement is done

and the downwards sloping curve indicates exponential convergence of the solution.

Here it is important to remark that, since penalty method and the mixed approach for

the penalty formulation employ essentially the same methodology as the analytical

solution (i.e. both are linear elastic solvers which act as regularized Stokes flow

solvers), they converge exponentially fast to the analytical solution, which represents

the exact solution of the linear elastic problem and not the Stokes flow solution.
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Figure 4.9: p convergence for the penalty and mixed methods

The error associated with using a regularized Stokes flow solution is not accounted

for here, but, based on the solutions shown in chapter 3, it is believed to be small.

Next the results for the numerical exercise of the cavity problem is shown. A mixed

method is used for this simulation. A typical mesh with spacing h = 0.1 for this

problem is shown in Figure. 4.10.

Figure 4.10: Mesh with uniform spacing of h = 0.1

The simulation is for order p = 2. Also the Poisson’s ratio is 0.4999 and the

viscosity of 0.3333. The vector plot of the velocity is obtained in order to get an

intuitive picture of the flow pattern. These effects are shown in the Figure. 4.11.
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Figure 4.11: Velocity vector plots for various values of potentials ϕ

The sequence of results shown in Figure. 4.11, can be described as follows. The

potential ϕ is applied on ∂Ω3. It is explained before how the value of applied potential

affects the strength of the electric field and in turn, the electrostrictive stress. But

excluding the effects of electrostriction, there is a flow circulation zone created at

the center of the domain due to the applied velocity on the boundary ∂Ω3. However,

when the electrostrictive effects are considered, the flow pattern changes. This change
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begins when the value of ϕ changes. For small values of ϕ, the effects of the applied

velocity is dominant. However, as the value of ϕ is increasing, the strength of the

electric field grows, and so does the electrostrictive stress. Since this electrostrictive

stress acts as a source term in the fluid problem, its dominance in the problem

increases. This effect can be seen the Figure. 4.11. Due to the applied potentials,

there is a counter vortex created and its strength increases as the value of ϕ increases.

Thus the finding from this simulation is that, for a constant velocity of the lid,

when the applied potential is increased, there is a counter vortex generated at the

top left corner.

The application of this numerical exercise may be used for simulation of electro-

osmotic flow over a super-hydrophobic surface, which is a current research topic at

Technical University of Darmstadt [1], where the coupling is very simular to the one

described in the project. There are variety of applications for electro-osmotic flows,

as described in chapter 1. Furthermore, there can be many type of extensions for

this project, which are told in the next chapter.



Chapter 5

Conclusions

5.1 Conclusion

The objective of this project were to investigate and numerically analyze the coupled

phenomena of electrostatics and fluid mechanics. The project was split into three

parts, first the analysis of the electrostatics field, next the analysis of the fluid field,

and then the coupled analysis of the electrostrictive fluid.

Initially the benchmark simulations for the electrostatics problem were performed.

The benchmark problem contained two singularities at the top corners due to inter-

section between Dirichlet boundaries. The convergence for the problem was obtained

using the analytical solution. The h, p and the hp refinements were utilized to ob-

tain the convergence plots. It was found that the convergence for h refinement was

algebraic as expected and for p refinement the convergence was exponential but the

drop in the error was similar to the drop during h refinement. This was due to the

singularities present in the problem. However, a non uniform mesh was utilized and

hp refinement was done. It turned out that the convergence was faster and the error

dropped more rapidly.

The fluid problem was simulated using the penalty function formulation and the

mixed method for the penalty formulation (hence forth referred to as mixed method).

Firstly, the penalty function formulation was used, where the solution is obtained only

for the velocities and then the mixed method was used where the solution is obtained

for both velocities and the pressure. Three different benchmark simulations were

performed for both formulation for the same. Initially the Poiseiulle’s flow problem
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was solved, then the problem with a source term, and later the lid driven cavity

problem was simulated. Exponential convergence was obtained for Poiseiulle’s flow

and the problem with a source term. The lid driven cavity problem was compared

with the standard literature and the results were practically identical.

After performing the individual analysis of the electrostatics and the fluid field,

the coupled problem is investigated. The key coupling phenomena arises due to the

stresses created due to the electric field, which then acts as a source term in the fluid

problem. The one-way coupling algorithm was implemented and the numerical results

were benchmarked with an analytical solution. Moreover, exponential convergence

was obtained using the p refinements. Furthermore, a novel numerical exercise is

analyzed, so as to find how the coupling affects the flow physics of this particular

problem. Possible applications include the electroosmotic flow, which is described in

chapter 1.

Thus the objectives of this project are met to a satisfactory level, since all the

results were benchmarked with the analytical solution and the available literature.

A summary of the findings in this thesis work are listed as follows

1 Initial benchmarking simulations for the electrostatics problem was done with h,

p and hp refinements and it is found that an optimal combination of h and p

refinements result in exponential convergence for the problem with singularities.

2 During the simulation of the fluid field, it was found that the penalty function for-

mulation exhibited locking behavior, which was then alleviated using successive

p refinements.

3 It was found that the mixed method had much better conditioning of the stiff-

ness matrix compared to the penalty function formulation, by observing the

eigenspectrum of the element stiffness matrix.

4 The Poisson’s ratio vs the error is plotted for the fluid problem and after successive

increase in the Poisson’s ratio the error decreased until a certain point, after
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which the error increased. Thus an optimal value of the Poisson’s ratio was

obtained from this exercise.

4 The p convergence for the velocities in the benchmark problems of the fluid field

with analytical solutions was exponential in nature.

5 Furthermore, the velocity profile obtained from the simulation of the lid driven cav-

ity problem matched exactly with the one obtained in the standard literature.

This further reiterates that the given code is benchmarked.

6 Next, the coupled solver was implemented and the results obtained for p refine-

ments were exponential in nature.

7 The numerical exercise was simulated and it was found that as the magnitude of

the applied potential is increased, its effect is more dominating in the flow,

which is seen as the counter vortex created in the flow domain. This effect is

because of the dominant source term in the fluid field, which is a function of

the electric field.

5.1.1 Further work

As it is, the work in the thesis can be applied directly to the current research in

the electroosmotic flows for the superhydrophobic surfaces [1]. Moreover, the chaotic

mixing in microchannels using the electroosmotic flow can be simulated using the

idea in the thesis. Possible immediate extensions will be to simulate such flows in

2D. Further extension could include the extension to 3 dimensional simulations and

including unsteady effects, however, this could involve time integration and mass

matrices which increases the complexity of the simulation. The simulation of elec-

trostatic fluid accelerators also require the evaluation of current density, thus neces-

sitating the solution of an additional PDE.

Other possible future extensions of the thesis could involve coupling the complete

electromagnetic field and the fluid field, thus requiring the solution of the complete
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set of Maxwell’s equations and the full set of Navier-Stokes equations. This coupling

phenomena is the magnetohydrodynamic phenomena. The applications of which,

includes simulation of the Tokamak type nuclear reactors [22], simulation of solar

winds [23], simulation of the earth’s crust [24] etc.



Appendix A

Function Space Definitions and

Error Norm

For a domain Ω ⊂ Rd, d = 1, 2, 3, one can define the function space L2(Ω) of square

integrable functions on Ω by saying that f ∈ L2(Ω) if and only if

∥f∥ :=

(∫
Ω

|f(x)|2dx
)1/2

< ∞ (A.1)

The norm f has the following properties

∥f∥ = 0 if and only if f = 0

∥f + g∥ = ∥f∥+ ∥g∥ for all f, g ∈ L2(Ω)

∥αf∥ = α∥f∥ for all α ∈ R, f ∈ L2(Ω)

(A.2)

Also the Sobolev space H1(Ω) is defined by saying that f ∈ H1(Ω) if and only if

∥∇f∥2 + ∥f∥2 < ∞ (A.3)

which implies both the function and its gradient must be square integrable. Further-

more, the L2 norm of the error, which is used for showing the convergence plots in

various chapters, is defined as

∥e∥L2 = [

∫
Ω

(uexact − uFE)
2dΩ]1/2 (A.4)

where uexact represents the exact solution and uFE is the finite element solution.
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Numerical Results for Helmholtz

Equation in 1D

In the first chapter, there was a discussion on higher order shape functions in one

dimension. These shape functions are used for the finite element solution of the

Helmholtz problem in one dimension. The problem is initially defined and the results

are discussed later.

B.1 Problem Description

Many problems related to wave propagation are governed by Helmholtz equation.

Here only 1D Helmholtz equation is analysed since the main purpose of this chapter

is to understand why higher order approximations are used. The strong form of the

Helmholtz equation with the given set of boundary conditions, is defined as

∇2ϕ+ k2ϕ = 0 in Ω (B.1)

ϕ(x0) = ϕ0 (B.2)

ϕ(xL) = ϕL (B.3)

where k is the wave number which is taken as a constant. In this problem only

one dimension analysis is done. The corresponding domain for the problem can be

visualized in the Figure B.1.
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Figure B.1: Domain and possible boundary condition for the given electrostatics

problem

where Ω = 0 ≤ x ≤ L is the problem domain, ΓN is the Neumann boundary

condition and ΓD is the Dirichlet boundary condition. It is an one dimensional

problem. In this particular case analyzed, the boundary condition on both ends of

the domain is given to be Dirichlet type. The analytical solution of the Helmholtz

Boundary Value Problem (BVP) with the given set of boundary conditions simplifies

to be

ϕ = A cos px+B sin px (B.4)

and the boundary conditions are

ϕ(x0) = ϕ0 and ϕ(xL) = ϕL (B.5)

so the values of A and B are

A = ϕ0 and B = (ϕ(xL)− ϕ0coskL)/(sinkL) (B.6)

B.2 Finite element solution

Before solving in a computer it is needed to get the weak form of the problem.

And from the weak form the linear system to be solved is obtained. After that

the discretization is performed and then the employment of the higher order shape

functions are discussed.
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B.2.1 Derivation of the weak form and the formulation

Considering a general case i.e. equation defined is common in all three spatial dimen-

sions. Now a weighting function w is used and the Helmholtz equation is integrated

over the domain Ω ∫
Ω

(∇2ϕ+ k2ϕ)wdΩ = 0 (B.7)∫
Ω

w∇2ϕdΩ = −
∫
Ω

k2ϕwdΩ (B.8)

but in order to integrate by parts chain rule is used, w∇2ϕ = w∇·∇ϕ = ∇· (w∇ϕ)−

∇w · ∇ϕ. Therefore,∫
Ω

(∇ · (w∇ϕ)−∇w · ∇ϕ)dΩ = −
∫
Ω

k2ϕwdΩ (B.9)

∫
Ω

∇ · (w∇ϕ)dΩ−
∫
Ω

∇w · ∇ϕdΩ = −
∫
Ω

k2ϕwdΩ (B.10)

Now using the divergence theorem implies
∫
Ω
∇·(w∇ϕ)dΩ =

∫
∂Ω

n ·(w∇ϕ)dS There-

fore Eq.(B.10) becomes∫
Ω

∇w · ∇ϕdΩ−
∫
Ω

k2ϕwdΩ =

∫
∂Ω

n · (w∇ϕ)dS (B.11)

So the problem presents itself as to find ϕ ∈ H1(Ω) such that∫
Ω

∇w · ∇ϕdΩ−
∫
Ω

k2ϕwdΩ =

∫
∂Ω

n · (w∇ϕ)dS ∀w ∈ H1(Ω) (B.12)

The above equation is known as the weak form of the problem, where H1(Ω) is called

the Sobolev space. Now, for the one dimensional case considered here, the succeeding

equations can be alternatively written as[
w
dϕ

dx

]L
0

−
∫ L

0

∂ϕ

dx

dw

dx
dx+

∫ L

0

k2ϕwdx = 0 (B.13)

Following the finite element method ϕ is expanded as

ϕ ≈ ϕH =
M∑
i=1

ϕiNi(x, y) (B.14)
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It is known that by Galerkin’s method the weighting functions are chosen as the

shape functions themselves [15] i.e. Ni(x, y) (i = 1, 2, ....m).

Therefore from Eq. B.13 becomes∫ L

0

dNi

dx

dNj

dx
dx−

∫ L

0

k2NiNjdx =

[
Ni

dϕ

dx

]L
0

(B.15)

which further reduces to

[K − k2M ]ϕ = b (B.16)

where K is the stiffness matrix, M is the mass matrix and b is the load vector, given

as

K =

∫ L

0

dNi

dx

dNj

dx
dx, M =

∫ L

0

k2NiNjdx and b =

[
Ni

dϕ

dx

]L
0

(B.17)

B.3 Higher order shape functions

This section describes the higher order shape functions used in the finite element

analysis. Their utility and advantages are already explained in chapter 1. The higher

order shape functions are of two basic types. One is the nodal type and the other is

the hierarchical type. In the nodal approach the degrees of freedom correspond to

specific solution points. For the one dimensional problem discussed, the nodal shape

functions are shown in chapter 1. Regarding the hierarchical shape function, there

are three versions. The version 1 is shown in [11]. The version 2 is an improvement

over version 1 since these shape functions can extend to higher orders than cubic

approximations. They are defined as

Np(ξ) =

 1
p!
(ξp − 1)

1
p!
(ξp − ξ)

,
dNp

dξ

 1
p!
(pξp−1)

1
p!
(pξp−1 − 1)

(B.18)

where p≥ 2 is the order of the polynomial. Next the version 3 of the hierarchical

shape function is defined as the integral of each set of polynomials from −1 ≤ ξ ≤ 1.

This polynomial is called as Legendre polynomial. It is defined as

Pp(ξ) =
1

(p− 1)!

1

2p−1

dP p

dξp
[(ξ2 − 1)p] (B.19)
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The corresponding shape functions are

Np(ξ) =
1

2p− 1

(
Pp(ξ)− Pp−2(ξ)

)
,
dNp

dξ
(ξ) =

1

2p− 1

(
dPp

dξ
(ξ)− dPp−1

dξ
(ξ)

)
(B.20)

More on these shape functions are given in [11].

B.4 Results and discussion

The computer program in [11] is utilized to obtain the results. Furthermore MAT-

LAB scripts are written to obtain the convergence plots for the results. These plots

are for a particular wave number of 20 unless otherwise stated, and for uniform mesh

discretization. The euclidean norm is used to calculate the error between the numer-

ical and the exact solution. The absolute and relative error are shown as follows

eabs = |ϕexact − ϕnumerical|2 and erel = |ϕexact − ϕnumerical|2/ϕ2
exact (B.21)

and the Euclidean norm ||−→e || =
√∑n

i=1 |
−→e |2. The plots shown in the following

gives a strong indication as to why the higher order method and subsequently why

the hierarchical forms of the shape functions are being utilized. The following is the

discussion for the version one of the shape functions employed. First the nodal and

hierarchical shape functions are compared for h and p refinement. Comparing Figure

B.2 and Figure B.3 it is observed that they have almost similar convergence trend

for h refinement. However, while comparing them for p refinement shows that the

convergence is exponential as it is shown in Figure B.4.

Furthermore the Figure B.4 shows the plots for nodal shape functions. Figure B.5

shows the convergence with hierarchical shape functions. The convergence is again

exponential. Thus is can be ascertained that convergence is better in the case of p

refinement compared to h refinement.

Next we compare the nodal and hierarchical shape functions which are used, with

respect to the condition number. The logarithm of condition number is in the y axis



APPENDIX B. NUMERICAL RESULTS FOR HELMHOLTZ EQUATION IN 1D88

10
0

10
1

10
2

10
3

10
4

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

log(NDOF)

lo
g(

re
la

tiv
e 

er
ro

r)

h−refinement − nodal

 

 
linear
quadratic
cubic

Figure B.2: h refinement with nodal shape functions
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Figure B.3: h refinement with hierarchical shape functions

and the order p is in the x axis. In the Figure B.6 the condition number versus the

order is shown.

It is clear that hierarchical shape function proves to be having better conditioning

properties for the stiffness matrix than the nodal shape function. However the above

discussion was for version one of the shape functions which were discussed before.

Current implementation of the version one has a limitation that it cannot be used

for orders greater than three, but the versions two and three are capable of going
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Figure B.4: p refinement with nodal shape functions
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Figure B.5: p refinement with hierarchical shape functions

beyond order three. Now the results for version two and version three of the shape

functions are discussed and compared with each other. Figure B.7 and Figure B.8

shows the h refinement for a quadratic order. It is observed that the convergence is

linear.

Next results for p refinement is shown for versions two and three in Figure B.9

and Figure B.10. It is seen that the convergence is exponential. It can be inferred

that p refinement is again better than h refinement for Helmholtz problem, and for
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Figure B.6: Condition number comparison of the stiffness matrix for nodal and

hierarchical approach
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Figure B.7: h refinement for hierarchical shape functions - version 2

similar problems with no singularities. The versions two and three show in depth

convergence compared to version one.

Next the condition number for the stiffness matrix is compared for all the versions

in the Figure B.11. The wave number used was k = 1, since for higher wave numbers

the numerical solution has decreasing accuracy, the phenomenon called pollution.

This effect is due to the reason that the wave number of the exact solution is different
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Figure B.8: h refinement for hierarchical shape functions - version 3
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Figure B.9: p refinement for hierarchical shape functions - version 2

from the numerical one, the effect being called dispersion [11]. More on dispersion

and pollution effects can be found in [25] and will not be discussed presently since it

is beyond the scope of the thesis.

It can be noted that the version three is the best one among the others since the

condition number increases very slowly with increase in order as compared to the

versions one and two. Since conditioning of the stiffness matrix determines its stabil-

ity, the version three can be chosen as the best option for numerical implementation
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Figure B.10: p refinement for hierarchical shape functions - version 3

Figure B.11: Condition number comparison of the stiffness matrix for different ver-

sions of the hierarchical shape shape functions

of such problems. Apart from the discussion on comparison of the shape functions

used here, the main point to be emphasized is that the p refinement results in expo-

nential convergence always with exception to the presence of singularities. So even

though the higher order shape functions prove to be difficult implementation wise,

they are definitely superior to that of the h refinement. Other conclusion is that the

hierarchical shape functions are proving to be better than the nodal shape functions
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in terms of implementation as well as the conditioning of the stiffness matrix. Thus

the above conclusions about the results of the Helmholtz problem coincide with the

initial discussion on higher order shape functions in chapter 1.
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