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Ecole Centrale de Nantes

A thesis submitted for the degree of

Erasmus Mundus Master

Yet to be decided

ThesisFigs/LOGO.eps


Abstract

This paper deals with two scale modeling of unidirectional Fiber-

reinforced composite material, we are going to present a homogeniza-

tion approach from Microscopic to Macroscopic for prediction of lin-

ear and nonlinear mechanical property of UD composite with Abaqus

and Python scripts.Demonstration of Validity of the introduction of

Periodic Boundary Condition and homogenization procedure will be

given. At last, numerical result will be compared with experimental

data.
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Introduction

Composite Materials are engineered material made from two or more constituent

materials with significantly different physical or chemical properties which re-

main separate and distinct on a macroscopic level within the finished struc-

ture.Composite materials have gained popularity in high-performance products

that need to be lightweight, yet strong enough to take harsh loading conditions

such as aerospace components (tails, wings, fuselages, propellers), boat and scull

hulls, bicycle frames and racing car bodies. Other uses include fishing rods, stor-

age tanks, and baseball bats. The new Boeing 787 structure including the wings

and fuselage is composed largely of composites. Composite materials are also

becoming more common in the realm of orthopedic surgery.

Composites are made up of individual materials referred to as constituent ma-

terials. There are two categories of constituent materials: matrix and reinforce-

ment. The Matrix help to keep the local position of reinforcement constituents

and reinforcement, normally are fibers, can give its mechanical property to the

composite to enhance the overall mechanical property. In this paper we use fiber

as the constituent material for reinforcement, and just talk about unidirectional

fiber reinforcement material. In this particular category of composite material,

all the fibers has the same axial direction.

To utilize the composite in the industrial, we need to know clearly the me-

chanical property of the material. Experiment is doing to find out the mechanical

behavior, but due to the time costing economic reason, it’s necessary to develop

numerical method to get mechanical parameter quickly and accurately.This Mas-

ter thesis is going to explore the numerical method of computing the mechanical

v



parameters of UD composite material. The aim of this action is to reduce the

time of experiment and economic expense. In order to do that, homogenization

method will be used in this paper to identify the overall parameter of UD compos-

ite. To implement it, some development for the commercial software ABAQUS

will be taken place. With this tool, the user could input the 3D geometry of UD

composite in ABAQUS, and input the mechanical parameter of matrix and fiber,

then run the Python scripts developed from this paper, the user could easily get

the overall mechanical property of the composite from the output.

In this paper, we are going to have a brief view of the feature of UD compos-

ite, and homogenization method will be introduced. According to the feature of

ABAQUS, a algorithm for implementation of homogenization procedure is pro-

posed. Then some demonstration is given to verify the validation of the algorithm.

Then a brief user manual of this script will show the steps of utilization. Finally,

some numerical example will be given to compare the result with experimental

data.
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Chapter 1

UD Composite and

Homogenization

1.1 Literature Review

Prediction of the mechanical property of a unidirectional fiber reinforced compos-

ite has been an active research area.We can obtain some parameter of composite

material by doing experiment, but doing that is very time costing and expensive.

Thus numerical simulation is necessary to be introduced to prediction the overall

property of UD composite.It’s a big challenge to develop a accurate and reliable

numerical method to predict the mechanical behavior of composite.

A common idea is replacing heterecious composite material to a kind of equiv-

alent homogenized material. Some theoretical prediction method has been de-

veloped for the elastic modulus of UD composite. They indicated that evern

though resin properties are the predominant factor in transverse modulus and

shear modulus, they can be improved by high modulus fibers such as boron.And

the existing micromechanical models has been compared. Experimental results

on boron fiber reinforced composites indicate reasonable agreement with theory

for longitudinal and transverse modulus, whereas very poor agreement with the-

ory is obtained in the case of shear modulus.4,12,5
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1.2 Feature of UD composite material and Homogenization approach

Beside the effective property of composite material, some researchers begin

to study the micro-scale mechanical behavoir of composite matherial, to get a

deeper understanding of the internal physical information. The study of local

field behavior is in the domain Micromechanics, doing that will involve reason-

able computing effect. Direct numerical simulation by FEM for micromechanics

with periodic microstructures was done in the end of 1960s. Recently, model with

complex microstructures was considered.

Significant progress about replacing the heterogenous material with homoge-

neous material was made in 1970s, with the introduction of mathematical theorem

Homogenization.1 In these research, author focused on linear constituents and

periodic microstructures. After that, research were extended to plastic mate-

rial.7,10,6

1.2 Feature of UD composite material and Ho-

mogenization approach

1.2.1 UD composite material

A typical UD composite material is showed below,the fibers are aligned in one

direction in the matrix. The direction parallel to the fibers is the ”axial” direc-

tion and the direction perpendicular to the fiber is the transverse direction.The

properties of the composite are dependent on the properties of constituents and

orientation of the fiber.

Figure 1.1: Typical UD composite

2
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1.2 Feature of UD composite material and Homogenization approach

The mechanical properties of composite materials are generally not isotropic

due to the diofferents behavior of consitutants and due to the fiber direction The

relationship between stress and strain for an isotropic material in elastic can be

described with three parameters: Young’s Modulus, the Shear Modulus and the

Poisson’s ratio, in a relatively simple form. For the anisotropic material, it re-

quires the mathematics of a second order tensor and up to 21 material property

constants.

For example, the figure below illustrates the different mechanical behavior

under same loading between isotropic material and anisotropic material.(In this

case is the UD composite with the axial direction angle 45 degrees)3

Figure 1.2: Homogeneous Material and UD composite material under same load-

ing

We take an 2D example to illustrate the reason of these differences. For 2D

3
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1.2 Feature of UD composite material and Homogenization approach

problem. The relation below is valid for anisotropic and elastic material.1
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From the equation, we can find that, for anisotropic material, to predict the

mechanical property with more precision in behavior,we need to more parameter.

1.2.2 Introduction of Concept of RVE

The homogenization procedure usually contain introduction of two scales, Marcro-

scale and Micro Scale, Marco-scale is usually refer to a homogenized continuous

medium, and micro-scale is usually related to a statistically representative vol-

ume element11 (RVE originally introduced by Hill 1963).Instead of predicting the

mechanical property of composite, we use homogenization technique and consid-

eration of RVE to predict the overall property from microscopic level.

The RVE must be selected such that the microstructure should be composed

as copies of RVEs, and without overlapping and voids between the boundaries.

The choice of RVE is usually not unique, but it should be big enough to present

the feature of the material and as small as possible to reduce the computation

cost.Also, the RVE should have the same volume friction with the composite.The

figure below gives an example of different selection of RVE.8

1u is the displacement, εx = ∂ux/∂x, εy = ∂uy/∂y, γxy = ∂ux/∂y + ∂uy/∂x

4



1.2 Feature of UD composite material and Homogenization approach

Figure 1.3: Different choice of RVE

1.2.3 Homogenization

We use properties of individual constituents and micromechanical analysis, ho-

mogenization method to predict the overall composite behavior. Homogenization

approach is the ”bridge” between the microscopic and macroscopic. Generally,

there are two principle steps to implicit a homogenization procedure

• Compute microscopic problem with RVE to get local stress and strain

• Use homogenization method to link microscopic problem to macroscopic

problem, and get the global stress and strain

For UD composite material, most of the homogenization approaches assume

that the material has global periodicity on microstructure. Globally the material

is consist of spatially repeated RVE.

There are variety of homogenization approach to predict the property of com-

posite material, for example Mean field method. In this paper, we use Mean Field

Method to predict the property of composites. The Mean field method is widely

used in prediction of composite material because of its relative low computation

5
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1.2 Feature of UD composite material and Homogenization approach

cost which enable us to use implicit constitutive laws in large scale simulations.

With the using of homogenization approach and RVE, we need to pay atten-

tion to following two points.

• The proper selection of RVE

• Because of periodicity of RVE, proper boundary condition should be se-

lected.

1.2.4 Boundary conditions

Periodic Boundary condition are imposed on RVE, and the choice of this bound-

ary conditions has been justified by a number of researchers.They prove that, by

applying periodic boundary condition, we can get more reasonable result compare

with other boundary conditions like stress uniform boundary condition(SUBC) or

kinematic uniform boundary conditions(KUBC). A typical RVE with Periodicity

is showed in below.11

Figure 1.4: A typical RVE with periodic boundary conditions

The periodic boundary conditions imply the following two fact:

• On the opposite surface, the deformation and the orientation should be

same

6
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1.3 Computational Homogenization

• In order to have stress continuity across the boundaries the stress vectors

acting on opposite sides are opposite in direction.

u = Ex + u∗ u∗ is a periodic function

Take the RVE of figure 1.4 as an example. We consider the points on the

boundaries Γ14, Γ23.

u(xΓ14
) = ExΓ14

+ u∗(xΓ14
) (1.1)

u(xΓ23
) = ExΓ23

+ u∗(xΓ23
) (1.2)

Use 1.2-1.1, we have

u(xΓ23
) − u(xΓ14

) = E(xΓ23
− xΓ14

) (1.3)

More generally, we have A and B are two points on the opposite surface of

RVE.Then we have periodic boundary conditions as followed

u(xB) = u(xA) + E(xB − xA) or (1.4)

u(xB) − u(xA) = E(xB − xA) A,B onΓ (1.5)

ε(u(x)) = E + ε(u∗(x)), u∗ periodic (1.6)

Now we introduce the brackets 〈.〉 denote the volume average of a field V .

〈f〉 =
1

|V |

∫

V

f(x) dx

1.3 Computational Homogenization

1.3.1 Initial boundary condition for Microscopic level

In the microscopic level, the material should satisfy the equations below

7



1.3 Computational Homogenization

∇ · σ = 0 inΩ (equilibrium equations) (1.7)

σij = Lijklεkl inΩ (constitutive equations) (1.8)

εij = ui,xj
inΩ (Kinematic equations) (1.9)

ui = ui onΓu (Displacement boundary conditions) (1.10)

σij = ti onΓi (Traction boundary condition) (1.11)

u(xB) − u(xA) = E(xB − xA)

A,BonΓ (Periodic boundary conditions)
(1.12)

1.3.2 Coupling of Microscopic and Macroscopic scales

In classical lamination theory the composite lamina is considered as a homoge-

neous orthotropic material with effective modulus that describe the overall me-

chanical property of composite. To obtain this macroscopic modulus, a homoge-

nization procedure are introduced during the computing linking the microscopic

scale and the macroscopic scale.

One of the mostly used method for homogenization is doing an volume inte-

gration over the RVE to averaging the stress and strain tensor:

σij =
1

V

∫

V

σij(x, y, z) dV (1.13)

εij =
1

V

∫

V

εij(x, y, z) dV (1.14)

We need to demonstrate that this procedure can keep the equivalence of strain

energy between the heterogeneous composite and the homogeneous composite

from averaging the stress and strain.In order to demonstrate the equivalence of

the energy, we assume that we have boundary traction ti and boundary displace-

ment ui.

The strain energy in a homogeneous material with volume V is:

U =
1

2
σijεijV (1.15)
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1.3 Computational Homogenization

The strain energy stored in the heterogeneous material of volume V is:

U ′ = 1
2

∫

V
σijεij V (1.16)

U ′ = 1
2

∫

V
σij(εij + εij − εij) V (1.17)

= 1
2

∫

V
σij(εij − εij) V + 1

2
εij

∫

V
σij V (1.18)

As we have illustrated in Equation 1.13, so we have

U ′ = 1
2

∫

V
σij(εij − εij) V + 1

2
σijεijV (1.19)

= 1
2

∫

V
σij(εij − εij) V + U (1.20)

U ′ − U = 1
2

∫

V
σij(

∂ui

∂xj
− ∂ui

∂xj
) V (1.21)

= 1
2

∫

V
[
∂σij

∂xj
(ui − ui) +

∂(σij(ui−ui))

∂xj
] V (1.22)

Use the equilibrium equation

∂σij

∂xj

= 0

We can write the energy difference as

U ′ − U =
1

2

∫

V

∂

∂xj

[σij(ui − ui)] V (1.23)

By using Gauss theorem we can transform the integration of the volume into

the integration of the surface

U ′ − U =
1

2

∫

S

σij(ui − ui)nj S (1.24)

S is the surface of the RVE, and n denote the unit outward normal vector

and On the surface S, we have

ui = ui

So we have conclusion that

U = U ′

The derivation above showed that, the homogenization we used ensure the

equivalence between the heterogeneous RVE and the homogenized RVE.
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Chapter 2

Implement Homogenization in

Abaqus

2.1 Introduction of implementation

In order to implement the Periodic Boundary Conditions in Abaqus, we need to

use constrain functions in Abaqus, however, this functions is designed for points

constrain only. To apply this BC on the all boundaries of the model, we need

to creates hundreds of constrain equations for every couple of points on the cor-

responding surfaces. Considering the scale of the problem, it’s not realistic to

create the constrain equations manually.

Abaqus Scripting Interface(API) enable us to costmize the Abaqus ourselves.

With the API, we can

• Automate repetitive tasks

• Extend functionality

• Enhance the interface

Creating the constrain equations is a kind of repetitive task, so it is possible

to do that with API.

10



2.1 Introduction of implementation

Python is the standard programming language for ABAQUS products, it has

a very good compatibility with Abaqus.In Abaqus,

• The ABAQUS environment file uses Python statements.

• The parameter definitions on the data lines of the *PARAMETER option

in the ABAQUS input file are Python statements.

• The parametric study capability of ABAQUS requires the user to write and

to execute a Python scripting (.psf) file.

• ABAQUS/CAE records its commands as a Python script in the replay

(.rpy) file.

• You can execute ABAQUS/CAE tasks directly using a Python script.

• You can access the output database (.odb) using a Python script.

And Python is an interpreted language. This means you can type a statement

and view the results without having to compile and link your scripts. Experi-

menting with Python statements in Abaqus is quick and easy.9

These advantages make Python the best programming language for creating

scripts for Abaqus.

In this chapter, we are going to illustrate how to implement homogenization

procedure in Abaqus and give some demonstrations of validity.First we are going

to have some preview of Python language, after that, the constrain equation

function in Abaqus will be introduced. Then, the general structure of Python

scripts will be given, at last, some demonstration will be given to proof the validity

of the method.

11



2.2 Use Python scripts to implement homogenization

2.2 Use Python scripts to implement homoge-

nization

2.2.1 Abaqus Scripting Interface and Python

The Abaqus Scripting Interface is an application programming interface (API)

to the models and data used by Abaqus. The Abaqus Scripting Interface is an

extension of the Python object-oriented programming language; Abaqus Scripting

Interface scripts are Python scripts. You can use the Abaqus Scripting Interface

to do the following:9

• Create and modify the components of an Abaqus model, such as parts,

materials, loads, and steps.

• Create, modify, and submit Abaqus analysis jobs.

• Read from and write to an Abaqus output database.

• View the results of an analysis.

In Abaqus, there is no option for applying periodic boundary conditions.

Python scripts enable us to implement Homogenization procedure in Abaqus

for composite material.In order to do that, we need to create a python scripts

which should include following functions (This Python scripts inquire the RVE

should be cuboid)

• Read the mesh database and find the boundaries

• Scan the geometry model and find opposite surfaces

• Pick up corresponding coordinates of opposite surfaces from mesh database

• create reference points to implement homogenization approach

• create constrain equations for applying periodic boundary conditions

12



2.2 Use Python scripts to implement homogenization

2.2.2 Constrain equations for periodic boundary condi-

tions

In Interaction module of Abaqus, we can define different kind of interactions

between parts of the model or inside the model. In constrain submodule, it

provide a possibility to create a linear equation constraint by entering data in

the Edit Constraint dialog box. The terms of an equation consist of a coefficient

applied to a degree of freedom of every node in a set.

A linear multi-point constraint requires that a linear combination of nodal

variables is equal to zero; that is,

A1u
P
i + A2u

Q
j + · · · + ANuR

k = 0

Where uP
i is a nodal variable at node P, degree of freedom i, and the An are

coefficients that define the relative motion of the node.In general, we need to

specify following parameters to define a linear constraint equation

• the number of terms in the equation, N

• the nodes, P , and the degrees of freedom, i, corresopnding to the nodal

variables uP
i

• coefiicients, An

For example, to impose the equation

u2
1 − u3

2 − 2u1
5 = 0 ui is the displacement of point i

We need to define three point set to contain point1,point3 and point5. Use

python command

mdb.models[ModelName].rootAssembly.Set(’pointset1’,nodes=Noeuds[(location

in the database)])

Then use command

13



2.2 Use Python scripts to implement homogenization

mdb.models[ModelName].Equation(name=Constraintname,terms=((1.0,’pointset1’,2),(-

1.0,’pointset2’,3),(-2,”pointset3,1)))

to creat the linear constrain illustrate above, we use loops to read the database,

and create the constrain equations automatically.

In our model for 3D cuboid RVE, we need to apply periodic boundary condi-

tion 1.6 to the computation, We have Macroscopic strain matrix E = Eij i, j =

1, 2, 3. In order to include Macroscopic strain component Eij, we can create six

reference point RP-1, RP-2 ... RP-6. Their displacement of degree of freedom

one stand for E11, E12, E13, E22, E23, E33 respectively.1

U1
RP−1 = E11

...

U1
RP−6 = E33

By introducing six reference points, we can apply periodic boundary condi-

tions by creating constrain equations using the python command above in Abaqus.

2.2.3 Validly of homogenization procedure

In this chapter,we are going to demonstrate that the introduction of six reference

could give correct output for macroscopic strain.

To verify the accuracy of the output of macroscopic strain from the displace-

ment of reference points, we need to demonstrate that the displacement of ref-

erence points are exactly the integration of local strain over the RVE. Take the

RVE in fig as an example.

1u is the macro displacement, E11 = ∂ux/∂x, E22 = ∂uy/∂y, E12 = (∂ux/∂y + ∂uy/∂x)/2

14



2.2 Use Python scripts to implement homogenization

Figure 2.1: Representative Element Volume

Because of the different mechanical properties of matrix and fiber, the strain

across the interaction face of matrix and fiber may be not continues, so we divide

the integration area into two, the matrix and the fiber. In order to use Gauss

theorem during the demonstration, we need to ensure the connective property of

integral regions. So we set the boundary of two regions as follow:2

Figure 2.2: Integration contour for square array

Now, we are back to the definition of macroscopic strain. S1 is interaction

surface between fiber and matrix, and S2 is the outer surface of RVE.

ε̄ij =
1

V
(

∫

V

εij dV )

=
1

V
(

∫

Vf

εij dV ) +
1

V
(

∫

Vm

εij dV )
(2.1)

15
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2.2 Use Python scripts to implement homogenization

Use Gauss theorem, transform the integration of volume to the surface inte-

gration

ε̄ij =
1

V
(
1

2

∫

S1

(uinj + ujni) dS))

+
1

V
(
1

2

∫

S2

(uinj + ujni) dS) −
1

2

∫

S1

(uinj + ujni) dS))

(2.2)

So we can get the volume integration of local strain from the displacement of

boundary

ε̄ij =
1

V

∫

S2

(uinj + ujni) dS (2.3)

We assume we are using triangle element mesh, and first order shape function

in the finite element computing. We are going to prove that if Eij satisfy the

constrain equation 1.6, Eij is equal to the volume integration of εij. We take E11

as an example to demonstrate the validity. The RVE model is showed in Fig 2.1

, with lenght, width, and height α, β, γ respectively.

In this Case, we have

uA − uB = αE11 (2.4)

for every point on surface A and B.

In finite element analysis, we use linear combination of shape function to

describe the displacement function. Within a 3-noded triangular element we can

interpolate the displacement as:

U = U1N1 + U2N2 + U3N3 (2.5)

16



2.2 Use Python scripts to implement homogenization

Figure 2.3: Shape functions

Where n1, N2, N3 are shape functions illustrated in Fig 2.3 They are linear

unctions of nondimensional coordinates ξ and η

N1 = ξ, N2 = η, N3 = 1 − ξ − η (2.6)
∫

Ω
Ni ds = 1

3
SΩ (2.7)

We start from one of the element Ae on the surface of A, and with the area

Se,because of the symmetric of mesh, on the opposite side, we have an element Be

which has the same shap with Ae we assume that Ωe = Ae ∪ Be. In element Ωe,

we have constrain equations from the periodic boundary conditions we applied in

the Abaqus.

uAi − uBi = αE11 i = 1, 2, 3 inΩe (2.8)

And

uA =
∑n

i=1 uAiNi in Ae (2.9)

uB =
∑n

i=1 uBiNi in Be (2.10)

Equations 2.8 multiply 1
3
Se ⇒

uAi

1

3
Se − uBi

1

3
Se =

1

3
SeαE11 i = 1, 2, 3 (2.11)

17
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2.2 Use Python scripts to implement homogenization

Because we have 2.7,

N1 = ξ, N2 = η, N3 = 1 − ξ − η (2.12)
∫

Ω
Ni ds = 1

3
SΩ (2.13)

substitude formula 2.7 into equation2.11, we have

∫

Ae

uAiNi ds −

∫

Be

uBiNi ds = SeαE11 i = 1, 2, 3 (2.14)

Because the normal vector of surface A and B are opposite, nA = (1, 0, 0) nB =

(−1, 0, 0) So, we can write 2.14 as

∫

Ωe

uAiNi − uBiNi ds = SeαE11 i = 1, 2, 3 (2.15)

Use relation 2.9,2.10 and sum these three equation, we get
∫

Ωe

uA − uB ds = SeαE11 ⇒ (2.16)

Sum all the element Ωe on the surface A and B, we get the equation for the whole

surface.

∫

Ω
u1n1 ds = V E11 ⇒ (2.17)

E11 = 1
V

∫

S2

u1n1 ds ⇒ (2.18)

εij = E11 (2.19)

The prove for other component of Eij is similar. This prove enable us to

compute the value of Eij in the constrain equation instead of computing the

volume integration in homogenization procedure.

2.2.4 Equation elimination

To apply the periodic boundary conditions, we need to convert the boundary

conditions on the surface into point constrain equations on mesh points. How-

ever, during this procedure, we may have some extra equations which could be

derived by other equations. Solving the equation systems without eliminating

these extra equations could cause singular matrix calculation. Although in some
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2.2 Use Python scripts to implement homogenization

software, they can deal with this kind of cases automatically, but in Abaqus, en-

tering equation systems with extra formulas will cause error. So we need to avoid

such situation and it is necessary to explore our constrain equation systems, and

eliminate extra equations.

We start with 2D single fiber RVE model. And we can see why we need to

eliminate the extra equations. Suppose we have a RVE, length and width are α

and β respectively. Now, we consider equations of four coner points:

uB1 − uA1 = αE11 (2.20)

uB2 − uA2 = αE12 (2.21)

uC1 − uD1 = αE11 (2.22)

uC2 − uD2 = αE12 (2.23)

uA1 − uD1 = βE12 (2.24)

uA2 − uD2 = βE22 (2.25)

uB1 − uC1 = βE12 (2.26)

uB2 − uC2 = βE22 (2.27)

Degree freedom 1 and degree freedom 2 are independent to each other.We

take the solving of DOF 1 as an example to show the necessary of elimination.

uB1 − uA1 = αE11 (2.28)

uC1 − uD1 = αE11 (2.29)

uA1 − uD1 = βE12 (2.30)

uB1 − uC1 = βE12 (2.31)

Write it into matrix form:








−1 1 0 0
0 0 1 −1
1 0 0 −1
0 1 −1 0

















uA1

uB1

uC1

uD1









=









αE11

αE11

βE12

βE12









(2.32)

19



2.2 Use Python scripts to implement homogenization

We can find that the matrix on the left is a singular matrix. So it’s not pos-

sible to do the matrix calculation to get the value of u.

Using elimination to avoid the singular matrix.

uB1 − uC1 = uB1 − uA1 + uA1 − uD1 + uD1 − uC1

= αE11 + βE12 − βE12

= αE11

(2.33)

Equation2.28,Equation2.30,Equation2.31⇒ Equation2.29

uB2 − uC2 = uB2 − uA2 + uA2 − uD2 + uD2 − UC2

= αE12 + βE22 − βE22

= αE12

(2.34)

Equation2.21,equation2.25,equation2.27 ⇒ equation2.23

From the derivation above, we can eliminate two extra equations from the

system Now, we extend our solution to 3D case. Consider a RVE single fiber

model in Fig2.1.

We categorise the mesh points into three sorts:

• points on the surface but not on the edges and corner

• points on the edges but not on corner

• points on the corner

For the points on the surface, the equation system is unique, there are no

extra equations in the system. For the points on the edges, we can consider it

as 2D problem, take the Fig as an example, Points A,B,C,D could be looked as

point on four corners of a square, then we can use the solution above to eliminate

two extra equations.

The elimination for corner points of a cuboid will be more complex. In this

case, we have eight points to be considered: a, b, c, d, k, l,m, n. And the length ,
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2.2 Use Python scripts to implement homogenization

width and height are α, β, γ respectively. To simplify the demonstration, we take

degree of freedom 1 as an example.

Equations system for corner points of degree of freedom 1

ua1 − ub1 = αE11 (2.35)

un1 − um1 = αE11 (2.36)

uk1 − ul1 = αE11 (2.37)

ud1 − uc1 = αE11 (2.38)

ua1 − uk1 = βE12 (2.39)

ub1 − ul1 = βE12 (2.40)

ud1 − un1 = βE12 (2.41)

uc1 − um1 = βE12 (2.42)

uk1 − un1 = γE23 (2.43)

ul1 − um1 = γE23 (2.44)

ua1 − ud1 = γE23 (2.45)

ub1 − uc1 = γE23 (2.46)

Now, we are going to demonstrate that equation system consisted of 7 equa-

tions is enough to derive the other 5 equations.

ua1 − ub1 = ud1 − uc1 + uc1 − ub1 + ua1 − ud1

= αE11 + γE23 − γE23

= γE23

(2.47)

Equation2.38,equation2.45,equation2.46 ⇒ equation2.35

ua1 − uk1 = ud1 − un1 + ua1 − ud1 + un1 − uk1

= βE12 + γE23 − γE23

= βE12

(2.48)
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2.2 Use Python scripts to implement homogenization

Equation2.41,equation2.45,equation2.43 ⇒ equation2.39

uc1 − um1 = ud1 − un1 + un1 − um1 + uc1 − ud1

= βE12 + αE11 − αE11

= βE12

(2.49)

Equation2.41,equation2.38,equation2.36 ⇒ equation2.42

uk1 − ul1 = un1 − um1 + uk1 − un1 + um1 − ul1

= αE11 + γE23 − γE23

= γE23

(2.50)

Equation2.36,equation2.43,equation2.44 ⇒ equation2.37

ub1 − ul1 = uc1 − um1 + ub1 − uc1 + um1 − ul1

= βE12 + γE23 − γE23

= βE12

(2.51)

Equation2.38,equation2.42,equation2.44 ⇒ equation2.40

From the derivation above, we eliminate equation 2.35,2.37,2.39,2.40,2.42,

from the equation system. And finally, we get the equation system of corner

points of DOF 1 for Abaqus

un1 − um1 = αE11

ud1 − uc1 = αE11

ud1 − un1 = βE12

uk1 − un1 = γE23

ul1 − um1 = γE23

ua1 − ud1 = γE23

ub1 − uc1 = γE23
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2.2 Use Python scripts to implement homogenization

For degree of freedom 2 and 3, the elimination is exactly the same. Now, we

have considered all the mesh points on the surface of RVE. The equation system

now is ready to be input in Abaqus by Python scripts.

2.2.5 Brief instruction of the use of Python scripts

With the preparation above, here gives the general structure of the use of Python

Scripts for applying periodic boundary conditions and homogenization procedure.

Figure 2.4: Instruction of use of Python Scripts

The complete code with comments could be found at the appendix of this

paper.

To use this python scripts, you need to create a .CAE file in Abaqus, with ge-

ometry, material property of fiber and matrix, symmetric mesh and macroscopic

loading. Then run Python scripts in Abaqus, the scripts will add the reference

points, create the constrain equations automatically. When the scripts is done,

run the simulation in Abaqus, then you can get the result from Visualization. Mi-

croscopic strain and stress could be export from Abaqus database, macroscopic

stress is the initial condition used input, and macroscopic strain are the displace-

ment of DOF 1 of six reference points. Now, a homogenization simulation for

composite material is complete.

23

Chapter2/Chapter2Figs/manual.ps


Chapter 3

Numerical simulation and

experment

3.1 Experiment for UD composite

Some experiment has been done for single layer UD composite laminar. The

component of the composite is epoxy (Matrix) and E-glass (fiber). The friction

volume is 57% ± 3% The mechanical property of constituent3

Constituent Young’s modulus E Poisson ratio ν

Epoxy 977-20 3GPa 0.4

E Glass 74GPa 0.26

Table 3.1: Elastic constant

And harding law for Matrix:

GNUPLOT

We are going to do three experiment to the single composite laminar. They

are showed as below:

• Fiber along with x direction

• Fiber along with y direction
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3.2 Numerical result

• Fiber has a angle of 45 ◦ along with x direction

And we make Uniaxial Tension Test on these three laminar to get the macro-

scopic constant of Eij

Figure 3.1: Uniaxial Tension Test

3.2 Numerical result

In this section, we are going to use Python scripts to implement the homog-

enization for the composite laminar illustrate above. And compare with the

experimental data.

3.2.1 Fiber direction 0 ◦

We chose the RVE showed in Fig 2.1. Use Three-dimensional continuum ele-

ments, a 6-node linear triangular prism. For plasticity, we use Hill yield surfaces

with associated plastic flow, which allow for anisotropic yield. The rupture is

ignored in this case. And harding law for Matrix:
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3.2 Numerical result
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And after executive the Python scripts, the periodic boundary conditions and

reference points creation is done.

Figure 3.2: RVE with Periodic Boundary condition and mesh

In Abaqus load section, we apply pressure on the surface along with x direc-
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3.2 Numerical result

tion.

Figure 3.3: Uniaxial Tension Test

Submit the simulation, export the result as distribution of Von Mises stress.

Figure 3.4: Deformation with stress distribution of the tensile test

Export the macroscopic ε11, ε22 from correspondent reference points, and com-

pare with the experimental result:
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3.2 Numerical result

σ11(MPa) ε11(%) ε22(%) E11(MPa) ν12

numerical result 1200 2.802 -0.898 43034.8 -0.3132

Experimental data 1252 2.78 -0.89 45043 0.311

Table 3.2: Result comparison of longitudinal Young’s modulus

From the figure of strain stress curve, we can find that, the numerical result

match the experimental data very well at the beginning, and the error occurs

when the strain increase. This error comes from the lack of consideration of

rupture in the simulation. As the strain and stress increase, some crack will

appear in the matrix as well as in the section between matrix and fiber.And from

the plot, we can also discover that, the behavior is linear, the fiber reinforce the

material efficiently.
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3.2 Numerical result
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3.2.2 Fiber direction 90 ◦

Use the same RVE as Fig3.4,but apply the macroforce in y direction. E22 will be

obtained by this test.

σ22(MPa) ε22(%) E22(MPa)

numerical result 38 0.2595 14676.2

Experimental data 37.132 0.275 143479

Table 3.3: Result comparison of transverse Young’s Modulus

29

Chapter3/degree0E22.ps


3.2 Numerical result
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Transverse tensile test shows similar phenomenon as longitudinal test. The

prediction agrees the experimental data well at small strain area, then error grows

as the strain increase. And the behavior is still near linear.

3.2.3 Fiber direction 45 ◦

Now we have got the transverse and longitudinal modulus, we are going to de-

sign a test for finding out shear modulus. We test composite laminar with fiber

direction 45 ◦, as the composite is anisotropic, when we apply transverse load, it

will also give shear strain. We can use coordinate transformation to calculate the

shear modulus.

The RVE 2.1 used for previous test does not appropriate now, we use RVE

below:

30

Chapter3/degree90E22.ps


3.2 Numerical result

Figure 3.5: RVE for composite laminar with fiber direction 45 ◦

To get G12, we need to do axes transform for strain and stress.Suppost we

have known the stress and strain on xy planes, but we want to stresses acting on

planes oriented at θ, We will propose a means to transform the stresses to these

new x′y′ planes.

Figure 3.6: Axes transformation for strain and stress

In our case, for the composite laminar as Fig 3.7 below, we know the σ ε

in xy direction, but we want to use transformation of axes to get σ ε in fiber

direction, which has an angle θ with the original coordinates.
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3.2 Numerical result

Figure 3.7: Axes transformation for UD composite laminar

We have solution for the problem:







σx′

σy′

τx′y′







=





c2 s2 2sc
s2 c2 −2sc
−sc sc c2 − s2











σx

σy

τxy







(3.1)

Where s = sinθ, c = cosθ, and we set matrix A as the transformation matrix

above, we can write transformation as

σ′ = Aσ (3.2)

and for strain transformation







εx′

εy′

1
2
γx′y′







= A







εx

εy
1
2
γxy







(3.3)

Use the conclusion of axes transformation above, we can calculate the corre-

sponding pressure value from the experiment and apply it on our RVE.When the

computing is done, we use transformation to get εx′ , εy′andεx′y′ .

Computational result
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3.2 Numerical result

Figure 3.8: Computational result for laminar with 45 ◦

Elastic modulus

G12(MPa) E22(MPa)

numerical result 3696.58 7834.466

Experimental data 3755 9618

Table 3.4: Result comparison of shear modulus

For the plasticity, we can compare the result by strain stress curve.
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3.2 Numerical result
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In the result we can find, for shear strain stress curve, the model can match

the experiment curve very well at elastic strain and small plastic strain area. but
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3.2 Numerical result

the error becomes big after that for the model without damage introduction. In

this case, damage is a significant parameter to affect the evolution of the material,

however, in Abaqus, only linear damage parameter law or exponential damage

parameter law is available for the model. In this two damage laws, both require

the damage parameter start from 0 and end at 1. And both of them is not for

this case.1. This problem could be solved by introducing User Subroutine which

enable the user to introduce the damage law themselves.

1The experiment shows that, for this kind of UD composite, the damage parameter law is

linear, but not start from 0 and also not end with 1
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Chapter 4

Conclusion

The aim of this paper is to introduce Homogenization method to widely used

commercial software Abaqus, to enable it to estimate the overall mechanical be-

havior of UD composite material.

We first shortly introduce the history of composite material, the feature of

composite material and concept of UD composite. Due to the outstanding me-

chanical performance of composite, it’s important to develop a reliable and eco-

nomic numerical method to estimate the overall mechanical parameters of com-

posite from the component material. A brief review of method of estimation of

parameter of composite are given. In this paper, we are going to use homogeniza-

tion method to evaluate the mechanical property of composite.The key difficults

of predicting mechanical parameter of composite with Abaqus are appying peri-

odic boundary conditions and homogenization procedure from microscopic level

to macroscopic level.

After that, concepts RVE, periodic boundary conditions which are related

with homogenization method are introduced. And some detailed derivation is

also presented. In order to valid the homogenization method in FEM, concepts

of Scripts interface, features of commercial FEM software Abaqus and Python

object oriented programming language are presented. The task of the scripts is to

enable Abaqus to apply periodic boundary conditions to the model and execute

the homogenization procedure. The algorithm and structure of implementation
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using Python in Abaqus are showed in the second chapter. At last part of the

article, some numerical example are done by Abaqus with Python scripts. And

the numerical result are compared with experimental data to verify the validation

of the code.

According to the comparison of numerical result and experimental data. We

can conclude that, predicting the mechanical parameter of UD composite materiel

by homogenization method is possible in Abaqus. It could be done by using

Python scripts in Abaqus. Some proof has been done to verify the correctness

theoretically. And numerical test showed the reliability of this scripts as well

as the validity. So we can conclude that, using Python scripts, it’s possible to

predict the mechanical parameter of elasticity and plasticity of UD composite

material safely. But the error increase as the strain grows because of the lack

of consideration of interaction between fiber and matrix as well as appropriate

damage law during the computing.And the existing scripts is only valid for simple

geometry model. In the future research, dealing with complex geometry model

and including the interaction between fiber and matrix could be considered. And

using User Subroutine to introduce appropriate damage law could also be done

to improve the model.
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Appendix A

Python Scripts

from abaqus import∗ from abaqusConstants import ∗

ModelName=’Model−1 ’ # Input data InstanceName=’Part−1−1’
Noeuds=mdb. models [ ModelName ] . rootAssembly .
i n s t an c e s [ InstanceName ] . nodes

# Get the dimensions o f the square model # note : next s t ep => t r y
to f i nd the type o f VER and automatise the p roce s s
Nb−noeuds=len (Noeuds ) Max−x=−1000 Max−y=−1000 Min−x=1000 Min−y=1000
Max−z=−1000 Min−z=1000 rad iu s=100 cen=0

for i in range (Nb−noeuds ) :
Cx= Noeuds [ i ] . c oo rd ina t e s [ 0 ]
Cy= Noeuds [ i ] . c oo rd ina t e s [ 1 ]
Cz= Noeuds [ i ] . c oo rd ina t e s [ 2 ]
i f Max−x<=Cx :

Max−x=Cx
i f Cx <=Min−x :

Min−x=Cx
i f Max−y<=Cy :

Max−y=Cy
i f Cy <=Min−y :

Min−y=Cy
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i f Max−z<=Cz :
Max−z=Cz

i f Cz <=Min−z :
Min−z=Cz

lx=Max−x−Min−x ly=Max−y−Min−y
l z=Max−z−Min−z l x c=(Max−x+Min−x )/2
l y c=(Max−y+Min−y )/2 l z c =(Max−z+Min−z )/2

for i in range (Nb−noeuds ) :
Cx= Noeuds [ i ] . c oo rd ina t e s [ 0 ]
Cy= Noeuds [ i ] . c oo rd ina t e s [ 1 ]
Cz= Noeuds [ i ] . c oo rd ina t e s [ 2 ]
i f (Cx−l x c )∗ (Cx−l x c )+(Cy−l y c )∗ (Cy−l y c )+(Cz−l z c )∗ (Cz−l z c )

<=rad iu s :
cen=i
rad iu s=(Cx−l x c )∗ (Cx−l x c )+(Cy−l y c )∗ (Cy−l y c )+(Cz−l z c )∗ (Cz−l z c )

# Stor ing o f nodes b e l ong ing to the e x t e r na l Faces # (Used f o r the
treatment o f c on s t r a i n t s equat ion ; important note : t h i s i s not

node l a b e l s to r ed but array index o f Noeuds ) Set−xDroite =[ ]
Set−xGauche=[ ] Set−yHaut=[ ] Set−yBas =[ ] Set−zDro i te =[ ]
Set−zGauche =[ ]

lSet−xDroite =[ ] lSet−xGauche=[ ] lSet−yHaut=[ ] lSet−yBas =[ ]
lSet−zDro i te =[ ] lSet−zGauche =[ ]

for i in range (Nb−noeuds ) :
Cx= Noeuds [ i ] . c oo rd ina t e s [ 0 ]
Cy= Noeuds [ i ] . c oo rd ina t e s [ 1 ]
Cz= Noeuds [ i ] . c oo rd ina t e s [ 2 ]

# Only s t r o r e the nodes i n c l u d e s in the cons t r a in s equa t i ons
i f (Max−x==Cx) and (Cy!=Max−y ) and (not ( (Cy==Min−y )
and (Cz==Max−z ) ) ) :

Set−xDroite . append ( i )
lSet−xDroite . append ( i +1)

i f (Cx==Min−x ) and (Cy!=Max−y ) and (not ( (Cy==Min−y )
and (Cz==Max−z ) ) ) :
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Set−xGauche . append ( i )
lSet−xGauche . append ( i +1)

i f (Max−y==Cy) and ( (Cz!=Max−z ) or ( (Cz==Max−z ) and

(Cx==Min−x ) ) or ( (Cz==Max−z ) and (Cx==Max−x ) ) )
Set−yHaut . append ( i )
lSet−yHaut . append ( i +1)

i f (Cy==Min−y ) and ( (Cz!=Max−z ) or ( (Cz==Max−z ) and

(Cx==Min−x ) ) or ( (Cz==Max−z ) and (Cx==Max−x ) ) ) :
Set−yBas . append ( i )
lSet−yBas . append ( i +1)

i f (Cz==Max−z ) and ( (Cx!=Max−x ) or ( (Cx==Max−x ) and

(Cy==Min−y ) ) ) and (not ( (Cx==Min−x ) and (Cy==Max−y ) ) ) :
Set−zDro i te . append ( i )
lSet−zDro i te . append ( i +1)

i f (Cz==Min−z ) and ( (Cx!=Max−x ) or ( (Cx==Max−x ) and

(Cy==Min−y ) ) ) and (not ( (Cx==Min−x ) and (Cy==Max−y ) ) ) :
Set−zGauche . append ( i )
lSet−zGauche . append ( i +1)

i f Cx∗Cx+Cy∗Cy+(Cz−1)∗(Cz−1)<=rad iu s :
cen=i
rad iu s=(Cx−l x c )∗ (Cx−l x c )+(Cy−l y c )∗ (Cy−l y c )+(Cz−l z c )∗ (Cz−l z c )

# Creat ing the t h r e e r e f e r ence po in t s (macro nodes )
mdb. models [ ModelName ] . rootAssembly . ReferencePoint
( po int =(1 . 2 , 0 . 1 , 1 . 0 ) )
mdb. models [ ModelName ] . rootAssembly . ReferencePoint
( po int =(1 . 2 , 0 . 0 , 1 . 0 ) )
mdb. models [ ModelName ] . rootAssembly . ReferencePoint
( po int =(1 .2 , −0 .1 ,1 .0 ) )
mdb. models [ ModelName ] . rootAssembly . ReferencePoint
( po int =(1 . 5 , 0 . 1 , 1 . 0 ) )
mdb. models [ ModelName ] . rootAssembly . ReferencePoint
( po int =(1 . 5 , 0 . 0 , 1 . 0 ) )
mdb. models [ ModelName ] . rootAssembly . ReferencePoint
( po int =(1 .5 , −0 .1 ,1 .0 ) )

# Bu i l t the Se t s o f every f a c e s . I t ’ s convenience f o r check ing
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mdb. models [ ModelName ] . rootAssembly . SetFromNodeLabels (name=
’ setxd ’ , nodeLabels=(( InstanceName , ( 2 , 3 , 5 , 7 ) ) , ( InstanceName ,
lSet−xDroite ) ) )

mdb. models [ ModelName ] . rootAssembly . SetFromNodeLabels (name=
’ setxg ’ , nodeLabels=(( InstanceName , ( 2 , 3 , 5 , 7 ) ) , ( InstanceName ,
lSet−xGauche ) ) )

mdb. models [ ModelName ] . rootAssembly . SetFromNodeLabels (name=
’ setyh ’ , nodeLabels=(( InstanceName , ( 2 , 3 , 5 , 7 ) ) , ( InstanceName ,
lSet−yHaut ) ) )

mdb. models [ ModelName ] . rootAssembly . SetFromNodeLabels (name=
’ setyb ’ , nodeLabels=(( InstanceName , ( 2 , 3 , 5 , 7 ) ) , ( InstanceName ,
lSet−yBas ) ) )

mdb. models [ ModelName ] . rootAssembly . SetFromNodeLabels (name=
’ se tzd ’ , nodeLabels=(( InstanceName , ( 2 , 3 , 5 , 7 ) ) , ( InstanceName ,
lSet−zDro i te ) ) )

mdb. models [ ModelName ] . rootAssembly . SetFromNodeLabels (name=
’ s e t zg ’ , nodeLabels=(( InstanceName , ( 2 , 3 , 5 , 7 ) ) , ( InstanceName ,
lSet−zGauche ) ) )
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# Creat ing unique s e t f o r the prev ious i d e n t i f i e d nodes
Set−name=’ Set−N’

for i in range ( l en ( Set−xDroite ) ) :
mdb. models [ ModelName ] . rootAssembly . Set (name=
Set−name+’xD ’+s t r ( i ) , nodes=
Noeuds [ Set−xDroite [ i ] : Set−xDroite [ i ]+1 ] )

for i in range ( l en ( Set−xGauche ) ) :
mdb. models [ ModelName ] . rootAssembly . Set (name=
Set−name+’xG ’+s t r ( i ) , nodes=
Noeuds [ Set−xGauche [ i ] : Set−xGauche [ i ]+1 ] )

for i in range ( l en ( Set−yHaut ) ) :
mdb. models [ ModelName ] . rootAssembly . Set (name=
Set−name+’yH ’+s t r ( i ) , nodes=
Noeuds [ Set−yHaut [ i ] : Set−yHaut [ i ]+1 ] )

for i in range ( l en ( Set−yBas ) ) :
mdb. models [ ModelName ] . rootAssembly . Set (name=
Set−name+’yB ’+s t r ( i ) , nodes=
Noeuds [ Set−yBas [ i ] : Set−yBas [ i ]+1 ] )

for i in range ( l en ( Set−zDro i te ) ) :
mdb. models [ ModelName ] . rootAssembly . Set (name=
Set−name+’zD ’+s t r ( i ) , nodes=
Noeuds [ Set−zDro i te [ i ] : Set−zDro i te [ i ]+1 ] )

for i in range ( l en ( Set−zGauche ) ) :
mdb. models [ ModelName ] . rootAssembly . Set (name=
Set−name+’zG ’+s t r ( i ) , nodes=
Noeuds [ Set−zGauche [ i ] : Set−zGauche [ i ]+1 ] )
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kf=mdb. models [ ’Model−1 ’ ] . rootAssembly . r e f e r en c ePo i n t s . i tems ( )
ks=len ( k f ) k=kf [ ks −1 ] [ 0 ] r1 =
mdb. models [ ModelName ] . rootAssembly . r e f e r en c ePo i n t s
r e fPo in t s 1=(r1 [ k ] , )
mdb. models [ ModelName ] . rootAssembly . Set ( r e f e r en c ePo in t s=re fPo in t s1 ,
name=’E11 ’ )

r e fPo in t s 1=(r1 [ k+1] , )
mdb. models [ ModelName ] . rootAssembly . Set ( r e f e r en c ePo in t s=re fPo in t s1 ,
name=’E22 ’ )

r e fPo in t s 1=(r1 [ k+2] , )
mdb. models [ ModelName ] . rootAssembly . Set ( r e f e r en c ePo in t s=re fPo in t s1 ,
name=’GAMMA12’ )

r e fPo in t s 1=(r1 [ k+3] , )
mdb. models [ ModelName ] . rootAssembly . Set ( r e f e r en c ePo in t s=re fPo in t s1 ,
name=’E33 ’ )

r e fPo in t s 1=(r1 [ k+4] , )
mdb. models [ ModelName ] . rootAssembly . Set ( r e f e r en c ePo in t s=re fPo in t s1 ,
name=’GAMMA13’ )

r e fPo in t s 1=(r1 [ k+5] , )
mdb. models [ ModelName ] . rootAssembly . Set ( r e f e r en c ePo in t s=re fPo in t s1 ,
name=’GAMMA23’ )

mdb. models [ ModelName ] . rootAssembly . editNode ( nodes=Noeuds [ cen ] ,
coord inate1=lxc , coord inate2=lyc ,
coord inate3=lzc , projectToGeometry=ON)
mdb. models [ ModelName ] . rootAssembly . Set ( nodes=Noeuds [ cen : cen +1] ,
name=’ Centre ’ )

t o r l =0.01
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# Creat ing the c on s t r a i n t equa t i ons Constraint−name=’Eq−x ’

s=0 for i in range ( l en ( Set−xDroite ) ) :
coord−yd=Noeuds [ Set−xDroite [ i ] ] . c oo rd ina t e s [ 1 ]
coord−zd=Noeuds [ Set−xDroite [ i ] ] . c oo rd ina t e s [ 2 ]
for j in range ( l en ( Set−xGauche ) ) :

coord−yg= Noeuds [ Set−xGauche [ j ] ] . c oo rd ina t e s [ 1 ]
coord−zg= Noeuds [ Set−xGauche [ j ] ] . c oo rd ina t e s [ 2 ]
i f ( abs ( coord−yd−coord−yg)< t o r l ) and

( abs ( coord−zd−coord−zg)< t o r l ) :
mdb. models [ ModelName ] . Equation (name=
Constra int−name+s t r ( s ) , terms =((−1.0 ,
Set−name+’xD ’+s t r ( i ) , 1 ) ,
( 1 . 0 , Set−name+’xG ’+s t r ( j ) , 1 ) , ( lx , ’E11 ’ , 1 ) ) )
mdb. models [ ModelName ] . Equation (name=
Constra int−name+s t r ( s +1) , terms =((1 .0 ,
Set−name+’xD ’+s t r ( i ) , 2 ) , ( −1 .0 ,
Set−name+’xG ’+s t r ( j ) ,2) ,( − l x /2 , ’GAMMA12’ , 1 ) ) )
mdb. models [ ModelName ] . Equation (name=
Constra int−name+s t r ( s +2) , terms =((−1.0 ,
Set−name+’xD ’+s t r ( i ) , 3 ) ,

( 1 . 0 , Set−name+’xG ’+s t r ( j ) , 3 ) , ( l x /2 , ’GAMMA13’ , 1 ) ) )
s=s+3

Constra int−name=’Eq−y ’ s=0 for i in range ( l en ( Set−yHaut ) ) :
coord−xh=Noeuds [ Set−yHaut [ i ] ] . c oo rd ina t e s [ 0 ]
coord−zh=Noeuds [ Set−yHaut [ i ] ] . c oo rd ina t e s [ 2 ]
for j in range ( l en ( Set−yBas ) ) :

coord−xb= Noeuds [ Set−yBas [ j ] ] . c oo rd ina t e s [ 0 ]
coord−zb= Noeuds [ Set−yBas [ j ] ] . c oo rd ina t e s [ 2 ]
i f ( abs ( coord−xh−coord−xb)< t o r l ) and

( abs ( coord−zh− coord−zb)< t o r l ) :
mdb. models [ ModelName ] . Equation (name=
Constra int−name+s t r ( s ) , terms =((1 .0 ,
Set−name+’yH ’+s t r ( i ) , 2 ) , ( −1 .0 ,
Set−name+’yB ’+s t r ( j ) ,2) ,( − ly , ’E22 ’ , 1 ) ) )
mdb. models [ ModelName ] . Equation (name=
Constra int−name+s t r ( s +1) , terms =((1 .0 ,
Set−name+’yH ’+s t r ( i ) , 1 ) , ( −1 .0 ,
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Set−name+’yB ’+s t r ( j ) ,1) ,( − l y /2 , ’GAMMA12’ , 1 ) ) )
mdb. models [ ModelName ] . Equation (name=
Constra int−name+s t r ( s +2) , terms =((1 .0 ,
Set−name+’yH ’+s t r ( i ) , 3 ) , ( −1 .0 ,
Set−name+’yB ’+s t r ( j ) ,3) ,( − l y /2 , ’GAMMA23’ , 1 ) ) )
s=s+3

Constra int−name=’Eq−z ’ s=0 for i in range ( l en ( Set−zDro i te ) ) :
coord−xd=Noeuds [ Set−zDro i te [ i ] ] . c oo rd ina t e s [ 0 ]
coord−yd=Noeuds [ Set−zDro i te [ i ] ] . c oo rd ina t e s [ 1 ]
for j in range ( l en ( Set−zGauche ) ) :

coord−xg= Noeuds [ Set−zGauche [ j ] ] . c oo rd ina t e s [ 0 ]
coord−yg= Noeuds [ Set−zGauche [ j ] ] . c oo rd ina t e s [ 1 ]
i f ( abs ( coord−xd−coord−xg)< t o r l ) and

( abs ( coord−yd−coord−yg)< t o r l ) :
mdb. models [ ModelName ] . Equation (name=
Constra int−name+s t r ( s ) , terms =((−1.0 ,
Set−name+’zD ’+s t r ( i ) , 1 ) , ( 1 . 0 , Set−name+’zG ’+s t r ( j ) , 1 ) ,
( l z /2 , ’GAMMA13’ , 1 ) ) )
mdb. models [ ModelName ] . Equation (name=
Constra int−name+s t r ( s +1) , terms =((1 .0 ,
Set−name+’zD ’+s t r ( i ) , 2 ) , ( −1 .0 , Set−name+’zG ’+s t r ( j ) , 2 ) ,
(− l z /2 , ’GAMMA23’ , 1 ) ) )
mdb. models [ ModelName ] . Equation (name=
Constra int−name+s t r ( s +2) , terms =((−1.0 ,
Set−name+’zD ’+s t r ( i ) , 3 ) , ( 1 . 0 , Set−name+’zG ’+s t r ( j ) , 3 ) ,
( l z , ’E33 ’ , 1 ) ) )
s=s+3

r1 = mdb. models [ ModelName ] . rootAssembly . r e f e r en c ePo i n t s
r e fPo in t s 1=(r1 [ k ] , ) r eg i on = re fPo in t s 1

mdb. models [ ModelName ] . DisplacementBC (name=’BC−E11 ’ ,
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createStepName=’ Step−1 ’ , r eg i on=reg ion , u1=0.0 , f i x e d=OFF,
f ie ldName=’ ’ , l o ca lCsy s=None )

r e fPo in t s 1=(r1 [ k+1] , ) r eg i on = re fPo in t s 1

mdb. models [ ModelName ] . DisplacementBC (name=’BC−E22 ’ ,
createStepName=’ Step−1 ’ , r eg i on=reg ion , u1=0.0 ,
f i x e d=OFF,
f ie ldName=’ ’ , l o ca lCsy s=None )

r e fPo in t s 1=(r1 [ k+2] , ) r eg i on = re fPo in t s 1

mdb. models [ ModelName ] . DisplacementBC (name=’BC−GAMMA12’ ,
createStepName=’ Step−1 ’ , r eg i on=reg ion , u1=1.0 , f i x e d=OFF,
f ie ldName=’ ’ , l o ca lCsy s=None )

r e fPo in t s 1=(r1 [ k+3] , ) r eg i on = re fPo in t s 1

mdb. models [ ModelName ] . DisplacementBC (name=’BC−E33 ’ ,
createStepName=’ Step−1 ’ , r eg i on=reg ion , u1=0.0 ,
f i x e d=OFF,
f ie ldName=’ ’ , l o ca lCsy s=None )

r e fPo in t s 1=(r1 [ k+4] , ) r eg i on = re fPo in t s 1

mdb. models [ ModelName ] . DisplacementBC (name=’BC−GAMMA13’ ,
createStepName=’ Step−1 ’ , r eg i on=reg ion , u1=0.0 , f i x e d=OFF,
f ie ldName=’ ’ , l o ca lCsy s=None )

r e fPo in t s 1=(r1 [ k+5] , ) r eg i on = re fPo in t s 1

mdb. models [ ModelName ] . DisplacementBC (name=’BC−GAMMA23’ ,
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createStepName=’ Step−1 ’ , r eg i on=reg ion , u1=0.0 ,
f i x e d=OFF,
f ie ldName=’ ’ , l o ca lCsy s=None )

r eg i on=mdb. models [ ModelName ] . rootAssembly . s e t s [ ’ Centre ’ ]
mdb. models [ ModelName ] . DisplacementBC (name=’BC−cent r e ’ ,
createStepName=’ Step−1 ’ , r eg i on=reg ion , u1=0.0 ,
u2=0.0 , u3=0.0 ,
f i x e d=OFF, f ie ldName=’ ’ , l o ca lCsy s=None )
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