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Abstract 

Composites are materials that are composed of two or more distinct phases. Importantly, these 
phases shall not dissolve or blend with each other and remain distinct on a macroscopic level. 
However, mechanical and physical properties of each phase would differ from each other. Here, the 
challenge is to combine properties of each phase in a systematic manner to form the most efficient 
material for the intended application. Among many classes of advanced composite materials, fibrous 
composite laminates have been the most preferred option for structural applications. The inherent 
anisotropy and the brittle characteristics of composite laminates result in failure mechanisms that are 
very different from those of homogeneous monolithic materials. Among all different failure 
mechanisms, ‘Delamination’ is considered to be the most prominent mode of failure in fiber-reinforced 
laminates as a result of their relatively weak inter-laminar strength. When laminated composites are 
subjected to static, dynamic or cyclic loadings, the inter-laminar adhesion strength between individual 
plies tends to deteriorate significantly and act as the origin of the final failure. Therefore, an efficient 
and reliable design tool capable of predicting delamination would certainly improve the designs based 
on composite laminates. The present study is focused on taking a step forward in this respect. 

The main objectives of this thesis work is to study an existing design tool [Allix O. and Ladevèze P., 
1994; Gornet L., 1996; Ijaz H., 2009] and then to enhance it further to predict initiation and 
propagation of delamination under both quasi-static (i.e., monotonic) and fatigue (i.e., cyclic) loading 
conditions. The existing tool has been orginally formulated within the framework of Damage 
Mechanics Therefore, in the present work much attention has been devoted to improve its 
functionality and versatility by studying Damage Mechanics formulations. However, Fracture 
Mechanics also play a key role in determining the damage model.The key idea here is to use Fracture 
Mechanics test results to determine parameters of the Damage Mechanics model. Therefore, these 
damage models basically link Fracture Mechanics to Damage Mechanics.    

The work presented in this report is organized in to four main parts. PART-I, also called ‘Preamble’ 
comprises two main chapters, Chapter 1 and Chapter 2. In Chapter 1, at first, a general introduction is 
given on Composites,  focusing especially on their advantages and applications. Next, information on 
general failure mechanisms associated to composites laminates is also presented. In additon, a brief 
discussion is made on the delamination phenomena in laminated composites. Next, a synopsis of 
state-of-the-art modelling tools (based on Fracture and/or Damage Mechanics) for predicting 
delamination is also presented. In  Chapter 2, a review has been made on the existing interface 
damage model which is based on meso-modelling concept. In addition, a detailed description of the 
constitutive equation and the methodology adopted for FE implementation is also included.             

PART-II is dedicated for the study performed on ‘Delamination under Quasi-static Loading’. It is also 
comprised of two major chapters, Chapter 3 and Chapter 4. Chapter 3 mainly contains formulations of 
the static damage model. Note that, the existing model is inherently local, meaning that it is mesh 
dependent. Therefore, to overcome such spurious localizations, existing theories on regularization 
methodologies were studied and reported. Chapter 4 includes detailed descriptions on FE simulations 
performed using static damage models (i.e., local and proposed nonlocal). At first, the local model’s 
effectiveness was tested in all dimensional spaces with appropriate modifications for static loading 
condition. Identification of model parameters and preliminary investigation results followed by main 
investigation results are detailed out comprehensively. Next, a nonlocal integral-type regularization 
scheme was introduced to overcome the spurious localization problem associated to the existing local 
model. Special attention was devoted to improve the FE formulation of the nonlocal model to reduce 
computational cost. Details of complete formulation, simulations procedures and all investigations 
results with accompanying conclusions are included. 

PART-III of the report is dedicated for the study on ‘Delamination under Fatigue Loading’. Once more, 
it is comprised of two chapters, Chapter 5 and Chapter 6. Chapter 5 starts with an overview of fatigue 
and related theories associated to composite laminates. Then after,  it includes an introduction of a 
new fatigue damage evolution law, its derivation and implementation. The existing local model was 
used as a platform to build the new fatigue model. Chapter 6 includes details of FE simulations 
performed  to validate the proposed fatigue damage model. Versatility of the fatigue model was also 
checked for different mode-ratios. Procedure of identification of model parameters, simulation results 
and accompaying conclusions are also deatiled out completely. Finally, a summary of conclusions of 
the present work is included in Chapter 7 under PART-IV, titled as ‘Closure’.    
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PART – I 

Preamble 

 
Section comprises two main chapters,  
Chapter 1 and Chapter 2. 
  
In Chapter 1, at first, a general introduction is 
given on Composites,  focusing especially on their 
advantages and applications. Next, information on 
general failure mechanisms of composites 
laminates is also presented. In particular, a 
discussion is made on the delamination 
phenomena in laminated composites. Next, a 
synopsis of state-of-the-art modelling tools    
(based on Fracture and/or Damage Mechanics)   
for predicting delamination is also presented.  
 
In  Chapter 2, a review has been made on the 
existing interface damage model which is based 
on meso-modelling concept. In addition, a   
detailed description of the constitutive equation 
and the methodology adopted for FE 
implementation is also included.    
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     Chapter 1 – General Introduction 

Chapter 1    

General Introduction  

1.1    Composites and their Applications 

A Composite is a material which is composed of two or more distinct phases. Unlike monolithic 
materials, one can easily distinguish these phases as they do not dissolve or blend with each other 
and remain distinct on a macroscopic level. They are merely connected with each other by means of 
interfacial bonding.  Therefore, Composites are said to be ‘Heterogeneous’ by nature. Note that, the 
mechanical, physical and chemical properties of each phase would differ from one to the other. Here, 
the challenge is to combine properties of each phase in a systematic manner to form the most 
efficient material for the intended application. It is this particular characteristic which makes 
Composites as one of the most lucrative materials for engineering applications in the 21

st
 century. 

Composites are materials in which one phase acts as ‘reinforcement’ for the second phase, where the 
second phase is known as the ‘matrix’ [Herakovich C. T., 1997]. In other words, the matrix surrounds 
and binds together a cluster of reinforcing fibers or particles having a preferred orientation. Note that, 
reinforcements are much stronger / stiffer, and are responsible for composite’s high structural 
properties. They mainly act as the primary load carrying component. On the other hand, matrix is 
responsible in transferring stresses between reinforcing fibers. Although fibers are strong, they can be 
brittle. The matrix is capable of absorbing energy by deforming under stress. In other words, the 
matrix adds toughness to the composite. In addition, matrix gives compression strength and thereby 
ensuring structural integrity upon compression. 

Composites appeared in nature for a long time. A piece of Wood can be considered as a composite 
since it is composed of fibers of cellulose (reinforcement) held together by a weak binding substance 
called lignin (matrix). Human or animal bones are another good example for naturally occurring 
composites. Bones are mainly composed of fiber like osteons embedded in an interstitial bone matrix. 
A bird’s wing, fins of a fish, etc. are few other examples of natural composites. The first man-made 
composite; straw-reinforced clay, were used to produce bricks, pottery, etc. and is still in use today.  

At present, engineered composites are made up of metal, ceramic or polymer binders reinforced with 
different fibers (glass, carbon, polymer, etc) or particles (metal, ceramic, etc). By combining different 
matrix materials with different reinforcing materials it is possible to obtain a wide range of composites 
having different mechanical properties. More importantly, one can change the design parameters of 
the material during its manufacture to tailor its properties for the intended purpose. For example, 
during fabrication, the reinforcing fibers can be placed in the most preferred orientation to obtain 
desired properties in specified direction without overdesigning in other directions. In addition, the ratio 
between the fiber volume-fraction to matrix volume-fraction can be altered to change strength of the 
material according to design specifications of the structure. One can also instill desired physical 
properties (resistance to heat, thermal expansion, corrosion, etc.) into the composite by selecting an 
appropriate matrix material. Composite also exhibit high strength to weight ratios and high stiffness 
weight ratios, which make them ideal for structural applications. They can merely be fabricated in to 
the net-shape of the final desired product. As a result, composite materials find many applications 
compared to any other conventional materials. 

Among many classes of advanced composite materials, fiber-reinforced polymer-matrix composites 
(Fibrous Composites) have been the most preferred option for structural applications. These fibrous 
composites can be found in many different forms, such as laminates, woven fabrics, etc. Laminated 
composites can be broadly classified under unidirectional laminates and multidirectional laminates. 
Unidirectional laminates are composed of layers of material having fibers in the same direction, where 
as multidirectional laminates are made of stacking unidirectional layers at different fiber orientations. 
The effective mechanical properties (i.e., strength, stiffness, etc) of the laminate vary with the 
orientation, thickness and stacking sequence of the individual layers.    



 

     Chapter 1 

The use of composite materials in our day
decades
in aerospace and aeronautics industry, automotive industry, etc. Here, 
processing costs of composites compared to their counterparts.
and subsequent 
of applications. 
boats, automotive parts, 
given below
reinforced composites for the period from 1985 to 2005. 
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1.2   Failure Modes of Composite Laminates 

The inherent anisotropy and the brittle characteristics in fiber direction of composite laminates result in 
macroscopic failure mechanisms that are very different from those of homogeneous monolithic 
materials. Therefore, it is important to understand the factors influencing failure of fibrous composites 
(i.e., damage development) under various environmental and mechanical loading conditions. By 
gaining a proper understanding of the failure phenomena of the composite, one can then use it to 
further optimize the final design. The present study also focuses in achieving those objectives. 

Failure of laminated composites is a complicated phenomenon and requires the understanding of its 
behavior at all scales. These heterogeneous, laminated materials typically exhibit many local failures 
prior to rupture into two or more distinct pieces. The local (initiation) failures are referred to as, 
‘damage’, and the development of additional local failures with increasing load or time is called 
‘damage accumulation’ [Herakovich C. T., 1997]. The accumulation of damage has a direct impact on 
material’s stiffness. As the damage grows the stiffness of the structure also degrades gradually. The 
‘final failure’ or ‘final fracture’ of the composite takes place when the structure is no more capable of 
withstanding the service load due to the reduction of its stiffness. Fiber composite materials fail in a 
variety of mechanisms at both micro and macro levels.  Table 1.01 given below includes a 
comprehensive list of those failure mechanisms. 

Mechanism Description 

Fiber failure 
Fiber fracture, fiber pullout, fiber splitting, fiber 
buckling (kinking) 

Matrix failure 
Matrix cracking, degradation caused by radiation 
or moisture 

Fiber/Matrix interface failure 
Debonding at the fiber-matrix interface, radial 
interface cracking 

Inter-laminar interface failure 
(Delamination) 

Progressive debonding or separation of two 
adjacent laminae (plies/layers) 

Table 1.01 : Failure mechanisms in fiber-reinforced composites 

 

1.3   Delamination of Composite Laminates 

Among all different failure mechanisms, ‘Delamination’ is considered to be the most prominent mode 
of failure in fiber-reinforced laminates due to their relatively weak inter-laminar properties (i.e., 
strength, energy release rate, etc). When laminated composites are subjected to static, dynamic or 
cyclic loadings, the inter-laminar adhesion strength between individual plies tends to deteriorate 
significantly. Ultimately, the laminate reaches a point where it can no longer sustain the loading, 
causing separation of the plies. However, recent researches have shown that delamination is a much 
more complex phenomena involving degradation of both the layers (brittle fracture of fibers, 
progressive transverse matrix cracking, debonding of fiber-matrix interface) and inter-laminar 
adhesion. At the microscopic level, the growth of an inter-laminar crack is preceded by the formation 
of a damage zone ahead of the crack tip. The size and shape of the damage zone will depend on 
matrix’s toughness and more importantly, upon state of the stress (i.e., Mode-I, Mode-II, Mode-III or 
Mixed-Mode). The Figure 1.03 given below illustrates each of these crack propagation modes. 

 
 
 

Figure 1.03 : Crack propagation modes 

MODE-I MODE-III MODE-II 
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The size of the damage zone ahead of crack tip for Mode-II and Mode-III (shear) loadings is greater 
than for Mode-I (opening) loading. This is because; the stress field tends to decay much slowly for 
shear loadings. On the other hand, a brittle matrix material has a much smaller damage zone 
compared to a ductile matrix material.  

Delamination may take place in the interior (inner delamination) as well on the exterior (near-surface 
delamination) of the composite laminates. Inner delamination, significantly reduce the load carrying 
capacity of the material. However, unlike in near-surface delamination, the delaminated laminae are 
within the composite. Hence, upon flexure all laminae deflect in a similar manner. On the other hand, 
when dealing with near-surface delamination one has to take into account not only the debonding of 
lamina but also its local stability. Delamination may arise in various circumstances.  For example, they 
may originate from abrupt changes in the laminate (such as; ply drop-offs, free edges/ flanges, 
stiffener terminations, holes or bonded/ bolted joints). Curved sections (such as; tubular or spherical 
segments) may also promote delamination. In addition, temperature effects, moisture effects, impact 
events and fabrication defects (such as, incomplete wetting, air entrapment) would also act as 
possible sources.  

The study of delamination is of great importance since it significantly affects the global stability of the 
structure. Delamination can cause local buckling and drastic reduction of the bending stiffness. It 
could also facilitate a direct way for the moisture or air to seep into the laminate. In addition, it may 
cause excessive vibrations, reduction of fatigue life, etc. As this failure mechanism forms inside the 
laminates one would find it extremely difficult to detect them during service conditions to take 
necessary actions. Therefore, an efficient and reliable design tool capable of predicting initiation of 
delamination would certainly improve the design based on strength criteria. Despite of many research 
studies and publications on this topic, delamination failure mechanisms in composites are still not well 
understood. It is this fact that has limited the use of fibrous laminated composites to its full potential. 

 

1.4   Delamination Modelling with Fracture / Damage Mechanics 

Delamination prediction is still considered to be a formidable challenge both from scientific and 
industrial point of view. This is because the analysts have to take into account a large number of 
parameters that are involved in design of composite laminates. In addition, the state of stress which is 
responsible for initiation and growth of delamination tends to be much more complicated as in the 
case of conventional monolithic materials. A notable effort has been devoted to the numerical and 
theoretical modelling of delamination in the last few decades but a number of issues still need to be 
further investigated [Allix O. and Ladevèze P., 1992/4; Corigliano A., 1993; Gornet L., 1996; Alfano G. 
and Crisfield M.A., 2001; Ijaz H., 2009].  

The formation of a delamination in a flawless structure can be divided into two parts; delamination 
onset (initiation) and delamination growth (propagation). Traditionally, for initiation of delamination, the 
tolerance prediction was based on ‘semi-empirical’ criteria, such as point stress or average stress. 
Here, the inter-laminar stress state is computed and a strength criterion is utilized to predict onset of 
delamination. This criterion essentially requires a large number of experimental tests to certify the 
tolerance. Recently a novel method known as First Ply Failure criterion has also been introduced 
considering delamination as a special mode of ply failure.  

For the simulation of delamination propagation, methods employing ‘Fracture Mechanics', have been 
extensively used by many researchers throughout last several decades. Linear Elastic Fracture 
Mechanics (LEFM) has proven to be a suitable choice for predicting delamination growth when 
material non–linearity can be neglected. This is true in case of composite laminates since laminae are 
very stiff in the laminate plane and behave as linear elastic materials in their gross deformation. 
Therefore, LEFM serves as a very useful tool for the analysis of inter-laminar toughness. The core 
idea here is to express inter-laminar toughness in terms of ‘Energy Release Rate’. Here, delamination 
is set to propagate when the energy release rate reaches its critical value. In addition, for the 
prediction of delamination growth, methods like, ‘Virtual Crack Closure Technique’ (VCCT), ‘J–
integral’, and ‘Virtual Crack Extension Technique’ (VCET) have also been used successfully. The 
VCCT technique is based on the assumption that when a crack extends by a small amount, the 
energy released in the process is equal to the work required to close the crack to its original length. 
This approach is said to be computationally effective since the energy release rates can be obtained 
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from only one analysis. However, all these techniques can only be applied when a starting crack 
exists. In other words, they require the knowledge of initial delamination pattern. To make matters 
worse for certain geometries and load cases, the location of the delamination front might well be 
difficult to determine. In addition, even for 2D applications, difficulties may arise when more than one 
crack propagate simultaneously. 

Another approach for numerical simulation of delamination is the ‘Cohesive Zone Method’ (CZM). 
Main advantage of CZM is the capability to predict both onset and growth of delamination without 
previous knowledge of the crack location and propagation direction. The technique is based on the 
framework of ‘Damage Mechanics’ and ‘Strain Softening’. Here, a thin layer of matrix material is 
assumed to exist between plies. Delamination is interpreted as creation of a cohesive damage zone in 
front of the delamination-front, separating adjacent plies. Here, traction–separation laws for the 
interface can be defined within Finite Element (FE) Method. On the flip side, CZM is considered to be 
numerically expensive since it requires a fine mesh in order to represent damaged zone accurately. 
However, the growing power of computers and damage mechanics formulation, offer the possibility of 
avoiding many experimental tests and other prerequisites (i.e., initial delamination pattern). In recent 
times, XFEM methods along with levels sets has also been successfully used to predict initiation and 
propagation of cracks in metals/ concrete using cohesive zone approach and is a good candidate for 
prediction of delamination in composite laminates.  

 

1.5   Objectives and Scope of Study 

The most severe limitation to the application of composites is the lack of engineering knowledge to 
design with these materials. As the understanding of their behavior improves, the number and range 
of applications will grow rapidly. This requires a continuous development in the analysis and design 
procedures of composites. Present study is focused on taking a step forward in this respect.  

The usual methodology for the determination of composites reliability involves large number of 
mechanical tests. This would ultimately lead to high design costs. Moreover, existing tests are not 
sufficient to reproduce all possible circumstances encountered during material’s service life. These 
circumstances include environmental conditions (temperatures effects, moisture effects, etc), loading 
conditions (static, dynamic, fatigue, etc) or a combination of both. As a result, a reliable, robust and 
efficient design tool is required to predict the behaviour of composites, especially their failure 
mechanisms (i.e., delamination). When designing advanced composites one can resort to either to a 
strength verification approach or damage-tolerance verification approach. Here, ‘damage-tolerance’ 
verification uses a more realistic approach in appreciating the material’s degradation of mechanical 
properties and reduction of its functionality. The methodology takes into account the formation of 
subcritical cracks that will continue to grow and cause the final rupture. Therefore, it may prove useful 
in analyzing composite structures loaded under fatigue load conditions, where the growth of 
subcritical cracks is the main cause of failure. In addition, this approach could provide a quantitative 
guidance to repair or replace a damage component of a structure before any catastrophic structural 
failure. Based on all these facts, a design tool based on damage-tolerance approach is considered to 
be the most logical option to study failure mechanisms. Therefore, the present study mainly focuses 
on predicting delamination failure using the Damage Mechanics frame work. 

The main objectives of this thesis work is to study an existing design tool [Allix O. and Ladevèze P., 
1994; Gornet L., 1996; Ijaz H., 2009] and then to enhance it further to predict initiation and 
propagation of delamination under both quasi-static (i.e., monotonic) and fatigue (i.e., cyclic) loading 
conditions. At first, an existing damage model was exhaustively studied. Then after, effort was put in 
to improving its functionality and versatility in simulating delamination initiation and growth for different 
loading conditions. In the first part of the work, model’s effectiveness was tested in all dimensions with 
appropriate modifications for static loading condition. Next, a regularization scheme (i.e., nonlocal 
integral-type) was introduced to overcome the spurious localization problem associated to the existing 
local model. Special attention was devoted to improve the FE formulation of the nonlocal model to 
reduce computational cost. The second part of the work focuses on delamination due to fatigue 
loading condition. It includes an introduction to a new fatigue damage evolution law, its derivation and 
implementation. The existing local model was used as a platform to build the new fatigue model. 
Fracture Mechanics test results were used to validate and verify the effectiveness of both static (local/ 
nonlocal) and fatigue models. 
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Chapter 2    

Interface Damage Model 

2.1   Meso-Modelling Concept 

The failure of composites has been investigated extensively from the micro-mechanical and macro-
mechanical points of view. On the micro-mechanical scale, failure mechanisms and processes vary 
widely with type of loading and are intimately related to the properties of the constituent phases, i.e., 
matrix, reinforcement, and interface-interphase. Failure predictions based on micro-mechanics, even 
when they are accurate with regard to failure initiation at critical points, are only approximate with 
regard to global failure of a lamina and failure progression to ultimate failure of a multi-directional 
laminate [Issac M. Daniel, 2005]. Although, macro-mechanical approach could provide a better 
understanding of composite’s behavior, it may not be sufficient enough to appreciate the progressive 
degradation effect or the influence of various parameters that contribute to ultimate failure of the 
material. As a result of these inherent limitations encountered at both micro and macro scales, 
researchers have turned their focus on predicting failure characteristics at a more intermediate scale 
known as the ‘meso-scale’ [Allix O. and Ladevèze P., 1992/4; Corigliano A., 1993; Gornet L., 1996].  

Figure 2.01 given below illustrates a classical meso-model of a laminated composite. Typically a 
laminate is composed of plies having different fiber orientations. Plies were originally manufactured as 
unidirectional prepregs and were later fabricated together by a bonding process.      

 

Figure 2.01 : Meso-model of a laminate   

At the meso-scale, the laminate is described as a staking sequence of inelastic and damageable 
homogeneous layers throughout the thickness and of damageable inter-laminar interfaces [Allix O. 
and Ladevèze P., 1992]. Here importantly, the inter-laminar interface is considered to be a 
mechanical constituent. The term ‘interface’ represents a physical yet two-dimensional medium that is 
responsible in transferring traction and displacements between two adjacent layers. The mechanical 
properties of the interface mainly depend on the relative orientation of their fibers. Since the thickness 
of a single layer is considerably small, the kinematics of the deterioration of the ply is assumed to be 
homogeneous. In other words, one can assume a uniform damage state throughout a given ply.  

The Cohesive Zone Method (See Section - 1.4) can then be used to predict failure of the interface. 
The concept of ‘decohesion zones’ to simulate delamination in composites is usually implemented by 
means of ‘interface (decohesion) elements’ connecting the individual plies of a composite laminate. 
Physically, the cohesive zone represents the coalescence of crazes in the resin rich layer located at 
the delamination tip and reflects the way by which the material loses load-carrying capacity. Cohesive 
zone models are particularly attractive when interfacial strengths are relatively weak when compared 
with the adjoining material, as is the case in composite laminates. According to the model formulation, 
the process zone or cohesive zone is located ahead of the delamination tip. In this particular zone the 

damage variable ' 'd varies from '0'  to '1' . Note that, 1d =  in the zone where delamination has 

already taken place and 0d = where there is no damage (See Figure 5.01). The damage variable will 

then be used define the variation of rigidities of the interface elements and thereby the degradation 
effect of the interface.    
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2.2   Constitutive equation for the Interface  

The need for an appropriate constitutive equation in the formulation of the interface modelling is 
fundamental for an accurate simulation of the inter-laminar debonding process. The constitutive 
equations for the interface are phenomenological mechanical relations between the tractions 
(stresses) and interfacial separations (displacement discontinuities). With increasing interfacial 
separation, the tractions across the interface reach a maximum (i.e., interfacial normal or shear 
tractions attain their respective inter-laminar tensile or shear strengths), decrease, and vanish when 
complete debonding occurs. The work of normal and tangential separation can be related to the 
critical values of energy release rates. It is this particular characteristic that allows one to link fracture 
mechanics with damage mechanics.      

The displacement discontinuity or jump of one layer to the other layer can be written as, 

11 2 2 3 3[ ] [ ] [ ] [ ]U U U U N U N U N
+ −

= − = + +
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                (2.01) 

 

 

Figure 2.02 : Basic building blocks of the interface model  
 

Let the bisectors of the fiber direction be 1N
���

 and 2N
���

. The direction of 3N
���

 
is normal to the interface. 

Essentially, all are ‘orthotropic’ directions of the interface. Here, U
+��

 and U
−��

are displacement 

vectors of the top and bottom layers respectively. See Figure 2.02 given above. 

Let 0

1k , 0

2k  and 0

3k are initial interface rigidities (stiffness) associated to damage variables 1d
 
, 2d

and 3d along the orthotropic directions 1N
���

, 2N
���

 and 3N
���

 respectively. Here, 3d  is associated to the 

opening mode (Mode-I) of the inter-laminar connections, where 1d and 2d are associated to in-plane 

and out-of-plane shearing modes (Mode-II and Mode-III) respectively.   

The relation between the stresses and displacement jumps along the orthotropic axes can then be 
expressed as follows (for simplicity displacement jumps in each orthogonal direction is written without 
square brackets), 
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2.3   FE Implementation of Damage Models 

The constitutive behaviour laws presented in the present study are implemented in a finite element 
code called CAST3M via a user-subroutine known as UMAT.  

CAST3M is a system designed and developed so as to overcome the hurdles of adaptability provided 
by conventional codes. It has been developed by the Dèpartement Mècanique et Technologie (DMT) 
du Commissariat Français à l’Energie Atomique (ECA). CAST3M can be used as support for design, 
dimensioning and analysis of structures and components. It presents a complete system, integrating; 
tools for calculation, tools for model construction (pre-processor) and tools for processing results 
(post-processor). On the contrary of other systems, made to solve some defined problems, CAST3M 
is a program the user can adapt to his own needs. In practice, the program is made of a set of 
elementary operators (written in GIBIANE) and objects. Each operator is attributed to the execution of 
one unique operation. The user can manipulate the objects and operators to build a new application 
or customize an existing application. CAST3M enables the processing of linear and nonlinear 
problems in static, dynamic or cyclic fields. In addition, CAST3M is equipped with interface or joint 
elements that can be readily used for model construction (i.e., interface model of laminates). 
Therefore, all these facts make CAST3M an ideal research tool for the present study under 
consideration.   

UMAT user-subroutine (written in FORTRAN) merely allows researchers to work on material response 
modelling. The subroutine can be used to introduce a new constitutive law (i.e., with damage effects) 
in to finite element code of CAST3M. In addition, the subroutine can also be used to define solution-
dependent state variables. During a nonlinear calculation, the subroutine will be called at all material 
calculation points of elements for which the material definition includes a user-defined material 
behavior. It will also update the stresses and solution-dependent state variables to their values at the 
end of each increment for which it is called. The smaller the time increment the greater the accuracy 
of the result, but at the expense of high computational cost. 
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PART – II 

Delamination under Quasi-Static Loading 

 

Section comprises two chapters,  
Chapter 3 and Chapter 4.  
 
Chapter 3 mainly contains formulations of the 
static damage model. In additon, to overcome 
spurious localizations of local models, existing 
theories on regularization methodologies were 
studied and reported.  
 
Chapter 4 includes detailed descriptions on FE 
simulations performed using static damage models 
(i.e., local and proposed nonlocal). At first, the 
local model’s effectiveness was tested in all 
dimensional spaces with appropriate modifications 
for static loading condition. Identification of model 
parameters, preliminary investigation results and 
main investigation results are detailed out 
comprehensively. Next, a nonlocal integral-type 
regularization scheme was introduced to 
overcome the spurious localization problem of the 
existing local model. Special attention was 
devoted to improve the FE formulation of the 
nonlocal model to reduce computational cost. 
Details of complete formulation, simulations 
precedures, investigations results and  
conclusions are also included. 
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Chapter 3    

Static Damage Evolution 

3.1   Energy Formulation 

In Chapter 2 under Section 2.2 a constitutive relation for the interface was introduced. Here, the effect 
of deterioration of the inter-laminar connection on its mechanical behaviour is taken into account by 
means of three internal damage variables which are associated to Mode-I, Mode-II and Mode-III 
failure modes. The total strain energy [Ladevèze P., 1986; Allix O. and Ladevèze P., 1992; Gornet L. 
et al 1997] in the system can now be expressed as, 

2 2
2 2

33 33 23 13

0 0 0 0

3 3 3 2 2 1 1

1

2 (1 ) (1 ) (1 )
DE

k k d k d k d

σ σ σ σ− +
 
 = + + +

− − −  

                                                  (3.01)  

Note that, different types of damageable behaviour in ‘tension’ and in ‘compression’ are distinguished 

by splitting the strain energy into ‘tension energy’ and ‘compression energy’. For example, X
+

and 

X
−

 represents the tension and compression parts of X .    

The thermodynamic model is built by taking into account the three possible modes of delaminations. 
The thermodynamic forces associated to each damage variable can be defined as, 

1
1 2 3

2 3

D D D

d d d

E E E
Y Y Y

d d d
σ σ σ

    ∂ ∂ ∂
= − = − = −     

∂ ∂ ∂     
                                                            (3.02) 

Now, using equations 3.01 and 3.02, the following relations can be derived, 

[ ]

[ ]

[ ]

2
2013

1 10 2
1

1 1

2
2023

2 20 2
2

2 2

2

233 0

3 30 2
3

3 3

1 1

2 (1 ) 2

1 1

2 (1 ) 2

1 1

2 (1 ) 2

d

d

d

Y k U
k d

Y k U
k d

Y k U
k d

σ

σ

σ
+

+


= =

− 



= = 
− 


= =
− 

                                                                                           (3.03) 

The total energy dissipated from the system can be expressed as, 

1 2 3
1 2 3

d d d
Y d Y d Y d

• • •

Φ = + +     Where, ( 0)Φ ≥                                                                          (3.04) 

One may also use classical Fracture Mechanics theory to determine the critical energy characteristics 
of the interface damage model. As explained in Section – 1.4, LEFM is a proven approach for dealing 
with propagation of delamination. In that respect, LEFM serves as a reference to compare and 
contrast any new modelling of delamination propagation. Since delamination is a dissipative 
phenomenon [Allix O. et al., 1995] a simple way to compare LEFM with the presented model is to 
compare their mechanical dissipations. 
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In LEFM, the total energy dissipated from a single crack whose area given by S is written as, 

a a

LEFM

a

G S
•

+∆

Φ = ∫                                                                                                                        (3.05) 

If one consider a specimen having a constant width equaling to b, then S b a
• •

= , where a is the 

length of the crack. Here, G is the ‘Energy Release Rate’ and it depends only on the material 

properties. In order to explicitly integrate equation 3.05, ‘steady-state’ propagation of the crack is 

assumed. In other words, crack length is assumed to increase by a∆ over a time increment of t∆ .  

The Figure 3.01 given below illustrates the propagation of the crack tip along with the cohesive zone 
in a steady-state delamination process. 

 

Figure 3.01 : Steady-state delamination process 

Similarly, from equation 3.04, the total energy dissipated from the interface according to damage 
mechanics formulation can be written as, 

3

1

( )
dIDM i
i

i

Y d d
•

=Γ

Φ = Γ∑∫                                                                                                                (3.06)     

Where, Γ  represents the cohesive zone of the interface. 

Since, the energy dissipated for propagation of delamination in LEFM should be equal to energy 

dissipated in interface damage model, 
LEFM IDM

=Φ Φ . 

Then integration of equations 3.05 and 3.06 for a given time increment, leads to the equations [Allix 
O. and Ladevèze P., 1996] given below, 

1

2

I CC

C
IIC

C
IIIC

G Y

Y
G

Y
G

γ

γ


=



= 


=


                                                                                                                              (3.07) 

,
I IIC C

G G  and 
IIIC

G  are critical energy release rates associated to Mode-I, Mode-II and Mode-III 

failure modes respectively. Here, 
C

Y  is the critical ‘Damage Energy Release Rate’ and 1γ
 
and 2γ  are 

‘Coupling Parameters’ for 
IIC

G  and 
IIIC

G  respectively. 

1d =  0d =
 

0 1d≤ ≤

time t−  

crack length a=  cohesive zone undamaged zone

time t t− +∆  

crack length a a= +∆  cohesive zone .undam zone  

1d =  0 1d≤ ≤ 0d =  



 

Chapter 3 

In order to satisfy the energy balance principle, the area under the stress vs. displacement 
for the ‘Debonding Process’ (DP) should be equal to critical energy release rate (i.e.

, &
I II IIIC C C

G G G

2000]. The resulting equations can be written as 

IC
DP

IIC

IIIC

G dU

G dU

G dU

=

=

=

Notice that, delamination doesn’t t
See Figure 3.

Figure 

For the Mixed

C I II III
G G G G=

In addition, one can also write a relation

I II III

I II IIIC C C

G G G

G G G

α     
     
     
     

Therefore
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In order to satisfy the energy balance principle, the area under the stress vs. displacement 
for the ‘Debonding Process’ (DP) should be equal to critical energy release rate (i.e.

, &
I II IIIC C C

G G G

2000]. The resulting equations can be written as 

33 3

13 1

23 2

DP

DP

DP

G dU

G dU

G dU

σ

σ

σ

+

=

=

=

∫

∫

∫

Notice that, delamination doesn’t t
See Figure 3.02 given below.

Figure 3.02 : Graphical representation of critical energy release rate for

Mixed-Mode 

C I II III
G G G G+ +

In addition, one can also write a relation

I II III

I II IIIC C C

G G G

G G G

α     
     + + =
     
     

Therefore, parameter 

Static Damage Evolution

In order to satisfy the energy balance principle, the area under the stress vs. displacement 
for the ‘Debonding Process’ (DP) should be equal to critical energy release rate (i.e.

C C C
) for each failure mode

2000]. The resulting equations can be written as 

33 3

13 1

23 2

G dU

G dU











                                                                                                    

Notice that, delamination doesn’t t
given below. 

Graphical representation of critical energy release rate for

Mode failure case, critical energy release rate for the system can be 

C I II III
                                                                                                   

In addition, one can also write a relation

I II III

I II IIIC C C

G G G

G G G

α α
     
     + + =
     
     

parameter α  governs 

Static Damage Evolution 

In order to satisfy the energy balance principle, the area under the stress vs. displacement 
for the ‘Debonding Process’ (DP) should be equal to critical energy release rate (i.e.

) for each failure mode

2000]. The resulting equations can be written as 

                                                                                                    

Notice that, delamination doesn’t take place when the laminate is

Graphical representation of critical energy release rate for

failure case, critical energy release rate for the system can be 

                                                                                                  

In addition, one can also write a relation for the 

1I II III

C C C

α α
     
     + + =
     
     

                                                                               

governs the damage evolution in 

In order to satisfy the energy balance principle, the area under the stress vs. displacement 
for the ‘Debonding Process’ (DP) should be equal to critical energy release rate (i.e.

) for each failure mode [Ladevèze 

2000]. The resulting equations can be written as follows, 

                                                                                                    

ake place when the laminate is

 

Graphical representation of critical energy release rate for

failure case, critical energy release rate for the system can be 

                                                                                                  

for the Mixed-Mode 

                                                                               

damage evolution in 

In order to satisfy the energy balance principle, the area under the stress vs. displacement 
for the ‘Debonding Process’ (DP) should be equal to critical energy release rate (i.e.

 P. et al., 1998;

 

                                                                                                    

ake place when the laminate is subjected to compressive stresses. 

Graphical representation of critical energy release rate for

failure case, critical energy release rate for the system can be 

                                                                                                  

Mode failure as

                                                                               

damage evolution in Mixed-Mode

In order to satisfy the energy balance principle, the area under the stress vs. displacement 
for the ‘Debonding Process’ (DP) should be equal to critical energy release rate (i.e.

et al., 1998; Corigliano A. and Allix O., 

                                                                                                    

subjected to compressive stresses. 

Graphical representation of critical energy release rate for Mode

failure case, critical energy release rate for the system can be 

                                                                                                  

failure as given below,

                                                                               

Mode.  

In order to satisfy the energy balance principle, the area under the stress vs. displacement jump
for the ‘Debonding Process’ (DP) should be equal to critical energy release rate (i.e.

Corigliano A. and Allix O., 

                                                                                                               

subjected to compressive stresses. 

Mode-I and Mode

failure case, critical energy release rate for the system can be expressed as,

                                                                                                                     

given below, 

                                                                                         

13 

jump-curve 
for the ‘Debonding Process’ (DP) should be equal to critical energy release rate (i.e.,

Corigliano A. and Allix O., 

           (3.08) 

subjected to compressive stresses. 

 

Mode-II   

expressed as, 

            (3.09) 

          (3.10) 
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3.2   Local Damage Evolution 

The damage evolution law explained hereunder is based on the assumption that the evolutions of the 
different damage variables are driven by a single variable known as ‘Equivalent Damage Energy 
Release Rate’ [Allix O. et al., 1995]. The expression for ‘Equivalent Damage Energy Release Rate’ is 
written as, 

( ) ( ) ( ) ( )
1

1 23 1 2d d dt
Y t Max Y Y Y

α αα α

τ
γ γ

≤

 
= + + 

 
                                                                  (3.11) 

Note that, the first, second and third terms in the expression are associated to the Mode-I, Mode-II 
and Mode-III failure modes respectively.   

Some important characteristics of this technique can be listed as follows, 

I. Evolution of the damage variables are assumed to strongly coupled (i.e., ‘ISOTROPIC’ 
damage evolution) 

II. Damage taken place within a given time period will depend on the maximum value of the 
equivalent damage energy release rate.  

The damage or material function [Allix O. and Ladevèze P., 1996] is selected in the form, 

0

0

( )
1

n

C

Y Yn
w Y

n Y Y

+

 −
 =
 + −
 

                                                                                                           (3.12) 

Where, n is called the characteristic function of the material and 
C

Y  and 
0

Y  are critical and 

threshold damage energy release rates. 
0

Y  is introduced to enlarge the possibility to describe both 

initiation and propagation of delamination (usually, 
0

Y =0). 

The damage evolution procedure can then be defined as follows, 

13

( )1 2 3

11 2 3

d Y

d d d w Y

d d d

f and YR

else

endif

i  < < 

= = =

= = =

 

Where,   

( )
0 0

1
R C C

n

n
Y Y d Y Y+

+
= −                                                                                                             (3.13) 

Here, 
R

Y  is the damage energy corresponding to rupture, and 
C

d is the critical damage value, which 

is usually taken as equal to one ( 1
C

d = ). In general, 0,1
C

d  ∈   .  

 



15 

 

Chapter 3 – Static Damage Evolution 

3.3   Regularization Damage Evolution 

The interface damage model presented in Section – 3.2 is called a local damage model as it does not 
account for ‘spurious localizations’. The classical damage models lead inevitably to strain softening 
response and the numerical solutions obtained with such models tend to exhibit severe mesh 
dependence in the presence of ‘strain-softening’. The problem is much more evident in three-
dimensional (3D) problems rather than in two-dimensional (2D) problems [Gornet L. et al., 1997]. In 
addition, classical damage models tend to produce multiple solutions when the tangent operator 
becomes negative. This phenomenon is presented pictorially in Figure 3.03. 
 

 

Figure 3.03 : Graphical representation of numerical problems of local damage models 
  
Thus, to avoid spurious localization and other undesired effects one may need to regularize the 
damage evolution. Regularized evolution laws current available falls in to two major categories; 
namely, Rate-dependent damage evolution laws and Non-local (differential/ integral -type) damage 
evolution laws. 

 

3.3.1 Rate-Dependent Damage Evolution 

The core idea here is to introduce a delay effect into the classical damage model. The variant damage 

model ensures that physical variation of deriving force (Y ) does not lead to an instantaneous 

variation of damage variable ( d ). In other words, the ‘damage-rate’ is kept bounded. An example of a 

damage law with delay effect [Ladevèze P., 1995] is given below. 

13

( ) , ( ) 13 3

1 2 3

11 2 3

d and

m

d k w Y d w Y

d d d

d d d

f Y YR

else

endif

i

•

• • •

 < < 

+ 
= − ≤ 
 

= =

= = =

 

Note that, parameters mand k need to be determined experimentally. Here, an implicit Euler 

algorithm can be employed and the nonlinear discretized damage equation can be solved by Newton 
method. Damage models with delay effects have been successfully used to predict delamination 
process [Gornet L. et al., 1997, Marguet S. et al., 2006]. Simulated results were in well agreement 
with the experimental results. However, rate dependent models suffer from some limitations. For 
example, in case of fatigue loadings it is not logical to use rate dependent models as the load is 
inherently varying between the maximum and minimum values.   
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3.3.2 Non-Local Integral-Type Damage Evolution 

The models are formulated by introducing a length scale into the governing equations to avoid the 
pathological mesh sensitivity. They have been successfully used to eliminate the effect of localization 
in civil engineering work by many researchers but domain is still open to implement them in interface 
damage modelling for delamination of composite laminates [Borino G. et al., 2007; Milan Jirásek, 
2007]. 

In integral-type non-local damage models, the equivalent strain (
eq

ε ) is made non-local by means of 

spatial averaging over the surrounding volume (V ) with respect to a ‘weight function’ (
0

α ) (i.e., a 

Gaussian distribution function) [Zdeněk P. Bažant et al., 1988]. Now, the resulting average equivalent 
strain can be defined as follows. 

0

0

( ) ( )

( )
( )

eq

V
eq

V

x d

x
x d

α ζ ε ζ ζ

α ζ ζ
ε

−

=
−

∫

∫
                                                                                          (3.14) 

Where, 

2

0 2
( ) exp

2

r
r

l
α

 
=   

 
                  (3.15) 

Here, r x ζ= − and, l  is the internal length scale.  

The same idea can be applied for interface damage modelling by the following ways.  
 

Method-1 Averaging relative displacement : 

 

 

[ ]( ) ( )eq Uζ ζε →  ⇒  ( ) ( )eq x U xε  →    ⇒  ( )( )( )d d Y U x =  
 

Method-2 Averaging damage energy release rate : 

 

 ( ) ( )
eq

Yζ ζε →  ⇒  ( ) ( )eq x Y xε →  ⇒  ( )( )d d Y x=  

Method-3 Averaging damage variable :  

 

 ( ) ( )eq dζ ζε →  ⇒  ( ) ( )eq x d xε →  ⇒  ( )d d x=  

 

Here, Method-1 is considered to be the most effective approach compared to Method-2 and Method-

3. This is mainly because, Y  is a function of [ ]U and d  is a function of Y .  

The computed damage variable will be non-local in nature due to its dependence on averaged 
variables. Now, the relation between the stresses and displacement jumps along the orthotropic axes 
can be re-written in terms of the nonlocal damage variables as follows (for simplicity displacement 
jumps in each orthogonal direction is written without square brackets), 

 

 

                                                            (3.16) 

0

1 113 1

0

23 2 2 2

0
33 33 3

(1 ) 0 0

0 (1 ) 0

0 0 (1 )

k d U

k d U

Uk d

σ

σ

σ

 −   
    

= −    
     −    
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Chapter 4    

Analysis of Static Simulations 

4.1   Analysis Procedure 

Given hereunder is the routine of a finite element simulation procedure and subsequent post 
treatments carried out for validation of the interface damage model.    

Pre-processing 

 Define type of analysis(1D / 2D-plane stress/ 3D) 
Define geometry & mesh 
Define material parameters for arms  
Define ‘static damage model’ parameters for interface 
Define boundary, contact & loading conditions 

Define convergence criteria 

Solution 
 

Launch nonlinear calculation 

Post-
processing 

 
Plot evolution of force vs. displacement,  
crack length vs. displacement,  
damage variable vs. displacement, etc. 

Produce stress & strain field plots on un-deformed / deformed meshes 

Analysis  Compare and contrast simulated results with experimental data and 
investigate the effect of static model parameters 

 
The finite element implementation of the ‘static damage model’ for the interface in 3D is summarized 
in the Table 4.01 given below.  
  

Step-1 Compute damage energy release rate,  

i.e., ( )Y t  using  
1 2
,

d d
Y Y & 

3
d

Y  

Step-2 Compute isotropic damage function,  

i.e., ( )w Y using ,
C

Y Y  & 
0

Y  

Step-3 Compute damage variables,  

i.e., ( )
1 2 3

d d d w Y= = =  

Step-4 Compute stresses for the interface,  

i.e., 0 0 0

13 1 1 1 23 2 2 2 33 3 3 3(1 ) , (1 ) , (1 )k d U k d U k d Uσ σ σ= − = − = −  

Table 4.01 : FE implementation of static damage model 

The constitutive law for the inter-laminar interface will be introduced in to the finite element formulation 
of CAST3M via UMAT. 

One of the useful advantages of the sub-routine is its capability to print STATE VARIABLE values 
(i.e., stress, strain, damage variable, energy release rate, etc) at end of each loading increment during 
nonlinear calculation process. This option helps the user to properly calibrate the damage model with 
relative ease.  
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4.2   Identification of Static  Damage Model Parameters 

Prior to the commencement of simulations one needs to identify the model parameters of the damage 

evolution law. Parameters,  
C

Y , 
0

Y , 1γ  , 
2

γ  and α  are computed based on values of the critical 

energy release rates of each failure mode. Thus they are strongly depended on the mechanical 

behaviour of the material and therefore called ‘material parameters’. In addition, 0

1k , 0

2k  (initial shear 

stiffness) and 0

3k (initial normal stiffness) are computed using maximum admissible stresses of the 

inter-laminar interface [Ladevèze P. et al., 1998; Ijaz H., 2009]. The parameter n has a significant 

influence on initiation of delamination and subsequent evolution of damage variable. In Section 3.1, 

the formulas for computing 
C

Y , 
1

γ   and 
2

γ   are presented. In cases where inter-laminar fracture 

toughness for Mode-III is not available, one can take 
2 1

γ γ=  [Ladevèze P. et al., 1998] for 3D 

analyses.  

 

4.2.1   Identification of Parameter - α  

Procedure for identification of α  is explained hereafter. Let us consider a state of stress, where 

Mode-III fracture toughness is considerably negligible. Now, the reduced equation can be written as, 

 1I II

I IIC C

G G

G G

αα

+ =
   
   
   
   

                                                                                                                                  (4.01)  

The value of  α  can be obtained using the normalized Mode-I / Mode-II plane. Experimental results 

on critical energy release rate for pure Mode-I, pure Mode-II and Mixed-Mode (at least one data point) 
are used in the identification process. The example given hereunder considers the data reported 
[Rikard Borg et al., 2003] on a unidirectional composite laminate - HTA/6376C. The critical energy 
release rate (fracture toughness) for each failure mode is listed in the Table 4.02. 
 
 Failure Mode (Test Method) [ / ]G N mm

C
  

 Mode-I (DCB) 0.259   

 Mixed-Mode (MMB)
 

/ ( ) 0.5
II I II

G G G+ =  0.447   

 Mode-II (3ENF) 1.008   

Table 4.02 : Critical energy release rates of  HTA/6376C for different failure modes  
   

 
Figure 4.01 - Normalized Mode-I / Mode-II plane for HTA/6376C   
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Figure 4.01 given above shows the normalized Mode-I / Mode-II plane, developed using the available 

experimental results included in Table 4.01. The best fit of plot can be obtained when  1.4α = . The 

good value of α  is usually identified by using several experimental results obtained for different mode 

mixtures. Note that, α  governs the shape of the failure locus in Mixed-Mode and has no influence on 

the evolution of the damage variable in either pure Mode-I or Mode-II cases. Typically, value of α  for 

most fibrous composites is in between 1 and 2 (i.e.,1 2α≤ ≤ ) [Harper P. W., 2008].  

 

4.2.2   Identification of Initial Interface Rigidities 

An ‘instability criteria’ [Gornet L., 1997; Ijaz H., 2009] has been derived to find the relationship  

between the maximum admissible stress (i.e.,
3

1,2
th

i
iσ =  and 3) at the interface and the damage 

model parameters. Through this formulation one can determine the initial rigidities (i.e.,
0 1,2
i

k i =  and 

3) of the interface.   

For each failure mode the instability criteria can be expressed as follows, 

Mode-I : 
33 0σ
•

=  for 
3 0U

•

≠  

Mode-II : 
31 0σ
•

=  for 
1 0U

•

≠  

Mode-III : 
32 0σ
•

=  for 
2 0U

•

≠  

For Mode-I, differentiating normal stress; ( )0

33 3 3 31k d Uσ = −  with respect to 3U  we have,  

( ) ( )033
3 3 3 3

3 3

1 1
d d

k d U d
dU dU

σ  
= − + − 

 
 

Next by considering equations 3.03 and 3.12 

( ) ( ) ( )033
3 3 3

3 3
3 3

3

1
d d

d

d d d
k d U W Y Y

dU dY dU

σ  
 = − − ⋅
  

 

( ) ( )033
3 3

3
3 3

3

1 2
d d

d

d d
k d Y W Y

dU dY

σ  
 = − −
  

                                                                               (4.02) 

According to instability criteria: 33

3

0
d

dU

σ
= , which leads to the following expression, 

( ) ( )3 3 3
3

1 2 0
d d

d

d
d Y W Y

dY
− − =                                                                                                       (4.03) 

Now, one can re-write equation 4.03 in a more general form considering all failure modes. 

( ) ( )1 2 0
d

d Y W Y
dY

− − =                                                                                                                       (4.04) 
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Mode-I : 3d d=  and 
3d

Y Y=  

Mode-II : 1d d=  and 1 1d
Y Yγ=  

Mode-III : 2d d=  and 2 2d
Y Yγ=  

 
By considering equation 3.12 one can further expand equation 4.04 as follows, 

0 0

0 0

1 2 0
1 1

n n

C C

Y Y Y Yn d n
Y

n Y Y n Y YdY

      − −   − − =   
   + − + −            

 

1

0

ˆ ˆ1 2 0
1 1

n n
n n

C

n Y n
Y n Y

n Y Y n

−   
− − =   
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Analytical relation for initial interface rigidities in each direction can be derived from the above 

equation by taking, 
0

0Y = . 

For Mode-I, considering equation 4.05 we have, 
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Now substituting equation 3.12 in ( )0
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Considering equations 4.06 and 4.07 one can derive, 

0

33 3 3

2

2 1

n
k U

n
σ =

+
                                                                                                                           (4.08) 

Now by considering equations 3.03, 4.06 and 4.08 the initial interface rigidity in the out-of-plane 
direction (i.e., Mode-I) can be expressed as follows,   
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Similarly, the initial interface rigidities in the in-plane directions (i.e., Mode-II and Mode-III, 
respectively) can be expressed as follows,  
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The initial interface rigidities can then be computed using above equations, if experimental data on 
maximum admissible stresses for the interface and critical energy release rate for Mode-I are 

available.. Note that, the value of ' 'n  will be assumed based on the brittleness of the interface. 

Usually, 1n<  is used for brittle interfaces.    

For a unidirectional composite laminate - HTA/6376C, maximum admissible stresses for the interface 
were reported [Robinson P. et al., 2005] to be approximately equal to 30 MPa (i.e. 

[ ]33 13 30C MPaσ σ σ= = = ). By using the above equations and assuming 0.5n = , the normal 

and shear rigidities can be found [ ]0

3 9265 /k MPa mm=  and [ ]0

1 2380 /k MPa mm= . 

The results given hereunder illustrate the model response for both Mode-I and Mode-II failure modes 

for simple test-cases. The laminate material is considered to be HTA/6376C with [ ]0 / 0 interface. 

Reported mechanical properties [Rikard Borg et al., 2003] of the lamina are included in Table 4.03. 

 11E  - 146,000 [ ]MPa  22E
 

- 10,500 [ ]MPa
 33E

 
- 10,500 [ ]MPa

 

12ν  - 0.3  23ν
 

- 0.51
 

13ν
 

- 0.3
 

12G  - 5,250 [ ]MPa  23G
 - 3,480 [ ]MPa

 13G
 - 5,250 [ ]MPa

 

Table 4.03 : Elastic properties of HTA/6376C unidirectional prepregs reported by Rikard B. et al. 

Figure 4.02 given below illustrate the geometry of the test-piece, loading schemes i.e., imposed 

displacements; 3U  for Mode-I and 1U  for Mode-II, and boundary conditions. 

 
Figure 4.02 : Test-piece geometry and loading/boundary conditions 

Simulations were performed considering a state of ‘PLANE STRESS’ in 2D. Values of the material 
parameters and FEs used are given in Table 4.04.  
 

[ ]/
C

Y N mm  0.259  
Body (2D)  

Geo. Support / Finite Element : QUA4 / QUA4

Deg. of Interpolation : 1
 

1γ  0.2569  

α  1.4  
Interface(1D)  

Geo. Support / Finite Element :  RAC2 /

Deg. of Interpolation :  1

JOI2
 

n 0.5  

Table 4.04 : Damage model parameters and 2D mesh details for simulations of test case 

The mechanical behaviour of the ‘Body’ will be simulated with the classical constitutive law (i.e.,

kσ ε= ) using solid elements. At the same time, the interface elements are used simulate the 

degradation of the interface using the modified constitutive law (i.e., ( )1 d kσ ε= − ) formulated 

according to damage mechanics. The damage model is simply responsible for computing the damage 

variable (i.e., d ) at the end of each increment (i.e., force or imposed displacement). Note that, 

interface elements are zero thickness elements having same size of the solid elements  
(length and width directions) adjacent to them. Figure 4.03 illustrates the relative location of the 
interface elements for 1D and 2D cases.    
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The mechanical behaviour of the interface elements are mainly depended on the interface rigidities. 
Initially, there exist no crack, but with increasing displacement the damage starts to accumulate and 
as a consequence the normal interface rigidity degrades. As explained earlier the initial rigidities in 
normal and shear directions will be determined using the equations 4.09, 4.10 and 4.11. 

Note that, the index given at the end of the element name (i.e., 4 for QUA4 and 2 for JOI2) denotes 
the number of nodes associated to each type of element. Interestingly, in CAST3M (2007, 2008 and 
2009 versions) the gauss points of the interface elements are also located at the nodal points. 
Therefore, both stress and strain as well as all other user defined STATE VARIABLEs (i.e., energy 
variables, damage variables, etc) are also calculated at the nodal points of the interface elements.     

Table 4.05, includes plots representing ‘force vs. displacement’, ‘damage vs. displacement’ and 

‘energy release rate (G) vs. displacement’ for each failure mode. All simulations were performed up 

to the final failure (complete debonding).    

 Mode I−  Mode II−  

 

   

  

   

Table 4.05 : Evolution of force, damage and strain energy with displacement for the test case 
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Figure 4.03 : Pictorial views of interface elements for 1D and 2D cases 
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Numerical simulations were also carried out in 3D with same material parameters. The types of FEs 
used are included in Table 4.06. 
 

Body (3D)  
Geo. Support / Finite Element : CUB8 / CUB8

Deg. of Interpolation : 1
 

Interface(2D)  
Geo. Support / Finite Element :  LIA4 / JOI4

Deg. of Interpolation :  1
 

Table 4.06 : 3D mesh details for simulation of test case 

3D simulation results were identical to the ones obtained from 2D analysis. 3D model did not exhibit 
any spurious localization as a result of its simple geometry. However, the computational cost 
increased notably. 

During the debonding process the damage variable increases from '0'  to '1 '  and energy release rate 

from '0'  to '
C

G  ( =0.259  for Mode-I and =1.008  for Mode-II) simultaneously. Here, the evolution of 

energy release rate has been determined using global force and displacement variables. Note that, 
the area under the force vs. displacement curve is equal to the critical energy release rate for each 
failure mode. However, for analysis purposes it would be useful to determine the strain energy 
released in terms of local variables (i.e., stress and strain) during the calculation process. This is 
achieved by using the trapezoidal rule to compute the area under the ‘stress vs. strain' curve at each 
increment and adding them progressively. Here, the computations are performed at each gauss 
points of the interface elements (in CAST3M the gauss points and nodal points are located at the 
same position).  

Note that, classically energy release rate is defined in terms of failed surface area; therefore it can 
attributed as an area parameter. On the other hand, when strain energy release rate is calculated at 
the gauss points it is no more a physical quantity but a mere representation of this area parameter by 
numerical means. It is the responsibility of the user to properly appreciate the correlation between this 
numerical variable and the physical quantity. When the relation is established it serves as a useful 
numerical tool in determining the energy variation in the system. Theory associated to this 
methodology for determining the energy release rate was discussed earlier in Section 3.1. 

Figure 4.04 given below illustrates the evolution of the energy release rate at the interface for Mode-I 
failure using both global and local variables. Note that, for the considered test-case, degradation of 
the entire interface takes place homogeneously and delamination happens all at once. In other words, 
crack front is not a point but a line. Hence, any selected gauss point of a given interface element can 
be indirectly used to determine the evolution of the energy release rate variable. 

 

  
    Figure 4.04 : Comparison of G-Global and G-Local  

As it can be seen from the above figure, the variation of this numerical quantity can be directly 
mapped on to the evolution of the energy release rate obtained by the global variables. Therefore, this 
information justifies the applicability of the assumption for determination of energy release rate in 
terms of local variables. 
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Influences of parameter ' 'n  and admissible interfacial stresses on the model’s response can be 

understood by investigating the force vs. displacement plots for Mode-I failure included in Table 4.07. 
 

 

Table 4.07 : Evolution of force with displacement for different n and critical stress values 
        

For smaller values of ' 'n  the computed interfacial rigidities are larger in magnitude and therefore the 

initial slope of the force-displacement curve will decrease as ' 'n  increases. On the other hand, as the 

maximum admissible stress is increased, the slopes of the curves tend to decrease. However, this 
phenomenon will not affect the computed maximum stress and critical energy release rate at the 

interface. In addition, both parameter ' 'n  and admissible stress have a significant influence on the 

maximum force computed and critical displacement for complete failure. Therefore, final results of the 
simulations are believed to be considerably sensitive to these parameters.      

In cases where values of interfacial stresses are not available or not certain, the interfacial rigidities 
can be found by doing a comparison between numerical and experimental results under static loading 

conditions. Here, values for parameter ' 'n  could be determined through a trial-and- error approach. 

Usually domain of ' 'n  for brittle interfaces is considered to be 0 1n< < . 

 

 

  

0

10

20

30

40

50

0 0.005 0.01 0.015

n = 0.25
K33 = 15770 [Mpa/mm]
K31 = 4090 [Mpa/mm]

n = 0.5
K33 = 9230 [Mpa/mm]
K31 = 2395 [Mpa/mm]

n = 0.75
K33 = 6990 [Mpa/mm]
K31 = 1815 [Mpa/mm]

0

10

20

30

40

50

0 0.005 0.01 0.015 0.02

Max. Stress = 20 [Mpa]
K33 = 4100 [Mpa/mm]
K31 = 1065 [Mpa/mm]

Max. Stress = 30 [Mpa]
K33 = 9230 [Mpa/mm]
K31 = 2395 [Mpa/mm]

Max. Stress = 40 [Mpa]
K33 = 16410 [Mpa/mm]
K31 = 4260 [Mpa/mm]

Max. Stress = 30 [MPa] 

n = 0.5 



25 

 

Chapter 4 – Analysis of Static Simulations 

4.3   Overview of Fracture Mechanics Tests for Delamination 

Fracture toughness of fiber reinforced composites is classically determined using test methods 
developed for unidirectional laminates. This is mainly due to intra ply damage, undesired edge effects 
and crack plane migration effects associated to multidirectional laminates. Although inter-laminar 
fracture toughness can be measured in any combination of three fracture modes, the most commonly 
used ones are Mode-I (opening), Mode-II (shearing) or combination of both [ASTM standards; 
Brunner A. J., et al, 2001a/2001b]. Note that, Mode-III (tearing) fracture toughness is relatively larger 
in magnitude and contribution to delamination is comparatively low.  

Usually the fracture toughness is measured using a beam-type composite specimen with an initial 
crack between central plies. The initial delamination is introduced into the laminate by a thin non-stick 
film, usually made of polymer. Therefore, upon application of loading, delamination grows parallel to 
the plies in the mid-plane of the beam. Interestingly, during the propagation stage one can observe a 
non-straight crack front. This is mainly due to the variation of the energy release rate across the width 
of the specimen. While performing the test, both applied load and corresponding displacement are 
measured and are correlated to the delamination length. From correlated data, the inter-laminar 
fracture toughness will be obtained using simple beam theory principles or other empirical 
formulations. 

Typically ‘Double Cantilever Beam (DCB)’ test method is used to obtain experimental inter-laminar 
fracture toughness for Mode-I. Note that, the initial delamination is introduced in the mid-plane of the 
beam at one end and the other end will be fixed. The initial delamination is then forced to grow by 
pulling the two beams at the free end in opposite directions (opening). A schematic illustration of the 
DCB test with loaded and unloaded conditions is given below in Figure 4.05. 

 

Figure 4.05 : DCB test with loaded and unloaded conditions 

‘Three-point End Notched Flexure (3ENF)’ test is one of the most commonly used experimental 
methods for obtaining Mode-II inter-laminar fracture toughness. Here, initial delamination is forced to 
grow in the mid-plane by making crack faces slide (shearing) relative to each other. This is achieved 
by simply supporting the beam at the two ends and applying a compressive force at the mid span of 
the beam. Figure 4.06 given below shows a schematic of a 3ENF test with loaded and unloaded 
conditions.  

Figure 4.06 : 3ENF test with loaded and unloaded conditions 

Mixed-Mode I/II inter-laminar fracture toughness is commonly evaluated using a ‘Mixed Mode Bending 
(MMB)’ test apparatus [Crews J. H. and Reeder J.R., 1988]. Here, initial delamination is forced to 
propagate by both opening and shearing actions. The test allows the determination of fracture 
toughness with a Mixed-Mode ratio ranging from pure Mode-I to pure Mode-II. Figure 4.07 given 
below illustrates a schematic of the test rig (source - Blanco Villaverde N., 2004). Usually different 
Mixed-Mode ratios are achieved by varying the position of the load point ( c ) along the lever arm. 
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4.5   Validation of Local Static Damage Model 

 

4.5.1   FE Simulation Details 

The local damage model was tested systematically in 1D, 2D and 3D spaces. The types of FEs used 
in each space are given in Table 4.08. 

 Laminate arms  Inter-laminar interface  

1D  
Geo. Support / Finite Element : SEG2 / COQ2

Deg. of Interpolation : 1
 

Geo. Support / Finite Element :  RAC2 /

Deg. of Interpolation :  1

JOI2
 

2D  
Geo. Support / Finite Element : QUA4 / QUA4

Deg. of Interpolation : 1
 

Geo. Support / Finite Element :  RAC2 /

Deg. of Interpolation :  1

JOI2
 

3D  
Geo. Support / Finite Element : QUA4 / COQ4

Deg. of Interpolation : 1
 

Geo. Support / Finite Element : LIA4 / JOI4

Deg. of Interpolation : 1
 

             Table 4.08 : Types of FE used for 1D, 2D and 3D models of DCB and 3ENF tests  

Note that, in CAST3M the degree of the interpolation function associated to both ‘RACCORD’ (1D) 
and ‘LIAISON’ (2D) type interface elements are limited to '1' . As a consequence, laminate arms were 
also needed to be meshed with elements having interpolation functions of the same degree. In other 
words, compatibility of the elements used for the interface and laminate arms should be ascertained 
prior to the commencement of the simulations. Usually, for the case of simple beam bending, a coarse 
mesh with elements having degree-2 interpolation functions (i.e., QUA8 for 2D and CU20 for 3D) will 
be sufficient for simulating the bending behaviour accurately. However, to obtain a prediction using 
degree-1 elements (i.e., QUA4 for 2D and CUB8 for 3D) with similar accuracy, the mesh size needs to 
be reduced significantly. 

In all models the laminate arms were formulated with ‘ELASTIC ORTHOTROPIC’ material behaviour.  
Note that, in previous studies some authors had introduced isotropic behaviour to obtain satisfactory 
results. However, the unidirectional composites are orthotropic by nature (see Table 4.03); therefore it 
is necessary to consider orthotropic behaviour for laminate arms to properly model the delamination 
characteristics. Although delamination is a phenomenon happening at the interface it is affected by 
the behaviour of the arms connected to the interface.  

Here, both COQ2 and COQ4 belong to the ‘SHELL’ elements category and were found to be tailor-
made for the problem in hand. For the ID case, COQ2 elements allow the user to define elastic 
properties in both longitudinal and thickness directions, along with Poisson ratio and shear modulus. 
On the other hand, for the 3D case, COQ4 elements allow the user to define additional transverse 
shear components. The 2D simulations were performed considering a state of ‘PLANE STRESS’ 
(‘PLANE STRAIN’ also possible) along with a more comprehensive list of orthotropic material 
definitions. Table 4.09 given below includes a complete list of mechanical variables taken in to 
account by each type of elements. 

 Thin-Shell(1D) : COQ2  Solid(2D) : QUA4  Thin-Shell(3D) : COQ4  

11E , 22E  

12ν  

12G  

11E , 22E , 33E  

12ν , 23ν , 13ν  

12G , 23G , 13G  

11E , 22E  

12ν  

12G , 23G , 13G  

Table 4.09 : Mechanical variables associated to solid and shell elements 

Note that, all computations were performed with imposed displacement loading condition as it was the 
case with the two experimental tests. 
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In order to determine the most optimum mesh size, a convergence analysis was also performed. In 

general, numerical solutions converged for element sizes smaller than [ ]0.2 mm  (in the longitudinal 

direction). Details of the convergence analysis are presented at the end. Figure 4.09 given below 
shows a comparison of experimental and simulated results. Note that, all simulations were done with 

displacement increments equal to [ ]0.02 mm . Convergence limits were set to 1.0 2E − . 

 

Figure 4.09 : Force vs. Displacement for DCB – simulated results for 1D, 2D and 3D models 

Simulated results for 2D and 3D are in good agreement with the experimental results. However, for 
1D, simulated result shows a small increase of the stiffness prior to crack propagation. All simulated 
curves attain their maximum values approximately at a similar displacement level (see vertical dotted 

line on figure drawn at [ ]2.3 mm ). Here, percentage errors for 1D, 2D and 3D are 4.4% , 1.7%  and 

1.7%  respectively.  Similarly, the maximum value of the force was also predicted well within an 

acceptable range. Percentage errors of prediction for 1D, 2D and 3D are 7.5% , 4.9%  and 1.7%  

respectively. Although, 1D result shows some deviation at first, the propagation stage has been 
predicted with good accuracy compared to 2D and 3D results.             

 

Figure 4.10 : Crack length vs. Displacement for DCB – simulated results for 1D, 2D and 3D models 

Figure 4.10 given above illustrates the evolution of crack length against displacement for all 
simulations. The predictions seem to be satisfactorily when compared to experimental result. 
Interestingly, the experimental result shows some erratic variations which may probably be caused by 
vibration of the test piece during measurement. For all simulations, the prediction of initiation of crack 
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growth seems to be within an acceptable accuracy. In general, the initiation points directly correspond 
to the points at which the force vs. displacement curves starts to change direction. However, in 3D 
simulations the crack initiation seems to take place with a small delay. As it has been pointed out 
earlier, in 3D, crack front is a line. Therefore, crack growth in both center and outer edges of the 
model need to be determined. Two curves, named 3DSHELL and 3DSHELL-M given in the above 
figure refer to the crack growth at the outer edges and middle of the specimen. Figure 4.11 given 
below can be used to visualize the crack growth paths considered for plotting.  

 
 

 
 

 
 

 

Figure 4.11 : Crack paths monitored for plotting 

From these results it can be deduced that crack growth in the center of the specimen happens earlier 
than the outer edges. Notice that, the two evolution remains roughly parallel to each other. This 
suggests that the crack front moves forward with a curvature and the shape of the curvature remains 
roughly the same throughout the test. The stress field plots given in Figure 4.12 can be used to 
visualize this phenomenon. The stress fields given below have been produced using normal stress 
component (i.e., SMN) of the interface elements. Note that, the shear stress components are 
negligible because the tests were performed specifically to achieve Mode-I or Opening Mode failure.   

  

        Just before crack initiation              During crack propagation 

Figure 4.12 : Normal stress filed at the crack front for DCB test 

These stress fields also provide an insight to the shape of the process zone ahead of the crack front. 
Even before crack initiation, the intensity of stress fields close to the outer edges tends to be lesser 
than the central region. At the same time, evolution of the damage variable at the center happens at a 
faster rate compared to the outer edges. As the displacement of the arms increases the stress field 
also changes gradually. When the propagation stage is reached the stress field remains roughly the 
same until the end of the test. Note that, intensity of the stress field is a good representation of the 
shape of the crack front. Here, experimental result used for the comparison has been obtained by 
examining the delamination growth at the outer edges of the specimen. The predicted initiation point 

at the outer edge of the model has a percentage error of 8%.    

Crack growth at 

the edges 

(3DSHELL) 

Crack growth in 

the middle 

(3DSHELL-M) 

Crack front 
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The principal stress fields of the laminate arms of the 2D model are shown in Figure 4.13. Note that, 

plots have been made at a prescribed displacement of [ ]2.6 mm . 

SMXX 
 
 

 

SMYY 
 

 

Figure 4.13 : Principal stress fields of the laminate arms for DCB test 

As expected, the regions close to the inner edges of the laminate arms are in tension and the regions 
close to the outer edges are in compression (See SMXX stress field). The pricipal stress in Y-direction 
shows high stress concentration surrouding the crack tip. Note that,  weaker objects in the FE model 
are interface elements. The deformation and stress distribution of the laminate arms are effected by 
the bahaviour of these interface elements. Stress fields plots shown above justify the fact that 
contunity between solid elements and interface elements are mainteined at all time.      

Details of the convergence analysis for determination of the optimum mesh size are discussed 
hereunder. The investigation was performed on both 1D and 2D models.   

  

Figure 4.14 : Force & Crack length vs. Displacement for DCB – simulated results in 1D for different 
element sizes 
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Figure 4.15 : Force & Crack length vs. Displacement for DCB – simulated results in 2D for different 
element sizes 

Investigation results for 1D and 2D models are illustrated in Figure 4.14 and Figure 4.15 respectively. 

Note that, all simulations were done with a constant displacement increment, equal to [ ]0.04 mm . As 

it can been seen from each plot for both models, the conergence of the results were achieved for 

element sizes less than [ ]0.2 mm .  

In case of 1D model, when the selement size increases over the optimum value, undulation of the 
curve becomes more severe. Similar observations were also made for the 2D model. Interestingly in 

2D, when the element size increases over [ ]0.2 mm the simulation tends to stop abruptly as a 

consequence of non-convergence. This may probably be associated to the severity of the erratic 
evolution of the variables. For example, the force-displacement curve for element size equals to 

[ ]0.4 mm  shows a dramatic increase of the evolution and sudden collapse of the calculation 

process.  

However, even at larger element sizes the behaviour of the model was observed to be intact. In other 
words, the predicted evolutions still follow the experimental results. Therefore, the damage model 
seems to be well reliable. 

The results of the converegence analysis for determination of the of optimum limits of ‘Force 
Tolerance’ and ‘Moment Tolerance’ are given in Figure 4.16.  

  

Figure 4.16 : Force & Crack length vs. Displacement for DCB – simulated results in 1D for different 
FTOL and MTOL values 

The analysis was carried out considering the 1D model. Element size was selected equal to 

[ ]0.2 mm . Note that, for simplicity both FTOL and MTOL values were taken equal to each other. 

According to plots given in above figure, FTOL (or MTOL) values smaller than 1.0 2E − produce 

converged results. Another convergence analysis was also perfomed considering the 2D model and 
simillar conlucsions can be made based on its results.          



33 

 

Chapter 4 – Analysis of Static Simulations 

4.5.3   Simulation Results for 3ENF Test 

Application of the boundary conditions and loading conditions (i.e., imposed displacement) for the 1D, 
2D and 3D 3ENF test simulations are shown in Table 4.11. 

1D 

 

2D 

 

3D 

 

Table 4.11 : Boundary and loading conditions for 3ENF static test 

Note that, both 1D and 3D models were meshed with SHELL elements. Mid-planes of the shell 
elements for the two arms were located on either side at a distance equal to half the thickness of an 
arm. However, it’s purely a virtual definition. Therefore, to define a compressive load on the shell 
mesh it then necessary to include an addition block (a line in 1D and a surface in 3D) at the location 
where the load it to be applied. The blocks were defined with same material properties used for the 
arms. Importantly, these entities (i.e., new mesh blocks) are only connected to the top laminate arm. 
Finally, the compressive loads were applied on each block as shown in above figures. 

The optimum mesh size was once more identified by performing a convergence analysis. 
Interestingly, the optimum mesh size for 3ENF is larger than for DCB. For example, convergence of 

the numerical results was even achieved at element size equal to [ ]0.4 mm . However, to be 

consistent with DCB test conditions, element size equal to [ ]0.2 mm  was selected for simulations.  

Figure 4.17 given below shows a comparison of experimental and simulated results. Simulations were 

done with displacement increment equal to [ ]0.01 mm . Convergence limits were set to 1.0 2E − . 

 

Figure 4.17 : Force vs. Displacement for 3ENF – simulated results for 1D, 2D and 3D models 

IU

IU

IU
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Simulated results obtained for all 1D, 2D and 3D models seem to be acceptable in comparison to the 
experimental results. Interestingly, all 3ENF models have produced similar force-displacement 
evolutions. Note that, in DCB tests some difference was noted for the results obtained with 1D model.               

In figure above, experimental curve shows a sudden dip in the beginning of the test. This 
uncharacteristic behaviour may probably be associated to some problematic issues encountered 
during testing. One possible reason is crushing of the laminate top surface during initial application of 
the loading. The static damage model does not consider this phenomenon and the laminate surface is 
considered to be a stiff body. The maximum value of the force was predicted within an acceptable 

range. Percentage errors of prediction for 1D, 2D and 3D are 2.8% , 2.8%  and 3.1%  respectively. 

In addition, a sudden drop in the experimental curve can be seen just after maximum force value. At 

this point, the laminates have been deformed roughly up to [ ]2.5 mm . Since, the laminate arms are 

manufactured by bonding several unidirectional layers; it is more or less susceptible for compression 
failure at some point. It is probable that, when the interface starts to fail by shear, laminate arms also 
start failing by compression. In this particular case, the force value seems to reduce dramatically and 
the drop is almost vertical. Once more, the static damage model is not designed to take in to account 
the failure of the arms. Coupled failures, such as the one discussed here may pose many numerical 
difficulties (i.e., snap back phenomenon), and require much more rigorous investigation.  

As expected, the simulation results shows a drop of the force with increasing displacement up to 

[ ]3.0 mm .  Note that, experimental results are not available beyond this value. However, simulation 

was continued further and an interesting phenomenon was observed. As the prescribed displacement 

goes beyond approximately [ ]3.25 mm , the global force starts to increase gradually. This 

phenomenon may probably be associated to the position of the crack tip relative to the load point 
position. This argument will be verified by investigating the evolution of the crack length.  

Figure 4.18 given above illustrate the evolution of crack length obtained for each model. The initiation 
of the crack has been predicted satisfactorily by all models. As explained above, the propagation of 
the crack may not be accurately captured by the static model as a result of the probable coupled 
failure mechanism that has taken place during the test.    

 

Figure 4.18 : Crack length vs. Displacement for 3ENF – simulated results for 1D, 2D and 3D models  

As previously mentioned, the simulations were performed beyond the experimental range. When the 

prescribed displacement reaches [ ]3.25 mm  the crack extension increases up to [ ]15 mm . Note 

that, the initial crack length is [ ]35 mm , therefore, total length of the crack is equal to [ ]50 mm . This 

means that, at this instant the crack tip is directly underneath the loading point. As a result, the global 
force tends to increase with further increase of the prescribed displacement. At the same time 
shearing action also continues and the crack length will keep on growing gradually without showing 
any abrupt changes.      
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3D simulations performed on DCB tests revealed that crack front is not actually a straight line but a 
curved line. In other words, crack propagation at the center happens much earlier than at edges. It is 
interesting to note whether the same phenomenon is applicable for the Mode-II failures. Once more, 
the evolution of the crack length both at the center and the edges of the 3D model was determined. 
The corresponding curves are also included in Figure 4.20. Note that, curves named; 3DSHELL and 
3DSHELL-M refers to the evolution of the crack length at the edges and center of the specimen 
respectively. Interestingly, evolutions of the two curves show only a small difference between them. 
This suggests that, in 3ENF test, crack propagation of the specimen tends to happen more uniformly 
throughout its width.      

Figure 4.19 given below includes shear stress field plots close to the crack front and they correspond 
to two different loading stages of the test. The understanding of the state of stress at the interface will 
be useful for determining the shape of the crack front as described earlier with DCB tests.  

              Just before crack initiation              During crack propagation 

Figure 4.19 : Shear stress filed at the crack front for 3ENF test 

The stress fields shown above have been produced using shear stress component (i.e., SMS1) in the 
X-direction. Since, 3ENF test is specifically designed to obtain Mode-II or Shear Mode failure, the 
other stress components are found to be negligible.  

Prior to crack initiation, the shear stress distribution seems to be more or less uniform throughout the 
specimen’s width. However, stress intensity of the elements close to the edges is slightly smaller than 
elements at the center. After crack initiation, stress distribution changes slightly and remains roughly 
unchanged during the propagation stage. Similar observations were also made with DCB tests. Once 
again, a curved shape stress distribution can be seen ahead of the crack front. However, only small 
variations of the stress intensity can be seen for elements that are located on the same vertical line 
(Note that, for DCB tests, the variation of the stress intensity is found to be much more significant). In 
addition, evolutions of the damage variables for those elements are found to be similar to each other. 
As a result, evolution of the crack length across the specimen’s width is found to be roughly uniform, 
However, it would be interesting to see if this phenomenon is true for other Mode-II tests, including 
4ENF (four-point End Notch Flexure), ELS (End Load Split), etc. 

The stress distribution plots also reveal the size of the process zone ahead of the crack front. By 
comparing the two stress fields given Figure 4.12 and Figure 4.19, one can appreciate the extent of 
the damage zone for each failure mode. Comparatively, the damaged zone in Mode-II is seen to be 
larger than the damage zone in Mode-I. This difference could probably be associated to the nature of 
the loading condition.    

Similarly, as in the case of DCB tests, a convergence analysis was performed to determine optimum 
mesh size for 3ENF tests. The investigation was performed on both 1D and 2D models.   
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Figure 4.20 : Force & Crack length vs. Displacement for 3ENF – simulated results in 1D for different 
element sizes 

 

  

Figure 4.21 : Force & Crack length vs. Displacement for 3ENF – simulated results in 2D for different 
element sizes 

Investigation results for 1D and 2D models are illustrated in Figure 4.20 and Figure 4.21 respectively. 

Note that, all simulations were done with a constant displacement increment, equal to [ ]0.02 mm . 

Interestingly, the conergence of the results were even achieved with element sizes equal to 

[ ]0.4 mm . Note that for DCB, the optimum mesh size was found to be [ ]0.2 mm . For element sizes 

over the optimum limit the undulations of the curve becomes more and more prominent, but the 
prediction of the general behaviour was found to be satifactorily.     

 

Figure 4.22 : Force & Crack length vs. Displacement for 3ENF – simulated results in 2D for different 
FTOL and MTOL values 

Figure 4.22 given above illustrate the results of the convergence analysis performed for determination 
of optimum FTOL and MTOL limits. The analysis was performed considering 1D model with an 

element size equal to [ ]0.2 mm . Similarly, to DCB tests, the optimum FTOL and MTOL limits were 

found to be equal to 1.0 2E − . Converegence analysis performed on the 2D model also produced 

similar results. 



37 

 

Chapter 4 – Analysis of Static Simulations 

4.6   Validation of Nonlocal Static Damage Model 

 

4.6.1   FE Implementation of Nonlocal Model 

The nonlocal damage model is basically formulated by introducing some intermediate steps in the 
finite element implementation of the local model. Note that, in the present study an integral-type 
nonlocal damage evolution law has been considered for implementation. Table 4.12 given below 
includes the two different approaches that were considered for simulations. As it was discussed 
earlier in Section 3.3.2, the regularization of the computed solution can easily be achieved by either 
directly averaging the damage variables or averaging the damage energy release rate variables.   

 Averaging damage energy release rate Averaging damage variable 

Step-1 Compute damage energy release rate 
variables,  

i.e., ( )Y t  using  
1 2
,

d d
Y Y & 

3
d

Y  

Compute damage energy release rate 
variables,  

i.e., ( )Y t  using  
1 2
,

d d
Y Y & 

3
d

Y  

Step-2 Average damage energy release rate 
variables, 

i.e., Y Y→  using Eq. 3.14 & 3.15 

Compute isotropic damage function,  

i.e., ( )w Y using ,
C

Y Y  & 
0

Y  

Step-3 Compute isotropic damage function,  

i.e., ( )w Y using ,
C

Y Y  & 
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Y  

Compute damage variables,  

i.e., ( )
1 2 3

d d d w Y= = =  

Step-4 Compute damage variables,  

i.e., 1 2 3 ( )wd d d Y= = =  

Average damage variables 

i.e., d d→  using Eq. 3.14 & 3.15 

Step-5 Compute stresses for the interface, 

 i.e., 

0
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0
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0
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Compute stresses for the interface, 

 i.e., 
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23 2 2 2

0

33 3 3 3

(1 ) ,

(1 ) ,

(1 )

k d U

k d U

k d U

σ

σ
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= −
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Table 4.12 : FE implementations of nonlocal static damage models 

Note that, all simulations were performed in 2D considering the same DCB and 3ENF test cases. 
Therefore, all material properties and values of damage model parameters are same as given before.   
In each approach, averaging of the variables needs to be performed at each gauss point of the all the 
interface elements. Usually, averaging of the variables is performed starting from the second 
increment. If the increment size is sufficiently small, the effect of this delay is believed to have a 
negligible influence on the final result. 

In CAST3M, averaging of the variables was achieved using a personal procedure; named PERSO1, 
available in the PASAPAS operator. As explained before, the modified damage model is once again 
introduced in to CAST3M using the UMAT sub-routine. Initially, for the first increment, values of all the 
STATE VARIABLES (damage variables, damage energy release rate variables, stress, strain, etc) will 
be computed at every gauss point in each element. When the convergence is achieved, the 
PASAPAS PROCEDURE will then launch the PERSO1 sub-procedure. At first, the procedure will call 
for the STATE VARIABLE data saved in the ‘VARI’ (i.e., initial internal variables) table. Each variable 
will then be saved in different tables for subsequent processing. Next, X and Y coordinates of all the 
gauss points (or nodal points) are also obtained and saved in two different tables. As explained in 
Section 3.3.2, a Gaussian distribution is used for the averaging of the selected variable (damage 
variable or damage energy release rate variable). The coordinates along with an internal length scale 

(i.e., l ) is then used to compute the weight of each variable value for every node in the interface.  
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As it was discussed earlier, only some points are providing major contributions for the averaging 
process. Figure 4.24 given below can be used to describe the magnitude of contributions coming from 
both left and right side of the point in interest. 

 
 
 
 
` 
 
 

 

Figure 4.24 : Level of contributions received from left and right 

As we move along in either direction, the magnitude of the weights determined by the weighing 
function will decrease gradually. With increasing distance, the values of the weights will decrease 
towards zero. As a result, contributions corresponding to those weights would automatically become 
very small. Therefore, averaging of the variables needs only be done with points that are in the 
neighbourhood. In fact, when we do averaging considering all the points in the whole domain, we 
perform unnecessary amount of computations without any useful gain. The idea was to eliminate 
redundant computations as much as possible. At the same care was taken to ensure the integrity of 
the nonlocal model. 

Next, a criterion was introduced to estimate the number of points that should be considered for the 
averaging process. In accordance to Figure 4.25, the criterion should also necessarily consider the 
effect of the internal length scale. Thus, to reduce complexity a simple approach was adopted to 
identify the size of the neighbourhood points. Figure 4.25 given below illustrate the selected criterion 
in a graphical form. 
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Figure 4.25 : Criterion for selecting neighbourhood points for averaging 

As shown above, the points that are lying in between the two limits corresponding to 0 1.0 3Eα = −  

are selected for the averaging process. The neighbourhood of these points is referred as the 
‘Averaging Zone’. These limits have been identified by performing a simple investigation between the 
original model and the modified model. Note that, the limits are inherently related to the problem in 
hand. In other words geometry of the model, mesh size, evolution of the variables, etc needs to be 
closely analyzed before making a decision. For test-cases where influence of parameters is not well 

understood, a limit corresponding to 0 1.0 6Eα = −  should at least be considered. 

In addition, few other attempts were made to further optimize the computation process. Generally 
(except at the two ends of the domain), at each nodal point there are two gauss points belonging to 
the two elements connected to it. The evolution of the STATE VARIABLES at these two gauss points 
will essentially be equal to each other at every stage of the solution process. This is mainly because 
of the continuity relation that exists between elements connected to each other. However, when it 
comes to averaging of the variables, it is not necessary to perform the same computation twice for the 
two gauss points located at the same node. We only need to perform a single computation and then 
store the averaged values for the two gauss points separately. By adopting this method we can 
effectively reduce the total number of computations required for averaging by half. Therefore, it was 
possible to reduce the computational time significantly. Interestingly, a notable reduction of the 
computation cost was observed with all proposed modifications. The ratio of the computational time 
between the original and the modified model is in the range between 4 and 6. 

Weighing function 

Very small contributions 
Very small contributions 

Significant contributions 

Averaging Zone 

( )0 rα

0 1.0 3Eα = − 0 1.0 3Eα = −
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Afterwards, the averaged variables need to be defined at each gauss point systematically. Note that, 
during the averaging process averaged values were written in separate tables. Now, all the STATE 
VARIABLES need to be redefined in the ‘VARF’ (i.e., final internal variables) table in PASAPAS 
PROCEDURE. In CAST3M, the user is only limited to define a common value over an element. The 
following choices were considered for determining a common or a representative value for each 
element using the values of the averaged variables at the two gauss points.  

I. Taking the average of the variable values at the two gauss points  
II. Taking the maximum value of the variable values at the two gauss points 

Both approaches were tested methodically and comparisons were made for subsequent analysis. 
Results of the investigation are included in the next section. Interestingly, the two approaches present 
two different conceptual arguments. In CASE-I, when you do averaging on the already averaged 
variables, this new value will make the model more nonlocal in comparison. On the other hand, in 
CASE-II, when you assign the maximum value of the two averaged values, comparatively you are 
making the model more local.     

However, when we perform further averaging on the already averaged values, we ultimately delay the 
evolution of the variables. As a consequence, the computational time tend to increase significantly. 
On the other hand, excessive averaging would also hinder accuracy of the computed value. It adds 
more viscosity in to the models behaviour. As a result, the STATE VARIABLES take more time to 
converge on to the realistic values. In comparison, taking the maximum value would help to reduce 
the computational time effectively. However, the lost information would obviously have a negative 
impact on the model's outcome. The details of the investigation comparing the two approaches are 
included in a later section. In general, the second approach seems to produce better results 
compared to the first one. 

Efforts were also made to further expand the nonlocal model from 2D to 3D environment. In fact, 
spurious localization issues are more associated to 3D models in comparison to 2D models. As it was 
observed during the study, 2D FE models with uniform mesh do not give rise to any numerical 
localization. In fact, models with varying mesh sizes also produced localization free results. In 3D, the 
Gaussian function is no longer line but a three-dimensional surface having a ‘bell shape’. As a result, 
in three-dimensions the computational time increases heavily and the investigation of the model’s 
behaviour becomes more inflexible.  Therefore, as mentioned earlier, all investigations of the present 
study are performed on 2D models.  

 

4.6.2   Simulation Results on DCB and 3ENF Tests 

According to preliminary analysis, the approach based on ‘averaging of damage energy release rate’ 
was found to be more favourable in predicting the experimental results. Therefore, much attention 
was devoted to appreciate the behaviour of  that model. Investigations was carried out on both DCB 
and 3ENF test models. Classically, for any given nonlocal model, the convergence of model’s 
response should be verified.  Experimental results used for verfication of the local model will once 
again be used to validate the proposed nonlocal model. Note that, a choice should be made for 
selecting a representative value for each element using the averaged values.  Simulation results given 
hereunder are based on the approach of taking the maximum value of the two gauss points belonging 
to each element. 

At first, an investigation was carried out to identiy a suitable value for the internal length scale. The 
results of this invetigation is inluded in later section. The value for the inernal length scale selected for 

the simulations equals to 0.25 . Efforts were also made to identity correlations between the internal 

length scale and model parameters (i.e., dimensions of the geometry, element size, etc). The size of 
the averaging zone  selected for the following simulations corresponds to the range of points 

enveloped by 0 5.0 3Eα = − . For simplicity, a linear correlation was developed between the internal 

length scale and number nodes that should be considered for averaging (i.e, NAN).  In addition, this 
relation is inherently depended on the selected element size. For example, for an element size of 

0.1ES =   the corresponding relation reads as, 32 1NAN l= + .  Note that, in the developed program 

code the user needs to enter the value of NAN along with the value of internal length scale.  
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given below

different element sizes. Here

[ ]0.01 mm  and 1.0 2

element size on

same simulations were performed with different increment sizes and similar observations 
were made on the behaviour of the evolutions

displacement evolutions seems to converge towards each other
visible with the DCB tests simulations, where as for 

element size

achieved roughly at an element size of ES =

we can note that evolutions are moving away from the experimental 
in fact nonlocal results on 3

automatically promts a question on the influence of the increment size on the nonlocal model’s 
a seperate analysis was performed to understand the effect of

is shown in Figure 

increment size on

rformed with an element size equal to

Similarly, as with the case of
achieved with decreasing increment size. As it can be seen from the above plots

Interesetingly, 
Once more, as expected

In case of DCB

By considering the facts of the two analysis discussed earlier

imulations to obatin the conver

selected element and increment sizes are 

ENF test.  

under are the results and conclusions made on the conver
given below, illustrate the evolution of the 

Here, for both DCB and 

1.0 2E − respectively

element size on nonlocal model’s behaviour for DCB

same simulations were performed with different increment sizes and similar observations 
were made on the behaviour of the evolutions. As it can be seen from each plot

displacement evolutions seems to converge towards each other
where as for 3

element size (i.e., ES =
0.05= .   

we can note that evolutions are moving away from the experimental 
3ENF are very close to the local results

automatically promts a question on the influence of the increment size on the nonlocal model’s 
a seperate analysis was performed to understand the effect of

Figure 4.27 given below

 

size on nonlocal model’s behaviour for DCB

rformed with an element size equal to

as with the case of
As it can be seen from the above plots
, force-displacement evolutions are moving towards the 

as expected,  this phenomenon is 
In case of DCB, the converegence is achieved roughly 

By considering the facts of the two analysis discussed earlier

imulations to obatin the converged solutions

0.05ES =   

on the conver
illustrate the evolution of the 
for both DCB and 3ENF tests

respectively. 

nonlocal model’s behaviour for DCB

same simulations were performed with different increment sizes and similar observations 
As it can be seen from each plot

displacement evolutions seems to converge towards each other
3ENF the convergence seems to have been 

0.2= ). In case of DCB

we can note that evolutions are moving away from the experimental 
ENF are very close to the local results

automatically promts a question on the influence of the increment size on the nonlocal model’s 
a seperate analysis was performed to understand the effect of

given below.  

nonlocal model’s behaviour for DCB

rformed with an element size equal to

as with the case of element size
As it can be seen from the above plots

displacement evolutions are moving towards the 
this phenomenon is 

the converegence is achieved roughly 

By considering the facts of the two analysis discussed earlier

ged solutions.  

 and INC =
 

on the convergence analysis of
illustrate the evolution of the force 

ENF tests, increment size and FTOL 

nonlocal model’s behaviour for DCB

same simulations were performed with different increment sizes and similar observations 
As it can be seen from each plot

displacement evolutions seems to converge towards each other
ENF the convergence seems to have been 

In case of DCB, 

we can note that evolutions are moving away from the experimental 
ENF are very close to the local results

automatically promts a question on the influence of the increment size on the nonlocal model’s 
a seperate analysis was performed to understand the effect of

 

nonlocal model’s behaviour for DCB

rformed with an element size equal to 0.1ES =
element size, convergence is normally 

As it can be seen from the above plots
displacement evolutions are moving towards the 
this phenomenon is more visible for the DCB

the converegence is achieved roughly 

By considering the facts of the two analysis discussed earlier

 Therefore, for the DCB test

0.005= . Similar values were also 

 

gence analysis of the proposed 
force against 

increment size and FTOL 

nonlocal model’s behaviour for DCB and 3ENF tests

same simulations were performed with different increment sizes and similar observations 
As it can be seen from each plot, with decreasing 

displacement evolutions seems to converge towards each other. This is clealry 
ENF the convergence seems to have been 

, the converegence is 

we can note that evolutions are moving away from the experimental result (especially in 
ENF are very close to the local results). This observation 

automatically promts a question on the influence of the increment size on the nonlocal model’s 
a seperate analysis was performed to understand the effect of increment size 

nonlocal model’s behaviour for DCB and 3ENF tests

0.1 for both tests

convergence is normally 
As it can be seen from the above plots, this is true for both 

displacement evolutions are moving towards the 
visible for the DCB

the converegence is achieved roughly at an increment

By considering the facts of the two analysis discussed earlier, it is now possible 

for the DCB test

Similar values were also 
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the proposed 
 imposed 

increment size and FTOL 

ENF tests 

same simulations were performed with different increment sizes and similar observations 
with decreasing 
This is clealry 

ENF the convergence seems to have been 

the converegence is 

especially in 
This observation 

automatically promts a question on the influence of the increment size on the nonlocal model’s 
increment size 

ENF tests 

for both tests. FTOL 

convergence is normally 
this is true for both 

displacement evolutions are moving towards the 
visible for the DCB test 

increment 

it is now possible 

for the DCB test, the 

Similar values were also 
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Plots included in the Figure 
nonlocal

As it can be seen from force
local and 
nonlocal model seems to over predict the maximum value of the force
the initiati
with increasing displacement the curve strarts drop
plot with a sudden increase of the crack length
evolution t
Same is true for evolution of the crack length
related to the numerical viscosity
problem 

Figure 4
local and nonlocal
Note that
values. Interesingly
simulations convergence was also achieved with larger element sizes

 

4.6.3   

In order to identify a suitable candidate fo
by comparing model’s response for few arbitarary values
values were done in relation to the element size of the FE model
internal length scale should not be too small compared to the element size
value, then the nonlocal model will nolonger be capable of regularizing the evolutions of the variables
If the value is too large
consequence
consider the element size to make a good prediction for the internal length scale
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Plots included in the Figure 
nonlocal models for DCB test

Figure 4.

As it can be seen from force
local and nonlocal models are in good agreement with the experimental results
nonlocal model seems to over predict the maximum value of the force

ation of the crack
with increasing displacement the curve strarts drop
plot with a sudden increase of the crack length
evolution tend to settle down gradually and seem to follow the experimental result with good accuracy
Same is true for evolution of the crack length
related to the numerical viscosity
problem associated to integral

Figure 4.

4.29 given above shows a similar comparison made between
local and nonlocal models
Note that, convergence of the nonlocal results were eve

Interesingly, 
simulations convergence was also achieved with larger element sizes

 Influence of the Internal Length Scale

In order to identify a suitable candidate fo
by comparing model’s response for few arbitarary values
values were done in relation to the element size of the FE model
internal length scale should not be too small compared to the element size

then the nonlocal model will nolonger be capable of regularizing the evolutions of the variables
If the value is too large
consequence, the maximum force value will increase unrealistically
consider the element size to make a good prediction for the internal length scale
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Plots included in the Figure 4.28
for DCB test.  

Figure 4.28 : Comparison of local and nonlocal results 

As it can be seen from force- and crack extension
nonlocal models are in good agreement with the experimental results

nonlocal model seems to over predict the maximum value of the force
on of the crack happens with a little delay

with increasing displacement the curve strarts drop
plot with a sudden increase of the crack length

end to settle down gradually and seem to follow the experimental result with good accuracy
Same is true for evolution of the crack length
related to the numerical viscosity

associated to integral-type regularization schemes

Figure 4.29 : Comparison of local and nonlocal results 

given above shows a similar comparison made between
models.  As explained before

convergence of the nonlocal results were eve
, the local model a

simulations convergence was also achieved with larger element sizes

Influence of the Internal Length Scale

In order to identify a suitable candidate fo
by comparing model’s response for few arbitarary values
values were done in relation to the element size of the FE model
internal length scale should not be too small compared to the element size

then the nonlocal model will nolonger be capable of regularizing the evolutions of the variables
If the value is too large, then we wi

the maximum force value will increase unrealistically
consider the element size to make a good prediction for the internal length scale
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28 given hereunder

Comparison of local and nonlocal results 

and crack extension
nonlocal models are in good agreement with the experimental results

nonlocal model seems to over predict the maximum value of the force
happens with a little delay

with increasing displacement the curve strarts drop
plot with a sudden increase of the crack length

end to settle down gradually and seem to follow the experimental result with good accuracy
Same is true for evolution of the crack length
related to the numerical viscosity induced by the nonlocal m

type regularization schemes

Comparison of local and nonlocal results 

given above shows a similar comparison made between
As explained before

convergence of the nonlocal results were eve
the local model also behaved in a similar manner

simulations convergence was also achieved with larger element sizes

Influence of the Internal Length Scale

In order to identify a suitable candidate for the internal length scale
by comparing model’s response for few arbitarary values
values were done in relation to the element size of the FE model
internal length scale should not be too small compared to the element size

then the nonlocal model will nolonger be capable of regularizing the evolutions of the variables
then we will be intro

the maximum force value will increase unrealistically
consider the element size to make a good prediction for the internal length scale

hereunder, shows

 

Comparison of local and nonlocal results 

and crack extension-displacement plots
nonlocal models are in good agreement with the experimental results

nonlocal model seems to over predict the maximum value of the force
happens with a little delay.  After the force has reached its maximum val

with increasing displacement the curve strarts drop steeply
plot with a sudden increase of the crack length. When displacement is further increased

end to settle down gradually and seem to follow the experimental result with good accuracy
Same is true for evolution of the crack length. The reason for the nonphysical increase of the force is 

induced by the nonlocal m
type regularization schemes

 

Comparison of local and nonlocal results 

given above shows a similar comparison made between
As explained before, nonlocal model’

convergence of the nonlocal results were eve
lso behaved in a similar manner

simulations convergence was also achieved with larger element sizes

Influence of the Internal Length Scale 

r the internal length scale
by comparing model’s response for few arbitarary values
values were done in relation to the element size of the FE model
internal length scale should not be too small compared to the element size

then the nonlocal model will nolonger be capable of regularizing the evolutions of the variables
oducing more viscosity in to the model’s behaviour

the maximum force value will increase unrealistically
consider the element size to make a good prediction for the internal length scale

shows the converged 

Comparison of local and nonlocal results 

displacement plots
nonlocal models are in good agreement with the experimental results

nonlocal model seems to over predict the maximum value of the force
After the force has reached its maximum val
steeply. This is reflected on the crack extension 
When displacement is further increased

end to settle down gradually and seem to follow the experimental result with good accuracy
The reason for the nonphysical increase of the force is 

induced by the nonlocal model. This is considered to be
type regularization schemes.  

Comparison of local and nonlocal results 

given above shows a similar comparison made between
nonlocal model’s behaviour is closer to 

convergence of the nonlocal results were even achieved with larger 
lso behaved in a similar manner

simulations convergence was also achieved with larger element sizes

r the internal length scale, 
by comparing model’s response for few arbitarary values. However, 
values were done in relation to the element size of the FE model. 
internal length scale should not be too small compared to the element size

then the nonlocal model will nolonger be capable of regularizing the evolutions of the variables
ducing more viscosity in to the model’s behaviour

the maximum force value will increase unrealistically
consider the element size to make a good prediction for the internal length scale

converged results 

Comparison of local and nonlocal results for DCB 

displacement plots, the results produced by both 
nonlocal models are in good agreement with the experimental results

nonlocal model seems to over predict the maximum value of the force. At the same time
After the force has reached its maximum val

This is reflected on the crack extension 
When displacement is further increased

end to settle down gradually and seem to follow the experimental result with good accuracy
The reason for the nonphysical increase of the force is 

This is considered to be

Comparison of local and nonlocal results for 3ENF 

given above shows a similar comparison made between 3ENF test reuslts obatined from
s behaviour is closer to 

n achieved with larger 
lso behaved in a similar manner and in comparison to DCB test 

simulations convergence was also achieved with larger element sizes.  

, a simple analysis was performed 
, initial selection of these arbitrary 
. As it was discussed earlie

internal length scale should not be too small compared to the element size. If it goes below the crtitical 
then the nonlocal model will nolonger be capable of regularizing the evolutions of the variables

ducing more viscosity in to the model’s behaviour
the maximum force value will increase unrealistically. Therefore

consider the element size to make a good prediction for the internal length scale. 

results of both local and 

 test 

the results produced by both 
nonlocal models are in good agreement with the experimental results. However

At the same time, prediction of 
After the force has reached its maximum val

This is reflected on the crack extension 
When displacement is further increased

end to settle down gradually and seem to follow the experimental result with good accuracy
The reason for the nonphysical increase of the force is 

This is considered to be an inherent 

 test 

reuslts obatined from
s behaviour is closer to local model

n achieved with larger element/increment
and in comparison to DCB test 

a simple analysis was performed 
initial selection of these arbitrary 
As it was discussed earlie

If it goes below the crtitical 
then the nonlocal model will nolonger be capable of regularizing the evolutions of the variables

ducing more viscosity in to the model’s behaviour
Therefore, it is necessary  to 
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both local and 

 

the results produced by both 
However, the 
prediction of 

After the force has reached its maximum value, 
This is reflected on the crack extension 

When displacement is further increased, force 
end to settle down gradually and seem to follow the experimental result with good accuracy. 

The reason for the nonphysical increase of the force is 
an inherent 

reuslts obatined from 
local model. 
increment 

and in comparison to DCB test 

a simple analysis was performed 
initial selection of these arbitrary 
As it was discussed earlier, the 

If it goes below the crtitical 
then the nonlocal model will nolonger be capable of regularizing the evolutions of the variables. 

ducing more viscosity in to the model’s behaviour. As a 
it is necessary  to 
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Figure 4
DCB and 

Figure 4.

Note that

addition, 

values selected 

length scale is close to element size the model starts to behave inherently as a local model
consequence
local model
we can see a considerable increase of the maximum force value
increment size on these obseravations

0.02INC =
existing ones

length scale of 

probabaly associated to the relatively larger process 

 

4.6.4   

Figure 4
maximum value or an

Figure 4.

Here, simulation results corresponds to element size and increment size equal to 

0.01INC =
approach seems to deviate further away from the experimental results
of the maximum force value
is inline with the comment that was made earlier regading the use of larger internal length scale 
values for averaging
natural evolution of the variables
level of resistance also incre
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4.30, give below can be used to visualize the effect of internal length scale
DCB and 3ENF test cases

Figure 4.30 : Influence of 

Note that, these simulations were performed with meshes having element size

, for both tests increment size was taken equal to 

selected rang

length scale is close to element size the model starts to behave inherently as a local model
consequence, evolution of force obatined 
local model. On the other hand
we can see a considerable increase of the maximum force value
increment size on these obseravations

0.02= ). As we have seen before

existing ones. However

length scale of l =
probabaly associated to the relatively larger process 

 Comparison of different Modelling

4.31 given below shows a comparison made between the two approaches of selecti
maximum value or an

Figure 4.31 : Influence of 

simulation results corresponds to element size and increment size equal to 

0.01=  respectively
approach seems to deviate further away from the experimental results
of the maximum force value
is inline with the comment that was made earlier regading the use of larger internal length scale 
values for averaging
natural evolution of the variables
level of resistance also incre
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give below can be used to visualize the effect of internal length scale
ENF test cases. 

Influence of internal length scale

simulations were performed with meshes having element size

for both tests increment size was taken equal to 

range from l =
length scale is close to element size the model starts to behave inherently as a local model

evolution of force obatined 
On the other hand, 

we can see a considerable increase of the maximum force value
increment size on these obseravations

As we have seen before

However, for 3ENF test simulations these variation are

1=  we can see a considerable deviation

probabaly associated to the relatively larger process 

Comparison of different Modelling

given below shows a comparison made between the two approaches of selecti
maximum value or an averaged value as the representative value for each element

Influence of taki

simulation results corresponds to element size and increment size equal to 

respectively. As it is can 

approach seems to deviate further away from the experimental results
of the maximum force value and also an increase of the delay of the crack intiation
is inline with the comment that was made earlier regading the use of larger internal length scale 
values for averaging. The averaging process induce numerical viscosity causing a resistance to the 
natural evolution of the variables
level of resistance also increase fu
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give below can be used to visualize the effect of internal length scale

internal length scale

simulations were performed with meshes having element size

for both tests increment size was taken equal to 

0.125=  to 1. 

length scale is close to element size the model starts to behave inherently as a local model
evolution of force obatined with the nonlocal model is very similar to the result of the 

, when the internal length scale is five times larger to the element size
we can see a considerable increase of the maximum force value
increment size on these obseravations, similar analysis was performed with larger increment size

As we have seen before, resulting 

ENF test simulations these variation are

we can see a considerable deviation

probabaly associated to the relatively larger process 

Comparison of different Modelling

given below shows a comparison made between the two approaches of selecti
averaged value as the representative value for each element

taking average or maximum

simulation results corresponds to element size and increment size equal to 

As it is can be seen from both plots

approach seems to deviate further away from the experimental results
and also an increase of the delay of the crack intiation

is inline with the comment that was made earlier regading the use of larger internal length scale 
The averaging process induce numerical viscosity causing a resistance to the 

natural evolution of the variables. So when we p
se further. However

give below can be used to visualize the effect of internal length scale

 

internal length scale on nonlocal model’s behaviour for DCB

simulations were performed with meshes having element size

for both tests increment size was taken equal to 

 As it can be seen with the DCB plots

length scale is close to element size the model starts to behave inherently as a local model
with the nonlocal model is very similar to the result of the 

when the internal length scale is five times larger to the element size
we can see a considerable increase of the maximum force value

similar analysis was performed with larger increment size

resulting evolution

ENF test simulations these variation are

we can see a considerable deviation

probabaly associated to the relatively larger process zone in front of the crack tip

Comparison of different Modelling 

given below shows a comparison made between the two approaches of selecti
averaged value as the representative value for each element

 

average or maximum

simulation results corresponds to element size and increment size equal to 

be seen from both plots

approach seems to deviate further away from the experimental results
and also an increase of the delay of the crack intiation

is inline with the comment that was made earlier regading the use of larger internal length scale 
The averaging process induce numerical viscosity causing a resistance to the 

So when we perform averaging over already averaged variables the 
However, for the case of internal length scale 

give below can be used to visualize the effect of internal length scale

nonlocal model’s behaviour for DCB

simulations were performed with meshes having element size

for both tests increment size was taken equal to INC =
As it can be seen with the DCB plots

length scale is close to element size the model starts to behave inherently as a local model
with the nonlocal model is very similar to the result of the 

when the internal length scale is five times larger to the element size
we can see a considerable increase of the maximum force value. In order to asce

similar analysis was performed with larger increment size

evolutions shifts upward almost in parallel to this 

ENF test simulations these variation are

we can see a considerable deviation. The reason for this behaviour may 

zone in front of the crack tip

given below shows a comparison made between the two approaches of selecti
averaged value as the representative value for each element

average or maximum as a common value over an element

simulation results corresponds to element size and increment size equal to 

be seen from both plots, the results obtained with the averaging 

approach seems to deviate further away from the experimental results
and also an increase of the delay of the crack intiation

is inline with the comment that was made earlier regading the use of larger internal length scale 
The averaging process induce numerical viscosity causing a resistance to the 

erform averaging over already averaged variables the 
for the case of internal length scale 

give below can be used to visualize the effect of internal length scale

nonlocal model’s behaviour for DCB

simulations were performed with meshes having element sizes equal to 

0.01= . The 

As it can be seen with the DCB plots

length scale is close to element size the model starts to behave inherently as a local model
with the nonlocal model is very similar to the result of the 

when the internal length scale is five times larger to the element size
In order to asce

similar analysis was performed with larger increment size

upward almost in parallel to this 

ENF test simulations these variation are very small

The reason for this behaviour may 

zone in front of the crack tip.  

given below shows a comparison made between the two approaches of selecti
averaged value as the representative value for each element

as a common value over an element

simulation results corresponds to element size and increment size equal to 

the results obtained with the averaging 

approach seems to deviate further away from the experimental results. Therefore
and also an increase of the delay of the crack intiation

is inline with the comment that was made earlier regading the use of larger internal length scale 
The averaging process induce numerical viscosity causing a resistance to the 

erform averaging over already averaged variables the 
for the case of internal length scale 

give below can be used to visualize the effect of internal length scale (i.e., ILS)

nonlocal model’s behaviour for DCB and 3

equal to ES

The internal length scale 

As it can be seen with the DCB plots, when the internal 

length scale is close to element size the model starts to behave inherently as a local model
with the nonlocal model is very similar to the result of the 

when the internal length scale is five times larger to the element size
In order to ascertain the e

similar analysis was performed with larger increment size

upward almost in parallel to this 

very small. Only at an internal 

The reason for this behaviour may 

.   

given below shows a comparison made between the two approaches of selecting either a 
averaged value as the representative value for each element. 

as a common value over an element

simulation results corresponds to element size and increment size equal to ES =
the results obtained with the averaging 

Therefore, we see an increase 
and also an increase of the delay of the crack intiation. This observation 

is inline with the comment that was made earlier regading the use of larger internal length scale 
The averaging process induce numerical viscosity causing a resistance to the 

erform averaging over already averaged variables the 
for the case of internal length scale the added 
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) on both 

 

3ENF test 

0.1ES = . In 

internal length scale 

when the internal 

length scale is close to element size the model starts to behave inherently as a local model. As a 
with the nonlocal model is very similar to the result of the 

when the internal length scale is five times larger to the element size, 
the effect of 

similar analysis was performed with larger increment size (i.e., 

upward almost in parallel to this 

Only at an internal 

The reason for this behaviour may 

ng either a 

 

as a common value over an element 

0.1=  and  

the results obtained with the averaging 

we see an increase 
bservation 

is inline with the comment that was made earlier regading the use of larger internal length scale 
The averaging process induce numerical viscosity causing a resistance to the 

erform averaging over already averaged variables the 
the added 
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resistance seems to settle down gradually with increasing crack length and the phenomenon tends to 
balance out internally
result, the corresponding evolution remains parallel and over the evolution of the
(which was 

Figure 4
modification to the nonloca
main objective of the propsed modifcations was to reduce com

Figure 4.

Selected element size and increment size f

it is evident from 
averaging over
yield same results
the same computer and care was taken to impose same tesing conditions
simulation time between averaging over the whole domain and averaging over a limited range was 

found to approximately equal to 

significant

 

4.6.5   

In order to appreciate the behaviour of each 
damage variable
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resistance seems to settle down gradually with increasing crack length and the phenomenon tends to 
nce out internally

the corresponding evolution remains parallel and over the evolution of the
which was obtained by 

4.32 given hereunder are the results of an invetigation 
modification to the nonloca
main objective of the propsed modifcations was to reduce com

Figure 4.32 : Model 

elected element size and increment size f

it is evident from each plot
averaging over the en

d same results. C
the same computer and care was taken to impose same tesing conditions
simulation time between averaging over the whole domain and averaging over a limited range was 

found to approximately equal to 

significant. In case of 

 Comparison of Evolution of Damage Variable

In order to appreciate the behaviour of each 
e variable at different gauss points along the interface starting from the crack tip

Figure 4.
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resistance seems to settle down gradually with increasing crack length and the phenomenon tends to 
nce out internally. On the other hand

the corresponding evolution remains parallel and over the evolution of the
obtained by taking the maximum value

iven hereunder are the results of an invetigation 
modification to the nonlocal model does not effect the outcome of the original model’s response
main objective of the propsed modifcations was to reduce com

odel responses on averaging over entire domain 

elected element size and increment size f

each plot, both force an
the entire domain or over a limited range 

Computation time
the same computer and care was taken to impose same tesing conditions
simulation time between averaging over the whole domain and averaging over a limited range was 

found to approximately equal to 

In case of 3D modelling

Comparison of Evolution of Damage Variable

In order to appreciate the behaviour of each 
at different gauss points along the interface starting from the crack tip

Figure 4.33 : Evolutions of damage variables for local and nonlocal models

Analysis of Static Simulations 

resistance seems to settle down gradually with increasing crack length and the phenomenon tends to 
On the other hand, averaging over the element is an external process

the corresponding evolution remains parallel and over the evolution of the
taking the maximum value

iven hereunder are the results of an invetigation 
l model does not effect the outcome of the original model’s response

main objective of the propsed modifcations was to reduce com

responses on averaging over entire domain 

elected element size and increment size for 

both force and crack
domain or over a limited range 

on times were 
the same computer and care was taken to impose same tesing conditions
simulation time between averaging over the whole domain and averaging over a limited range was 

found to approximately equal to 6 . Therefore

D modelling, these modification

Comparison of Evolution of Damage Variable

In order to appreciate the behaviour of each 
at different gauss points along the interface starting from the crack tip

Evolutions of damage variables for local and nonlocal models

resistance seems to settle down gradually with increasing crack length and the phenomenon tends to 
averaging over the element is an external process

the corresponding evolution remains parallel and over the evolution of the
taking the maximum value).   

iven hereunder are the results of an invetigation 
l model does not effect the outcome of the original model’s response

main objective of the propsed modifcations was to reduce com

 

responses on averaging over entire domain 

or analysis are

crack length evolutions are almost identical
domain or over a limited range 

 noted for both simulations
the same computer and care was taken to impose same tesing conditions
simulation time between averaging over the whole domain and averaging over a limited range was 

Therefore, the time saved by the proposed modifications is fai

these modifications may prove to be very useful

Comparison of Evolution of Damage Variable

In order to appreciate the behaviour of each model it would be useful to compare the evolution of 
at different gauss points along the interface starting from the crack tip

Evolutions of damage variables for local and nonlocal models

resistance seems to settle down gradually with increasing crack length and the phenomenon tends to 
averaging over the element is an external process

the corresponding evolution remains parallel and over the evolution of the

iven hereunder are the results of an invetigation performed
l model does not effect the outcome of the original model’s response

main objective of the propsed modifcations was to reduce compuational time effectively

responses on averaging over entire domain and

analysis are 0.2ES =  and
length evolutions are almost identical

domain or over a limited range (i.e., averaging
noted for both simulations

the same computer and care was taken to impose same tesing conditions
simulation time between averaging over the whole domain and averaging over a limited range was 

the time saved by the proposed modifications is fai

may prove to be very useful

Comparison of Evolution of Damage Variable 

model it would be useful to compare the evolution of 
at different gauss points along the interface starting from the crack tip

Evolutions of damage variables for local and nonlocal models
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PART – III 

Delamination under Fatigue Loading 

 

Section comprises two chapters,  
Chapter 5 and Chapter 6.  
 
Chapter 5 starts with an overview of fatigue and 
related theories associated to metal and 
composite laminates. Then after,  includes an 
introduction to a new fatigue damage evolution 
law, its derivation and implementation. The 
existing local model was used as a platform to 
build the new fatigue model.  
 
Chapter 6 includes details of FE simulations 
performed  to validate the proposed fatigue 
damage model. Versatility of the fatigue model 
was also checked for different mode-ratios. 
Procedure of identification of model parameters, 
simulation results and accompaying conclusions 
are also deatiled out completely. 
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Chapter 5    

Fatigue Damage Evolution 

5.1   Overview of Fatigue and related Theories 

The understanding of the phenomenon of ‘fatigue’ is crucial for designing structures made of any 
given material (i.e., single-phase or composite). The ‘fatigue life’ is basically responsible for the 
durability of the structure and hence considered as the most important design criterion. Fatigue is a 
state in which a material fails under repetitive loading generating stresses lower than the initial static 
strength or rather yielding limit of the material. In a scientific point of view, fatigue can be defined as a 
permanent, localized, and progressive structural change (i.e., damage) that occurs in a material 
subjected to cyclic or fluctuating strains. The fatigue life of a material or a component is defined as the 
total number of stress cycles required to cause the critical failure, where failure being understood as a 
state in which the structure no longer functions for the purpose it is designed. 

The ability of predicting the life of laminates is important for designing, operation, and safety analysis 
of a composite structure under specific conditions. In laminated composite materials, the fatigue 
process also involves several damage mechanisms that result in the degradation of the structure. 
Once more, the most important fatigue damage mechanism is considered to be inter-laminar damage 
or delamination. Unlike in the case of delamination under static loadings, the number of research work 
devoted in appreciating damage evolution (i.e., for delamination) under fatigue lading seems to be 
significantly scarce [Leif E. Asp et al., 2001; Robinson P. et al., 2005; Ijaz H, 2009].  

The determination of fatigue characteristics for metals is based on a well known theory called ‘Paris 
Law’ [Paris P., 1964]. Simply, the theory made it possible to make a quantitative prediction of the 
residual life for a crack of a certain size.  In more details, Paris theory suggests that, for metals, there 
is a threshold level in the stress intensity amplitude below which no crack growth will take place. 
Above this threshold value, fatigue crack propagation is governed by the expression given below. 

( )r
K

dA
E

dN
= ∆                     (5.01) 

Here, A  is the surface area of crack and N is the number of loading cycles. Therefore, dA
dN

 is the 

fatigue crack growth rate and K∆

 

is the magnitude of the stress intensity factor variation (i.e., 

max minK K K∆ = − ). Note that,  the constants E  and r  
 are evaluated using the Paris Plot. 

However, evaluation of stress intensity factors is problematic for composite materials. Therefore, a 
relationship similar to that in Equation 5.01, based on strain energy release rate was proposed 
[Wilkins D. J. et al., 1982]. The equation has the form, 

( )s
G

dA
D

dN
= ∆                     (5.02) 

Here, 
max min

G G G∆ = − , is the cyclic variation of energy release rate and depends on the loading 

conditions. Here, 
max

G and 
min

G are directly associated with 
max max

( )F or U  and 
min min

( )F or U  

respectively. For a composite laminate specimen having a constant width, b and a crack length, a; 

then A ab= . Now, if one consider the minimum energy release rate, 
min

G   to be zero, then 

max
G G∆ = .  
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Therefore, Paris Law for composite material can be rewritten in the form, 

( )max

mda
B G

dN
=                     (5.03) 

Parameters B  and m  depends on the material and fracture mode, which is typically quantified with a 

parameter known as ‘mode-ratio’ ( 1 / ( )I I II IIIG G G Gφ = + + for MODE-I or 

2 / ( )II I II IIIG G G Gφ = + + for MODE-II or 3 / ( )III I II IIIG G G Gφ = + +  for MODE-III in 3-

dimensions) . Note that, In the Fracture Mechanics approach for predicting delamination, the fatigue 
crack growth rate is assumed to be intimately related to the amplitude of the critical energy release 

rate (i.e., 
C

G  ) and therefore one could write the above formulation in a normalized form as 

expressed below. 

max

q

C

Gda
P

dN G

 
=   

 
                   (5.04) 

           
This correlation can then be plotted on a log-log diagram as shown in Figure 5.01. 

 

Figure 5.01 : Fatigue crack growth characteristic curve 
 
As depicted in the figure, the diagram can be divided into three main regions depending upon the 
differences of the slopes of the curve. In Region I; there exists a threshold value of the energy release 

rate (
th

G ) below which no crack growth will take place. Beyond the threshold limit the crack starts to 

propagate non-linearly with increasing 
max

G (actually G∆ ). Next, in Region II; the crack growth rate is 

linearly related to the normalized energy release rate and, slope of the curve is equal to exponent, q  
of Paris law. Finally, in Region III; the crack growth rate increases non-linearly to a point that 

corresponds to the fracture toughness (
C

G ) of the material.  

In literature, Damage Mechanics approaches are available for predicting fatigue damage evolution in 
both metals and laminated composites [Daudeville L. et al., 2002; Robinson P. et al., 2005; Turon A. 
et al., 2007]. There are several models that extend cohesive laws for monotonic loading into forms 
suitable for cyclic loading. Here, the total damage in the interface is considered to be sum of the 
damage caused by quasi-static load and the damage that results from the cyclic loads. Most of these 
extended cohesive models determine the accumulated damage on a cycle-by-cycle basis and as the 
number of cycles grows the computation becomes much more intractable. Therefore, for high-cycle 
fatigue, the damage evolution that results from cyclic loads needs to be formulated as a function of 
the number of cycles and displacement jumps.  
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5.2   Proposed Fatigue Damage Evolution Law 

The approach is based on the cohesive zone model concept. A constitutive damage model previously 
developed for quasi-static loads is enhanced to incorporate a damage evolution law for high-cycle 
fatigue. For different problems, the damage law needs to be calibrated by adjusting several 
parameters through trial-and-error analysis. The key idea here is to use results of Fracture Mechanics 
tests to determine parameters of the Damage Mechanics model. Therefore, the proposed model 
basically links Fracture Mechanics to Damage Mechanics. The model relates damage accumulation to 
number of load cycles while taking into account different loading conditions (i.e., Pure-/ Mixed-Mode). 

In the proposed model, the delamination growth under high-cycle fatigue is considered to be a 
combination of delamination due to quasi-static loading and cyclic variation of the loading [Robinson 
P. et al., 2005, Ijaz H., 2009]. Therefore, total damage evolution in rate format is expressed as, 

iT iS iFd d d
• • •

= +                     (5.05) 

Here, subscript 1,2,3i = , corresponds to failure modes; Mode-I, Mode-II and Mode-III respectively. 

The terms, iSd
•

 and iFd
•

 are associated to static and fatigue delamination respectively. Therefore, the 

formulation of the fatigue damage model is performed in two steps. Note that hereafter, subscript i  is 

eliminated for the sake of simplicity.  

 

5.2.1. Static Part of Cyclic Damage Evolution 

If the ‘material function’ describing the static damage evolution is written as, 

0

0
1

n

S
C

Y Yn
d

n Y Y

•

•
+

 −
 =
 + −
 

                    (5.06) 

Then by integrating Equation 5.08 with time, 

0

1

n
t t t t

S
C ot t

Y Yn
d dt dt

n Y Y

•

•
+

+∆ +∆  −
 =
 + −
 

∫ ∫  

1

0
0

1

1

nt t t t

S
Ct t

n
d dt n Y Y Y dt

n Y Y

••

+

−+∆ +∆ 
 = −   + −  

∫ ∫                             (5.07) 

Let t  and t t+∆ are times corresponding to end of load cycles N  and N N+∆  respectively,  

( ) ( )
1

( ) ( )

0
0( ) ( )

1

1

nnd N N Y N Ns

S
Cd N Y NS

n
d d n Y Y d Y

n Y Y +

−
+∆ +∆ 

 = −   + −  
∫ ∫

��

��

              (5.08) 

Here, ( )
S

d N N+ ∆ & ( )Y N N+ ∆  correspond to end of cycle N N+∆  and, ( )
S

d N & ( )Y N

correspond to end of cycle N .   



50 

 

Chapter 5 – Fatigue Damage Evolution 

0 0

0 0

if Y and f
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Hence, expression for the static damage variable can be written as, 

( ) ( )0 0
0

1
( ) ( ) ( ) ( )

1

n
n n

S S
C

n
d N N d N Y N N Y Y N Y

n Y Y + +

   
+ ∆ = + + ∆ − − −   + −    

       (5.09) 

Here, 

( )( ) ( )( ) ( )( )
1

1 23 1 2
( )

d d d
Y N N Y N N Y N N Y N N

α αα α
γ γ

 
+ ∆ = + ∆ + + ∆ + + ∆ 

 
            (5.10) 

( )( ) ( )( ) ( )( )
1

1 23 1 2
( )

d d d
Y N N Y N Y N Y N

α αα α
γ γ

 
+ ∆ = + + 

 
              (5.11) 
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                  (5.13) 

Note that, the effect of static delamination in fatigue will be considered if and only if,   

( ) ( )Y N N Y N+ ∆ ≥  (i.e., ( ) ( )
S S

d N N d N+ ∆ ≥ ) is true. 

 

5.2.2. Fatigue Part of Cyclic Damage Evolution 

The proposed fatigue damage evolution is a function of the equivalent damage energy release rate     

(Y ) and critical damage energy release rate (
C

Y ).  The definition of the proposed damage model 

[Gornet L. and Ijaz H., 2010] is as follows, 

,

0

F C C

Y Y
g d

d Y Y

•

•

    =    


                    (5.14) 

Here, 
th

f Y Y= −
 
is called the damage loading function and defines the threshold of the fatigue 

delamination growth. Note that, damage will grow if and only if, 0f ≥ .  

  

0 0

0 0

if Y and f

if Y and f

≥ ≥

< <
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The dimensionless function, g  is expressed as, 

,
d

C C

Y Y
g d C e

Y Y

β

λ   
=      

   
                   (5.15)  

Here; C , λ  and β  are ‘material parameters’ that need to be determined experimentally. Note that, 

λ  is a constant; where Cand β
 
are functions of ‘mode-ratio (φ)’. 

The formulation given here does not take into account the effect of ‘R-ratio’ (i.e., 0R = , where 

min

max

Y
R

Y
= ) In other words, the load is said to be varying between maximum 

max max
( )F or U and 

zero values. 

The fatigue damage variable at end of each time increment ( t∆ ) can be written as,         

( ) ( )
t t

F F F

t

d t t d t d dt
•

+∆

+ ∆ = + ∫                   (5.16) 

Let t  and t t+ ∆ are the times corresponding to end of cycles N and N N+∆  respectively, and if 

n
t  and 

n n
t t+∆ are the times corresponding to start and end of cycle number n (i.e., 

1,2,3, ,n N= ∆… ).  

Then equation can be rewritten as, 

( ) ( )
t tt t n n

F F F

t tn

d t t d t d dt dt
•

+∆+∆  
 + ∆ = +
 
 

∫ ∫                 (5.17) 

For 0Y ≥ and 0f ≥ , the evolution of damage within one cycle due to fatigue, 

1( 1)

( )

1
t t t t Y N nn n n n

d d

F
C C Ct t Y N nn n

Y Y
d dt C e dt C e Y dY

Y Y Y

β β
βλ λ

•

•
++∆ +∆ + +

+

   
= =      

   
∫ ∫ ∫              (5.18) 

Here, ( 1)Y N n+ + and ( )Y N n+ correspond to cycle number N n+ and 1N n+ +
 
respectively.   

Therefore, the fatigue damage evolution for a single cycle can be written as,  

( )
1

,
1

d

F F
C

C e Y
G d Y

Y

βλ

β

+
 

=   +  
                  (5.19) 

Note that, the value of Y for a given cycle corresponds to the peak value of the cycle. Next, the 
integral in equation can be approximated by a numerical integration scheme. Possible choices include 
Trapezoidal rule and Simpson’s rule. 

The formulation given hereunder is based on the trapezoidal rule. The estimate is made by multiplying 

the average of ( ),
F F

G d Y  (evaluated by taking values at the beginning (i.e., t N→ ) and end (i.e., 

t N N→ +∆ ) of the increment) with number of cycles in the increment (i.e., N∆ ).   
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Now, expression for the fatigue damage variable can be written as, 

( ) ( ) ( ) ( )( ) ( ) ( )( )1
, ,

2F F F F F F
d N N d N G d N N Y N N G d N Y N N + ∆ = + + ∆ + ∆ + ∆

 
  (5.20) 

Note that, equation is an implicit equation. For example, the fatigue damage variable ( )F
d N N+ ∆ , 

appears on both side of the relation. To solve the equation, one can replace ( )F
d N N+ ∆ on the 

right-hand side with a ‘predictor’ (i.e., P
F

d ) based on Forward Euler Technique [Ijaz H., 2009; and 

other]. The expression used for the predictor is as follows, 

( ) ( )( )( ) ,P
F F F F

d d N G d N Y N N= + ∆                  (5.21) 

Therefore, the modified expression for the fatigue damage variable reads as, 

( ) ( ) ( )( ) ( ) ( )( )1
, ,

2

P
F F F F F F

d N N d N G d Y N N G d N Y N N + ∆ = + + ∆ + ∆
 

            (5.22) 

 

5.2.3. Complete Fatigue Damage Evolution Law 

Finally, the expression for the complete fatigue damage evolution law is as follows, 

( ) ( ) ( ) ( )

( )( ) ( ) ( )( )

0 0
0

1
( ) ( )

1

1
, ,

2

n
n n

C

P
F F F F

n
d N N d N Y N N Y Y N Y

n Y Y

G d Y N N G d N Y N N

+ +

   
+ ∆ = + + ∆ − − −   + −    

 + + ∆ + ∆
 

     (5.23)   

Here,  

( ) ( ) ( )S F
d N N d N N d N N+ ∆ = + ∆ + + ∆  and ( ) ( ) ( )S F

d N d N d N= +  . 
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Chapter 6    

Analysis of Fatigue Simulations 

6.1   Analysis Procedure 

The analysis procedure is similar to the description given for static case with the following exceptions. 

Pre-processing 

 Define type of analysis (2D-plane stress) 
Define geometry & mesh 
Define material parameters for arms  
Define ‘fatigue damage model’ parameters for interface 
Define boundary, contact & loading conditions 

Define convergence criteria 

Solution 
 

Launch nonlinear calculation 

Post-
processing 

 Plot evolution of crack length vs. number of loading cycles, damage 
variable vs. number of loading cycles, energy release rate vs. crack 
length, etc. 

Analysis  Compare and contrast simulated results with experimental data and 
investigate the effect of fatigue model parameters 

Note that, for simulation purposes a static load increasing from ‘zero’ to ‘peak of the cyclic load’ will 
precede the start of the envelope of the cyclic (fatigue) load. A pictorial representation of the actual 
applied load and the numerically applied load are shown in Figure 6.01 given below. 

 

Figure 6.01 : Numerically applied fatigue load and actual fatigue load 

In addition, an assumption is made with regard to the numerically applied loading to simplify the 
nonlinear calculation process [Robinson P. et al., 2005; Ijaz H., 2009]. Note that, in this particular 
study the actual load is taken to be oscillating between zero and a maximum value as illustrated in the 
above figure. For high cyclic fatigue the numerically applied load will be taken as a constant and will 
be equal to the maximum value of the actual load. The cyclic nature of the loading scheme will be 
taken in to account by the formulas governing the evolution of the fatigue damage variable. 
Interestingly this means that fatigue damage evolution should be independent of the number of 
loading cycles specified for a given increment. This aspect will be validated in a later section. The 
finite element implementation of the ‘fatigue damage model’ for the interface in 3D is summarized in 
the two tables given hereafter.    
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First, Table 6.01 includes the damage evolution criteria for the ‘Static Load’ of the loading scheme. 
Secondly, Table 6.02 includes the damage evolution criteria for the ‘Fatigue Load’ of the loading 
scheme.  

Static Load Scheme 

Step-1 Compute damage energy release rate,  

i.e., ( )Y t  using  
1 2
,

d d
Y Y & 

3
d

Y  

Step-2 Compute isotropic damage function,  

i.e., ( )w Y using ,
C

Y Y  & 
0

Y  

Step-3 Compute damage variables,  

i.e., ( )
1 2 3

d d d w Y= = =  

Step-4 Compute stresses for the interface,  

i.e., 0 0 0

13 1 1 1 23 2 2 2 33 3 3 3(1 ) , (1 ) , (1 )k d U k d U k d Uσ σ σ= − = − = −  

Table 6.01 : FE implementation of static load scheme of fatigue damage model 

Fatigue  Load Scheme 

Step-1 Compute damage energy release rate,  

i.e., ( )Y N N+ ∆  using  ( ) ( )
1 2

,
d d

Y N N Y N N+ ∆ + ∆ & ( )
3

d
Y N N+ ∆  

Step-2 Compute static damage function,  

i.e., ( )( )w Y N N+ ∆ using ( ) ,
C

Y N N Y+ ∆  & 
0

Y  

Step-3 Compute static damage variable,  

i.e., ( )d N N
S

+∆ using ( )( )w Y N N+∆  & ( )w Y
ending valueof static load scheme

 

Step-4 Compute predictor fatigue damage variable, 

i.e., P
F

d  using ( )( ),
F

d N Y N & N∆   

Step-5 Compute fatigue damage function, 

i.e., ( )F
G N N+ ∆

 

using ( ), , , ,P
F

C d Y N Nλ β + ∆ & 
C

Y  

Step-6 Compute fatigue damage variable, 

i.e., ( )F
d N N+ ∆

 

using ( ) ( ),
F F

G N N G N+ ∆ & N∆  

Step-7 Compute complete damage variable, 

i.e., ( )d N N+ ∆

 

using ( )S
d N N+ ∆ & ( )F

d N N+ ∆  

Step-8 Compute stresses for the interface,  

i.e., 0 0 0

13 1 1 1 23 2 2 2 33 3 3 3(1 ) , (1 ) , (1 )k d U k d U k d Uσ σ σ= − = − = −  

Table 6.02 : FE implementation of fatigue load scheme of fatigue damage model 

Initially, the nonlinear calculations will be performed using the Static part (i.e., Table 6.01) of the 
model. After a given number of increments the Fatigue part (i.e., Table 6.02) of the model will be 
used. Note that, with this formulation the user can easily select the maximum value of the numerically 

applied load (or maxY ) by specifying the number of increments to switch from Static to Fatigue loading 

scheme.   
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6.2   Identification of Fatigue Damage Model Parameters 

Similarly as explained in Chapter 4, the damage model parameters of the fatigue damage evolution 
law needs to be determined beforehand. There are number of parameters to be determined for both 

static part and also fatigue part of the damage evolution. Identification of parameters such as,  
C

Y , 
0

Y

, 
1

γ , 
2

γ , α  and interface rigidities ( 0 0

1 2,k k and 0

3k ) have already been discussed in Section 4.2.  

For the fatigue part, one needs to identify four key parameters, namely C , λ , β  and N∆ . The 

choice of the number of increment cycles does not affect the final result of the computation. 

Therefore, the user is free to select a value for N∆ . Note that, if N∆  is too large for a given time 

increment several elements may fail together and the delamination process will be rapid. On the other 

hand, if N∆ is too small, the computational time would increase significantly. Generally, a good value 

for N∆  is selected depending on the problem in hand.  

The identification of parameter values for C , λ  and β
 
are based on a trial-and-error approach. In 

other words, the user has to calibrate the fatigue damage model for a given problem using the 
available experimental data. However, FE inverse-optimization procedure may also be considered for 
future studies. Identification of these parameters without the aid of any experimental data for any 
given Mixed-Mode delamination will also be discussed in a later section. Here, a non-monotonic 
relation between each parameter is established using results of three different Fracture Mechanics 
tests.  

 

6.3   Validation of Proposed Fatigue Damage Model 

 

6.3.1   Experimental Methods 

To validate and verify the effectiveness of the proposed fatigue damage model, simulation results 
need to be compared with experimental results. In the present study, experimental results reported by 
Leif E. Asp. et al., 2001 will be used and details of test methods are explained hereunder. As 
reported, they studied the effects on the inter-laminar toughness in fatigue with three different test 
methods. For pure Mode-I and Mode-II, the DCB and 3ENF tests were utilized, respectively. For 

Mixed-Mode load case (i.e., / 0.5II TotalG G = ) the MMB  test was employed. All tests were 

performed on a modified version of the Mixed-Mode bending test rig [Crews J. H. and Reeder J.R., 
1988].   

All specimens had been manufactured from HTA/6376C carbon/epoxy unidirectional prepregs and the 
cured plies have the elastic properties given in Table 6.03.   

11E  - 120,000 [ ]MPa  22E
 

- 10,500 [ ]MPa
 33E

 
- 10,500 [ ]MPa

 

12ν  - 0.3  23ν
 

- 0.51
 

13ν
 

- 0.3
 

12G  - 5, 250 [ ]MPa  23G
 - 3,480 [ ]MPa

 13G
 - 5, 250 [ ]MPa

 

Table 6.03 : Elastic properties of HTA/6376C unidirectional prepregs reported by Leif Asp. et al.  

The ply thickness was [ ]130 mµ  and the specimen lay-up was ( )12 40 / / 5 / 0
S

 ±  , where sign '/ / '  

refers to the plane of the artificial delamination. The dimensions of the rectangular shaped specimens 

were; width [ ]20b mm= , length [ ]150Sl mm= , and nominal thickness [ ]2 3.1h mm= .  
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A schematic of the specimen geometry is shown in Figure 6.02

Figure 6.02 : Schematic of the specimen geometry

A schematic of the test rig and the applied load is (i.e., 

[2 100L mm=

Figure 6.

All tests were performed at a frequency of 

value of 0.1 , at a constant displacement amplitude. For each test method, at least 

specimens were tested.
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eometry is shown in Figure 6.02

: Schematic of the specimen geometry
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6.3.2   Finite Element Model 

The geometry of the finite element model used for all three tests, namely DCB (pure MODE-I), 3ENF 

(pure MODE-II) and MMB (Mixed-Mode; / 0.5II TotalG G = ) is given below in Figure 6.05. 

 

Figure 6.05 : Dimensions of the model geometry used for fatigue simulations 
  
Simulations were performed considering a state of ‘PLANE STRESS’ condition in 2D. Values of some 
model parameters and FEs used are given in Table 6.04.  
 

Laminate arms (2D)  
Geo. Support / Finite Element : QUA4 / QUA4

Deg. of Interpolation : 1
 

Interface(1D)  
Geo. Support / Finite Element :  RAC2 /

Deg. of Interpolation :  1

JOI2
 

Table 6.04 : Finite elements for arms and interface for fatigue simulations 
 

In addition, a FE mesh having a constant element size, i.e., 0.1ES =  was used to carry out all 

simulations for each test campaign.  An example of a mesh for a DCB test is given in Figure 6.06. 

Figure 6.06 : Mesh used for fatigue simulations 
 
The model parameters that were commonly used in all simulation are listed in Table 6.05 given below. 
Note that, the identification of these parameters was carried out earlier under the static part of the 
study.  

[ ]/
C

Y N mm  - 0.26  α  - 1.4  
0

1k  -
 [ ]2395 /MPa mm  

1γ  - 0.2595  n - 0.5  
0

3k  -
 [ ]9230 /MPa mm  

Table 6.05 : General fatigue damage model parameters 
 

The simulations were performed at different values of max CG G  for each type of mode of failure. The 

additional data plots describing the evolution of 
max

' 'G
 
with crack length ' 'a  were also used 

determine the potential number of loading cycles elapsed for the extension of the cracks. Note that, 

the selected ratios of max CG G correspond to the crack extension data given in those plots (also 

included in the upcoming Sections). 

Here, for tests at 0.1R = , 
min

G  is considerably small compared to  
max

G , hence the proposed 

fatigue damage model can be used to simulate the above mentioned tests. In all simulations evolution 
of energy release rate at the crack tip (i.e., using gauss point) was monitored by local means. It was 

then used to determine the max CG G  ratio corresponding to each increment of the loading condition. 

Now, depending on the test data simulations were performed for different max CG G  ratios by simply 

changing the prescribed displacement limit for the static loading scheme accordingly. At the end of the 
static loading scheme the fatigue model will take over the computation process.   
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Simulation Results for DCB 
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Simulation Results for DCB Fatigue 

pplication of the boundary conditions and loading conditions (i.e.
DCB test is as shown in Figure 6.07. 

: Boundary and loading conditions for DCB 

were calibrated carefully and were found to

I fracture toughness of the specimen was reported equal to 

2.0 2E −  β

given below illustrate the simulated results plotted over the experimental results.

Normalized Paris Plot for simulated and e

normalized Paris Plot obtained from the simulated results is found to be in good agreement with 

data. Interestingly, the simulated result
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given below includes evolution of crack ext
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better understand of the delamination growth for 

 

Fatigue Test 

pplication of the boundary conditions and loading conditions (i.e.

: Boundary and loading conditions for DCB 
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I fracture toughness of the specimen was reported equal to 

β  = 

given below illustrate the simulated results plotted over the experimental results.
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, the simulated result
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given below includes evolution of crack extension against number of loading

a comparison has been made between simulated results for each 

better understand of the delamination growth for Mode-I. 

 

pplication of the boundary conditions and loading conditions (i.e.

: Boundary and loading conditions for DCB 

were calibrated carefully and were found to

I fracture toughness of the specimen was reported equal to 

3.5  λ

given below illustrate the simulated results plotted over the experimental results.

simulated and experimental results of

from the simulated results is found to be in good agreement with 

, the simulated results for maxG G
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ension against number of loading

a comparison has been made between simulated results for each 
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pplication of the boundary conditions and loading conditions (i.e., imposed displacement) for the 

: Boundary and loading conditions for DCB fatigue 

were calibrated carefully and were found to be equal 

I fracture toughness of the specimen was reported equal to 

λ  = 1

given below illustrate the simulated results plotted over the experimental results.

xperimental results of 
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max ICG G  ratio 

rest of the points although they close to the 

ension against number of loading

a comparison has been made between simulated results for each max ICG G  

, imposed displacement) for the 

fatigue test 

equal to values given 

I fracture toughness of the specimen was reported equal to [0.26 /N mm

1  

given below illustrate the simulated results plotted over the experimental results. 

 

 DCB fatigue 
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ratio equal to 0.23
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ension against number of loading cycles. Here
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Figure 6.09 : Evolution of crack extension for different max ICG G ratios in DCB fatigue test  

 
Note that, simulations were only performed in the range as specified in experiments. From figure it 
can be seen that, crack growth becomes non-liner with increasing number of cycles. This 

phenomenon seems to become gradually severe with increasing max ICG G ratio. As a result the crack 

growth rate seems to vary with number of loading cycles. Here, a simple assumption is made and 
crack growth rate is considered to be constant. In practice, it is determined by taking the ratio of total 
crack extension with number of cycles elapsed. However, the final results as illustrated in Figure 6.08 
are satisfactory.   

A comparison between experimental and simulated results was made to investigate the variation of 
strain energy release rate with crack growth. See Figure 6.10. 

 

Figure 6.10 : Evolution of 
max

G  for different max ICG G ratios in DCB fatigue test  
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Equation of plot, 

( )max

mda
B G

dN
=

 

here, 

3.91 15B E= −  

4.84m =  

Variations of strain energy release rate with crack length are found to be in good agreement with the 

experimental data. Note that, numerical result obtained for the highest  max ICG G ratio does not 

correspond to the experimental result (here, lack of information on actual start point of the 
experimental result made it difficult to do a proper analysis). The additional simulation was performed 

to appreciate the evolution of the crack length and energy release rate for max 0.66ICG G = . In 

general, the decrease of the energy release rate with increasing crack length seems to be 
satisfactorily captured by the proposed model. 

Identification of B  and m of the Paris Law was carried out by plotting 
max

G against da dN  and 

obtaining the equation of the best fit for the data points as given below in Figure 6.11.  

 

 
 
 

 

 

 

 

6.3.4   Simulation Results for 3ENF Fatigue Test 

Application of the boundary conditions and loading conditions (i.e., imposed displacement) for the 
3ENF test is illustrated in Figure 6.12. 

 

Figure 6.12 : Boundary and loading conditions for 3ENF fatigue test 
 

The parameters C , β  and λ were calibrated once more and were found to be equal to values given 

below. Note that, Mode-II fracture toughness of the specimen was reported equal to [ ]1.002 /N mm . 

C  = 7.0 3E −  β  = 2.2  λ  = 1  

  

 

Figure 6.11 : Evolution of crack growth rate with 
max

G  in DCB fatigue test  

( )II IIU or P
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The simulated results are in good agreement with the experimental 
model successfully 
the fatigue behaviour of the linear region in the Paris Plot. 

corresponding to

the points. However, the corresponding numerical result has predicted the linear behaviour much 
more accurately. 

In addition, an analysis 
out and the results are given in Figure 6.1

Figure 6.1
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Figure 6.13 given below illustrate the simulated results plotted over the experimental results.

Figure 6.13 : Normalized Paris Plot for simulated and experimental results of

The simulated results are in good agreement with the experimental 
model successfully re
the fatigue behaviour of the linear region in the Paris Plot. 

corresponding to maxG G

the points. However, the corresponding numerical result has predicted the linear behaviour much 
accurately.  

In addition, an analysis 
out and the results are given in Figure 6.1

Figure 6.14 : Evolution of crack extension for different 
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given below illustrate the simulated results plotted over the experimental results.

Normalized Paris Plot for simulated and experimental results of

The simulated results are in good agreement with the experimental 
reproduces the expected linear behaviour. 

the fatigue behaviour of the linear region in the Paris Plot. 

max 0.27IICG G =

the points. However, the corresponding numerical result has predicted the linear behaviour much 

In addition, an analysis on the evolution of 
out and the results are given in Figure 6.1

: Evolution of crack extension for different 
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given below illustrate the simulated results plotted over the experimental results.

Normalized Paris Plot for simulated and experimental results of

The simulated results are in good agreement with the experimental 
produces the expected linear behaviour. 

the fatigue behaviour of the linear region in the Paris Plot. 

0.27

 

seem to be lying slightly outside of the linear trend of the rest of 

the points. However, the corresponding numerical result has predicted the linear behaviour much 

volution of crack extension
out and the results are given in Figure 6.14.  

: Evolution of crack extension for different 

 

given below illustrate the simulated results plotted over the experimental results.

Normalized Paris Plot for simulated and experimental results of

The simulated results are in good agreement with the experimental 
produces the expected linear behaviour. 

the fatigue behaviour of the linear region in the Paris Plot. 

seem to be lying slightly outside of the linear trend of the rest of 

the points. However, the corresponding numerical result has predicted the linear behaviour much 

crack extension
.    

: Evolution of crack extension for different 

given below illustrate the simulated results plotted over the experimental results.

Normalized Paris Plot for simulated and experimental results of

The simulated results are in good agreement with the experimental 
produces the expected linear behaviour. Note that, this test 
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Equation of plot, 

( )max

mda
B G

dN
=

 

here, 

1.36 14B E= −  

4.23m =  

Unlike in the case of DCB test, crack growth seems to take place in a linear manner and the 
phenomenon is unaffected by for different ratio values. Therefore, computation of crack growth rate 
becomes trivial.  

Evolution of strain energy release rate with crack growth was monitored for each max IICG G  ratio and 

comparisons of simulated against experimental results are given in Figure 6.15.  

 

Figure 6.15 : Evolution of 
max

G  for different max IICG G ratios in 3ENF fatigue test  

Evolutions of strain energy release rate predicted by the simulations are in very good agreement with 
experimental results, except for the highest ratio where the result can only be considered 
satisfactorily. It is interesting to note that, for 3ENF test, reduction of strain energy release rate is 
considerably smaller than for DCB test.  

Once more, the identification of B  and m of the Paris law was performed by plotting 
max

G against 

da dN  and obtaining the equation of its best fit as given in Figure 6.16. 

      

 

Figure 6.16 :  Evolution of crack growth rate with 
max

G  in 3ENF fatigue test 
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Equation of plot, 

( )max

mda
B G

dN
=

 

here, 

7.83 18B E= −  

6.20m =  

From above figure, it can be concluded that, crack growth take place in linear manner with increasing 
number of loading cycles for the MMB test. Similar to 3ENF test, computation of crack growth rate 
becomes straight forward. The values of the constants; B  and m of the Paris Law are found using 

the same method as explained earlier and the plot is given in Figure 6.21. The results obtained are 
also given below. 

  
       
 

 

 

 

 

 

 

 

 

 

6.3.6   Mixed-Mode Fatigue Failure Prediction 

The results of all numerical simulations performed for each mode of failure are found to be in good 
agreement with corresponding experimental data. Therefore, it proves the effectiveness of the 
proposed fatigue damage model in predicting delamination due to fatigue. Now, next task would be to 
propose a methodology to determine the parameters for the fatigue model for any given mode-ratio.  

In order to achieve this goal one needs to develop a relationship between parameters B and m   of 

the Paris law with mode-ratio, φ . The idea here would be to use the known values of the parameters 

to interpolate the unknown values for a given mode-ratio. Many researchers have worked on this 
problem for decades and have proposed both monotonic and non-monotonic relationships with 
varying degree of accuracy with respect to their particular case studies. The mode-ratio is intimately 
related to type of the material and therefore the parameter relationship with mode-ratio differs 
significantly from GFRP to CFRP materials. Note that, the material HTA/6376C under consideration in 
this case study is a CFRP composite. Figure 6.22 and Figure 6.23 given below illustrate a 
compendium of the both monotonic and non-monotonic relations developed for CFRP materials 
[Blanco N. et al, 2004].   

 

                  Figure 6.22 : Monotonic and non-monotonic relations for Paris law coefficient 

 
Figure 6.21 :  Evolution of crack growth rate with 

max
G  in MMB fatigue test 
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                   Figure 6.23 : Monotonic and non-monotonic relations for Paris law exponent 
      
From the two figures, it is evident that the non-monotonic relation provides a better approximation to 
predict the evolution of parameters compared to the monotonic approaches. Therefore, present study 
focuses on application of non-monotonic relations to obtain new values for parameters of Paris law.     

Recently in literature, a non-monotonic equation was reported [Tumino D. and Cappello F., 2007] to 
relate fatigue damage parameters and mode-ratio. To establish this non-monotonic relation, the 
suggested procedure requires at least three fatigue tests; fatigue in pure Mode-I, in pure Mode-II and 

in Mixed-Mode with a fixed value of φ
 
(i.e., 

mix
φ ). The fatigue tests shall provide values of 

I
B , 

II
B , 

mix
B , 

I
m , 

II
m  and 

mix
m  for the calibrated fatigue parameters 

I
C , 

II
C , 

mix
C , 

I
β , 

II
β  and 

mix
β . 

Thereafter, the following equations will be used to compute the new values of B and m  for any given 

mode-ratio. Note that, here fatigue damage parameter, λ  will be taken as a fixed constant for all 

three failure modes to reduce the complexity of the formulation.   

2
1 2 3

A A Aβ β ββ φ φ= + +                       (6.04) 

( ) 2
1 2 3

ln
C C C

C A A Aφ φ= + +                       (6.05) 

Where, 

( )
1 2

II mix II I mix

mix mix

A
β

β β β β φ

φ φ

− + −
=

−
                 (6.06) 

2
1

2

mix I mix

mix

A
A

β
β

β β φ

φ

− −
=                   (6.07) 

3 I
A

β
β=                     (6.08) 

( ) ( ) ( ) ( )( )
1 2

ln ln ln ln
I mix II I mix

C

mix mix

C C C C
A

φ

φ φ

− + −
=

−
               (6.09) 

( ) ( ) 1

2

ln ln
mix I C mix

C
mix

C C A
A

φ

φ

− −
=                  (6.10) 

( )3
ln

C I
A C=                      (6.11) 



 

Chapter 6 

Finally, the new values of 

values of the Paris law. In this study the same approach will be used to evaluate the performance of 
the proposed fatigue damage model for 
available.

Fracture Mode (Test)

MODE

Mixed

MODE

Now, evolution

given in 

 

Mode-ratios; 

illustrate the normalized Paris plots 

 
Note that, the new curves
MMB-0.5 curve. This suggest
results shown above give an insight to the change of the fatigue behaviour for different mode ratios
The curves tend to translate in the upward direction with increasing mode
between each translation has also increased 

Chapter 6 – Analysis of Fatigue Simulations

Finally, the new values of 

values of the Paris law. In this study the same approach will be used to evaluate the performance of 
the proposed fatigue damage model for 
available. Table 6.06 given below

Fracture Mode (Test)

MODE-I (DCB)

Mixed-Mode (MMB)

MODE-II (3ENF)

Table 6.06 : List of values of 

volutions of the fatigue model parameters, 

 Figure 6.24 

Figure 6.24

ratios; 0.25  

illustrate the normalized Paris plots 

Figure 6.2

Note that, the new curves
0.5 curve. This suggest

results shown above give an insight to the change of the fatigue behaviour for different mode ratios
The curves tend to translate in the upward direction with increasing mode
between each translation has also increased 

Analysis of Fatigue Simulations

Finally, the new values of C  and 

values of the Paris law. In this study the same approach will be used to evaluate the performance of 
the proposed fatigue damage model for 

Table 6.06 given below

Fracture Mode (Test) 

I (DCB) 

(MMB) 0.5

II (3ENF) 

Table 6.06 : List of values of 

the fatigue model parameters, 

 and 6.25 respectively.

4 : Evolution of 

 and 0.75  were the selected

illustrate the normalized Paris plots 

Figure 6.26 : Normalized Paris Plot for mode

Note that, the new curves for MMB
0.5 curve. This suggests that, t

results shown above give an insight to the change of the fatigue behaviour for different mode ratios
The curves tend to translate in the upward direction with increasing mode
between each translation has also increased 

Analysis of Fatigue Simulations 

and β  for a given mode

values of the Paris law. In this study the same approach will be used to evaluate the performance of 
the proposed fatigue damage model for different 

Table 6.06 given below provides a summary of the 

φ  

0  2.0 2

0.5  1.2 1

1  7.0 3

Table 6.06 : List of values of C , 

the fatigue model parameters, 

respectively. 

: Evolution of C  vs. φ  

were the selected

illustrate the normalized Paris plots developed using the

: Normalized Paris Plot for mode

for MMB-0.25 and MMB
s that, the fatigue model 

results shown above give an insight to the change of the fatigue behaviour for different mode ratios
The curves tend to translate in the upward direction with increasing mode
between each translation has also increased 

 

for a given mode-ratio will be used to find respective 

values of the Paris law. In this study the same approach will be used to evaluate the performance of 
different mode-

provides a summary of the 

C
 

2.0 2E −  3.5

1.2 1E −  3.35

7.0 3E −  2.2

β , λ , B and 

the fatigue model parameters, C  and 

 
φ  

were the selected for the

developed using the predicted

: Normalized Paris Plot for mode

0.25 and MMB-0.75 are also rectilinear and are roughly parallel to 
he fatigue model is

results shown above give an insight to the change of the fatigue behaviour for different mode ratios
The curves tend to translate in the upward direction with increasing mode
between each translation has also increased when the mode

ratio will be used to find respective 

values of the Paris law. In this study the same approach will be used to evaluate the performance of 
-ratios where experimental data is no longer 

provides a summary of the data and results of the study

β
 

λ

3.5  1

3.35  1

2.2  1

and m  for mode

and β ; with the mode

          Figure 6.

for the investigation

predicted C

: Normalized Paris Plot for mode-ratios 0.25

are also rectilinear and are roughly parallel to 
is working in a robu

results shown above give an insight to the change of the fatigue behaviour for different mode ratios
The curves tend to translate in the upward direction with increasing mode

when the mode-ratio is doubled

ratio will be used to find respective 

values of the Paris law. In this study the same approach will be used to evaluate the performance of 
where experimental data is no longer 

data and results of the study

λ
 

1  3.91 15

1  7.83 18

1  1.36 14

for mode-ratios 0, 

with the mode-ratio can be illustrated 

Figure 6.25 : Evolution of 

investigation.  Figure 6.2

C , β  and λ  

0.25 , 0.50 and 

are also rectilinear and are roughly parallel to 
working in a robust manner. In addition, the 

results shown above give an insight to the change of the fatigue behaviour for different mode ratios
The curves tend to translate in the upward direction with increasing mode-ratio and interestingly, gap 

is doubled.   

ratio will be used to find respective B

values of the Paris law. In this study the same approach will be used to evaluate the performance of 
where experimental data is no longer 

data and results of the study. 

B  

3.91 15E −  

7.83 18E −  

1.36 14E −  

0 , 0.5  and 1  

ratio can be illustrated 

: Evolution of β  vs. 

Figure 6.26 given below

λ  values.        

and 0.75  

are also rectilinear and are roughly parallel to 
st manner. In addition, the 

results shown above give an insight to the change of the fatigue behaviour for different mode ratios
ratio and interestingly, gap 

67 

B  and m  

values of the Paris law. In this study the same approach will be used to evaluate the performance of 
where experimental data is no longer 

m
 

4.84  
6.20  
4.23  

 

ratio can be illustrated as 

 
vs. φ  

given below 

 

 

are also rectilinear and are roughly parallel to 
st manner. In addition, the 

results shown above give an insight to the change of the fatigue behaviour for different mode ratios. 
ratio and interestingly, gap 



68 

 

Chapter 6 – Analysis of Fatigue Simulations 

The coefficient and exponent of the Paris Law were found using the same method as explained 

earlier. Table 6.07 given below includes the with the predicted C , β  and λ  values with their 

corresponding B  and m values for each mode-ratio. 

In addition, Tumino and coworkers reported an empirical formula to evaluate the critical energy 
release rate for a given mode-ratio. The equation has the form given below. 

( ) 2

C IC IIC IC
G G G Gφ φ= + −                    (6.12) 

Table 6.08 includes a comparison of the critical energy release rates calculated with the formula and 
by numerical means with simulations.  

Evolutions of B  and m of with the mode-ratio are illustrated in Figure 6.27 and 6.28 respectively. 

 

Figure 6.27 : Comparison of experimental / simulated results of B  for different mode-ratios  

 

Figure 6.28 : Comparison of experimental / simulated results of m for different mode-ratios 

 φ  C
 

β
 

λ
 

B  m  

MMB-0.25  0.25  1.03 1E −  3.81 1  5.63 17E −  6.12  
MMB-0.75  0.75  6.11 2E −  3.16  1  1.90 17E −  5.70  

Table 6.07 : List of values of C , β , λ , B and m  for mode-ratios 0.25  and 0.75  

 φ  Analytic
 

Numeric
 

%Difference
 

 

 0.25  0.306  0.343  10.6  
 

 0.50  0.446  0.468  4.8 
 

 0.75  0.677  0.707  4.2  
 

Table 6.08 : Comparison of fracture toughness calculated by analytical and numerical methods  
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As illustrated by the two figures; B  and m values corresponding to mode-ratios 0.25  and 0.75
 
are 

in good agreement with the experimental data reported by Blanco N. et al, 2004. Note that, C , β  

and λ  values for the fatigue damage model were derived using a non-monotonic relation and 

therefore the results expected should also be non-monotonic. The key idea behind the investigation 
was to verify the effectiveness of the methodology. Note that, after calibrating the fatigue model (with 
three fatigue tests: pure Mode-I, pure Mode-II and a Mixed-Mode) it can be used to evaluate fatigue 
characteristics for any given mode-ratio. In practice, most composite structure experience Mixed-
Mode failure loads more often than not. Moreover, there are situations where amplitude of the Mixed-
Mode load would also vary with time. Therefore, the fatigue damage model needs to be versatile to 
handle such loading conditions. Importantly, the proposed model could easily be adapted for a given 
situation without many complications and has proven to be a robust tool.      

 

6.4   Effects of Fatigue Model Parameters 

Since affect of parameters, 0

1k , 0

2k  and α has already been already discussed under the static part 

of the study, the following sections are devoted to understanding the affect of parameters; N∆ , C  

and β  of fatigue model. 

 

6.4.1   Influence of Parameter - N∆  

To justify the fact that increment of number of cycles (i.e., jump cycles) has no effect on the final 

result, an investigation was carried out for different N∆  values for each failure mode. Some selected 

results of the investigation are given hereunder. Figure 6.29 and Figure 6.30   illustrate evolutions of 

delamination length for 3ENF and MMB-0.75 tests with 
max

0.2
C

G G= .  

  

Figure 6.29 : Evolution of delamination length  
for different jump cycles in 3ENF fatigue test 

Figure 6.30 : Evolution of delamination length   
for different jump cycles in MMB fatigue test 

 
By analyzing the results, it can be concluded that, evolution of the delamination length is independent 

of the selection of the jump cycles. Importantly, as N∆ decreases computation time increases 

significantly. For higher values of N∆  the delamination rate grow rapidly and proper analysis of the 

evolution of energy release rate and other parameters would be difficult. Therefore, a compromise 
should be made between the accuracy and computational cost. Here, the simulation results were 

obtained with element size equal to 0.1 . Note that, element sizes lesser or equal to 0.2 produced 

converging results.  
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6.4.2   Influence of Parameters -  C  & β  

As for the fatigue model, C   and β
 
are the key parameters that influence the numerical results. The 

model was calibrated accordingly by adjusting the values of the two parameters with the aid of 

experimental results. For simplicity, λ  was taken as a constant throughout the study. Given 

hereunder are the results of the investigation carried out by varying one parameter while keeping the 

other one constant. Figure 6.31 and Figure 6.32 given below illustrate the influence of parameter, C  

for 2.2β =  and parameter, β  for 7.0 3C E= −  respectively considering the 3ENF test. 

  

       Figure 6.31 : Influence of C  in 3ENF 

fatigue test 

        Figure 6.32 : Influence of β
 
in 3ENF fatigue 

test 
 

Here in Figure 6.30, as C  increase the Paris plot curves tend to translate in the upward direction 

without exhibiting any rotation. It is also interesting to observe that when the value of C  is doubled 

the translation distance of the curve is roughly similar. Next, in Figure 6.31 much more complicated 
behviour was observed. In this case Paris plot curves tend to not only translate but also rotate at the 

same time for increasing value of β . On the contrary to parameter, C  both translation and rotation 

takes place in the downward direction. 

Prior to the beginning of the simulation campaign the user needs to first appreciate the probable 
values for each parameter through a trial-and-error analysis (FE inverse-optimization also possible). 
When the approximate values are known, the aforementioned behavioural pattern of the parameter 
can be taken in to account for fine tuning and arrive at a good approximation.  
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PART – IV 

Closure 

 

Section include one chapter, Chapter 7.  
Contains remarks regarding the work carried out 
on static and fatigue delamination modelling and 
simulations.   
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Chapter 7    

General Conclusions 

 

Failure simulation of a laminate structure, taking into account all the progressive degradation 
phenomena, leads to a time dependant three-dimensional non-linear problem. Especially in the past 
three decades many researchers have been working towards in solving this problem with different 
types of mathematical tools. In this respect, both Fracture and Damage Mechanics have grown from 
strength to strength in recent times in successfully predicting delamination phenomenon in laminated 
composites. In present study, efforts have been made to further enhance an existing damage model 
to predict delamination of unidirectional composite laminates at both static and fatigue loading 
conditions. The damage model is formulated within the framework of Damage Mechanics, but is also 
essentially linked to Fracture Mechanics, as the damage model parameters (both of static and fatigue 
models) are determined using Fracture mechanics test results. Discussed hereunder are some of the 
key findings of the present study. The conclusions are based on the results obtained from the FE 
modelling(s) presented earlier. Note that, all the simulations in the present work have been performed 
in CAST3M finite element software developed by CEA/DMT. The non-linear material models were 
introduced in to the finite element frame work of CAST3M using the user-defined subroutine, known 
as UMAT (Source - ABAQUS). 

 

7.1   Delamination under Quasi-Static Loading 

The work performed under static study consists two major parts. At first, the existing local damage 
model was thoroughly studied and effort was put into FE implementation of the model in all 
dimensional spaces. A complete description on identification of model parameters and their influence 
on model's behaviour were presented. Secondly, a nonlocal damage model was proposed. Here, the 
proposed model is based on existing theories on nonlocal modelling for homogeneous monolithic 
materials. Inherent problem in nonlocal modelling is their high computational cost. Therefore, the 
proposed FE implementation procedure was further optimized to reduce the computational time 
significantly. 

Under the study performed on the local model, much attention was given on identification of model 
parameters. Many parameters were basically identified by Fracture Mechanics test results. However, 
some parameters such as exponent of material function ( n ) and interface rigidities were based on 

previous work published on similar studies. Therefore, a separate analysis was performed on 
appreciating their influence on damage model's behaviour. Here, it was found that parameter n  has a 

notable influence on the maximum stress attained. With increasing n , both stiffness and maximum 

stress value seem to increase further. The interface rigidities are determined by formulas derived 
using the instability criteria. Finally, the initial rigidities are expressed in terms of critical stress for the 
interface. Generally, in most publications attention devoted to correct identification of critical stress is 
given less importance. However, investigation results show that simulation results are considerably 
sensitive to this parameter. 

Simulation results corresponding to local damage model for all dimensional spaces were found to be 
in good agreement with the experimental results. For both Mode-I (DCB) and Mode-II (3ENF) 
simulations, it was necessary to consider the contact condition between laminate arms. Note that, 
interface elements (i.e., in CAST3M) are not modelled to bear compressive forces, hence upon 
compression or even flexure the two meshes tend to overlap each other and give erroneous 
numerical results. Results on convergence analysis also helped to identify the optimum parameters 
for the simulations. Through, 3D modelling it was possible to identify the actual shape of the crack 
front. In addition, the stress field over the 2D interface provided an insight on the size of the process 
zone associated to each failure mode. For DCB test it was observed that crack initiation in the center 
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of the specimen happens much earlier than close to outer edges. Therefore, crack front is no longer a 
straight line but a curved one. In case of 3ENF test, the crack growth at both center and edges 
happen relatively at the same time. However, it was noted that initiation of the crack still happens at 
the center of the specimen. As it was evident from the stress field plots, the process zone ahead of 
crack front in 3ENF test is much larger than the process zone in DCB test. This phenomenon can be 
explained by the slow decay of the stress field associated to Mode-II failure mode. Thus, it partly 
explains the reason for the uniform crack extension observed over the width of 3ENF test specimens. 

Under the study performed on nonlocal model, a detailed analysis was made on understanding its 
behaviour. Here, the implmentation of the proposed model was done using the PERSO1 personal 
procedure in CAST3M. In the present study, the damage energy variable was used to regularize the 
evolution of all the other variables (i.e., damage variables, stress, strain, etc). In the original 
formulation of the nonlocal model, averaging of the variables is performed at each gauss point of all 
the elements. As the number of elements increase, the number of variables that is to be averaged 
would also increase. In addition, averaging of variables at each point is normally performed by 
considering all the points in the interface. When the number points increase, the number of points that 
is to be considered for the averaging process will automatically increase. In fact, this is the main 
reason which is responsible for the notable increase of the computational time. However, in the 
analysis it was noted that only some points in the neighbourrhood of the interested point are 
responsible for making a significant contribution to the averaging process. Similalry, few other 
redundant computations were also identified. Finally, by considering all these facts several 
modifications were introduced to the orginal formulation to reduce computatinal cost. Interestingly, the 
ratio of the computational time between the original and the modified model was found to be in the 
range between 4 and 6. Here, results obatined from both models were essentially the same. 
Therefore, this proves the effectiveness of the simulation methodology introduced with the proposed 
nonlocal model.  

Note that, simulated results are in good agreement with the experimental results. Interestingly, the 
convergence of the simulated results needed to be checked with both element size and increment 
size. Here, converged results of both local and nonlocal models are close to each other. However, in 
case of nonlocal model, an increase of the maximum force can be seen. This is mainly, due to the 
added viscosity introduced by the nonlocal model. By performing averaging we ultimately delay the 
evolution of the variables. As a consequence we see an increase of the maximum force value. This 
phenomenon becomes more and more severe as we continue to increase the magnitude of the 
internal length scale. This is obviously true because by increasing the internal length scale we are 
ultimately increasing the size of the averaging zone. Importantly, the internal length scale should not 
be too small compared to the element size. If it goes below the crtitical value, then the nonlocal model 
will nolonger be capable of regularizing the evolutions of the variables. Identification of the internal 
length scale is still an open question and needs rigrous analysis with more experimental data.       
Some effort was also put into predict size effect phenomenon using the proposed nonlocal model. As 
expected,  the model was able to capture the decrease of the laminate strength with increasing size.           

 

7.2   Delamination under Fatigue Loading 

The work perofrmed under fatigue study includes FE implementation of a newly proposed fatigue 
damage law. At first, an overview was made on existing fatigue theories for isotropic materials (i.e., 
metals). Fatigue behaviour of metals is usually characterized by the Paris law based on stress 
intensity factor. However, evaluation of stress intensity factors is problematic for composite materials. 
Therefore, the Paris law based on strain energy release rate was considered in the present study.  

Here, the existing local model was used as a platform to build the new fatigue model. The derivation 
and FE implmentation of this model was explained in details in Chapter 7. The new fatigue model is 
capable of carrying out FE simulations on composite materials undergoing different types of loading 
conditions. Range of loading conditions which it can handle include pure Mode-I, pue Mode-II and any 
given Mixed-Mode loading condition. In literature, there are several models that extend cohesive laws 
for monotonic loading into forms suitable for cyclic loading. But, most of these extended cohesive 
models determine the accumulated damage on a cycle-by-cycle basis and as the number of cycles 
grows the computation becomes much more intractable. Therefore, for high-cycle fatigue, the damage 
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evolution that results from cyclic loads needs to be formulated as a function of the number of cycles 
and displacement jumps. The newly proposed model is basically based on this concept. 

Here in the fatigue damage law, the total damage in the interface is considered to be sum of the 
damage caused by quasi-static load and the damage that results from the cyclic loads. The existing 
damage model was systematcally modified to incoporate these damage effects coming from both 
static and cyclic parts of the loading. Similarly to the case static damage model, the fatigue model 
parameters were also needed to be identified using Fracture Mechanics test results. The four main 

parameters of the fatigue model  are C , λ , β  and N∆ . As it was shown later, the choice of the 

number of increment cycles does not affect the final result of the computation. Therefore, the user is 

free to select a value for N∆ . But it was noted that, for large N∆  the delamination process will be 

rapid and proper idetification of evolution of certain parameters (i.e., energy release rate) may 

become difficult. However, if N∆ is too small, the computational time would increase significantly. An 

optimum value for N∆ was selected depending on the problem in hand (i.e., type of loading condition, 

maximum value of the cyclic load envelope, etc). In the present study, identification of parameter 

values for C , λ  and β  was acheved through a trial-and-error approach. However, for future studies 

parameter identification through FE inverse-optimization approach is recommended.   

The simulated results were found to be in good agreement with the experimental results. Importantly 
the fatigue model was able to reproduce the linear part of the Paris plot with good accuracy. Note that, 
in the present study more focus was given to identifying the behaviour of the composite material in 

cyclic load ranges corresponding to the linear region of the Paris plot. For simplicity, parameter λ  

was kept constant while parameters C  and β  were used as variables. To help the identfication 

process, a seperate analysis was performed on understanding the influnce of parameters  C  and β . 

According to  investigation results, it was seen that as C  increase the Paris plot curves tend to 

translate in the upward direction without exhibiting any rotation. However, in case of increasing value 

of β  the Paris plot curves tend to not only translate but also rotate at the same time. On the contrary 

to parameter C  both translation and rotation takes place in the downward direction for parameter β . 

Finally, identified behavioural pattern of these parameters were taken in to account to calibrate the 
fatigue damage model using the available experimental data (i.e., data corresponding to pure Mode-I 
and Mode-II).  

Evolution of the energy release rate with increasing crack length was also determined for each pure 
mode case (i.e., Mode-I and Mode-II). This was achieved by performing numerical integration over the 
local stress and strain variables at each gauss point of the interface elements. All evolutions 
corresponding to medium to small cyclic load levels were in good agreement with the experimental 
results. However, for high cyclic load levels the simulated results show small deviation from the 
experimental results. The cause here is believed to be associated to the large deformations of the 
laminate arms at high cyclic load levels.       

In the final part of the study,  fatigue model was tested for different Mixed-Mode ratios. The idea was 
to develop a methodology to identify model parameters without the aid of any experimental data.  
Here, a non-monotonic relation between each parameter was established using results of three 
different Fracture Mechanics tests. The parameters identified by this approach were then used to 
develop the Paris plot for for different mode-ratios. Importantly, the simulated results were in good 
agreement with the reported expermental results. 

In conclusion, the fatigue model seems to be operating effectively and proves to be a versatile model 
in determining delamination phenomena for different loading conditions. 
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