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Chapter 1

Introduction

Fracture mechanics is the systematic study of the crack propagation in solids.
The establishment of fracture mechanics is closely related to catastrophic disas-
ters happened in the recent history. During world war II many of liberty ships
fractured even into two parts because of the choice of the brittle materials for
the construction and also the stress concentrations in the faults existing in the
welds. In July 1962 the Kings Bridge in Melbourne failed suddenly because of
the propagation of fracture in four girders. The studies on the causes of such
phenomena lead to progressive developments in fracture mechanics.

Existence and propagation of cracks in steel and concrete elements in civil
engineering structures is quite important since it effects very much the ultimate
mechanical strength and resistance of the structure to environmental effects. The
study of the crack propagation is also quite important to estimate the ultimate
strength and the failure procedures is such structures especially during earth-
quakes.

Fracture mechanics has now evolved into a mature discipline of science and
engineering. One of its greatest impacts is on development of a new damage
tolerance design methodology which is now used in aircraft design standards.

Brittle materials like high strength steel, glass, concrete, etc undergo brittle
fracture the study of which is in the domain of Linear Elastic Fracture Mechanics
(LEFM). The main assumption for LEFM is that plasticity does not play an
important role during fracture.

LEFM assumption is quite restrictive for certain types of failure in materials
like structural steels though such materials can be prone to brittle fracture, which
has lead to a number of catastrophic failures. Such materials show a quasi brittle
or a ductile behavior for which plasticity plays an important role during the crack
propagation and fracture.

Quasi brittle and ductile materials also render special behaviors like struc-
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4 CHAPTER 1. INTRODUCTION

tural size effects on the material properties, strain softening and the ductile to
brittle change of behavior of structures. Such behaviors are due to the damage
localization in the area in front of the crack tip called process zone, prediction of
which requires the consideration of the stress states in the process zone.

The facts mentioned above became the main motivation for development of a
new field in fracture mechanics taking into account the plasticity in the process
zone named Elasto-Plastic Fracture Mechanics (EPFM). The simplest of such
models is cohesive crack model.

During years numerical methods have been employed and regarded as suit-
able tools to predict the fracture and failure of engineering structures leading
to creation of a science field called computational fracture mechanics. With the
great advances in the field of science and engineering, the need to analyze larger
and more complicated structures numerically has become an important issue for
which development of the numerical tools and algorithms more efficient regarding
the computational costs and the accuracy of the results is quite essential.

One of the most important difficulties is computational fracture mechanics
is the fact that in mesh based numerical methods the mesh needs to conform
to the geometry of the crack which requires a remeshing procedure during crack
propagation which causes a high computational cost for large and complicated
structures. Another difficulty is to increase the accuracy of the results near the
crack tip which renders a singular behavior.

Cohesive crack model has been included in several numerical methods like
boundary element method, mesh less methods and FEM. Different algorithms
have been proposed to solve the nonlinearity of the problem coming from the
process zone. Recently a new numerical method called Extended Finite Element
Method (XFEM) has been developed. X-FEM uses the concept of partition of
unity and enrichment functions to improve the accuracy of the problem and to
include discontinuities in the problem. The first outcome of using X-FEM is that
the mesh does not need to conform to the geometry of the problem any more.
These properties can be used best in fracture mechanics for the aim of the crack
propagation without remeshing and also to increase the numerical accuracy of
the results around the crack tip.

The aim of this master thesis is to use X-FEM to solve cohesive crack prop-
agation problems. In order to perform the numerical simulations a C++ code
has been developed to include cohesive crack model in Xfem and Xcrack C++
libraries already developed in Institut de Recherche en Génie Civil et Méchanique
(GeM)(Institute of research on civil and mechanical engineering) at Ecole Cen-
trale de Nantes (ECN). The numerical studies have been performed for a three
point bending test. During the study, first, different algorithms and crack prop-
agation criteria are discussed and their effect on the numerical accuracy and the
robustness of the code is investigated. Next, using the most efficient algorithm,
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an investigation on the efficiency of X-FEM regarding the computational costs
and the numerical accuracy for solving cohesive crack propagation problems com-
pared to other mesh based methods is performed. Finally using X-FEM with the
most efficient algorithm, the capability of cohesive crack model to predict the size
effects, strain softening and the ductile to brittle change of the behavior of the
structure are investigated numerically.

According to the numerical results obtained, it is observed that using X-
FEM the computational costs to obtain acceptable results are reduced very much
compared to classical FEM. It is observed that using the algorithms proposed in
the study, stress and SIF-I crack propagation criteria provide the same results
for the same mesh. It is also observed that using cohesive crack model strain
softening and the ductile to brittle change of the behavior of the structure can
be captured. The size effects on the apparent tensile ultimate strength for a
beam without an initial crack and apparent fracture toughness for a beam with
an initial crack are also observed.

This master thesis report contains a detailed description of all the theoretical
and numerical investigations performed by the author for his master thesis studies
on numerical analysis of the cohesive crack propagation using X-FEM.

In chapter 2 a review on the theoretical background and the state of the art
on fracture mechanics and cohesive crack model, required to follow the thesis
is presented. In fracture mechanics section a brief insight from the theoretical
concepts to analyze the behavior of the specimens with crack is presented. The
difference between linear and nonlinear fracture mechanics is discussed and also
some important concepts like process region, energy release rate, stress intensity
factor and J-integral are introduced. Some material behaviors coming from the
process region like strain softening and scale effects are also discussed. In cohesive
crack model section, cohesive crack model as one of the simplest approaches to
model the process region around the crack tip and its basic concepts and state
of the art are presented. At the end the capability of this model to express scale
effects as well as its limitations are discussed.

In chapter 3 a review on the theoretical background and also the state of the
art on some numerical methods are presented. In section Finite Element Method
(FEM), the classical finite element method used for solid mechanics problems
is introduced. The problems arising when FEM is used for problems with dis-
continuities and rough solutions like the existence and the propagation of crack
and LEFM as well as some numerical methods developed to treat such problems
are discussed in section Meshless methods and enrichment functions. Finally
in section Extended Finite element method (X-FEM), X-FEM as a numerical
method having good characteristics of meshless methods to treat discontinuities
and rough solutions while preserving the classical displacement variational set-
tings and meshing concepts is introduced. In this section the basic concepts and
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advantages of level set technique as an efficient way to locate cracks in the body
are also presented.

In chapter 4 a state of the art on different numerical techniques used to model
cohesive crack growth numerically is presented.

In chapter 5 the thesis problem is described. In Variational formulation for
cohesive crack model section the variational formulation for cohesive crack model
is developed. In X-FEM approximation for cohesive crack model section, the
discretized version of the variational formulation for cohesive crack model using
X-FEM is developed. In this section different crack propagation criteria as well
as different algorithms to solve the nonlinear problem are also presented.

In chapter 6 the numerical results obtained for a three point bending test
using cohesive crack model with the code implemented by the author of this thesis
are presented. In Code implementation section a general overview on the code
developed for numerical studies is presented. In Three point bending test section
first the geometrical and mechanical parameters of the three point bending test
together with boundary conditions are presented. Next the first results obtained
are discussed and compared to the results obtained by Carpinteri and Colombo
in [16]. Next a numerical study to show the efficiency of X-FEM regarding the
mesh size compared to other methods is done. Finally the ability of cohesive crack
model to express the ductile to brittle change of the behavior of the structure
and also size effects as well as the effect of the existence of the initial cracks on
the behavior of the beam are discussed according to the results obtained.

In chapter 7 the main conclusions of the present study as well as the achieve-
ments of the author from the study and the contribution of this study to knowl-
edge and also the possible future works as the extension of this study are dis-
cussed.

In appendix A a brief summary on C++ code implementations used for the
numerical simulations performed in the present study is presented. This appendix
makes it easy for the user to use the code for other similar numerical investiga-
tions and also for the further developments of the code in the future. In Input
and output files section the input files and parameters required by the code are
presented and a brief description for each output file is also provided. In Main
files of the code section the main C++ classes and functions developed for algo-
rithm 2 in the present study are presented. In Xfem library and Xcrack library
sections some of the basic C++ files and classes of Xfem and Xcrack libraries as
well as the new classes and functions implemented by the author of this thesis
for cohesive crack model are explained in brief.

This report is written using LATEX software and the plots are obtained using
Gnuplot plotting software. The figures are prepared using Ipe which is a free
vector graphics editor for creating figures in PDF or EPS format.



Chapter 2

Fracture mechanics and cohesive

crack model

2.1 Fracture mechanics

2.1.1 Linear Elastic vs

Elastic Plastic Fracture Mechanics

Mechanical failure can happen due to corrosion, wear, plastic collapse, fracture,
etc. The word fracture in quasi brittle materials can be interpreted mostly as
unstable crack growth. Fracture Mechanics is then about the systematic approach
concerning growth of pre-existing macroscopic cracks.

Fracture mechanics mainly has been a concern from 20th century. By intro-
duction of new concepts such as stress intensity factor, critical stress intensity
factor and energy release rate by Irwin (1957), the foundation of Linear Elastic
Fracture Mechanics (LEFM) was made. The concept of autonomy of the field
near crack edge, introduced by Barenblatt (1959), that is independence of pro-
cesses near crack edge from material type and body and loading geometry, under
some conditions, became the assumption under which all the concepts of LEFM
developed. The key assumption for LEFM is that the size of process region (see
section 2.1.3) in front of the crack tip is negligible compared to the structure or
specimen dimension.

With the advances in the material technology, new and modern materials with
more ductility and fracture toughness were developed for which the assumptions
of LEFM was no longer valid. In such cases that the size of process region was
not negligible compared to structure or specimen dimensions, LEFM could not be
used to analyze the fracture process. In such materials Elastic Plastic Fracture
Mechanics (EPFM) provided the solution. EPFM had its birth at 1960s and
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8 CHAPTER 2. FRACTURE MECHANICS AND COHESIVE CRACK MODEL

early 1970s. The three papers of J.R. Rice (1968) made a considerable advance
in EPFM. He idealized plastic deformation as a nonlinear elastic phenomena
for mathematical purposes and was able to generalize the energy release rate for
such materials. He expressed this in terms of a path independent contour integral
called J-Integral which became a very efficient tool to treat energy problems in
fracture mechanics.

2.1.2 Loading modes

In fracture mechanics a crack can be defined as a separation in material that may
occur due to sliding or opening. Such separation is of order of micro structures
in material, like in homogeneities. The type of loading conditions that make
each of the types of crack are referred to as Mode I for opening and Mode II
and III for sliding. In practical situations a loading condition with mixed mode
happens while presence of each mode alone is mostly reserved for experimental
cases. Figure 2.1 shows different loading modes.

2.1.3 Process region

Regardless of size of structure, the whole fracture process takes place in a small
region that is near crack edge, called process region. This region contains very
big loads and the fact that the fracture in this region happens due to micro
separations and coalescences makes all continuum mechanics equations in this
region fail [12, p. 23]. That’s why the material behavior in this region can not
be expressed by usual constitutive lows coming from continuum mechanics .

The size of process region compared to dimension of structure or specimen
has a big effect on the fracture behavior of the material. As mentioned in section
2.1.1, LEFM can be used to analyze fracture processes with negligible size of

Figure 2.1: Different loading modes
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cohesive zone compared to structure or specimen dimension (brittle materials).
But in the cases where the size of cohesive zone is not negligible (i.e. quasi brittle
or ductile materials), principles of LEFM can not be used any more and EPFM
provides the solution.

2.1.4 Energy release rate

The crack propagation leads to dissipation of stress strain energy. This energy
is dissipated in process region because of formation of micro separations and
coalescences. Irwin was the first who observed that if the size of the plastic
zone around crack tip is small compared to the size of the crack (i.e. brittle
materials), the energy required to grow the crack will not be critically dependent
on the state of stress at the crack tip [24]. Crack starts propagation when the
energy coming from the stress- strain field is sufficient to support the formation
of separations and coalescences. Strain energy release rate (or energy release
rate) is then dissipated energy during fracture per unit of newly created fracture
surface area [12, p. 33]. This quantity is central to fracture mechanics . For the
purposes of calculation, the energy release rate is defined as

G = −dU
da

(2.1)

where U is the potential energy available for crack growth and a is the crack area.
The units of G are J/m2. Irvin also adopted an additional assumption that the
size and shape of the energy dissipation zone remains approximately constant
during brittle fracture (LEFM assumption). According to this assumption the
energy needed to create a unit fracture surface is a constant that depends only
on the material. This quantity is called fracture energy (Gc) and is considered to
be a material property which is independent of applied loads and the geometry
of body. The crack propagation starts then when

G ≥ Gc (2.2)

2.1.5 Stress intensity factor

Since in LEFM model the state of stress near crack tip is singular, it is not
possible to evaluate the stress value around crack tip accurately. In order to
more accurately evaluate or predict the state of stress near crack tip Irwin and
his colleagues developed a relation to calculate the amount of energy available
for fracture in terms of asymptotic stress and displacement fields around a crack
front in a linear elastic solid [26]. This asymptotic relation is:

σij ≈
(

K√
2πr

)
fij(θ) (2.3)
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where σij are the Cauchy stresses, r is the distance from the crack tip, θ is
the angle with respect to the plane of the crack and fij are functions that are
independent of the crack geometry and loading conditions. The quantity K was
called Stress Intensity Factor. Since functions fij are dimensionless, the stress
intensity factor has the units of MPa−√m. This formulation is not valid for the
areas very close to crack tip (small r) i.e. inside process region. This concept is
a theoretical construct applicable to elastic materials and is useful for providing
a failure criterion for brittle materials.

Stress intensity factor can be defined for different modes of loading (I, II and
III) and in such cases is referred to as KI , KII and KIII . Stress intensity factors
are related to energy release rate according to following equation for 2D problems:

G =
K2
I

E∗
+
K2
II

E∗
(2.4)

where E∗ = E (Young’s modulud) for plane stress and E∗ = E/(1−ν2) for plane
strain problems (ν is the Poisson’s ratio).

Stress intensity factor especially in mode one, can be used as a crack propa-
gation criterion. There is a critical value for stress intensity factor, required to
propagate the crack. This critical value determined for mode I loading in plane
strain is referred to as critical fracture toughness (KIc).

2.1.6 J-integral

As mentioned in section 2.1.4, equation (2.1) is valid for materials for which the
plastic zone around crack tip is small compared to the dimensions of structure or
specimen (i.e. brittle materials). The J − integral represents a way to describe
the case where there is sufficient crack tip deformation that the part no longer
obeys the linear elastic approximation. This analysis is limited to situations
where plastic deformation at crack tip does not extend to the furthest edge of
the loaded part. The theoretical concept of J-integral was developed in 1967 by
Cherepanov [21] and in 1968 by Jim Rice [44] independently, who showed that
an energetic contour path integral, called J, was independent of the path around
a crack. This integral has the following general form:

J =
∫

Γ∪Γc+∪Γc−

(
1
2
σikεikδ1j − σijui,1

)
nj ds (2.5)

The coordinate system for this integral is local coordinate at crack tip with X1

axis tangent to the crack at the tip. The scalar nj is the j component of the
outward normal to the closed path Γ ∪ Γc+ ∪ Γc− (See Figure 2.2 for notations).
The physical meaning of J-integral is the power dissipated as the crack front
advances with the velocity q. J-integral is related to stress intensity factors for
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n

A

x1

x2

Γc+

Γc−

Γ

Figure 2.2: Notations for J-integral

different modes according to the following equation for two dimensional problems:

J =
K2
I

E∗
+
K2
II

E∗
(2.6)

The elastic-plastic failure parameter is designated JIc and is conventionally
related to KIc using the following equation:

KIc =
√
E∗JIc (2.7)

In (2.6) and (2.7), E∗ is the same as what in (2.4).
The J-integral is equal to the strain energy release rate for a crack in a body

subjected to monotonic loading [50]. This is true, under quasi static conditions,
both for linear elastic materials and for materials that experience small-scale
yielding at the crack tip [12].

2.1.7 Strain softening and snap back phenomenon

Cracked solids often render an unstable behavior which is represented by a neg-
ative slope in load-deformation curves. Such behavior is called strain softening
which means that in order to have a slow and stable crack propagation, the im-
posed load should be decreased. Such behavior is observed in both brittle and
ductile materials. In the case of extremely brittle materials, crack propagation
happens with a catastrophic drop of the load. This behavior is represented by a
positive slope in the load-deflection curve if the loading process is displacement
controlled. Such behavior is called snap back phenomenon which means that both
load and displacement should be decreased. Figure 2.3 shows strain softening in
both ductile and brittle materials.
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L
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(P
)

Deflection (δ)
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D

(a) Brittle material (snap back)

L
o
a
d

(P
)

Deflection (δ)

A
B

C

(b) Ductile material

Figure 2.3: Strain softening in different materials

For the case of brittle material (snap back phenomenon), if the loading process
is displacement controlled the experimental loading capacity will show a discon-
tinuity with a negative jump. This jump is between point B and D in figure 2.3a.
The branch BD in this figure will be then virtual. The catastrophic drop in the
experimental loading capacity may be avoided and the snap back phenomenon
can be experimentally shown if the values of load or displacement in the test vary
with a parameter which is increasing monotonically (e.g. crack mouth opening,
crack length, time).

Strain softening is due to the formation of micro cracking and coalescences
and also localization of displacement in process region. From continuum mechan-
ics point of view strain softening violates Drucker’s Postulate [22] which states
generally that the work of added stress should be always positive. This was
pointed out first by Maier [30, 31] and Maier et al. [33].

2.1.8 Size effects

Size effects in fracture mechanics can be represented by the concept of nominal
stress at failure:

σN = cN
Pu
bd

for 2D problems (2.8)

σN = cN
Pu
d2

for 3D problems

where Pu is the maximum load, b is specimen thickness, d is the characteristic
dimension of the specimen (e.g., its length or depth) and cN is a parameter
introduced for convenience [5]. It is well known that plastic limit analysis, as well
as elastic analysis with an allowable stress criterion or any method of analysis with
a failure criterion based on stress or strain exhibits the same nominal stress at
failure for geometrically similar structures with different sizes. But experimental
results show that such value is effected with the dimension of the structure or
specimen. Such behavior is represented using fracture mechanics.
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Size effects in Linear Elastic Fracture Mechanics

Total elastic energy of structures for two dimensional cases can be obtained ac-
cording to the following formula:

U =
σ2bd2f(α)

2E∗
(2.9)

where σ = cNP/bd (P is load), E∗ is the same as in (2.4) and f(α) is a function
of crack length and shape of the specimen with α = a/d (a is the crack length).
Considering equations (2.1) and (2.4) one will obtain:

KI =
Pk(α)
b
√
d

(2.10)

where k(α) = [−f ′(α)c2
N/2]

1/2
. Taking into account (2.10) one will obtain

σN ∝ d−1/2 (2.11)

The same relationship can be obtained for 3D problems. As mentioned in previous
sections, the assumption of LEFM will be true if the size of cohesive zone is
negligible compared to dimensions of the structure or specimen.

Size effects in nonlinear fracture mechanics

Making the hypothesis that the energy dissipated at failure is a smooth function
of both the specimen or structure size and the process zone width and that
the latter is constant, Bažant [6] showed by dimensional analysis and similitude
arguments that

σN = Bfu{β[1 + β−1 +A1β
−2 +A2β

−3 + . . . ]}−1/2, β = d/d0 (2.12)

in which B, d0, A1, A2,. . . are empirical coefficients, fu is some measure of tensile
strength and β is a parameter characterizing the relative structure size. This
equation represents an asymptotic expansion with respect to an infinitely large
specimen. It was shown further in [7] that this relation can be truncated for size
range of 1:20 and reduced to the size effect law proposed by Bažant [4, 5]:

σN = Bfu

(
1 +

d

d0

)−1/2
(2.13)

It is clear from this equation that for values of d� d0 the result is that of linear
elastic formulation (σN ∝ d−1/2) while for values of d � d0 the result is that of
yield stress criterion (Bfu). This fact is illustrated in figure 2.4.

In the cases where the size of process zone is not negligible compared to
dimensions of the specimen or structure, the values of fracture toughness (KIc)
and critical energy release rate (Gc) are highly effected by the size of structure
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Figure 2.4: Bažant’s size effect law

or specimen. In such cases, as proposed by Bažant [8, 9], the effective length of
fracture process zone and critical energy release rate for a specimen of infinite
size can be considered as material properties.

The elastic stress and displacement field surrounding a nonlinear process zone
correspond to a certain crack length a. In this case one can write:

a = a0 + c (2.14)

where a0 is the initial length on the notch or crack. Supposing that in corre-
sponding linear elastic problem with crack length a the fracture growth under
constant load is unstable, c represents the equivalent length on the nonlinear
fracture process zone. For infinite large specimen or structure (i.e. d → ∞),
c→ cf . cf is called effective length of fracture process zone and is considered as
a material property.

What mentioned up to now shows that the size of equivalent process zone,
in front of crack tip, in fracture mechanics has a deterministic, although not
exclusive, effect on the fracture behavior of the structure. If the size of equiv-
alent process zone is negligible compared to specimen or structure dimensions,
the fracture behavior will be that of linear elastic fracture mechanics (brittle),
scale effects are according to (2.11) and as stated in previous sections critical
energy release rate (Gc) and fracture toughness (KIc) are considered as material
properties. If the size of equivalent process region is big compared to specimen or
structure dimensions, the failure will be determined by strength or yield criterion
(ductile). But if the size of equivalent process region is intermediate compared to
dimensions of specimen or structure (quasi brittle), a ductile to brittle behavior
is observed depending on the size of the structure according to (2.13).

The same discussion can hold for critical energy release rate (Gc). In this
case for an infinite large specimen or structure Gc → Gf . Gf is called fracture
energy and is considered as a material property. According to [8, 9], (2.13) can
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be written in terms of fracture energy and equivalent length of fracture process
zone:

σN = cN

(
E∗Gf

g′(α0)cf + g(α0)d

)1/2

(2.15)

where α0 = a0/d. In this formula the size effect is represented in terms of true
material properties (cf and Gf ) and a function (g(α0)) which represents the
geometry of structure or specimen.

2.2 Cohesive crack model

2.2.1 Modeling of fracture process region

As mentioned in previous sections, from the importance of process region in
fracture mechanics, it is clear that most of the material behaviors like strain
softening and size effects, are due to material behavior in this region and a model
which takes into account the specific behavior of material in this very small region
can represent such behaviors well. It should be noted again that LEFM does not
take into account the material behavior in process region and as will be shown
in numerical results in this study, is unable to show the behaviors coming from
this region like strain softening in ductile materials.

In order to model process region, Finite Element Method has been used by
so many people as a numerical tool. Rashid [43] used a model called smeared
crack model. In this model there is an upper limit for stress (tensile strength of
material). If the stress exceeds such value it is put to zero. So there is a drop
of stress to zero after reaching the material tensile strength. Scanlon [46] used
another constitutive model in which stress reduces to zero in a sequence of some
drops.

So far strain softening has been added to Finite Element Method but there
is a problem. The problem is that the energy dissipation through crack faces
converges to zero by a mesh refinement. Such problem is called spurious mesh
sensitivity and is not physically accepted. A solution to this problem is to specify
the energy dissipated over crack surfaces. One of the physical approaches for
doing so is by introducing a stress - crack opening constitutive relationship over
crack surfaces in which the stress over crack surfaces decrease as the crack opening
increases. Such method is the basis of a model called cohesive crack model.

The cohesive crack model was first proposed by Barenblat [2, 3] and Dugdale
[23] . Hillerberg et al. [25] proposed the fictitious crack model in which the crack
will propagate when the stress at the crack tip reaches the tensile strength. In
his model the stresses applied on the crack surfaces decrease with the increase
in crack opening and does not drop to zero suddenly. This fact makes the crack
close smoothly and remains no singularity at the crack tip at the unset of crack
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Figure 2.5: Process zone in cohesive crack model (figure from [17])

propagation which makes stress intensity factor in mode one (KI) vanish. This
fact and also the fact that evaluation of stress at crack tip is not accurate before
the unset of crack propagation, inspired N. Moës and T. Belytschko [37] to use
the value of KI instead of the value of stress as a criteria for crack propagation.

Cohesive crack model was also used by Carpinteri et al. [16]. In order to
explain size effects upon the parameters of cohesive crack model, they applied
fractal geometry concepts and developed an improvement of cohesive crack model
called (scale-invariant)fractal cohesive crack model (not studied in the present
thesis) [17].

2.2.2 Basic concepts of cohesive crack model

In cohesive crack model, the process region is modeled as an extension of the
crack length up to a point called fictitious crack tip (or mathematical crack tip
in [37]). In this region (Figure 2.5) a specific constitutive law is considered while
the linear elastic constitutive law is used for other regions. According to this
specific law stress decreases with increase in crack opening according to a specific
function. The real crack tip (or physical crack tip in [37]) is the point on the
crack surface on which there is no stress i.e. the normal opening is bigger than
the critical opening. One example of this constitutive law and the linear elastic
constitutive law are shown in Figure 2.6.
The area under stress-crack opening curve represents fracture energy that is as

explained in section 2.1.8 a material property. The following equation shows this
property:

Gf =
∫ wc

0
σ dw (2.16)
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Since in cohesive crack model the energy release rate is specified as a material
parameter, there will be no spurious mesh sensitivity problem in the numerical
solutions.

Thanks to the presence of stress on crack surfaces in process region, the
crack will close smoothly and at unset of crack propagation there is no more
singularity at crack tip which makes stress intensity factor in mode one (KI)
vanish. It should be noted that in this model the shear stresses on crack surfaces
are neglected because of their small effect as is proved in [18].

2.2.3 Crack propagation criterion

Two approaches can be used to evaluate the unset of crack propagation. The first
approach is to measure the principal stress at crack tip. The crack propagation
happens then when the principal stress reaches the tensile strength of the mate-
rial. The second approach is to use a criteria which evaluates the stress intensity
factor for mode I (KI). The unset of crack propagate then under the loading
condition which makes KI zero at the mathematical crack tip.

2.2.4 Size effects in cohesive crack model

Cohesive crack model is able to capture size effects in specimens or structures with
high stress gradients (like three point bending tests). Uniaxial tests on dog-bone
shaped specimens (with law stress gradients) show that the physical parameters
characterizing cohesive crack model are scale-dependent. By increasing the size
of the model, the tensile strength decreases while the fracture energy as well as
critical crack opening increases. In these cases cohesive crack model is unable to
capture size effects.
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Figure 2.6: Constitutive law inside and outside process region
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The fact that size effects can be observed also in direct tension tests with
bone shaped samples which have low stress gradient shows that there should be
a reason for size effects other than stress gradient that comes from the material
behavior. This problem was solved by a fractal approach leading to the (scale
invariant) fractal cohesive model introduced by Carpinterin et al. [17].

2.2.5 Brittleness number

To compare the brittleness of different specimens, a non-dimensional number
called Energy Brittleness Number has been introduced by Carpinteri [14].

sE =
Gf
fub

=
wc
2b

(2.17)

In (2.17) b is the length scale of the specimen (it can be the hight of the beam
in three point bending test), Gf is the fracture energy, fu is the ultimate tensile
strength of the material and wc is the critical crack opening. The specimen
renders a ductile behavior for high values of sE while it renders brittle behavior
for low values of sE .

According to (2.17) not the single values of Gf , h and fu, but their function
sE effects the ductile to brittle change of behavior of the structure. Hence a small
structure or a structure made of a material with high Gf or low fu has a ductile
behavior while a large beam or a beam made of a material with low Gf or high
fu has a brittle behavior. This fact is more investigated in section 6.2.6.



Chapter 3

Numerical methods

3.1 Finite Element Method (FEM)

Finite element method is a numerical technique to solve partial differential equa-
tions (PDEs) as well as integral equations approximately. The equation will be
defined over a domain Ω and will be discretized by FEM over some sub domains
with simple geometry Ωi called finite elements which are defined by their nodes.
This fact is represented by the following equation.

Ω = ∪Ne
e=1Ωe (3.1)

In (3.1), e refers to each element and Ne is the number of all elements in the
domain. The set of elements constitute the mesh. The equation will be approxi-
mated through each element using functions called shape functions with respect
to unknown nodal values (degrees of freedom). The shape functions are of poly-
nomial type and fulfill the concept of partition of unity that is for each point x
in the domain:∑

i∈I
φi(x) = 1 (3.2)

where I is the set of all nodes in the domain and φi is the shape function associated
to node i.

For solid mechanics problems, the equation to be solved is usually on the
displacement (u) of the body. The classical FEM discretization then reads:

uh =
∑
i∈I

uiφi (3.3)

where uh is the approximated value of displacement, I is the set of all nodes, ui is
the vectorial degree of freedom (unknowns for each node) and φi is the associated
shape function. Each shape function has a compact support (over which its value
is other than zero) given by the union of the elements connected to node i.
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3.2 Meshless methods and enrichment functions

There are some problems for which classical FEM approximation fails. Such
problems are the ones whose solutions are rough (i.e. the derivatives of the
solution (u) are not square integrable or they exist but are very large) or highly
oscillatory. Another case is when there is discontinuity in the solution field.
Examples of such cases are the singular state of stress close to crack tip and
existence or propagation of cracks in fracture mechanics. In these cases the usual
piecewise polynomial approximation spaces can not resolve the essential features
of the solution unless the mesh size h is very small or the polynomial degree p is
very large. In the cases like propagation of cracks a remeshing procedure is also
required in order make the mesh conform with the geometry of the crack. In all
such cases the computational costs are high.

In order to treat the problems with FEM, a numerical method called meshless
method has been developed. Within the framework of meshless methods the
support of the approximation function plays an important role and there exists
no more elements. In this method if the behavior of the solution is known a
priori, it can be incorporated directly into the numerical method [34] in the
form of enrichment functions. In fact such concept allows us to include a priori
knowledge about the problem under consideration in the finite element space
through enrichment functions defined on the supports of approximation functions.

The concept of enrichment function has been used in many different numeri-
cal techniques under the category of meshless methods, having partition of unity
property as the base. Melenk and Babuška [34] used such concept in Partition
of Unity Finite Element Method (PUFEM) and applied it to Helmholtz equa-
tion which is a highly oscillatory problem. Krysl and Belytschko [28] also solved
the problem of crack propagation in two and three dimensions without remesh-
ing within the framework of Element Free Galerkin Method, using discontinuous
functions on the crack and singular enrichment functions on the crack tip.

3.3 Extended Finite Element Method (X-FEM)

3.3.1 Basic concepts

The concept of enrichment functions in meshless methods, was used in classical
finite element (with mesh) by T. Belytschko, N. Moës and J. Dolbow [10, 35].
This extension of FEM was called eXtended Finite Element Method (X-FEM).
X-FEM allows local enrichment functions to be incorporated into a finite element
approximation while preserving the classical displacement variational settings and
meshing concepts.

X-FEM best suits the crack propagation problems. Thanks to discontinu-
ous enrichment functions, using such method, since the mesh does not need to
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conform to the problem geometry, there is no need for remeshing during crack
propagation.

3.3.2 Basic formulation

For solid mechanics problems, the equation to be solved is usually on the dis-
placement (u) of the body. The X-FEM discretization then reads:

uh =
∑
i∈I

uiφi +
∑
j∈J

bjφjH
(
f(x)

)
+
∑
k∈K

φk

( 4∑
l=1

clkFl(x)
)

(3.4)

In (3.4) the last two terms on the r.h.s. are the terms associated to enrichment
functions. The function H is the jump function and is used to introduce discon-
tinuity in crack faces. It has the following formulation:

H(x) =

{
−1 if x > 0

1 if x < 0
(3.5)

f(x) can be any function showing the side of the crack where x is located and can
be the signed distance function to the crack. Fl are enrichment functions (branch
functions) used to increases the accuracy of the numerical solution around crack
tip and their formulation is dependent on the nature of the problem to be solved.
For LEFM problems these functions are chosen based on the asymptotic behavior
of the displacement field at the crack tip:

{Fl(r, θ)} ≡
{
√
r sin

(
θ

2

)
,
√
r cos

(
θ

2

)
,
√
r sin

(
θ

2

)
sin (θ),

√
r cos

(
θ

2

)
sin (θ)

}
(3.6)

where (r, θ) are the local polar coordinates with respect to the crack tip.
In (3.4) I is the set of all nodes in the mesh, J is the set of nodes in the

mesh whose shape function support is completely cut by the crack. K is the
set of nodes enriched by the crack tip enrichment functions which are at least
the nodes whose shape function supports include the crack tip. This type of
enrichment is called Topological Enrichment.

The problem with Topological Enrichment is that the enriched zone will tend
to zero when the mesh becomes finer which reduces the effect of tip enrichment
functions on accuracy of the results. There is another approach called Geometrical
Enrichment in which the nodes which are in an specific distance from the crack
tip are enriched. This approach will lead to more accurate numerical results.

3.3.3 Cracks located by level sets

One can define a function over some points of a domain so that the isovalue
contours of such function can represent the points on an special curve. This
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approach is the base of a method called level set technique. Level set technique is
a way to represent curves implicitly. Different functions can be used in level set
technique and the most simple one is distance function. Using distance function
the distance of points of a domain from a special curve can be defined and the
curve can be located as the isozero contour of the distance function.

Level set techniques can be used efficiently to locate cracks for numerical
purposes. In this approach, as proposed by [47] in 2D and by [36] in 3D, the
crack can be defined by two levels sets. The first level set is the distance of
points from the tangent line to the crack face (lsn) and the second one is the
distance from a line perpendicular to the crack at the crack tip (lst). The crack
is then defined as the set of the points for which lsn = 0 and lst ≤ 0 and the
crack tip is defined the point for which lsn = lst = 0. Such representation of
crack is suitable for the numerical methods where enrichment functions are used,
since it makes it also easy to obtain polar coordinates of points with respect to
crack tip, used in enrichment functions, according to following formulations [36]:

r = (ls2
t + ls2

n)1/2
θ = arctan

( lsn
lst

)
(3.7)



Chapter 4

Numerical methods for cohesive

crack propagation

4.1 Finite Element Method (FEM)

Different methods have been developed to model the cohesive crack propagation
with FEM. Generally two approaches have been used for the crack propagation.

The first approach to model the crack propagation in FEM is interelement
approach. In this approach the crack is modeled between element interfaces.
This approach have been used for both brittle and ductile materials by many
researchers. A. Carpinteri [15, 16, 17, 18] has used this approach to apply co-
hesive crack model to analyze the crack stability in elastic-softening materials
like concrete. In his model they used the value of the principal stress as the
crack propagation criterion in cohesive crack model. Xu and Needleman [48] and
Ortiz and Camacho [13] also placed a cohesive zone between each pair of the
neighboring elements to model the cohesive crack propagation.

The second approach to model crack propagation in FEM is intraelement
approach. This approach essentially consist of enriching the continuous displace-
ment modes of the standard finite elements, with additional discontinuous dis-
placements, devised for capturing the physical discontinuity i.e.: fractures, cracks,
etc. The discontinuity path is placed inside the elements irrespective of the size
and specific orientation of them. As for the enriching technique, two approaches
can be distinguished in terms of the support of the enriching discontinuous dis-
placement modes. Below a brief description of each approach is presented. A
comparative study on these approaches also can be found in [39].
Elemental enrichment: In these methods the support of each mode is an el-
ement which means that discontinuous mode are incorporated on an element
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level. This approach requires the crack to propagate one element at a time. This
approach has been used in [29] to model the crack propagation in concrete struc-
tures and also in [38] to model strong discontinuities in solids. A comparative
study on different methods using this approach is performed in [27].
Nodal enrichment: In these methods the support of each mode is the same as
the support of FEM shape functions i.e. the elements sharing an specific node.
These methods generally use the concept of partition of unity to include the en-
richment functions and are known with the name of Extended Finite Element
Method (X-FEM). For a brief description of X-FEM see section 3.3. X-FEM has
been used for cohesive crack propagation by Nicolas Moës and Ted Belytschko
in [37]. In their work they used the value of the stress intensity factor in mode I
(kI) as a more trusted criterion for crack propagation. In their model the crack
path need not to be known in advance and the crack propagates when the value
of (kI) at the mathematical crack tip is zero. In their model the crack path is de-
termined using the maximum hoop stress criteria and LEFM. They represented
the process zone as 1-D segments and made a loop on cohesive zone length and
the load to solve the nonlinear problem.

4.2 Boundary Element Method (BEM)

Boundary element method has been extensively used specially in fracture me-
chanics. Such method is attractive since it just needs the boundary of the do-
main to be meshed which results in a smaller stiffness matrix, although full and
nonsymmetric, compared to FEM. Such property enables BEM to handle the
crack propagation problems without remeshing. BEM has been used by many
researchers to model cohesive crack growth among them the works of the following
are mentioned here.

A. L. Saleh and M. H. Aliabadi [45] used Dual Boundary Element Method
(DBEM) to model mode I and mixed mode nonlinear (cohesive) crack prop-
agation in concrete. In their model the crack path need not to be known in
advance and the crack propagates when the stress value at the crack tip reaches
the maximum tensile strength of the material, in the direction perpendicular to
the maximum principal stress. In order to get the proper length of the process
zone, an iteration is defined over the load and the length of the process zone.

B. Yang and K. Ravi-Chandar [49] used a single-domain dual-boundary-
element formulation as a boundary element approach to model the cohesive crack
growth. In their formulation a cohesive zone is incorporated in the formulation
resulting in a nonlinear problem. They also incorporated the local unloading ef-
fect on the cohesive zone. In their model the stiffness of the softening stress-crack
opening model in the process zone is not non a priori and is obtained as a part
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of the solution. Such nonlinear problem is solved using successive-over-relaxation
iterative method. They also have taken into account the tangential interaction of
the crack surfaces. In their model also, the crack propagates when the maximum
principle stress is reached and the crack path is perpendicular to the maximum
principle stress.

Other researchers who have used BEM for cohesive crack growth are Z. Cen
and G. Maier who used Multi Domain Boundary Element Method [19] and also
Symmetric Galerkin boundary element method [32] and Chen et al. who used
Multi-zone boundary element method [20].

4.3 Meshless methods

Traditional simulation algorithms rely on a grid or a mesh, while meshfree meth-
ods use the geometry of the simulated object directly for calculations. This fact
and also the fact that the a priori known behavior of the problem can be included
in the solution using the concept of enrichment functions make meshless methods
an attractive choice to handle the crack propagation in fracture problems. Differ-
ent meshless methods have been used by many researchers to model the cohesive
crack growth among them the works of the following are mentioned here.

T. Belytschkoa [11] used the Element-Free Galerkin (EFG) method to simu-
late the mixed-mode dynamic crack propagation in concrete. The EFG method-
ology allows for arbitrary crack growth in terms of direction and speed. They also
included cohesive crack model in EFG and performed mode I and mixed-mode
numerical tests on three point bending tests on a concrete beam with satisfactory
results.

Timon Rabczuk and Goangseup Zi [42] developed a so called Extended Element-
Free Galerkin (XEFG) method which is a meshfree method based on a meshfree
concept of X-FEM using the local partition of unity for the cohesive cracks. In
their model the crack propagation is governed by the material stability condi-
tion. Using the concept of enrichment functions they obtained very accurate
results with higher smoothness and higher order of continuity which resulted in
obtaining a better stress distribution around the crack tip compared to X-FEM.
They also obtained nonlinear crack opening in the process region that is closer
to the reality.





Chapter 5

Thesis problem

5.1 Problem statement

As mentioned in chapter 4 different numerical approaches has been developed
and used by different researchers to model cohesive crack propagation. The aim
of this thesis is to use X-FEM to solve cohesive crack propagation problems. For
this aim the model proposed by Nicolas Moës and Ted Belytschko in [37] is used.

In order to perform the numerical simulations, a C++ code has been devel-
oped to include cohesive crack model in Xfem and Xcrack C++ libraries already
developed in Institut de Recherche en Génie Civil et Méchanique (GeM)(Institute
of research on civil and mechanical engineering) at Ecole Centrale de Nantes(ECN).

During the study, first, different algorithms and crack propagation criteria are
discussed and their effect on the numerical accuracy and the robustness of the
code is investigated. Next, using the most efficient algorithm, an investigation
on the efficiency of X-FEM regarding the computational costs and the numeri-
cal accuracy for solving cohesive crack propagation problems compared to other
mesh based methods is performed. Finally using X-FEM with the most efficient
algorithm, the capability of cohesive crack model to predict the size effects, strain
softening and the ductile to brittle change of the behavior of the structure are
investigated numerically.

5.2 Variational formulation for cohesive crack model

In this section the variational formulation for cohesive crack model as proposed
by N. Moës and T. Belytschko in [37] is presented.

Consider a domain with geometry and boundary conditions shown in figure
5.1. In this figure Γu represents the boundary of the domain on which essential
(Dirichlet) boundary conditions are applied, ΓF represents the boundary of the

27



28 CHAPTER 5. THESIS PROBLEM

ΓF
Γu

Γcoh

Γc
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+−

Ω

Figure 5.1: Domain and notations for specimen with cohesive crack

domain on which forces are applied and Γc and Γcoh represent the crack surface
and part of the crack surface that is considered as process region, respectively.

Assuming cohesive forces (t) in process region (cohesive zone) (see figure 5.2),
the general equilibrium equation in strong form for the domain reads:

∇ · σ = 0 on Ω, σ · n = F on ΓF (5.1)

σ · n+ = −σ · n− = t+ = −t− = t on Γcoh

Cohesive

Zone

Real

Crack

Cohesive
Forces

(t)

fu

w = wc

w > wc

w < wc

n+ = nn−

Γ+
coh Γ−coh

Figure 5.2: A zoom in cohesive zone
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With small strain assumption in the domain, the kinematic equation reads

ε =
1
2

(
∇u + (∇u)T

)
≡ ε(u) on Ω, u = 0 on Γu (5.2)

w =
(
u− − u+

)
on Γcoh

As already stated, in cohesive crack model, two constitutive laws for the material
will be assumed: linear elastic outside process region and a softening stress -
crack opening law in process region. These constitutive laws are:

σ = C : ε on Ω (5.3)

t = t(w) on Γcoh

The weak form of the equilibrium equation, better suited for finite element anal-
ysis, now reads:∫

Ω
σ : ε(v) dx =

∫
ΓF

F · v ds+
∫

Γ+
coh

t+ · v ds+
∫

Γ−coh

t− · v ds ∀v ∈ U (5.4)

where U is the kinematically admissible displacement field:

U = {v ∈ V : v = 0 on Γu}

Them mathematical nature of V depends on the regularity of the solution. It
allows for discontinuous displacement across crack faces (Γc). Using the notation
t+ = −t− = t and w =

(
v− − v+

)
equation (5.4) becomes:∫

Ω
σ : ε(v) dx+

∫
Γcoh

t ·w(v) ds =
∫

ΓF

F · v ds ∀v ∈ U (5.5)

Different softening constitutive laws can be used for t(w) among which a linear
one with slope −k is selected for the present study (see figure 5.2):

f = fu − kw (5.6)

where f = t · n and w(v) = w(v) · n is the normal crack opening. Using this
constitutive law for t(w) and linear elastic law for the domain outside the process
region, (5.5) becomes:∫

Ω
Cε(u) : ε(v) dx−

∫
Γcoh

kw(u)w(v) ds =
∫

ΓF

F·v ds−
∫

Γcoh

fuw(v) ds ∀v ∈ U

(5.7)

In the numerical algorithms (5.7) will be used as the variational formulation of
the problem.
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5.3 X-FEM approximation for cohesive crack model

5.3.1 Formulation

If (3.4) is used for discretization of (5.7), it becomes:∫
Ω

Cε(uh) : ε(v) dx−
∫

Γcoh

kw(uh)w(v) ds = λ

∫
ΓF

F0·v ds−
∫

Γcoh

fuw(v) ds ∀v ∈ Uh

(5.8)

Note that for numerical purposes, scalar λ (load factor) in (5.8) is used multiplied
to a constant load vector F0.

5.3.2 Cohesive zone mesh and integration

In (5.8) the integration over domain (Ω) is done element by element. For inte-
gration over cohesive zone (Γcoh) in 2D problems, this region is considered as 1D
segments whose length can be independent of the size of the global mesh (user de-
fined). In order to integrate asymptotic functions on these elements, four Gauss
points may be selected for eahc element. In (5.8), the exact length of cohesive
zone is not known a priori. In fact such length is one of the unknown variables
of the problem and will be obtained from the solution. This fact introduces a
nonlinearity in the crack propagation problem.

5.3.3 Enrichment functions for cohesive crack model

According to the asymptotic analysis of the displacement field in the process
region of large scale structures provided in [40, 41] the following non-singular
branch functions can be used as enrichment function:

{Fl(r, θ)} ≡ r sin
(
θ

2

)
or r3/2 sin

(
θ

2

)
or r2 sin

(
θ

2

)
(5.9)

Note that in the present study r sin ( θ2) is used as enrichment function.

5.3.4 Crack propagation criterion

In order to find the value of load for the unset of crack propagation (critical load),
two approaches have been proposed in the literature. The first approach is to
measure the value of stress at fictitious crack tip. The crack will propagate then
when this value reaches the tensile strength of the material (stress criterion). The
second approach, proposed by N. Moës and T. Belytschko in [37], is to measure
the stress intensity factor in mode I (KI). The crack will propagate then when this
value is equal to zero (SIF-I criterion). This fact is a natural outcome of cohesive
crack propagation. Since this approach uses energy considerations instead of
point wise values to obtain unset of crack propagation, it may be trusted more.
In numerical results section both criteria will be used and compared to each other.
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5.3.5 Numerical algorithms

In this study we are interested to find critical state of the structure using cohesive
crack model which means to find the values of load for which the state of the
crack is critical (i.e. the crack is at its unset of propagation). For a problem with
a specific geometry and boundary conditions, the problem will be to find values of
load and cohesive length for which the crack propagation criterion will be fulfilled.
Different algorithms can be developed to solve such nonlinear problem. In the
following, different algorithms developed to solve the problem in the present
study are presented. Note that in chapter 6 the efficiency of these algorithms
are compared. Note also that these algorithms are developed for pure mode I
problems where crack propagation direction is known a priori and the crack is
linear. For the cases for which the crack propagation direction is not known a
priori, the same algorithms may be used with small modifications to take into
account computation of crack propagation direction.

Algorithm one

In this algorithm the critical load and cohesive zone length for each total crack
length (i.e. real part and cohesive part) is calculated. The total crack length is
increased step by step until a maximum total length is reached. In the following,
the steps of algorithm 1 are presented:

1. Consider an initial total crack length (real part and cohesive part)

2. Consider the total crack length as cohesive zone and go to step 4.

3. Consider the length obtained for cohesive zone for previous total crack
length as cohesive zone of this total crack length.

4. Solve the problem using (5.8) for two arbitrary load factors (λ1 and λ2).
Obtain the load factor (λ3) for which the crack propagation criterion (stress
criterion or SIF-I criterion) is fulfilled. Note that since for a constant cohe-
sive zone length, the problem is linear, λ3 can be obtained exactly using a
linear extrapolation.

5. Check the crack opening for the last 1-D segment in the cohesive zone away
from fictitious crack tip. If the crack opening in all Gauss points is bigger
than the critical crack opening, remove this element from the cohesive zone
and go to step 4.

6. The solution for this crack length is obtained. Increase the total crack
length in the crack propagation direction. If any 1-D element has been
removed in step 5 during the whole iteration, go to step 3, otherwise go to
step 2.
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This algorithm is also used in [45] with a stress criterion for crack propagation.
Figure 5.3 shows algorithm 1 schematically.

Algorithm two

This algorithm is proposed in this study. In this algorithm the critical load and
cohesive zone length for each real crack length is calculated. The real crack length
is increased step by step until a maximum real crack length is reached. In the
following, the steps of algorithm 2 are presented:

1. Consider an initial real crack length.

2. Assume a value for the length of cohesive zone and go to step 4.

3. Consider the length obtained for cohesive zone for previous real crack length
as cohesive zone of this real crack length.

4. Solve the problem using (5.8) for two arbitrary load factors (λ1 and λ2).
Obtain the load factor (λ3) for which the crack propagation criterion (stress
criterion or SIF-I criterion) is fulfilled. Note that since for a constant cohe-
sive zone length, the problem is linear, λ3 can be obtained exactly using a
linear extrapolation.

5. Check the crack opening for the last 1-D segment in the cohesive zone away
from fictitious crack tip. If the crack opening in all Gauss points is bigger
than the critical crack opening, remove the element containing the fictitious
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Figure 5.3: Algorithm 1 for cohesive crack propagation



5.3. X-FEM APPROXIMATION FOR COHESIVE CRACK MODEL 33

crack tip and move the fictitious crack tip to the last segment remained and
go to step 4. If the crack opening in one or some Gauss points is less than
the critical crack opening, add a 1-D element after the element containing
the fictitious crack tip and move the fictitious crack tip to the last vertex
(away from real crack tip) of the added element and go to step 4. In order
to avoid infinite loop, if the procedure of adding and removing an element
is performed after each other once, skip the loop.

6. The solution for this real crack length is obtained. Increase the real crack
length in the crack propagation direction. Go to step 3.

Figure 5.4 shows algorithm 2 schematically.

Algorithm three

In this algorithm the critical load and cohesive zone length for each total crack
length (i.e. real part and cohesive part) is calculated. The total crack length is
increased step by step until a maximum total length is reached. In the following,
the steps of algorithm 3 are presented:

1. Consider an initial total crack length (real part and cohesive part)

R

R R R

R R R

R R

F

F

F

F

F

F

F

F

F

l1

l2

l2

l3

l3

l4

a1

a2

wR > wc

wR < wc

wR > wc

wR < wc

wR > wc

wR > wc

wR < wc

wR > wc

wR > wc

Itteration over 1-D segments

Itteration over real crack length
a = 0 a = a1 a = a2

R = Real crack tip
F = Fictitious crack tip
a = Real crack length
li = Cohesive zone length

Figure 5.4: Algorithm 2 for cohesive crack propagation
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2. Consider the total crack length as cohesive zone.

3. Solve the problem using (5.8) for a given load factor.

4. Check the crack opening for the last 1-D segment in the cohesive zone away
from crack tip. If the crack opening in all Gauss points is bigger than the
critical crack opening, remove this element from the cohesive zone and go
to step 3.

5. Check if the crack propagation criterion is fulfilled within some user defined
tolerance. If it is fulfilled go to step 6. If it is not fulfilled update the load
factor using a secant method and go to step 3.

6. The solution for this crack length is obtained. Increase the total crack
length in the crack propagation direction. Go to step 2.

This algorithm is proposed in [37] with SIF-I criterion for crack propagation.

Comparison between algorithms

In algorithm 1 and 3 the length of the real part of the crack is not under control
and user defined. So these algorithms are not suited for studies on specimens
having an initial real crack with an specific length. In fact in these algorithms
the total length of the crack is under control. In contrary in algorithm 2 the
length of the real part of the crack is under control and user defined. So this
algorithm is suited for studies on specimens having an initial real crack with an
specific length. In fact in this algorithm the maximum cohesive zone length will
be obtained for each real crack length.

In algorithms 1 and 2, the fact that the loop on the load factor is performed
for a crack with a constant length of cohesive zone makes it possible to obtain the
exact value of the critical load factor using linear extrapolation. But in algorithm
3 such value is obtained from the solution of a nonlinear problem using secant
method which renders a residual error that should be controlled.



Chapter 6

Numerical studies

6.1 Code implementation

The code implementation for cohesive crack model for the numerical studies has
been done using C++ language. The code is developed on top of X-FEM C++ li-
brary which provide the routines for Extended Finite Element Method to solve the
numerical problem and X-Crack C++ library which provides the level set means
to locate cracks and crack propagation and also the numerical algorithms to com-
pute J-integral and stress intensity factors at crack tip. Both libraries have been
developed in Institut de Recherche en Génie Civil et Méchanique (GeM)(Institute
of research on civil and mechanical engineering) at Ecole Centrale de Nantes
(ECN).

The library used for solving the system of equations is SuperLU which is
a general purpose library for the direct solution of large, sparse, nonsymmetric
systems of linear equations. The library routines perform an LU decomposition
with partial pivoting and triangular system solves through forward and backward
substitutions. The library is written in C.

Some details on input and output parameters of the code as well as some of the
most important functions and classes defined in C++ for the code implementation
are provided in appendix A.

6.2 Three point bending test

In this section the numerical results obtained for a three point bending test are
presented. The crack propagation mode in this case is pure mode one hence the
crack is planer and the crack initiation point and the crack path are known a
priori.

35
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Figure 6.1: Geometry and boundary conditions of the three point bending test

6.2.1 Problem specification

Figure 6.1 shows the geometry, the crack location, the crack initiation point
and the boundary conditions of the three point bending problem. Note that
in order to avoid singular values of stress at the point of load application, the
load is distributed over a length d, as is also the case in the reality. Note also
that in order to avoid rigid body motion in the beam there are constraints for
displacement of the beam in y direction at its supports and in x direction at point
O (center of the beam).
The geometrical parameters of the beam are:

t = h = 150 mm, L = 4h = 600 mm, d = 10 mm (6.1)

The material used for simulation is concrete with the following mechanical prop-
erties:

E = 36500 MPa, ν = 0.1, fu = 3.19 MPa (6.2)

There is initially no crack in the beam. As the force is increased the stress value at
point of crack initiation will increase linearly until it reaches the tensile strength
of the material. After that the cohesive zone starts to develop at this point until
the crack opening becomes more than its critical value. The behavior of the beam
becomes nonlinear at this level. Increasing the load at this state will cause a real
crack propagation.

The beam is analyzed with plain strain assumption. Cohesive crack propa-
gation of such specimen with the same geometrical and mechanical parameters
has been extensively analyzed by Carpinteri and Colombo in [16] using a plane
stress assumption and using a point load. Since the difference of plane stress and
plane strain assumptions is the factor (1 − ν2) in Young’s Modulus (see (2.4)),
the difference of these two assumptions is small for small values of Poisson ratio
(ν = 0.1).
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6.2.2 First results

The first numerical results have been obtained for materials with Gf = 50Nm−1

(sE = 1e−4) and Gf = 5Nm−1(sE = 2e−5) (see (2.17)) using algorithm 2 with
SIF-I criterion. Figure 6.2 shows the undeformed mesh and deformed shape of
the beam together with the values of stress in X direction. The complete length
of the crack (real part and cohesive part) can be seen in the middle of the beam.

It is observed from figure 6.2 that the mesh does not need to conform to the
geometry of the crack thanks to discontinuous enrichment functions used in X-
FEM. It is also observed that the crack closes smoothly thanks to the presence
of tensile stresses on crack faces. As is clear from this figure, the value of stress
in X direction (which is the principal direction for this problem) is equal to the
tensile strength of the material fu = 3.19.

Figure 6.3 shows the non-dimensional load-deflection curves obtained for the
two values of Gf and also the curves obtained by Carpinteri and Colombo in
[16]. In this figure m is number of elements on the height of the beam h in the
center of the beam span. It is observed that the results obtained by X-FEM for
m = 19 are very close to the results obtained by Carpinteri and Colombo in [16]
for m = 40.

Figure 6.4 shows an example of the output tables made by the code for
Gf = 50Nm−1(sE = 1e−4) using algorithm 2 with SIF-I criterion. The units of
parameters in the table are N −mm.

σxx

−13.1 −4.76 3.61
x

y

Figure 6.2: Undeformed mesh and deformed shape of the beam with a crack
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Figure 6.3: Non-dimensional load-deflection curves for three point bending test
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In the table shown in figure 6.4, Load and uc are the critical load and the
vertical displacement of point of load application at the unset of real crack prop-
agation respectively. The terms Crack L. and Coh L. are the real crack length
and the length of cohesive zone respectively. The term Residual is the absolute
value of the difference between value of crack propagation criterion with its crit-
ical value needed for fictitious crack propagation (residual should be zero in the
case where the crack propagation criterion is fulfilled). It is observed from this
table that the values of residual are very close to zero. The term SIF-I is the
value of KI at mathematical crack tip. The term CMOD is Crack Mouth Opening
which is the opening of the crack at the point where it initiates from (middle of
the lower edge of the beam). The term Energy is the elastic stress-strain energy
input in the system provided by the load until real crack propagation.

In algorithm 2, the first data obtained by the code for cohesive crack model
are the ones in step 1 in the table shown in figure 6.4. These data correspond to
crack propagation unset for a body with no initial real crack and with maximum
cohesive zone length. The zero steps data correspond to the cases where the
cohesive zone is evolving but it has not reached its maximum length. Such data
are obtained by solving the problem with cohesive zone lengths smaller than the
maximum one and are obtained automatically by the code during the solution
procedure.

6.2.3 Mesh size and numerical accuracy

The computations for mesh size optimization of the problem are done on a 2-
D mesh of first order triangular elements. For these computations Algorithm 2
together with SIF-I criterion for crack propagation is used. Figure 6.5 shows part
of the mesh around fictitious crack tip and also 1-D segments in the cohesive
zone. It is observed from this figure that the mesh does not need to conform
to the geometry of the crack. Note that maximum size of 1-D segments can be
defined by the user and is independent of domain mesh size.

Carpinteri and Colombo [16] have done a numerical study in order to in-
vestigate the effect of mesh size on numerical accuracy for different brittleness
numbers (sE), from which they proposed the following equation for the lower
bound of the brittleness number for materials with εu = 8.74e−5.

sE =
wc

tmhm
≈ 80
m
× 10−5 (6.3)

where m is number of elements on the height of the beam (h) in the center of
the beam span and hm is the mesh size around crack tip. This equation can be
written in the following form:

hm < 600wc (6.4)
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(6.3) can also be written in the following form:

Nc ≡
lch
hm
≥ 10 (6.5)

In this equation lch is the characteristic length of the material and is given by

lch =
GfE

∗

f2
u

(6.6)

where Gf is the fracture energy and E∗ is the same as in (2.4). It is clear from
the definition that characteristic length of the material is a material property and
is of order of cohesive zone length of the material (see (2.15)). (6.5) has been
used by N. Moës and T. Belytschko [37] to investigate the effect of mesh size on
accuracy of numerical results.

In the present study, (6.5) is used to investigate the effect of mesh size on
quality of the results. Figure 6.6 shows the non-dimensional load-deflection curves
for different values of Nc with a constant mesh size (m = 17) and with 1-D
segments having the same size as the mesh (not divided). It is observed from
figure 6.6 that as the material becomes more brittle, a finer mesh is required to
obtain acceptable results. The results are acceptable for values of Nc bigger than
the threshold Nc = 6.

Figure 6.7 shows the dimensionless load-deflection curves for sE = 2e−5 (the
same characteristic length for all curves) and different mesh sizes with 1-D seg-
ments having the same size as the mesh (not divided). It is observed from figure

Mathematical crack tip

1-D segments

Figure 6.5: Mesh for the domain and cohesive zone
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Figure 6.6: Non-dimensional load-deflection curves for different values of Nc and
a constant mesh size (m = 17) with the length of 1-D segments not divided

6.7 that for Nc = 6 (i.e. m = 26) the results are stable. This result is the same
as what obtained from figure 6.6.

In order to investigate the effect of size of 1-D segments on the numerical
results, the same computations are done with length of 1-D segments divided
by 2 and 3. Figure 6.8 shows the non-dimensional load-deflection curves for a
constant brittleness number sE = 2e−5 and constant mesh size (m = 8) but with
different sizes of 1-D segments (not divided, divided by 2 and 3).

It is observed from figure 6.8 that the size of 1-D segments has a big effect
on the accuracy of numerical results and for smaller segments (i.e. div = 3) the
results are without oscillations and are acceptable. The reason is that the ductile
to brittle behavior of the material is mainly due to values of stress in cohesive
zone which are applied on 1-D segments. Smaller segments can increase the
accuracy of integrations over Gauss points in 1-D segments. Furthermore a good
approximation of the cohesive zone length during iterations over 1-D segments
depends so much on the size of these elements.

Figure 6.9 shows the non-dimensional load-deflection curves for different val-
ues of Nc and a constant mesh size (m = 17) with the length of 1-D segments
divided by three. It is observed from this figure that more brittle behaviors of
the beam can be captured with 1-D segments divided by three compared to the
case of 1-D segments not divided. The value of Nc = 2 is then the threshold in
this case that is one third of the case of 1-D segments not divided.
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Figure 6.7: Non-dimensional load-deflection curves for a material with constant
brittleness number (sE = 2e−5) and different mesh sizes and with the length of
1-D segments not divided

Figure 6.10 shows the dimensionless load-deflection curves for sE = 2e−5

(the same characteristic length) and different mesh sizes with the length of 1-D
segments divided by three. It is observed from this figure that for Nc = 2 (i.e. m
= 8) the results are stable. This results is the same as what obtained from figure
6.9.

According to results mentioned above the following conclusions can be made:

1. Decreasing the size of 1-D segments increases the numerical accuracy so
much. Since the number of 1-D segments are not so many, the decrease
in the size of 1-D segments does not increases so much the computational
costs.

2. The threshold for value of Nc to have acceptable results for the case of 1-D
segments not divided is Nc = 6 and for the case of 1-D segments divided by
three is Nc = 2 which compared to the threshold obtained by Carpinteri
and Colombo [16] (Nc = 10) using FEM, shows the efficiency in numerical
accuracy of X-FEM used in this study.

6.2.4 Effect of different algorithms on the results

Several computations have been done using algorithms 1, 2 and 3 mentioned in
section 5.3.5. It was observed that algorithms 1 and 2 give the same results with
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Figure 6.8: Non-dimensional load-deflection curves for constant brittleness num-
ber sE = 2e−5 and constant mesh size (m = 8) but with different sizes of 1-D
segments
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Figure 6.9: Non-dimensional load-deflection curves for different values of Nc and
a constant mesh size (m = 17) with the length of 1-D segments divided by three
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Figure 6.10: Non-dimensional load-deflection curves for a material with constant
brittleness number sE = 2e−5 and different mesh sizes and with length of 1-D
segments divided by three

the same numerical accuracy and computational costs for both crack propaga-
tion criteria. But in the code developed by the author of this thesis for numerical
computations, the results from algorithm 3 did not converge for both crack prop-
agation criteria and in most cases algorithm 3 failed to obtain reasonable results
for a reasonable fine mesh.

The reason why algorithm 3 fails is maybe the fact that in this algorithm
during iterations on 1-D segments, the proper size of the cohesive zone is deter-
mined for a load factor which is not the one that fulfills the crack propagation
criterion at mathematical crack tip and hence is not physical. This fact makes
the nonlinear problem quite sensitive to the values of load factor inside the iter-
ation on the load factor. But in algorithm 1 and 2 the value of the load factor
which fulfills the crack propagation criterion at mathematical crack tip (a physi-
cal value) is first obtained exactly in three iterations thanks to the linearity of the
problem for a constant cohesive zone length, and then the proper size of cohesive
zone is obtained for this load factor which seems more physical. This fact makes
algorithms 1 and 2 more robust and accurate compared to algorithm 3.

Note that in the code developed by N. Moës and T. Belytschko in [37], they
succeeded to obtain reasonable results using algorithm 3. In the rest of this study
the computations are done using algorithm 2.
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6.2.5 Effect of crack propagation criteria on the results

In order to see the effect of different crack propagation criteria on the accuracy
of the results, several computations are done using algorithm 2 (the results are
the same for algorithm 1) with SIF-I and stress crack propagation criteria.

Figure 6.11 shows the non-dimensional load-deflection curves for sE = 2e−5

and different mesh sizes and with length of 1-D segments divided by three for
both criteria. Note that in this figure the results for a very fine mesh (Nc = 17)
are also presented as a reference for accurate results.

It is observed from figure 6.11 that the results have the same behavior for both
criteria regarding the accuracy for different values of Nc and that the threshold
for acceptable results for stress criterion is the same as SIF-I criterion and is
Nc = 2. But regarding the computational costs, since the computational costs
for evaluating KI in SIF-I criterion is much more than evaluating stress value at
the mathematical crack tip in stress criterion, the overall computational cost for
algorithms with SIF-I criterion is more than computational cost for algorithms
with stress criterion.

The rest of the computations in this study are done using algorithm 2 with
SIF-I criteria. In order to have more accuracy for the results, a mesh of second
order 2D triangles with m = 19 and with length of 1-D segments divided by three
is used.

6.2.6 Effect of brittleness number

In order to investigate the ductile to brittle change of behavior of the beam,
several computations are done for different values of brittleness number (sE).
Figure 6.12 shows the non-dimensional load-deflection curves. Note that the
change in values of brittleness number is done by varying Gf while keeping h

and fu constant (h = 150mm and fu = 3.19MPa). It is observed from this
figure that the ductile to brittle change of the behavior of the beam decreasing
the brittleness number is captured using cohesive crack model.

Figure 6.13 shows the non-dimensional load-deflection curves for the cases
where h is varied independently while keeping other parameters in brittleness
number constant. Note that in this case in order to maintain the geometrical
similarity of the beam, λ = L/h should be kept constant. Exactly the same
curves can be obtained for the cases where fu is varied independently while
keeping other parameters in brittleness number constant. Note that in this case
εu = fu/E should be kept constant.

It is observed from figure 6.12 and 6.13 that the simple variation in brittleness
number sE produces all the cases related to the independent variations in Gf ,
h and fu. Not the single values of Gf , h and fu, but their function sE effects
the ductile to brittle change of behavior of the beam. Hence a small beam or a
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Figure 6.11: Non-dimensional load-deflection curves for brittleness number sE =
2e−5 and different mesh sizes and with length of 1-D segments divided by three
(Stress criterion vs SIF-I criterion)
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Figure 6.12: Non-dimensional load-deflection curves for different values of brit-
tleness number for a beam with no initial crack
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Figure 6.13: Non-dimensional load-deflection curves for different sizes of the beam
for a beam with no initial crack
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Figure 6.14: Load-CMOD curves for different values of brittleness number for a
beam with no initial crack

beam made of a material with high Gf or low fu has a ductile behavior while a
large beam or a beam made of a material with low Gf or high fu has a brittle
behavior.

It is observed from figure 6.12 that snap back phenomenon happens for
sE ≤ 1e−4. Since the numerical tests are controlled by the crack length, which
is monotonically increasing with time, the load-deflection data can be captured
during the snap back (see section 2.1.7). As is shown in figure 6.14, crack mouth
opening (CMOD) also increases monotonically during the test. Hence as men-
tioned in section 2.1.7, the load-deflection data can also be captured during the
snap back by conducting a test in which the crack mouth opening (CMOD) is
controlled.

The length of cohesive zone at maximum load is plotted against 1/sE for a
beam with no initial crack in figure 6.15. The change of behavior of the beam
from ductile to brittle with the change in the values of sE is again evident from
this figure such that for big values of sE the cohesive zone covers the whole hight
of the beam which leads to a ductile behavior while for small values of sE it tends
to disappear and hence causing a brittle behavior.

In order to investigate the ability of LEFM to express ductile to brittle change
of behavior of the beam, several computations have been done using LEFM model
instead of cohesive crack model for different values of brittleness number. Fig-
ure 6.16 shows the non-dimensional load-deflection curves obtained using LEFM
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Figure 6.15: Length of cohesive zone as a function of inverse of brittleness number
for three point bending test with a0/h = 0

model for different values of brittleness number. It is observed from figure 6.16
that although LEFM can express the scale effects on the nominal strength of the
beam (see (2.11)), since the state of stress filed in process region is not considered
in this model, the behavior of the structure is brittle in all cases and LEFM is
unable to express the ductile to brittle change of behavior of the beam.

Load
fuh2

×10−3Deflection
h

Figure 6.16: Non-dimensional load-deflection curves using LEFM model for dif-
ferent values of brittleness number for a beam with no initial crack
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6.2.7 Effect of initial cracks

The non-dimensional load-deflection curves for different values of brittleness num-
ber for a beam with an initial crack are presented in figures 6.17, 6.18, 6.19, 6.20
and 6.21. It is observed from these figures that obviously the stiffness and max-
imum loading capacity of the specimen decreases by increasing the initial crack
length. It is also observed that the initial crack makes the behavior of the beam
more ductile than the case with no initial crack. This fact can be observed better
in figure 6.21 where the beam shows a completely brittle behavior and also a
snap back for the case without initial crack (a0/h = 0) but the behavior changes
to ductile without any snap back for the cases with a0/h ≥ 0.3.

It also appears from figures 6.20 and 6.21 that the non-dimensional load-
deflection curves for different initial crack lengths share the same part at the end
of the softening branch. This fact is due to the assumption of a damage zone
collinear to the crack and concentrated on a line of zero thickness in cohesive
crack model. It can be also observed from figures 6.20 and 6.21 that the real
crack length for maximum load is the same as initial crack length which means
that the real crack does not grow before the softening stage (decrease in the
load).

The length of cohesive zone at maximum load is plotted against 1/sE
for a beam with different initial crack lengths in figure 6.22. Like figure 6.15
the change of behavior of the beam from ductile to brittle with the change in
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Figure 6.17: Non-dimensional load-deflection curves for different values of brit-
tleness number for a beam with an initial crack depth of a0/h = 0.1
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Figure 6.18: Non-dimensional load-deflection curves for different values of brit-
tleness number for a beam with an initial crack depth of a0/h = 0.3
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Figure 6.19: Non-dimensional load-deflection curves for different values of brit-
tleness number for a beam with an initial crack depth of a0/h = 0.5
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the values of sE can be observed from this figure. It is also observed that the
length of cohesive zone for a constant value of sE decreases for beams with longer
initial crack length, but for very small values of sE (very brittle material or a
large specimen) the length of the cohesive zone converges to a value which is a
material property (see section 2.1.8). This also confirms the fact that the size
of cohesive zone for structures with a brittle behavior is small and independent
of specimen geometry and real crack length (one of the main assumptions for
LEFM).

6.2.8 Apparent and real properties

Beam without initial crack

The value of maximum load capacity for three point bending test without initial
crack can be obtained analytically using an ultimate strength elastic limit analysis
from the following equation:

PU.S. =
2
3
futh

2

L
(6.7)

In order to investigate the size effects on a beam without initial crack, the ratio
of maximum load capacity (PCoh) obtained from figure 6.12 to the maximum
load of ultimate strength (PU.S.) obtained from (6.7) is plotted for different val-
ues of 1/sE as shown in figure 6.23. This ratio can be regarded as the ratio
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Figure 6.20: Non-dimensional load-deflection curves for sE = 1e−4 for a beam
with different initial crack length
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Figure 6.21: Non-dimensional load-deflection curves for sE = 2e−5 for a beam
with different initial crack length
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Figure 6.22: Length of cohesive zone as a function of inverse of brittleness number
for three point bending test for a beam with different initial crack lengths
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Figure 6.23: Apparent strength v.s. real strength of the material for different
values of brittleness number for a beam with no initial crack

of nominal ultimate stress at failure (σN or apparent strength) obtained by ap-
plying (6.7) to PCoh (see (2.8)), to the real ultimate strength of the material (fu).

The following relationships can be observed from figure 6.23:

lim
sE→0

σN = fu (6.8)

lim
sE→∞

σN = 3fu (6.9)

which means that the value of apparent ultimate strength of the material is more
than the real ultimate strength of the material but it will tend to the real ultimate
strength for small values of sE (e.g. big specimens). From this one can conclude
that with the usual laboratory specimens, an apparent strength higher than the
true one is always obtained.

It is observed from figure 6.23 that σN → 3fu for big values of sE . The reason
is that the behavior of the material is elastic perfectly plastic in tension for big
values of sE . In such cases when the maximum load is applied to the beam a
uniform stress distribution is made at the center of the beam which acts like a
plastic hinge with a resistant moment (Mmax) that is three times more than the
resistant moment obtained by linear elastic stress distribution (see figure 6.24).
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Figure 6.24: Elastic and elastic perfectly plastic distribution of stress in the center
of the beam

Beam with an initial crack

The value of maximum load capacity (P ) for three point bending test with an
initial crack of length a0 can be obtained using different approaches depending
on the beam behavior. Using an LEFM approach P can be obtained analytically
from the following equation:

PLEFM =
KIcth

3/2

Lg(a0/h)
(6.10)

where KIc is the fracture toughness and can be obtained according to the follow-
ing relationship (see (2.7)):

KIc =
√
GfE∗ (6.11)

where E∗ is the same as in (2.4). In (6.10), g(a0/h) is a function which represents
the geometry of structure or specimen (see (2.15)) and for three point bending
test is approximated by the following equation [1]:

g
(a0

h

)
= 2.9

(a0

h

)1/2
− 4.6

(a0

h

)3/2
+ 21.8

(a0

h

)5/2
(6.12)

− 37.6
(a0

h

)7/2
+ 38.7

(a0

h

)9/2

Note that the values of PLEFM can also be obtained from numerical computations
using LEFM model as is done for the present study.

Using a simple ultimate strength limit analysis on the center-line of the beam
with assumption of butterfly stress variation through the ligament, P can be
obtained analytically from the following equation:

PU.S. =
2
3
fut(h− a0)2

L
(6.13)
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Figure 6.25: Fictitious fracture toughness v.s. real fracture toughness of the
material for different values of brittleness number for a beam with an initial
crack depth of a0/h = 0.5

Using cohesive crack model approach, P (PCoh in this case) is the maximum
load obtained from non-dimensional load-deflection curves presented in figures
6.17, 6.18 and 6.19.

In order to investigate the size effects on a beam with an initial crack, the
values of ratios PU.S./PLEFM and PCoh/PLEFM for a beam with a crack depth
of a0/h = 0.5 are presented as a function of 1/sE in figure 6.25. The ratio
PCoh/PLEFM can be regarded as the ratio of fictitious fracture toughness (Kfict

Ic

or apparent fracture toughness) obtained by applying (6.10) to PCoh, to the real
fracture toughness of the material (KIc).

It is observed from figure 6.25 that the value of apparent fracture toughness of
the material is less than the real fracture toughness of the material but it will tend
to the real fracture toughness for small values of sE (e.g. big specimens). From
this one can conclude that with the usual laboratory specimens, an apparent
fracture toughness less than the true one is always obtained.

It is also observed from figure 6.25 that the values of PU.S. are less than values
of PLEFM and PCoh for big values of sE which confirms the fact that for a ductile
material or a small beam the failure will be governed by ultimate strength. But
for intermediate values of sE the values of PCoh are less than values of PLEFM
and PU.S which confirms the fact that for a quasi brittle material or a medium
beam the failure will be governed by cohesive crack model (nonlinear fracture
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mechanics). Finally it is observed that for small values of sE which is the case
for a brittle material or a large beam, the values of PCoh tend to the values of
PLEFM which means that in these cases the failure will be governed by LEFM.
All these observations are in agreement with Bažant’s size effect law (see (2.13)
and figure 2.4).



Chapter 7

Conclusions

7.1 Conclusions

The conclusions of the present study can be categorized into two groups. The
first group includes the conclusions on the numerical method used to solve the
cohesive crack model. The second group includes the conclusions on behavior of
structure modeled by the cohesive crack model according to the numerical results
obtained from the computations.

According to numerical study performed on the efficiency of X-FEM we can
conclude that:

1. Using X-FEM the mesh does not need to conform to the geometry of the
problem thanks to the discontinues enrichment functions used in X-FEM.
Therefore there is no need for remeshing during crack propagation proce-
dure and the same mesh can be used for all cracks.

2. X-FEM is more efficient with respect to the numerical accuracy compared
to classical FEM thanks to the enrichment functions used at the crack tip
that can include the a priori known behavior of the problem in numerical
computations.

3. The fact that the size of 1-D segments used as the mesh for cohesive zone
can be independent of the global mesh, makes it possible to increase the
accuracy of the results so much without any large increase in computational
costs, using small enough 1-D segments while keeping the size of the global
mesh constant.

4. Using algorithms 1 and 2, proposed in this study, makes it possible to obtain
numerical results with the same accuracy, using SIF-I or stress criterion.
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According the results obtained from numerical computations we can conclude
that:

1. Unlike LEFM, Cohesive crack model is able to express ductile to brittle
change of behavior of the structure, thanks to the fact that the state of the
stress field in the process zone of the crack is taken into account in this
model.

2. The ductile to brittle change of behavior of the structure is not depending on
the single values of fracture energy, ultimate tensile strength and structure
size but on their function called brittleness number. Simple variations in
this number can produce all the cases related to the variation of fracture
energy, ultimate tensile strength and structure size.

3. The snap back phenomenon in brittle materials can be captured with co-
hesive crack model using a test in which a parameter that increases with
the time, like crack length or crack mouth opening, is controlled.

4. The presence of initial cracks in the structure results in a more ductile
behavior of the structure.

5. Cohesive crack model can express the size effects for three point bending
test properly. The effect of scale of the beam on evaluation of ultimate
tensile strength and fracture toughness of the material can be modeled
using cohesive crack model.

7.2 Achievements and knowledge contribution

During my master thesis I tried to gain detailed knowledge and to study the
state of the art on linear and nonlinear fracture mechanics and their ability to
express the behavior of quasi brittle materials. Specifically I studied cohesive
crack model as the most simple model for nonlinear fracture mechanics. I also
gained a detailed knowledge and the state of the art on numerical methods used
to treat linear and nonlinear crack propagation problems and more specifically
on Extended Finite Element Method and level set techniques .

I developed a robust C++ routine that can include cohesive crack propaga-
tion in Xfem and Xcrack C++ libraries developed in Institut de Recherche en
Génie Civil et Méchanique (GeM)(Institute of research on civil and mechanical
engineering) at Ecole Centrale de Nantes (ECN). During this phase of my thesis
study, I devoted so much time to learn advanced C++ language to understand
the algorithms used in Xfem and Xcrack C++ libraries and to develop my own
code. I tried to code different algorithms and to compare their robustness. I
devoted so much time to remove the bugs in my code and to make it as user
friendly as possible regarding input parameters and output results and tables.
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Finally I tried to model three point bending test as a bench test with my code
and to investigate the ability of cohesive crack model to express the behavior of
quasi brittle materials.

7.3 Future works

The following items can be regarded as the extension of the present work in the
future:

1. Implementation of a code which includes cohesive crack model for nonlinear
crack propagation in 2-D and 3-D mixed mode problems.

2. Investigation on the efficiency of cohesive crack model for problems with
high stress gradient like unidirectional tensile tests.

3. Investigation on the effect of the terms related to cohesive crack model in
discretized variational formulation, on condition of the resulting stiffness
matrix and finding the most efficient solver to solve the resulting system of
equation.

4. Development of different approaches to include cohesive crack model in the
main variational formulation of the problem resulting a better conditioned
stiffness matrix.
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Appendix A

C++ code implementation for

numerical simulations

A.1 Input and output files

In the following sections brief descriptions for the input parameters required by
the code and the output results made by the code are presented. The units
of the output results are the same as the units used for the input parameters.
Note that the input and output files with .msh or .pos extensions can be viewed
and edited by Gmsh software which is a 3D finite element grid generator with a
build-in CAD engine and post-processor.

A.1.1 Input files

driverinfo.dat

In this file the main input parameters of a problem, most of them control param-
eters, are specified by the user. Note that the values of the control parameters
are either 0 or 1 which means no and yes respectively. In the following a brief
description of each parameter is provided.
debug: This control parameter is used to activate a version of the code that
prints more outputs than usual about details of the problem. This version is
used for code debugging purposes.
thermocoupling: This control parameter is used for the cases that the mechan-
ical problem involves thermocoupling (not in the present study).
compute displacement: This control parameter is used for the mechanical
problems and is used to ask for the displacement field as an output file.
compute temperature: This control parameter is used for thermal or thermo-
mechanical problems and is used to ask for the temperature field as an output
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file.
degree: This parameter is the degree of the polynomial shape functions used in
the discretization with FEM.
compute sifs: This control parameter is used to ask the code to compute the
stress intensity factors and to print the results in an output file. Note that for
cohesive crack model using the SIF-I criterion the value of this parameter should
be 1.
compute stress strain work: This control parameter is used to ask the code
to compute the elastic stress-strain input energy of the system provided by the
loads and to print the results in an output file.
compute error: This control parameter is used to ask the code to compute the
error of the FEM approximation. This parameter is used for the problems for
which an analytical solution is available.
solver: In this parameter the name of the solver used for solving the system of
equation of the problem should be provided. Note that different solvers should be
provided and introduced to the code first. Note also that the numerical results
obtained in the present study are obtained using SuperLU solver (see section
6.1).
critical k: This parameter is the fracture toughness of the material.
tensile ultimate strength: This parameter is the ultimate tensile strength
of the material (fu).
spring k: This parameter is the absolute value of the slope of the linear con-
stitutive law used in the cohesive zone (see figure 2.6b). Note that for LEFM
problems the value of this parameter should be 0.
cohesive distance first length: This parameter is the first guess for the
length of the cohesive zone of the first real crack length in the problem.
crack first length, crack step, max length: These parameters are the
first length, the step and the maximum size of real crack required for the loop on
real crack length.
table point no: The output data provided by the code are for the unset of each
real crack propagation which means for each real crack length with its longest co-
hesive zone. But in order to obtain the data for a real crack with a cohesive zone
smaller than the maximum cohesive zone (the data before unset of real crack
propagation), some computations are done for a real crack with cohesive zone
sizes smaller than the maximum size without performing any loop over length of
cohesive zone. Note that the maximum size is known from previous computations
from the loop over cohesive zone. The smaller cohesive zone sizes are obtained
from the following formula:

L =
i

n
Lcoh i = 1, 2, . . . , n (A.1)
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where Lcoh is the maximum size and n is a value provided by table point no

parameter.
table length 1, table length 2, table length 3: The computations for
obtaining the data before unset of real crack propagation is automatically per-
formed for the first crack length (crack first length) (see section 6.4). In
order to perform such computations for some other specific real crack lengths,
these crack length should be provided in table length 1, table length 2 and
table length 3 parameters by the user. If such data are not required, the value
-1 should be input for each parameter.
max no itter, max no itter load: These parameters are the maximum num-
ber of iterations over 1-D segments and load factor respectively.
mvfiles address: This parameter is the address of a script with the name
mvfiles.sh. This script is used to put the post processing files for each crack
length in a separate folder.
results dir name: In this parameter the main name of the folders in which
the post processing files for each crack length will be moved is specified.
output disp direction: In this parameter the global direction of displace-
ment (1, 2 or 3 for x, y and z respectively) to be extracted in post processing
phase at some specific point in the problem is specified.
output disp point: In this parameter the point for which the displacement
will be extracted in post processing phase is specified. Normally this point is the
point of load application (as is in the present study).
stress eval point: In this parameter the point for which the stress values
will be extracted in post processing phase is specified. This parameter is used
for ultimate strength model and normally is crack initiation point (as is in the
present study).
lengthscale W: This parameter is the value of the length scale needed for com-
putation of brittleness number (sE). This value is used in post processing. In
the present study it is the hight of the beam.
Thickness t: This parameter is the value of thickness for 2D problems.
no crack: This control parameter is used to ask the code not to include any
cracks in the problem. It is used for ultimate strength models for beams without
any initial cracks.

planercrack2d.dat

In this file more specific input parameters of the problem for each crack are spec-
ified by user. The parameters of each crack are in an special space starting with
the name of the type of crack. For instance for a linear planer crack it is like the
following:
semiinfiniteplanecrack {...parameters ...}
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Note that crack types are defined in Xcrack library. In the following a brief de-
scription of each parameter of a linear planar crack is provided.
crackname: This parameter is the crack name which will be used to identify the
output files associated to each crack.
normaltotheplane: This parameter is the vector which is normal to the crack
plane.
normaltothelip: This parameter is the vector which is normal to the crack
front.
crack init point: This parameter is the crack initiation point.
enrichmenttype: This parameter is the type of crack tip enrichment functions.
The value should be scalar enrichment or vector enrichment for LEFM model
and cohesive enrichment for cohesive crack model.
enrichmentradius: The crack tip enrichment functions can be applied on the
mesh nodes included in a domain around crack tip (see section 3.3.2). In Xfem
library this domain is a circle and enrichmentradius parameter is the value of
the radius of this circle.
sifs rho geo, sifs nb layers core: In order to compute J-integral and in-
teraction integral, the integration should be done over a domain around crack
tip. In Xcrack library this domain is a circle and sifs rho geo is the radius of
this circle. sifs nb layers core parameter is number of layers of mesh element
inside the empty domain around crack tip. Note that for cohesive crack model
the value of sifs nb layers core parameter can be 0.
min cohesive distance: This parameter is the minimum length of cohesive
zone. This parameter is defined to avoid cohesive crack propagation problem to
converge to complete LEFM (process zone with no length), which is the trivial
solution of the problem (with load factor = 0).
division length criteria: This parameter is the maximum length of 1-D
segments.
crack surf division number: 1-D segments are created from crack surface
mesh by dividing each crack surface segment, which is a line for 2D problems, by
this number to equal portions (see SplitSurfMesh function in section A.2.3).
fu criteria, kI criteria: These control parameters are used to ask the code
to use SIF-I or stress criterion respectively for real crack propagation in cohesive
crack model.
one by one: This control parameter is used to ask the code to add or remove
1-D segments one by one in each iteration in the loop on cohesive length (as is
the case for the results obtained in the present study).
add segments: This control parameter enables the code to add 1-D segments
to cohesive zone in addition to removing them during the loop on cohesive zone.
This ability is used in algorithm 2 (see section 5.3.5).
kI tol: This parameter is the value of the tolerance of the residual acceptable
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for crack propagation criterion to be fulfilled.
lf first, lf second: These parameters are the values of first and second tries,
used for linear extrapolation of critical load factor in algorithms 1 and 2 (see
section 5.3.5) respectively.

Mesh file

The mesh file of the problem can be provided by any meshing software that
is compatible with the code. For the present study Gmsh is used as meshing
software.

material.dat

In this file the mechanical properties of the structure material are specified.

main2D.dat

In this file, which is the main input file, the type and the name of the mesh file as
well as the names and the location of other input files should be provided by user.
Dirichlet and Neumann boundary conditions for 2D problems are also prescribed
in this file.

A.1.2 Output files

Output results for each real crack length

The files containing the computational results for each real crack length are put
in separate folders. The name of these files with a brief explanation for each of
them are presented below.
Wcrt itt table.txt: This file contains a table of the computational results for
each iteration during the loop on the cohesive zone length for a problem with
a specific real crack length. In this table the iteration number, the number of
1-D segments in the cohesive zone, the length of the cohesive zone, the crack
opening at physical crack tip, the critical load factor, residual and the number
of iterations performed to obtain the critical load factor (always 3 for algorithms
1 and 2) are presented in Itter No., 1D-Seg No., Coh length, Last Seg Opn,
Load F., Residual and No.itter L.F. respectively.
crack name crack front part.txt: If in input files it is asked from the code
to print the values of stress intensity factors, such values are printed in this file.
load def for len itt table: This file contains the computational results for
the first real crack length and for the crack lengths specified in the input files,
with different cohesive zone lengths (see table point no input parameter in sec-
tion A.1.1). For detailed explanation of each item in this file see section 6.2.2.
crack name crack part name domain for integral.msh, frontmesh.msh,
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1Dsegs.msh: These files contain the mesh used for the computation of J-integral,
the crack front mesh and the 1-D segments mesh used for the cohesive zone re-
spectively.
DISPLACEMENT.pos, STRESS.pos, lsn-name of crack.pos, lst-name of

crack.pos, CRACK OPENING.pos: In these files the displacement field, the stress
field, the crack normal and tangential level set fields and the crack opening filed
for the whole crack are saved respectively.

Output results for the whole problem

General results of the whole problem for all real crack lengths are saved in a table
as a text file with the name results table.txt. Figure 6.4 shows an example of
this table. See section 6.2.2 for the detailed explanation of each part of this table.

A.2 Main files of the code

There are some files that most of the procedures for the numerical solution are
performed in them. In these files different classes are defined and also the facilities
provided by other classes and libraries are used to set up the problem and solve
it. These files and the new classes and functions defined in them for the present
study are presented in this section.

A.2.1 main

In this files (main.cc and main.h) the general parts of the code are implemented.
In this file the geometrical and mechanical parameters of the problem like the
geometry of the structure, the location of the crack and the material properties,
etc as well as the control variables are set from the input files. Using these pa-
rameters and variables the problem to be solved is established and the model to
solve the problem (LEFM, cohesive crack model or ultimate strength) is deter-
mined. Note that many parts of the code are common for different models and
the code will automatically skip the parts that are specific for each model using
the control variables.

In main.cc a loop is defined on the real crack length so that the loading
procedure is controlled by the real crack length. Inside this loop another loop
is defined over the 1-D segments to determine the length of cohesive zone for
each real crack length. For the first iteration the length of the cohesive zone is a
user defined guess. During each iteration of the loop over the 1-D segments the
following are performed:
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• The crack is created using xcCrack class (see section A.2.3). Note that the
mathematical crack tip will be determined from the sum of the length of
the real crack and the length of the cohesive zone.

• The parameters of Mechanics c class (see section A.2.2) are set.

• The system of equation is set up and solved using the Mechanics c class.
Note that the iteration on the load factor is done in this class.

• The results are extracted from Mechanics c class and are printed in the
output files and tables.

During each iteration over the 1-D segments the location of the crack and the
whole system of equation is changed and again set up. When the iteration over
the 1-D segments is converged the computations of the problem for one real crack
length are finished and the results are obtained. The length of the cohesive zone
obtained for a real crack length will be used as an initial guess for the length of
the cohesive zone in the next iteration.

There are some overloaded functions defined in main.h to set the results in
the output tables. According to the type of the problem and the model used an
specific function will be used automatically to make the table. Note also that
the results for each crack length are copied by the code automatically in separate
folders in order to make the results more organized.

A.2.2 Mechanics

In these files (Mechanics.cc and Mechanics.h) the Mechanics c class including
the procedures for assembling the stiffness matrix of the problem, the inclusion of
the enrichment functions and the solution of the system of equations are imple-
mented. Some other classes and functions are also defined to make it possible to
extract specific data from the results. Some general explanation of these classes
are presented below.
XevalFieldAtPoint: This class takes a point (the mathematical crack tip in
the present study) and evaluates the value of a field (the principal stress in the
present study) at that point. This class is used as the main option in the code
to evaluate the principal stress value at the mathematical crack tip in the case of
using the stress criterion for the problem.
XevalFieldMeanForPoint: This class takes a point (the mathematical crack
tip in the present study) and evaluates the mean value of a field (the principal
stress in the present study) over the mesh element in which the point is located.
This class is used as an option in the code to evaluate the mean value of the prin-
cipal stress at the mathematical crack tip in the case of using the stress criterion
for the problem.
XacceptCrackSurfElement: This class makes a filter on the 1-D segments. It
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first sets the Gauss points for a desired degree for each 1-D segment (degree 7 to
have four gauss points in the present study) and then evaluates the normal crack
opening for each Gauss point. It returns false if for all of the Gauss points of a
1-D segment the normal crack opening is either bigger than the critical value or
less than zero (with some tolerance).
Mechanics c: This class is the most important class in the code. It uses the
abilities provided by other classes and libraries to assemble the stiffness matrix
of the problem, include enrichment functions and solve the system of equations.
Below, a short general description of the new member variables and member
functions of this class added or changed to include the cohesive crack model are
presented.

Member variables

spring k: This variable contains the value of the k parameter (the absolute
value of the slope of the constitutive law in the process region, see figure 2.6b)
provided by the input files.
f ult: This variable contains the value of the ultimate tensile strength of the
material provided by the input files.
criticalopening: This variable contains the value of the critical opening in
the cohesive crack model provided by the input files.
normall: This variable contains the normal vector to the crack surface.
kI tol: This variable contains the value of the tolerance of the residual accept-
able for the real crack propagation criterion to be fulfilled. This value is provided
by the input files.
lf first, lf second: These variables contain the values of the first and the
second tries, used for the linear extrapolation of the critical load factor in algo-
rithms 1 and 2 (see section 5.3.5) respectively. These values are provided by the
input files.
coh dis: This variable contains the length of the cohesive zone for a specific real
crack length.
coh min: In order to avoid the problem to converge to LEFM (real crack with
no cohesive zone), which is the trivial solution of the problem (with load factor =
0), a minimum length is considered for the cohesive zone. This value is provided
by the input files and saved in this variable.
kI I: This variable contains the residual for each iteration during the loop on
the load factor (see figure 6.4).
opening last: This variable contains the normal crack opening for the last 1-D
segment away from the mathematical crack tip of the crack.
max no itter load: This variable contains the maximum number of iterations
for the loop over the load factors provided by the input files.
add segments: This is a control variable. If the value of this variable is one,



A.2. MAIN FILES OF THE CODE 77

the code is able to add 1-D segments to the cohesive zone during the loop over
the 1-D segments (to increase the length of the cohesive zone). In other cases it
should be 0. Note that the value of this variable should be 1 for algorithm 2.
fu criteria, kI criteria: These control variables are used in order to select
between different criterion for the real crack propagation. If fu criteria is 1,
the stress criterion will be used and if kI criteria is 1, the SIF-I criterion will
be used for the problem.
oneDsegments Vect: This variable is a vector variable that contains the whole
1-D segments created from the crack surface mesh and sorted (see section A.2.3).
oneDsegments Coh: This variable is a vector variable that contains the 1-D
segments that are included in the cohesive zone. Note that the cohesive zone is
identified by the coh dis variable.

Member functions

compute sifs: This function computes the stress intensity factors and prints
them in an output file. It also returns the value of kI . This function is used in
algorithms with SIF-I criterion.
AddRemoveSegments: This function adds or removes the 1D segments from the
cohesive zone (oneDsegments Coh variable) according to XacceptCrackSurfEle-

ment filter. It also returns the 1-D segment that is added or removed from the
cohesive zone.
computeExternalForcesWork: This function computes the elastic stress-strain
energy input in the system provided by the load until the real crack propagation.
formulationMechanics: This function first assembles the stiffness matrix of
the problem for a mechanical problem and includes the enrichment functions.
Then it sets up the system of equations. Next it makes a loop on the load factor
and finds the critical load factor using either of the stress or SIF-I criteria for a
crack with a constant cohesive length. Then using AddRemoveSegments function
it checks if it is needed to add or remove 1-D segments from cohesive zone. Fi-
nally it saves the critical load factor for a specific cohesive length and also the
next mathematical crack tip (note that as explained in section 5.3.5 in algorithm
2 the 1-D segments are added or removed from the last segments away from the
physical crack tip).
addCrack: This function adds the crack made by xcCrack class (see section
A.2.3) to the crack list of Mechanics c class and at the same time it reads the
input data provided by planercrack2d.dat input file.
applyDirichletToMechanics: This function applies the mechanical essential
(Dirichlet) boundary conditions to the problem according to main2D.dat input
file.
applyNeumannToMechanics: This function applies the mechanical Neumann
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boundary conditions to the problem. This function is overloaded. One version
just applies the forces whose values and locations are provided by main2D.dat

input file. This version is used for LEFM and ultimate strength models. The
other version multiples the forces provided by main2D.dat, by the load factor
whose value is obtained in the loop over the load factor. This version is used for
cohesive crack model.
applySpringsBilinearOnCrack : This function assembles the integration on
the cohesive zone on l.h.s of (5.8) to the stiffness matrix.
applySpringsLinearOnCrack: This function assembles the integration on the
cohesive zone on r.h.s of (5.8) to the load vector in the system of equations.

A.2.3 xcCrack

In these files (xcCrack.cc and xcCrack.h) some functions and class hierarchies
are defined to build the cracks defined in the input files using level set techniques,
to add the crack tip enrichment functions to the stiffness matrix and also to create
the 1-D segments mesh from the crack surface mesh. Some general explanation
of these classes and functions are presented below.
buildcrackfromstream: This function uses the proper functions and classes to
build a crack from the input data provided by planercrack2d.dat input file. It
takes the mesh of the problem, the access to the input file, the real and cohesive
crack lengths and the mathematical crack tip as arguments.
xcCrack: This class is the base of a class hierarchy and provides the general tools
to build a crack as well as some functions that are overloaded in the derivative
classes. Note that each object of this class represents a crack and contains the
whole information and data for that crack in its member variables.
xcCrackPlanarLine: This class is derived from xcCrack class and overloads
and provides the functions specific for linear planar cracks.

There are some other classes derived from xcCrack class that are defined for
special crack shapes and geometries. These classes are: xcCrackPlanarDisk,
xcCrackCylinderLine and xcCrackLens.

Below, a short general description for the new member variables and member
functions of xcCrack class hierarchy added or changed to include cohesive crack
model is presented.

Member variables

crack surf split: This variable is a xMesh variable (see section A.3.1) that
contains the whole 1-D segments created from the crack surface mesh (see section
A.2.3).
crack surf sorted: This variable is a vector variable that contains the whole 1-
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D segments created from the crack surface mesh that are extracted from crack surf split

variable and sorted (see section A.2.3).
crack surf sorted dist org: This variable is a vector variable that contains
the sorted 1-D segments of crack surf sorted variable that are included in the
cohesive zone.
real tip: This variable contains the real (physical) crack tip point.

Member functions

xcCrackPlanarLine: This function is the constructor of xcCrackPlanarLine

derivative class. This function reads the crack data from planercrack2d.dat

input file. Then taking the real and cohesive crack lengths as arguments and us-
ing the crack initiation point and the normal vector to the crack lip provided by
planercrack2d.dat input file (see section A.1.1) it identifies the real and ficti-
tious crack tip points. Finally it builds the crack calling setup member function.
setup: This function creates the crack by means of lCrack class (see section
A.4) and by establishing the two level sets required to represent the crack (see
section 3.3.3).
SplitSurfMesh: This function creates the 1-D segments required for the inte-
gration over the cohesive zone from the crack surface mesh using a complicated
algorithm. It takes the 1-D mesh of the crack surface and then it creates the
1-D segments by dividing this mesh. The division procedure is in a way that the
1-D segments start from and end to the physical and mathematical crack tips.
The number of devisions as well as the maximum size of the 1-D segments are
provided by planercrack2d.dat input file. The 1-D segments created are saved
in crack surf split member variable.
SortCrackSplitSurfaceMesh ExtractCoh: This function extracts the 1-D
segments from crack surf split member variable. Then it sorts them ac-
cording to their distance from the mathematical crack tip and saves them in
crack surf sorted member variable. It also extracts the 1-D segments sorted
that are in the cohesive zone (using the cohesive length) and saves them in
crack surf sorted dist org member variable.

A.3 Xfem library

A.3.1 Basic classes

In this section some basic and important classes used in Xfem library are ex-
plained in brief.
xApproxFunction: This class is the basic class of a class hierarchy that makes
it possible to define the shape functions. Some member functions are also defined
to evaluate the value of the shape functions, their gradient and Hessian at any
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point.
xAssembler: This class is the basic class of a class hierarchy that makes it pos-
sible to assemble the finite element vectors, matrices and scalars.
xData: This class generally organizes the process of reading and saving the input
data from the input files.
xField: This class provides the tools to make a filed from a value space and a
mesh. It also provides the tools to evaluate the field and its gradient.
xLevelSet: This class provides the tools to define a level set on a mesh and to
evaluate the value of the level set and its gradient at any point.
xEval: This class is the basic class of a class hierarchy that makes it possible to
evaluate the value of different functions (like stress, strain, crack opening, etc)
with different natures (unary, binary, constant, etc) at a point using the displace-
ment filed obtained from the solution of the system of equation.
xMesh: This class is derived from mMesh class of the AOMD package. It adds the
functionality to create a subset of a mesh. A subset is a group of mesh entities
for which a name is associated. xMesh offers the possibility to iterate on a subset.

AOMD (Algorithm Oriented Mesh Database) is a mesh management library
(or database) that is able to provide a variety of services for mesh users. The
optimal form of the mesh representation is application dependent with different
applications requiring different sets of mesh adjacencies.

Xfem library contains many of other important classes that are not mentioned
here for being brief.

A.3.2 New classes and functions

In the following the new classes and functions implemented by the author of the
present thesis in Xfem library specifically for cohesive crack model are presented
in brief.
xEvalFieldOnCrack: This class is derived from xEval class and is defined to
make an interface for evaluation of the crack opening. This class is defined in
xField.h file.
GetValOnCrack: This is a member function of xField class which evaluates the
normal displacement on different sides of the crack surface and finally evaluates
the crack opening. Changing of crack surface side is possible by changing the
value of a variable called normalOriented tag to either 1 or -1.

A.4 Xcrack library

A.4.1 Basic files and classes

In this section some basic and important files and classes used in Xcrack library
are explained in brief.
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FunctionCrackXFEM: In these files (FunctionCrackXFEM.h and FunctionCrack-

XFEM.cc) some classes are defined to define and evaluate the discontinuous and
crack tip enrichment functions. These classes are generally derived from xEal

and xApproxFunction classes from Xfem library.
lCrack: This class creates a crack from two level sets (see section 3.3.3). It also
provides the tools to create the crack surface and the crack front meshes as well
as the tools to identify the side of the crack, the elements cut by the crack, the
elements containing the crack tip, etc.
xcFormLinearEnergyRelease: In these files (xcFormLinearEnergyRelease.h
and xcFormLinearEnergyRelease.cc) some classes are defined to compute J-
Integral and energy release rate for a crack.
xcInteractionIntegralsOnCrack: In these files (xcInteractionIntegrals-
OnCrack.h and xcInteractionIntegralsOnCrack.cc) some classes are defined
to compute the interaction integral and the stress intensity factors. In these files
crackFrontPart class is the base class of a class hierarchy that makes it pos-
sible to define a part of the crack front, simply connected or a loop. There is
another class named xcInteractionIntegralsOnCrack that provides the tools
to compute the interaction integral and the stress intensity factors along such
crack part.

A.4.2 New classes and functions

In the following the new classes and functions implemented in Xcrack library
which are specific for cohesive crack model are presented in brief.
ScalarFunctionCrackTipCohesive1 c: As explained in section 5.3.3 for co-
hesive crack model, nonsingular branch functions are needed to enrich the field
around the crack tip. This class is defined to make an interface to evaluate the
value of the function r sin ( θ2), used in the present study, and its gradient at
different points of the domain. This class is defined in FunctionCrackXFEM files.

Since in cohesive crack model the crack surfaces are not traction free the
terms in J-integral that are integrated over the crack surfaces should be taken
into account. For this aim some modifications are done in the files related like
xcInteractionIntegralsOnCrack, xcFormLinearEnergyRel- ease, etc. Such
modifications are not explained here for being brief.
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