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ABSTRACT

Manufacturing is a controlled deformation and damaging of material to obtain
to the desired shape and properties. Numerical optimization of manufacturing process is
very essential to achieve better quality parts at reduced cost. However their application
is limited due to associated complexities introduced due to geometry such as large
deformation and physics such as strain localization and thermal effects. The present
study is focused on the numerical strategies on stain localization of the material and
limited to quasi static elastic cases. The Johnson-cook Viscoplastic model and Non-local
strain gradient Model were analyzed in a 1D bar and a new approach using level set is
proposed as an alternative. Robustness of the proposed approach is demonstrated by
applying different Damage functions and Damage evolution law to fit the desired
material behavior. Use of Level set gives greater control over the damage zone and is

computationally effective.
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1.0 INTRODUCTION

Manufacturing is a controlled deformation and damaging of material to obtain
to the desired shape and properties. To precisely get the desired output at any repeated
number of time an extensive knowledge of the process and the material behavior is very
essential. At present various manufacturing processes are carried out by trial and error.
Such an experimental process leads to delay in processing the parts and expensive in
cases of intricate components. Numerical optimization of manufacturing process is a
natural choice in the present scenario considering the robustness of the technique in
various applications. In the past several numerical tools were developed dedicated for
this purpose resulting in reduced cost and process time of the product. But application of
them to certain processes such as machining, forming and shearing are limited due to
difficulties in simulating them due to complexities associated to geometry such as large

deformation and physics such as strain localization and thermal effects [1].

As the material deforms under shear loading the micro cracks appear in a
diffusive way and then they combine to form a macro crack at the later stage. During the
failure process the strain and damage accumulates in a narrow region known as shear
band [2, 3]. The length of the band increases until rupture during the fracture process.
The present study is focused on the numerical strategies on stain localization of the

material and limited to quasi static elastic cases.

The size of the resulting shear zone is not dependent on the structure and it
depends on the heterogeneities of the material such a failure process leads to structural
size effect during simulation. It has been experimentally proved and incorporated in
several techniques. Hence during modeling the length scale of the material should be

incorporated in the constitutive relations [4, 5].

In the local elastic damage models the accumulation of strain i.e. strain
softening is represented by a set of internal variables which act on the decrease in
stiffness of the material at the macroscopic level [6]. Damage occurs without the
dissipation of energy and density of dissipated energy is finite at each material point
since damage localizes in to a zero volume, the total energy dissipated to form a crack

vanishes. This leads to instability known as spurious strain localization and mesh
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dependency during finite element computations. To circumvent this problem various
model have been introduced and still remains an active research field due to associated
difficulties with each of them. In the study models which have found extensive
applications such as Gradient damage model and Viscoplastic regularization have been
analyzed. A new approach using the level set is proposed as an alternative to model

strain localization have been proposed.

The models were applied to a 1D bar to check its efficiency for Mesh
dependency and Strain softening. It is found that the proposed approach is advantageous

both computational and physically replicates a sound model.

2.0 MATERIAL MODELS FOR STRAIN LOCALIZATION

2.1 Johnson Cook Visco-plasticity

Johnson cook viscoplastic model is widely used to study the localization in high
strain rates. Umberglo et.al carried out the simulation of machining to test the influence
of various material parameters and they have found the output exhibits significant
influence on the process [7]. In the present study the model is applied to a 1D bar to

check its efficiency for Mesh dependency and Strain softening.

The constitutive equation is represented by the following

qm=(A+ng(l+c |n{§}}@—ém) (2.1.1)

o]
Where A is the yield strength of the material (MPa), B is the hardening modulus
of the material (MPa), C is the strain rate sensitivity coefficient, n is the hardening

coefficient and m the thermal coefficient.

g T-T,
T, T

m t

, where T andT, are the melting and transition temperature of the

material.



The equilibrium equation is given as

Vo=0 (2.1.2)
The structural equilibrium equation is solved along with the heat equation

obtained by neglecting the diffusion of heat in the material and it is given as

oT o:¢&f

a £.C

(2.1.3)
p

Where £" is the plastic strain rate of the material, p, is the density of the

material and Cpis the heat carrying capacity of the material.

2.2 Gradient damage Model
For the linear elastic material behaviour the stress strain relation is given by

6=(1-D)‘H:e (2.2.1)

Where &is the Cauchy stress tensor, € the linear strain tensor and ‘H the

fourth-order Hookean stiffness tensor.
With the equilibrium equation as

Vo=0 (2.2.2)

In continuum theory the damage evolution is considered as the dominant
dissipative mechanism. The undamaged material is characterized by D=0, and the
completely damaged being D=1. The intrinsic material damage evolves as the function of
strain equivalent &, (¢)and its evolution is given by the damage evolution law. The state
of damage is governed by the history parametera, which represents the maximum
damage the material has experienced D = D(«) [6]. This evolution of damage based on
the local value of strain equivalent leads to mesh dependency i.e., strain localisation.
Later Bazant and Pijaudier-Cabot introduced the Non-locality into the constitutive

relation to remove mesh dependency [8,9].

In the Non-local model the damage evolution is related to the non-local strain

equivalent &, which is computed as the weighted average of the local strain equivalent

at the given point X as



_ 1 ) 1
gengfg(é:)geq(XJrf)dV, with Vfg(g)dv =1 (2.2.3)

Vv Vv

Where ¢ (5) is the weight function and & denotes the relative position vector

pointing to the infinitesimal volume dV .

The Non-local equivalent strain is obtained through the Kuhn-Tucker relation

Eeq 2 0.

020, &, -a<0, d(Eeq—a)zo (2.2.4)

The gradient damage formulation is derived from the Non-local approach [10,

11]. The non-local equivalent strain is replaced by

Goq = g TCV76 (2.2.5)

R

1
WhereC :ﬁjp“g(p)dp, Ris the radius of the averaging spherical volume
0

and the weight function is of form ¢ (5) =g (p)

This explicit relation (2.2.5) leads to C' continuity requirements in Finite
element analysis due to the dependency on the Laplacian of the local strain equivalent. It
is avoided by implicit incorporation of the gradient term as given below. This enables a

C°continuous finite element interpolation.

— 2—
Eeq TCV & =& (2.2.6)

This equation has to be satisfied in addition to the equilibrium equation. The
parameter C limits the localisation zone i.e. acts as a control over the domain in which
the non-local equivalent strain is computed. In order to solve (2.2.6) the boundary
conditions concerning the non-local strain equivalent has to be specified. The most often

used boundary condition is

Ve, n= 0 (2.2.7)



Thus the problem can be stated as

Equilibrium equation: Ve=0
- ion: 6=(1-D)‘H:e
Stress-strain relation: :
. . oy —_ 2—
Strain equivalent Condition: Eq TCV 6 = &
Boundary condition: u=u, on=f, & Ve, n=0
Internal variable: a(0)=a; @20, g,-a<0, d(?eq—a)=0

Where ¢; is the initial value of the internal variable o
Damage Evolution: D=D(a)

The damage evolution law can be chosen to fit the experiments. Some of the

possible functions are as stated below.

Parabolic stress strain Curve:

&,
D=2 (2.2.8)

Bilinear Stress strain curve:

Euit (geq — & )

D =
geq (gult _gcr)

(2.2.9)

Exponential stress-stain curve:

D =1—?exp(—b(§eq =) (2.2.10)

€eq

Where gcr and gult are the critical and ultimate strain of the material. b

is the parameter which sets the slope of the exponential curve after the peak. Figure.1
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shows the corresponding curves using E =15000Mpa, & = 2.10 , Cult =10 and

b=1200.
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Figurel. Shows the damage evolution function used for the non-local gradient method.

Finite element Discritization of the equations is performed and the weak form of

the equations is solved using the Newton Iterative solution procedure as detailed.

The weak form of the equation (2.2.2) is obtained by multiplying them with the

weight function v(x) and by applying the divergence theorem.
J'v-(v-c)szo YweCt (2.2.11)
Q

j(Vv)T -GdQ:JV. pdl WveC® (2.2.12)
T

Q

The weak form of the equation (2.2.6) is obtained by multiplying them with the

weight function w(x) .

[w(z,+cv'z, )dQ=[wedQ vweC™ (2.2.13)
Q

Q
and by applying the divergence theorem and the boundary condition for the

strain equivalent



[(we,, +Vwevz, )dQ = [we,dQ  vweC? (2.2.14)
Q Q

Using the Galerkin approach the displacement and the weight functions are

discritized using the same shape functions

u=Nu (2.2.15)
v=N.v (2.2.16)
The strain tensor components are given by the linear combination of the nodal

displacement components

e=BU (2.2.17)
VW =Bv (2.2.18)

Thus the equilibrium equation is discritized as shown below
:>vT.[BT<sdQ=vT J'NT pdl W (2.2.19)
Q r

Where pis the external force vector. The external and internal nodal forces are

found as
foo = [N"pdr (2.2.20)
r
fi = [BodQ (2.2.21)
Q
i = Tou (2.2.22)

The weak form of the equation (2.2.14) is discritized similarly using another

interpolation function N®as below,

=N

el
]

] (2.2.23)

w=N°w (2.2.24)

Using the derivatives of the shape functions the derivatives of non-local strain

and its weight function is given as

Ve, =B°Z

» (2.2.25)

Vw=B°w (2.2.26)



Thus the discritized form of the average no-local strain equivalent equation is

written as

w' I(N”Ne +B“'TB‘*)<§qu =w' INeTgequ Yw (2.2.27)
Q

Q

And it is represented as

K“g,, =f° (2.2.28)
In which
&€& eTwte eTpe
K =I(N N°+B“B )dQ (2.2.29)
Q
i :INeTgequ (2.2.30)
Q

In the equilibrium equation the non-linearity is introduced by the damage
relation. This Material non-linearity is solved by using Newton-Raphson iterative
procedure to get approximation of the solution. Linearization of the stress-strain relation

leads to
¢, =(1-D_,)Hd¢, ~6DHg, , (2.2.31)
Where | and 1—1 denotes the current and previous iterative values.
For the derivatives of shape functions the change in strain field is written as

d¢, = Bdu, (2.2.32)

For the damage loading the internal variable is to satisfy

o= Eeq = 5ai :égeq,i (2233)

When there is no increase in damage o¢; =0

Damage evolution is taken care by comparing the value of the converged non-
local equivalent strain to the history value of the internal variable. The change is damage

is given as

oD, =q; ;N3¢ (2.2.34)



Where

(aDj P

— if &qi4>a,

g, =1\0a )i, ' (2.2.35)
0 if £..150a

Thus the linearized stress equation is written as

= &6, =(1-D, ;) HBSU; —Hg, ,q, ,N°3%, (2.2.36)

Using (2.2.36) the iterative change of internal force vector is written as

5ty = [B"(1-D_,)HBAQS, - [ B"He, g, N'dQd%,, (2.2.37)
Q Q
K ou +K%9¢g,,, = fo — iy (2.2.38)
With
K" = IBT (1- D, )HBAQ (2.2.39)
Q
K =- j B'Hg_,g ,N°dQ (2.2.40)
Q
Similarly the non-local strain equivalent equation is linearized as below
86, =BOU, (2.2.41)
K ou +K%8¢g,,, = {5, - K¢, (2.2.42)
With
K = —jNeBdQ (2.2.43)
Q

Combination of equation (2.2.38) and (2.2.42) results in a square system of

K:Jijl K:Jfl 5ui fetja firl:t i-1
- i (2.2.44)
K, K* ﬁeq,i fe) K™ g1

These coupled systems of equations are solved until convergence is reached.

equations,



2.3 Computation of damage using level set approach

In the local damage model the free energy per unit volume ¢ in the system

depends on the strain & and a scalar damage variable D
1
p=¢(¢,D)==(1-D)e:E:¢
2 (2.3.1)
The state laws for stress ¢ and the local energy release rate Y is obtained by

differentiating the free energy

6=6—¢=(1—D)E18

g (2.3.2)
= _6_(p = Es ‘E¢g
ob 2 (2.3.3)

The evolution of damage is given by dissipation potential )(* (Y)[12]

5-2 () y_0x(D)
oY ob (2.3.4)

The above potentials)(*(Y) and )((D) are related by Legendre-Fenchel

transformation

2(D)=sup(YD—z"(Y)), # (Y)=sup(YD— »(D))
Y D (2.3.5)

From the above the damage evolution law is obtained as
7 (Y)+ 7(D)-YD >0 (2.3.6)
In the level set approach the level set ¢ =0 is use to separate undamaged zone
form the damaged one as shown in the Fig.2 [13]. The damage evolves over a length |,

leaving the completely damaged zone behind and is defined as an explicit function of

level set as shown in Fig.3.
D=D(¢), D'(¢)=0 (2.3.7)
Considering a domain €2, with some loading T applied on the part I", and some

displacement u” applied on the boundaryl',. Some part of Q may be completely

damaged i.e. D=1 and it is denoted byQ(¢ > IC).

10



The part of Q not fully damaged is given by

Qp=<l)={xeQ:g(x) <l } (2.3.8)

Undamaged zone

Transition zone
0<¢<I,0<D<1

Figure2. Shows the level set method of separating the damaged and the undamaged

zone along with the transition zone.

Dn.

1 Dl( ¢}I "-

x
A 4

Figure3. Describes the damage function defined with respect to level set and its

derivative.
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The potential energy is expressed as a function of displacement field and the

level set function

E(u,¢) = j ;((s(u),D(¢))dQ—er-udF
2o=l) ' (2.3.9)

Where s(u) denotes the symmetric gradient of u.

The displacement field must satisfy the kinematic conditions and the gradient of
level set must be of norm 1 (since it is a signed distance function). Thus the admissible

displacement field is written as

Al :{(u,qﬁ):ueﬁ\;‘,giﬁeﬁ\f} (2.3.0)
A =fuu=u'r| (2.3.11)
A ={¢:|V4|=10} (2.3.12)

The admissible variation is thus defined as

A ={(5u,64):5ue A5 e AT (2.3.13)

A ={ouisu=u"T,} (2.3.14)
¢ . _

N ={5¢:VpN $=00} (2.3.15)

The condition on ¢ indicates that the variation of level set is constant along
the normal path to the level set. This (2.3.15) condition implies that we chose Sa(s) as

the small perturbation along the damage frontI;.

= 8¢ = 64(s) = da(s) (2.3.16)

In the curvilinear system of co-ordinates the (¢, S) is expressed as

dQ:Mdyﬁds

p(0.s) (2.3.17)

Where p(¢, S) is the radius of curvature at(¢, S) of the iso ¢ curve.

12



The directional derivative of the potential energy is now computed with respect

to (§u,§¢) € A? and by taking to account of the state laws (2.3.2) and (2.3.3)
DE (u,¢)[ (6u,59) ] =Q(jl )a:g(&u)dQ—LT -§udF—Q(J'I )YD’(¢)§¢dQ
o<l o<l

(2.3.18)

The equilibrium equation is obtained by zeroing the directional derivative of

potential energy with respect to (5u,0) € A?

DE (u,4)[(6u,0)]= [ o:g(du)dQ-| T-sudl[=0 VoueA;

Q(p<l;)

(2.3.19)

D'(¢) is non zero only in between Oand I, of the level set. This thick band is

denoted as Q

Q, ={xeQ:0<4(x)<I}

(2.3.20)
The variation of potential energy with respect to ¢ is

DE (u, ¢)[(0, 5¢)] = - [ YD'($)5pdQ2

o (2.3.21)

' , p(4.s)
=—||Y(¢,s)D'(g)oa(s) ——=dpdQ2
[[Y(@s)00026)" 5500

(2.3.22)
=— j g(s)sa(s)dr

To (2.3.23)

This relation links the local damage variables Y and D to the homogenised one,

the configurational force g(s) and the band locationa.

The configurational force g(s) per unit length on the damage front is defined as

p(8,5) dg

g(s)=|Y(4,5)D'(9)
! p(0,s) (2.3.24)

13



Configurational force at a given point Aalong the damage front is given as

N0
g(A) = [YD'(9) 2L dg
AL p(A) (2.3.25)

It gives the loss of energy as the front advances by a perturbation da.

The dissipation in the system is given by the change in potential energy with

respect to time

_dEU.4) _ [ YDdQ = [ gadr
a4 ;
oc [ (2-3-26)

The evolution of damage is

D=D'(¢)a (2.3.27)
Given a field of Y , we must minimise the expression below
inf j 7*(Y)+ z(D)-YDAQ = inf j 7*(Y)+ 7(D'(#)a) —YD'(#)adQ

=2 ) Q(g<l,)

(2.3.28)
This minimization homogenises the evolution law over the band thickness. Since

aintervenes only in the last two terms the infimum reads as
inf [ 2(D'(#)a)-YD'(#)adQ
a
Q<L) (2.3.29)

Integration above can also be limited to Q. . It can also be written as

j YD'(4)adQ = j gadT
Q(g=l;) Lo (2.3.30)

The homogenised potential 7 is defined as

[ z@s)dr= [ z(D'(ga)da
' e (2.3.31)

o

and it depends explicitly on the location of the damage front. Now the infimum

reads

14



inf jz(a,s)—gadrzsupj ga— 7(a,5)dT = I;?*(g,s)dr
r, &, T (2.3.32)

The dual non-local potential 7" is obtained through Legendre-Fenchel

transformation. The non-local evolution law for the level set approach is written as

as)= ZOOLS) - OHAS) g 6L g5 - ga=0

g oa
(2.3.33)
Considering the damage evolution relation as shown below
D=k(Y-Y)" = ox ) (2.3.34)

oY
Where Y. is the critical energy release for the material above which the damage

starts evolving, k and n are the positive constants.

The corresponding local damage potentials are obtained as shown below

7 (Y)= %(Y A A (2.3.35)
i . k n+l
Z(d)=3ljp(YD—m<Y -Y)!) (2.3.36)
miml
=YCD+(%) d' I (2.3.37)
m +
1
m==
n

The configurational force for the given damage evolution reads as

9= f {Yc +G) (D'((p)a)”"j D'(p)dx (2.3.38)

1
By considering a linear damage function d’(¢) =T as shown in the Fig.4 the
c

average energy release rate Y and configurational force are obtained as

g =YCII—+GJ | (Iij (2.3.39)

15



=Y =V, +(%) Ic[%] (2.3.40)

) /| lzz:<:<l'zzc' \\\
b .

/ N\

Figure4. Describe the level set representation of 1-D bar with the linear damage

function.

3.0 MODELING PARAMETERS

The material models were analyzed using a 1D bar. The mesh sensitivity of the
model is studied by varying the number of elements along the bar and the influences of
various modeling parameters of the models were analyzed.

3.1 Johnson Cook Visco-plasticity

The material constants of AlISI 316L steel is used to study the Visco-plasticity model
[7]. The value of the constants used for the study is shown in the Table. 1

The localization in the bar is caused by varying the temperature along the length of
the bar. The lower temperature of 360 K is applied along the length of the bar (L=1 m)
and the 5% of the bar length in the middle is subjected to a higher temperature of 390 K.
The velocity of the imposed displacement is taken as 8 m/s. It is imposed by taking the

time step size of 0.01 s.

16



Material Constant Value
yield strength of the material (A) 175 Mpa
Hardening modulus of the material 380 Mpa
(B)
strain rate sensitivity coefficient (C) 1.0
Hardening coefficient (n) 0.32
Thermal coefficient (m) 1.0
Transition temperature, T, 300 K
Melting temperature, T, 1200 K
Density of the material, p, 7850 Kg/m®
Heat capacity of the material, C, 740 J/Kg/K
Youngs Modulus 290 Mpa

Tablel. Values of constants used for Visco-plastic Model.

3.2 Gradient damage Model
The gradient damage approach is analyzed in a 1D bar with varying cross section
as shown in the figure. The cross section of the bar is defined using the function (3.2.1)

which is independent of the mesh number.

2
Area = Area*| 1—alpha*exp —(@j
‘ (3.2.1)

Where the amplitude of singularity isalpha, Xis the distance in the bar, X, location

of the perturbation, L is the characteristic length for the variation of cross section.

17



For the present study X, is located at the center of the bar and L_is taken as 5%

of the bar length i.e. 10% of the cross section is varied and alpha is taken as 0.1.

The parameter which limits the localisation Cis taken as 5. For the analysis the

-4
parabolic damage loading function (2.2.8) is taken into account with €., = 2.10

The value of Youngs Modulus is taken as E =15000Mpa and the length of the
bar L=100 m.

Linear interpolation is used for the average non-local strain equivalent equation
and quadratic interpolation is used for the displacement as suggested in [11]. Usage of
different interpolation function is not going to cause any influence on the computation,
hence the choice is made for computational advantage. The bar is subjected to loading
until failure. The Mesh sensitivity of the model is analyzed by varying the number of
elements along the bar and the influence of parameter Cis studied on its effect on strain
localisation.

Cross section of the bar
20 T \ \

16 - 8

14} .

12 8

10+

Area (m2)

0 \ \ \ \ \ \ \ \ \
0 10 20 30 40 50 60 70 80 90 100

Legth of the bar (m)

Figure5. Show the area distribution with respect to the bar length in non-local gradient

model.
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3.3 Level set approach

In the level set approach the three different damage function is analysed. Linear
damage function where the damage grows linearly with respect to the distance along the

normal path of the level set as shown below

D=— (3.3.1)

c

Second damage function used similar to the one applied in solidification of solids

I
is studied(3.3.2). Where y = I_

c

D=4y*-3y" (3.3.2)

And the third damage function where (1 !

Dzl—( l, ] (3.3.3)
I +1

Figure 6 shows the plot of damage functions with respect to the length of

Jis linear is taken in to account

damage. The damage function reaches their maximum at a distancel. .

And three different damage evolution laws were considered as shown below

Y =Y, (3.3.4)
Here the average non-local equivalent energy release is equated to the critical
energy release rate specified for the material.

A hardening type damage evolution is considered as show below

Y =Y +uY, (3.3.5)
Where 1 is positive growing function linked to the damage of the material. For

the present study it is taken as equal to the damage D.

The Visco plastic damage growth model is studied as shown below

D=k <\7—YC> (3.3.6)

n
+

19



Where k and n are positive constant. The value of Length of the bar (L=500 m),
Youngs Modulus E=500 Mpa, and the Critical Energy release (Y.=1e-3) are chosen such

that the maximum force and displacement in the bar is unity.

The bar is subjected to loading until the damage reaches the maximum limit i.e.

.. The length of the damage function to reach the maximum value (D=1).

SOLIDIFICATION TYPE OF DAMAGE FUNCTION

4 -
o2 0O O e
3 ° e .
o’ e
2+ O/d \b\
o/O/ Q

1- O/O/ o B D—D&DH:

/o/ I P = Q

/O/o D—D/DM
b o=08"0 o g m -p 5 @8 BT ! ! ! ! !

0 S

0 005 01 015 02 025 03 03 04 045 05
length of the damage (1)

DAMAGE FUNCION WITH LINEAR (1/(1-D))

2,
\ —o — DY(l)
15+ \ —= - D
N
\ e = B —f
05 e "
— \o\
T —o— — o o
OL/ O — —o —o

L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
length of the damage (1)

Figure6. Show the damage and its derivative functions used in level set approach with

respect to their length of damage

20



4.0 RESULTS AND DISCUSSION

4.1 Johnson Cook Visco-plasticity

Figure7. Show the total strain along the length of the bar after each increment
to imposed displacement for the Johnson cook Visco-plasticity Model. Form the figure
it's clear that the strain localises in a very sharp narrow region known as strain

localization zone, where the variation in temperature is introduced in the bar.
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Figure7. Displacement at increment of imposed velocity along the length of the bar for

visco-plastic regularisation model.
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Figure9. Temperature distribution at increment of imposed velocity along the length of

the bar for visco-plastic regularisation model.
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Displacement along the length of the bar is shown in Fig. 8 after each increment
of imposed displacement. Change in slope of displacement with respect to the length of
the bar is observed in the localized zone. Fig. 9 Show the temperature distribution along
the bar after each increment of imposed displacement. It shows the increment in
temperature with respect to the loading and it is more significant in the zone of

localization. The diffusion effect of temperature is not observed in the viscoplastic model.

4.2 Gradient damage Model

Figure10. Show the Evolution of damage along the length of the bar after each
increment of imposed displcaement. Thus the zone of strain localisation is obtained in
the middle of the bar as expected where the cross sectional area is reduced. In the
present study the value of damage is same as the average strain equivalent. The diffusion
of strain is clearly visible from the figure. This diffusion effect and average of strain over a

region helps to reduce the mesh sensitiity of the Material Model.
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Figurel0. Evolution of damage along the length of the bar after each increment of

imposed displcaement.
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Mesh sensitivity of the model is analysed by varing the number of elements
along the length of the bar. The model is very less sensitive to the varaition above a
certain number of elements. However the varaition is observed for less number of
elements in the bar. Fig. 11 shows the damage in the bar for Meshes with 5, 10 and 15
number of elements. In general mesh sizes to get minimum of three element in the
localization zone is recommended for this model. It is worth to recal that quadratic

interpolation is used for displacement in the present study.

Different mesh size
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Figurell. Influence of mesh size on damage evolution along the length of the bar, Mesh

sizes of 5, 10 and 15 elements were considered.
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Influence of parameter 'c’
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Figurel2. Influence of parameter ¢ on damage localisation, damage for values c=1, 2

and 5 were ploted.

Influence of charecteristic length parameter is studied by varrying it to values 1,
2 and 5 in the present study. The damage in the bar for each of the values is shown in Fig.
12. It shows the effect of charecteristic length in the diffusion of damage in the bar. The
diffusion increases with increase in the value of ‘ ¢’. This is due to increase in the domain
of averaging space to compute strain equivalent of the model. In general the value of c is
chosen based on the microstructural size of the material.

Stress-Strain plot for the non-local gradient damage model using parabolic
damag evolution is shown in Fig. 13. Form the numerical aspect the computaiton effort
increases with the non lineariaty effect of the material. It is observed that the number of
newton iteration required for convergence increases as the slope of tangent of the
stress-strain curve decreases. In order to obtaine the full stress strain curve until fracture
special alogorithm such as Arc-length should be applied to the newton solution

procedure.
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Figure13. Stress-Strain plot for the non-local gradient damage model using parabolic

damag evolution.

4.3 Computation of damage using level set

4.3.1  Analytical Solution
The analytical solution to the proposed level set approached is obtained as for a 1D
bar of length L subjected to a imposed displacement of U as shown in the figure 14. The
damage initiation is assumed to start from one end of the bar and it can grow and its

extension is denoted as|. The damage in 1D can grow until failure i.e. to the distance of |

Figurel14. A bar subjected to loading with the damage of length |
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Since the Force F along the length of the bar is uniform. The force displacement

relationship is given by the compatibility condition as shown in (4.3.1)

| L
dex+Ide=U
VE(L-D) 1E

:EzE[j'(ﬁjdxﬂL—l)T

0

(4.3.1)

(4.3.2)
By considering the linear damage function (3.3.1) and the damage evolution law

(3.3.4) the displacement on the bar and the corresponding force is obtained.

|
IYD (@)dx =Y, (4.3.3)
0
|
[2ELax=Y, 1 (4.3.9)
0 2 IC IC

2EnLE1—:j
F=SQRT :

The displacement in the bar is calculated by substituting the obtained force in

=

the equation (4.3.1).

u=__
o)
¢ (4.3.6)
43.1.1 Influence of Damage evolution law

Influence of damage evolution law in the level set approach is analysed by
applying the different damage evolution in the 1D bar and by using the linear damage

function.
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The analytical solutions for load Vs displacement using linear damage function
and damage evolution law <Y> =Y, for different value ofl_ is shown in Fig. 15. The elastic
loading takes place until the maximum force is reached and then tangential return of the
curve is observed as the damage grows. The damage grows and reaches the maximum
limit |, causing ultimate fracture. It is clear that the area between the elastic loading
curve and the return curve increases with the increase inl_ . The material becomes more
ductile and due to higher dissipation in the system. The tangential return at the initial
unloading can be interpreted as the increase in damage without considerable dissipation

in the system. The damage initiation takes place in the local sense and then the averaging

space to compute the configurational force grows along with the damage zone.
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Figure15. Force Vs displacement plot for different | using linear damage function and

evolution law <Y> =Y

c

Force Vs displacement plot for different | using linear damage function and

Hardening type evolution law is shown in Fig.16. The tangential return during initial

unloading is affected by using hardening type evolution law. Thus more energy is spent
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during the initial damage growth process. Also the material becomes more ductile with

increase in|,

Force Vs displacement plot for Visco plastic type evolution law for different
imposed velocity is shown in Fig.17. In the viscoplastic law the constants are taken as
k=2andn=2. With the increase in rate of deformation the maximum force required to
initiate damage is increased. Also the tangential return of the returning curve is also

affected by using the viscoplastic relation.

The material becomes in sensitive to rate effects i.e. tends to plastic when
k—>0& n—0 and they acts as the controlling parameter to the model (Fig.18). By

increasing the length of damage the dissipation in the system is increased.
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Figure16. Force Vs displacement plot for different |_ using linear damage function and

Hardening type evolution law.
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Figure17. Force Vs displacement plot for different |_ using linear damage function and

viscoplastic type evolution law.

0.9 —e—[c=0.2"L
—=—[c=0.4*L

0.8

0.7

0.6

0.5+

0.4

Applied Force (F)

0.3

0.2

0.1

O 1 1 1

0 0.1 0.2 0.3

1 1 1
0.4 05 0.6
Displacement (U)

0.7 0.8 0.9

Figure18. Force Vs displacement plot for different | using linear damage function and

viscoplastic type evolution law.
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4.3.1.2 Influence of Damage function

Influence of damage evolution law in the level set approach is analysed by

applying the different damage function in the 1D bar and by using the hardening type

1
evolution law. Force Vs displacement plot using Iinear( DJ damage function and

hardening type evolution law is shown in Fig.19. Here the material flows after reaching

the maximum elastic load and flows without offering any resistence.
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1
Figurel9. Force Vs displacement plot using Iinear( Dj damage function and

hardening type evolution law.

Solidification type of damage function is used for the study and the Figurel9.
Force Vs displacement plot using the Solidification type damage function is shown in Fig.

20. The dissipation in the system increases with increase inl .
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Figure20. Force Vs displacement plot for different |c using solidification type damage function

and hardening type evolution law.

4.3.2 Finite element Solution

A 1D is subjected to loading until failure. The bar is discritized using 1D linear

elements, while N being the number of elements. The finite element computation of the

level set approach is summarized below

32



Initialisation of material and Geometric constants

E,L,N,Y,,I

c’’c

Force F is applied; Local Energy releaseY is computed along the Gauss

Points
CheckYmax S Yc

Update length of damage &
Compute the Force in the bar F = f (I + )
Compute the new damage values along the gauss points
Compute the Displacement along the bar

Check I<l, F>0

End

Since the level set control over the element integration is not implemented in
the present analysis, the length of damage update is equal to the element size as shown
in the Fig.21. It is convincing that the level set incorporation leads to precise calculation
of energy release irrespective of the mesh size, which make them mesh insensitive. The

Force Vs displacement plot for Finite Element calculation using linear type damage

function and evolution Iaw<Y> =Y, is shown in Fig. 22.
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Figure21. Shows the finite element Discritization of the bar for level set approach and

x=0

the damage function growth.
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Figure22. Force Vs displacement plot for Finite Element calculation using linear type

damage function and evolution law <Y> =YC
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5.0

CONCLUSION

The Johnson Cook Viscoplastic Model and Non-local gradient Model were
analyzed for the 1D bar. A new level set approach is proposed as an effective
alternative.

In the Level set based approach, Level set is used to separate damage zone
and the undamaged zone with the damage function interlinking them to form
the transition zone.

Non-locality is introduced by regularization of energy release in the transition
zone and the configurational force required to propagate damage in the
damage front is computed.

Robustness of the proposed approach is demonstrated by applying different
Damage functions and Damage evolution law to fit the desired material

behavior.

Advantages of the proposed approach

Use of Level set gives greater control over the damage zone and could
facilitate merging and branching of the damage zone.

Transition from damage to fracture is well defined and the model permits the
fully damaged zone in the material (D=1).

The non-local gradient type approach is computationally expensive than level
set approach. In the non-local gradient approach the strain regularization is
carried out for the entire domain where as in the level set approach the
regularization is done only in the transition zone.

The model is very less sensitive to mesh size due to non-locality introduced by

homogenization.
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