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ABSTRACT 
 

Imposing contact condition with X-FEM on non-matching grids 
 

Khuong Anh Dung 
 
 

The extended finite element method (X-FEM) has been developed to minimize 
requirements on the mesh design in a problem with a displacement discontinuity. In this report, 
the imposition of kinematic conditions along interfaces modeled with X-FEM is studied. In 
order to model the kinematic condition, our aim is to build a Lagrange multiplier space. The 
stability of the formulation is ensured by a LLB (inf-sup) fulfilling algorithm. By introducing a 
Lagrangian multiplier space, this method realizes an optimal control for the interface problem. 
A non-matching finite element grid on the interface is considered and an optimal energy-norm 
error estimate in the finite time is obtained. 
 

In addition, a model of the contact condition by X-FEM was proposed and applied to 
test analysis. The computation has been made to ensure the accuracy. Some results of numerical 
analysis by X-FEM are presented. Numerical examples show that the convergence rates are 
preserved and the inf-sup conditions are passed. The results obtained for these test cases are 
logical. 
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Chapter 1 
Introduction  

 
 
In spite of the important effort dedicated to X-FEM in the last decade for a general presentation, 

there are still many aspects that require further research. An efficient imposition of essential boundary 
conditions in X-FEM is still an open issue. Finite element shape function satisfies “Kronecker delta” 
property ( )i j ijN δ=x  which makes imposition of essential boundary conditions straightforward. In 
recent years, many specific techniques for the implementation of essential boundary conditions in X-
FEM have been developed. In certain X-FEM cases, imposition of essential boundary conditions is 
tricky. There are certain difficulties in imposing essential boundary conditions. Imposing essential 
boundary conditions is one of a key issue in X-FEM. Probably the simplest way to impose essential 
boundary conditions is by boundary collocations. Another opportunity is based on a modification of the 
weak form, such the penalty method [17], Lagrange multipliers [16] or Nitsche’s method [25]. These 
methods consider a modified weak form and they allow the use of trial functions that do not vanish at 
the essential boundary. In fact, the penalty method and Nitsche's method require only the choice of one 
scalar parameter. In the penalty method, large values of this parameter must be used in order to impose 
the essential boundary condition in a proper manner. In practice, that leads to ill-conditioned systems of 
equations, reducing the applicability of this method. On the contrary, Nitsche's method does not suffer 
of ill-conditioning. However, the implementation of Nitsche's method is not as trivial as for the 
Lagrange multiplier method or the penalty method, in the sense that the modification of the weak form 
is different for each particular problem. 

 
In the X-FEM context, the Lagrange multiplier method is one of the most widely used because 

of its straightforward implementation in all kind of problems. This method introduces a new unknown 
function, the Lagrange multiplier. The interpolation space for the Lagrange multiplier must be carefully 
selected: it has to be rich enough in order to obtain an acceptable solution. The aim of this project is to 
review and compare some of the most powerful techniques for the imposition of essential boundary 
conditions X-FEM. In this report we propose a Lagrange multiplier space to model the kinematic 
condition. It can be applied to the imposition of essential boundary conditions. 

 
Special attention is paid to the choice of Lagrange multipliers with X-FEM proposed in [29] and 

to methods based on a modification of the weak form. Section 2 recalls basic concepts on the X-FEM. 
Section 3 is devoted to review and compare three techniques based on a modification of the weak form: 
the Lagrange multiplier method, the penalty method, and Nitsche's method. Also, LBB condition has 
been discussed. Finally, in Section 4, two numerical examples corroborate the conclusions. In this 
thesis, various applications of the X-FEM were developed and applied to model the kinematic 
condition along the interface. We prove energy type in 2 space dimensions, and present some 
numerical examples.  
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Chapter 2 
Overview of the partition of unity, level sets and 
the eXtended Finite Element Method (X-FEM)  
 

 
Modelling discontinuities and singularities in the approximating space has been remained a 

challenge in the world of computational mechanics. The standard Finite Element Method when 
employed for modelling problems containing discontinuities such as cracks, material interfaces, high 
gradients etc. , poses a problem in a sense that the FEM mesh is required to conform with the geometry 
of the discontinuity. Additionally in order to capture high gradients in the approximating field, 
significant refinement in the vicinity of the discontinuity is required. Above all modelling 
discontinuities evolving in time with FEM is burdensome due to the need to update the mesh to match 
the geometry of the discontinuity. This also increases the computational cost. To alleviate the 
shortcomings associated with meshing of cracks using FEM, Partition of Unity Methods (PUM) were 
developed. X-FEM is a partition of unity based enriched/extended finite element method. 

 
The work is based on developments of the eXtended Finite Element Method, which has been 

successfully applied to static problems exhibiting discontinuities or heterogeneities such as cracks, 
holes or material interfaces. The governing idea of this method is to enrich the classical FEM 
approximation based on the Partition of Unity technique with specific functions representing surfaces 
of discontinuities or heterogeneities. Level sets are used to locate the physical surfaces on the mesh. 
Their sign indicate the side on which a point is located. Level sets use node-valued functions and are 
interpolated with the basic functions of the finite element. This description allows to release the 
underlying mesh from the description of surfaces of discontinuity or external boundaries. 

 
2.1 Partition of unity method 
 

Melenk and Babuska [24] did show that the traditional finite element approximation could be 
enriched so as to represent a specified function on a given domain. Their point of view can be 
summarized as follows [28]. Let first us recall that the finite element approximation is written on an 
element as 

 
( ) ( )

e
n

i i
i N

u x a xα α

α

φ
Ω

∈

= ∑ ∑      (2.1) 

 
As the degrees of freedom (dof.) defined at a node have the same value for all the elements 

connected to it. The approximations on each element can be “assembled” to give a valid approximation 
in any point x of the domain 

 
( ) ( )

n

i i
i N

u x a xα α

α

φ
∈

= ∑ ∑      (2.2) 
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where ( )nN x is the set of nodes belonging to the elements containing point x . The domain of influence 

(support) of the approximation function i
αφ is the set of elements connected to node i . The set ( )nN x is 

thus also the set of the nodes whose support covers point x .  
 

It is thus possible to enrich the finite element approximation by the same techniques as those 
used in meshless methods. Here is the enriched approximation which makes it possible to represent 
function ( ) xF x e  on domain FΩ  
 

( )
( ) ( )

( ) ( )
n n F

i i i i
i N x i N x N

u x a b x F xα α α α

α α

φ φ
∈ ∈ ∩

= +∑ ∑ ∑ ∑    (2.3) 

 
where FN  is the set of nodes whose support has an intersection with domain FΩ . The proof is obtained 
by setting to zero coefficients iaα and by taking into account the fact that the finite element shape 
functions are able to represent all rigid modes and thus the xe  mode. We will see the concrete use of 
the partition of unity for the modelling of discontinuities in the following part. 
 
 
2.2  Level Sets 
 

The Osher-Sethian level set method [51] tracks the motion of an interface by embedding the 
interface as the zero level set of the signed distance function. The motion of the interface is matched 
with the zero level set of the level set function, and the resulting initial value partial differential 
equation for the evolution of the level set function resembles a Hamilton-Jacobi equation. In this 
setting, curvatures and normals may be easily evaluated, topological changes occur in a natural manner, 
and the technique extends trivially to three dimensions. This equation is solved using entropy-satisfying 
schemes borrowed from the numerical solution of hyperbolic conservation laws which produce the 
correct viscosity solution. 

 
Level set method is designed for problems in which the speed function can be positive in some 

places are negative in others, so that the front can move forwards in some places and backwards in 
others. 
 

 
 

Figure 2.1. Example of 2D curve propagation with the level set method (taken from [9]). 
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In the level set method, the boundary is represented implicitly as an iso-surface of a function, a 
so-called level set function, of a higher dimension. The resulting evolution is then mapped into an 
evolution of the level set function. The advantages of this method are that the method handles changes 
of topology naturally without special rules for collision detection, can be easily adapted to any number 
of dimensions, and can treat the formation of corners and cusps in the boundary correctly through the 
use of methods borrowed from hyperbolic conservation laws. 

 
This method encapsulates the entire evolution of the surface with a single time-independent 

function. While it is typically only used for monotonic speed functions, i.e. fronts which move only in 
one direction, recent work shows that this restriction can be overcome in some instances. 

 
The level set of a differentiable function: : nf →  corresponding to a real value c is the set 

of points 
( ) ( ){ }1 1,..., : ,...,n

n nx x f x x c∈ =     (2.4) 

 
 

Figure 2.2. Example of a level set representation of a circle (bold curve). Red curve is zero level set 
(taken from [20]). 

 
 
Within the framework of X-FEM another development is the use of Level set functions for 

representing discontinuities. Where the discontinuity is represented as a zero Level set function. The 
surfaces are located and evolved by the level set technique. 
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2.3 The eXtended Finite Element Method (X-FEM)  
 
2.3.1 Basic 

 
Based on an idea of Lancaster and Salkauskas [40] and probably motivated by the purpose to 

model arbitrary crack propagation without computational expensive remeshing, the group of Prof. Ted 
Belytschko developed the X-FEM. Since its introduction in 1999 (Moës, Dolbow, and Belytschko 1999 
[30]), the extended finite element method (X-FEM) has been successfully developed and applied in 
science and engineering computations. The extended finite element method is currently widely used in 
research and starts to appear in industry. In general X-FEM can be used to model cracks, contact and 
interface problems, simulation of inclusions and holes, moving discontinuities, bi-phase flow problems, 
fluid structure interaction, etc. This method basically eliminates the need to mesh physical surfaces in 
finite element computations.   

 
The finite element method is used as base in X-FEM, and hence large body of the finite element 

method can be readily exploited. The eXtended Finite Element Method exploits the partition of unity 
property of finite elements, which allows local enrichment functions to be easily incorporated in the 
FEM approximation. As the name implies, the standard FEM approximation space is extended or 
enriched using an appropriate enrichment function, which can best describe the field. Additional 
functions which might contain any prior knowledge/information about the solution can be incorporated 
into the finite element space using partition of unity and the resulting space is capable of capturing the 
local features of interest. For crack modelling a discontinuous jump function and asymptotic near tip 
displacement fields are added to the displacement-based finite element approximation. The whole 
beauty of X-FEM lies in subdividing the problem into two parts: part A) generating mesh without 
cracks/inclusions, etc.;  part B) enriching the FEM approximation with additional/enrichment functions 
that models the discontinuities. This avoids the need for remeshing or explicit geometric modelling of 
the discontinuity.  

The enriched finite element approximation is written:  

( ) ( ) ( ( )) ( ) ( ) ( )
c ct

i Ji J Ji J J Jij j
J S J S J S

u u a H f b B
∈ ∈ ∈

= Φ + Φ + Φ∑ ∑ ∑x x x x x x   (2.5) 

where  

1 ( ) 0
( ( ))

1 ( ) 0
f

H f
f

+ >⎧ ⎫
= ⎨ ⎬− <⎩ ⎭

x
x

x
  and ( ) sin

2
n

jB r θ⎛ ⎞= ⎜ ⎟
⎝ ⎠

x    (2.6) 

 
In the classical FE approximation, to represent the discontinuity at the interface, the interface 

needs to be aligned with the mesh. 

( ) ( )

( ) ( )

h
I I

I
h

I I
I

T x x T

T x x T

φ

φ

=

∇ = ∇

∑

∑
     (2.7) 
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Figure 2.3. Node selection for the enrichment in X-FEM: (a) the circled nodes are enriched by the jump 
function whereas the squared nodes are enriched by the crack tip functions [30]; (b) the squared nodes 

are enriched by the jump function whereas the circled nodes are enriched by the crack tip functions. 

In the X-FEM approximation, the interface can be represented by evolving g(x) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

h
I I J J

I J

h
I I J J J

I J

T x x T x g x a

T x x T x g x g x a

φ φ

φ φ φ

= +

∇ = ∇ + ∇ + ∇

∑ ∑

∑ ∑

i

i i
  (2.8) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Meshing 

Element’s 
selection 

Stiffness matrix 
computation 

Imposing BC 

Resolution (u) 

Stress computation (σ) Other computation  

Figure 2.4. Structure of the X-FEM code. 

(a) (b) 
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 X-FEM on element level 
 

 
 

Figure 2.5. The three-node linear triangle: (a) element geometry; (b) equation of side opposite corner 
1; (c) perspective view of the shape function 1 1N ζ= . 

 
 The 3-node triangular element 

 

 
 
                  

      Figure 2.6. Physical and parent 3-node elements. 
 
 

 4-node quadrilateral (linear shape functions) 
 

1

2

3

4

1( , ) (1 ) (1 )
4
1( , ) (1 ) (1 )
4
1( , ) (1 ) (1 )
4
1( , ) (1 ) (1 )
4

N r s r s

N r s r s

N r s r s

N r s r s

= − −

= + −

= + +

= − +

 (2.9)     

 
 
 
 
 

2

1 3 

η

ζ  

x 

y 

r

s 

Figure 2.7. Physical and parent 4-node elements. 

Physical  element  Parent  element  
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2.3.2 Modelling holes and material interfaces with the X-FEM 
 
 We show here how to model holes which are not defined by the mesh. The idea is to define an 
enrichment function ( )V x which is zero in the holes and one in the body 
 

( )
1
0

if x
V x

if x
∈Ω⎧

= ⎨ ∉Ω⎩
      (2.10) 

 
where Ω is the domain occupied by the body. If the support of a nodal shape function intersects 

a hole, the nodal shape function is multiplied by the ( )V x function so that the support size is reduced to 
its material fraction. Also, the nodal degrees of freedom for which the supports are totally in the void 
are eliminated (or set to zero depending on the implementation). Figure 2.8 (a) illustrates the 
enrichment strategy for a body containing hole and void. 

 

 
 
 

Figure 2.8. Example of  (a) enrichment for a discontinuity: eliminated nodes (dof. set to zero), modified 
function (shape function multiplied by V(x)) [6]; (b) non-conforming mesh to model an inclusion [41]. 

 
In the X-FEM context, its main characteristic is to separate the problem into two parts [41]: 
 

 The first part corresponds to the discretization of whole domain, which does not include 
some or all the surfaces related to discontinuities or boundary conditions. The 
approximation of the displacement field is consequently the classical approximation used in 
FEM, and mesh generation is generally straightforward. 
 

 The second part (for material interfaces) consists in supplementary shape functions added to 
some nodes of the previous approximation. The goal of these additional functions is to 
enrich the basic approximation of the existing displacement field with less regular functions 
able to model jumps on the surfaces which are not meshed. In Figure 2.8 (b), black circles 
indicate these nodes. The determination of these nodes can be made with the help of a level 
set representation of the surface [35]. When nodes have been selected, specific enrichment 
functions are then associated to these and offer for instance the possibility to take the 
deformation discontinuity at a material interface into account. 

 
 
 

(a) (b) 
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2.3.3 Comparison of the classical FEM and X-FEM in 1D model problem 
 

Problem with homogeneous Dirichlet boundary conditions and initial conditions.  

( )
( )

,

0

1

xxu u f
u a u IC
u b u BC

− =⎧
⎪ =⎨
⎪ =⎩

      (2.11) 

where 

( )
( ) ( )

4 2
' '

4 2

16 192
32

1 12 1
f

f
f

x x x x
f f x f

x x x x
δ

⎧ − <⎪= − = ⎨
− − − ≥⎪⎩

  (2.12) 

 
Analytical solution [14]: (note that the derivative of u is discontinuous at point fx ) 
 

( )

4

4

16

1
f

f

x x x
u

x x x

⎧ <⎪= ⎨
− ≥⎪⎩

     (2.13) 

 
Numerical results of 1D problem 

   
 

Figure 2.9. Comparison of derivative using classical FEM and X-FEM. 
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Figure 2.10. (a) Comparison of the rate of convergence using classical FEM and X-FEM - the phase 
boundary is always located between nodes; (b) Rate of convergence using Lagrange multipliers. 

The X-FEM permits to have a better accuracy than the classical FEM with an equivalent time of 
computation. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
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Chapter 3 
Stability study 
 
 
3.1 Dirichlet boundary conditions with X-FEM 
 

Trace of the inner field on the Dirichlet boundary is very rich when the boundary is not matched. If 
the strong imposition of Dirichlet (naive approach) is implied, there are poor fluxes on the boundary 
(boundary locking) and strong oscillations of the reactions forces. 
 
3.2 Methods based on a modification of the weak form 
 
  We review and compare some of the most powerful techniques for the imposition of essential 
boundary conditions with X-FEM. This section presents three methods that overcome this problem: the 
Lagrange multiplier method, the penalty method and Nitsche's method. 
 
3.2.1 Background on these methods 
 

For the sake of clarity, the following model problem is considered (see in reference [48]). The 
resolution of the 2D linear elasticity problem represented in Figure 3.1. 
 
3.2.1.1 The elasticity problem 
 

Consider a solid occupying a domain Ω with boundary  
 

with  u t u tΓ = Γ ∪ Γ Γ ∩ Γ = ∅      (3.1) 
 

 
 

,

, ,

: 0

:

1: ( )
2

. . : 0

. . : 0

ij j i

ij ijkl kl

ij i j j i

sp
i i u

sp
ij j i t

Equilibrium f in

Constitutive law D

Strain displacement u u

Dirichlet b c u u on

Neumann b c n t on

σ

σ ε

ε

σ

+ = Ω

=

− = +

− = Γ

− = Γ

  

 
 

thi  component of the displacement vector 

 component of the Cauchy stress

 component of strain tensor

 elasticity tensor

 specified traction vector on 

 component of t

i
th

ij

th
ij

ijkl

sp
i t

th
i

u

ij

ij

D

t

n i

σ

ε

=

=

=

=

= Γ

=

u

he unit outward normal

 

Figure 3.1. 2D linear elasticity problem. 

n

Ω

uΓ

tΓ
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The constrained minimization problem may be stated as   
 

( ) 1

1 arg min ( )
H

H J
∈

∈ =
w

u w      (3.2) 

subject to the constraint  
0sp

uon− = Γu u       (3.3) 
where 

1( ) ( , ) ( )
2

( , ) ( ) ( )

( )
t

T

T sp

J a l

where a d

l d dS

Ω

Ω Γ

= −

= Ω

= Ω +

∫
∫ ∫

w w w w

w w w D w

w w f w tΤ

ε ε      (3.4) 

The vectors and matrices in 2D are 

1 2

1 2 1 2

1 2 2 1

1 2

1 2

[ , ]

( ) , ,

[ , ]

[ , ]

T

T

sp sp sp

w w

w w w w
x x x x

f f

t t

=

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂
= + =⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

=

=

w

w w

f

t

∂ε   

1

2

2 1

0

0

x

x

x x

⎡ ⎤∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

∂ =  (3.5) 

 

( )2

1 0 (1 ) 0
1 0 plane stress; (1 ) 0 plane strain

1 1 (1 2 )
1 1 20 0 0 0

2 2

E E
ν ν ν

ν ν ν
ν ν ν

ν ν

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥

= = −⎢ ⎥ ⎢ ⎥− + −⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

D D (3.6) 

 
3.2.1.2 Penalty method: implementation 
 

Construct a modified functional 

( ) ( ) ( ) ( )
2 u

sp T spJ J dSα
α

Γ
= + − −∫w w w u w u     (3.7) 

Solve the unconstrained minimization problem 
( ) 1

1 arg min ( )
H

H J asα α
∈

∈ = → ∞
w

u w      (3.8) 

 
Approximate solution 

arg min ( )
h h

h

h hX
X

J asα α
∈

∈

= → ∞
w

u w      (3.9) 

hX is a finite dimensional subspace of 1H  
where the discretized modified functional 

( ) ( ) ( ) ( )
2 u

sp T sp
h h h h

Part A
Part B

J J dSα
α

Γ
= + − −∫w w w u w u    (3.10) 

Now, discretize  
( )h k h hk

k

ϕ= =∑w w WΦ      (3.11) 
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where 
 vector of nodal unknowns

0
Shape function matrix

0

N
h

i

i

ϕ
ϕ

∈ =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

W

Φ =
 

 
1( )
2

N T T
h h h h h h

Part B
Part A

J ∈ = −W W W WA F     (3.12) 

 
Part A, proof 

( )( ) ( )

( )

11

2 2

2 1 2 1

since ( )

00

0 0

Hence ( , ) ( ) ( )

h

h h k h k h hk k
k k

k

k
k k k

k k

T
h h h h

T T
h h

xx

where
x x

x x x x

a d

d

ϕ

ϕ

ϕ
ϕ ϕ

ϕ ϕ

Ω

Ω

= = = =

⎡ ⎤⎡ ⎤ ∂∂
⎢ ⎥⎢ ⎥ ∂∂ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ∂∂

= = = ⎢ ⎥⎢ ⎥∂ ∂⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= Ω

= Ω

∑ ∑

∫

∫
A

w w w w W

B

w w w D w

W D W

∂ ∂ ∆ ∆

∂

∆ ∆

ε

ε ε

   (3.13) 

 
Part B, proof 

  

( ) ( )
( )

( )
t

t

t

h

T sp
h h h

T T T sp
h h h

T T sp
h h

l d dS

d dS

d dS

Ω Γ

Ω Γ

Ω Γ

= Ω +

= Ω +

= Ω +

∫ ∫

∫ ∫

∫ ∫
F

w w f w t

W f W w t

W f w t

Φ

Φ

Τ

Τ

Τ

    (3.14) 

 
We have, 

( ) ( ) ( ) ( )
2 u

sp T sp
h h h h

Part A
Part B

J J dSα
α

Γ
= + − −∫w w w u w u    (3.15) 

 
Part B,  

using  ( )h k h hk
k

ϕ= =∑w w WΦ        (3.16) 

( )
( ) ( )

2

u

u u u

sp T sp
h h

T T T T sp spT sp
h h h

Part B dS

dS dS dS

Γ

Γ Γ Γ

= − −

= − +

∫

∫ ∫ ∫

W u W u

W W W u u u

Φ Φ

Φ Φ Φ
  (3.17) 
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Hence,  

( )

( ) ( )

2
2 u u u

N
h h

Part A

T T T T sp spT sp
h h h

Part B

J J

dS dS dS

α

α
Γ Γ Γ

∈ =

⎡ ⎤+ − +⎢ ⎥⎣ ⎦∫ ∫ ∫

W W

W W W u u uΦ Φ Φ
 

( )

( ) ( )

( ) ( )
ˆ

ˆ

u u

u u

hh

T T sp
h

h h
Part BPart A

T T sp
h h h h

Part A

hh h h h

J J dS dS

dS dS

α α

α α

α α

Γ Γ

Γ Γ

∂ ∂ ⎡ ⎤⇒ = + −⎢ ⎥⎣ ⎦∂ ∂

= − + −

= + − + =

∫ ∫

∫ ∫
FA

W u
W W

A W F W u

A A W F F 0

Φ Φ Φ

Φ Φ Φ  

( )

( ) 0

ˆ

h

hh h h h

Jα

α α

∂
=

∂

⇒ + = +A A W F F

h

h

FA

w
w

     (3.18) 

Note: 
 hA is symmetric. 

 hA is ill conditioned for large α. 
 The formulation is not consistent for trial functions that do not vanish on the Dirichlet boundary. 

 
 
3.2.1.3 Penalty method: problem 
 

The formulation is not consistent for trial functions that do not vanish on the Dirichlet boundary. 
To see this, start with the modified functional 
 

2( ) ( ) ( )
2 u

sp
i i i iJ u J u u u dSα

α
Γ

= + −∫      (3.19) 

 

( )

( )
, ,,

, ,

(chain rule)

, ,

( ) ( ) ( )

( )

u

t

t

i ijkl k l i ijkl k ljj

sp
i i i i i

sp
i ij ijkl kl i i i i

sp
i j ijkl k l i i i i

u D u u D u

i ijkl k l i ijklj

J u J u u u u dS

with J u D d u f d u t dS

u D u d u f d u t dS

u D u d u D u

α

δ δ

δ δ α δ

δ δε ε δ δ

δ δ δ

δ δ

Γ

Ω Ω Γ

Ω Ω Γ

−

Ω

⇒ = + −

= Ω − Ω −

= Ω − Ω −

= Ω −

∫

∫ ∫ ∫

∫ ∫ ∫

∫ ,
t

sp
k lj i i i id u f d u t dSδ δ

Ω Ω Γ
Ω − Ω −∫ ∫ ∫

 (3.20) 
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Using Green’s theorem 
 

( )

( )

, ,

,

,

u t t

u t t

i

u t t

u

sp
i ijkl k l j i ijkl k lj i i i i

sp
i ij j i ijkl k lj i i i i

t

sp
i i i i i ijkl k lj i

sp
i i i i i

u D u n dS u D u d u f d u t dS

u n dS u D u d u f d u t dS

u t dS u t dS u D u f d

u t dS u t t

δ δ δ δ

δ σ δ δ δ

δ δ δ

δ δ

Γ=Γ ∪Γ Ω Ω Γ

Γ=Γ ∪Γ Ω Ω Γ

Γ=Γ ∪Γ Γ Ω

Γ

= − Ω − Ω −

= − Ω − Ω −

= − − + Ω

= + −

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ( ),
t

i ij j idS u f dδ σ
Γ Ω

− + Ω∫ ∫

 

( ) ( ),( )
u t

sp
i i i i i i i ij j iJ u u t dS u t t dS u f dδ δ δ δ σ

Γ Γ Ω
⇒ = + − − + Ω∫ ∫ ∫                (3.21) 

 
Thus, 

( ) ( ),

000
..0

( ) ( )
u t u

i u

sp sp
i i i i i i i ij j i i i i

Nothing tobalancethis
Dirichlet b cEquilibriumeqNeumannb cunless u on

J u u t dS u t t dS u f d u u u dSα

δ

δ δ δ δ σ α δ
Γ Γ Ω Γ

===

= Γ

= + − − + Ω + −∫ ∫ ∫ ∫  (3.22) 

 
This lack of consistency is a major problem for methods where the trial function space does not 

vanish on the Dirichlet boundary. We will see that Nitsche’s method overcomes this problem. But 
before that we need to understand the physical interpretation of Lagrange multipliers. 
 
 
3.2.1.4 Lagrange multipliers: basic 
 

Constructed a modified functional 
( ) ( ) ( )

u

spJ J dS
Γ

= + −∫w w w uΤ
λ λ     (3.23) 

 
Solved the unconstrained minimization problem 

( ) 1 0

1 0

,
, arg min ( )

H H
H H J

∈ ∈
∈ ∈ =

w
u wλ

λ
λ     (3.24) 

 
The problem posed on finite dimensional subspaces 

( )0

,
, arg min ( )

h h
h h hH J∈ =

w
u wλλ

λ     (3.25) 

 
 

3.2.1.5 Lagrange multipliers: implementation 
 

Discretization 

( )
1

1

( )

( )

N
N

h k h h hk
k

M
M

h k h k h h
k

ϕ

ξ

=

=

= = ∈

= = ∈

∑

∑

w w W WΦ

ΣΛ Λλ λ
     (3.26) 

The modified functional 
( )( ) ( ) T

h h h hJ Jλ = + −W W B W Gh h Λ      (3.27) 
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where 
1( )
2

u

u

T T
h h h h h h

T
h

T sp
h

J

dS

dS

Γ

Γ

= −

=

=

∫

∫

W W W W F

B

G u

A

Σ Φ

Σ

     (3.28) 

Minimization 

h h h h h
h

h h h
h

J

J

λ

λ

∂
= − + =

∂
∂

= − =
∂

A W F B 0
W

B W G 0

TΛ

Λ

     (3.29) 

 
In matrix form : Saddle point problem 

0

T
h hh

h hh

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

FB
GB

h wA
Λ

  
N N

M N
h

R

R

×

×

∈

∈
hA

B
   (3.30) 

 
 Symmetric, 
 Well conditioned, 
 Higher computational cost as number of unknowns increase, 
 May not be positive definite. 

 
 

3.2.1.6 Lagrange multipliers: physical interpretation 
 

Claim: The physical interpretation of the Lagrange multiplier is that it represents the traction at 
the Dirichlet boundary 

i ij j un onλ σ= − Γ       (3.31) 
 
Proof: 
Start with the modified functional 

( ) ( ) ( )

( ) ( ) ( )

u

u u

sp
i i i i i

sp
i i i i i i i

Part A
Part B

J u J u u u dS

J u J u u u dS u dS

λ

δ δ δλ λ δ

Γ

Γ Γ

= + −

⇒ = + − +

∫

∫ ∫

λ

λ
   (3.32) 

 
Lets first look at part A 

( )

( )
, ,,

, ,

(chain rule)

, ,

1( )
2

( )

t

t

t

i ijkl k l i ijkl k ljj

sp
i ij ijkl kl i i i i

sp
i ij ijkl kl i i i i

sp
i j ijkl k l i i i i

u D u u D u

i ijkl k l j

J u D d u f d u t dS

J u D d u f d u t dS

u D u d u f d u t dS

u D u d u

δ δ

ε ε

δ δε ε δ δ

δ δ δ

δ δ

Ω Ω Γ

Ω Ω Γ

Ω Ω Γ

−

Ω

= Ω − Ω −

⇒ = Ω − Ω −

= Ω − Ω −

= Ω −

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ,
t

sp
i ijkl k lj i i i iD u d u f d u t dSδ δ

Ω Ω Γ
Ω − Ω −∫ ∫ ∫

 (3.33) 
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Using Green’s Theorem 

( )

( )

, ,

,

,

u t t

u t t

i

u t t

u

sp
i ijkl k l j i ijkl k lj i i i i

sp
i ij j i ijkl k lj i i i i

t

sp
i i i i i ijkl k lj i

sp
i i i i i

u D u n dS u D u d u f d u t dS

u n dS u D u d u f d u t dS

u t dS u t dS u D u f d

u t dS u t t

δ δ δ δ

δ σ δ δ δ

δ δ δ

δ δ

Γ=Γ ∪Γ Ω Ω Γ

Γ=Γ ∪Γ Ω Ω Γ

Γ=Γ ∪Γ Γ Ω

Γ

= − Ω − Ω −

= − Ω − Ω −

= − − + Ω

= + −

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ( ),
t

i ij j idS u f dδ σ
Γ Ω

− + Ω∫ ∫

 (3.34) 

( ) ( ),( )
u t

sp
i i i i i i i ij j iJ u u t dS u t t dS u f dδ δ δ δ σ

Γ Γ Ω
⇒ = + − − + Ω∫ ∫ ∫  

 
Consequently, 

( ) ( )
. .

,

( ) ( ) ( )

( )

u u

u t

sp
i i i i i i i

Part A
Part B

Neumann b c Equilibrium eq

sp
i i i i i i ij j i

Part A

Dirichl

sp
i i i

J u J u u u dS u dS

u t dS u t t dS u f d

u u

δ δ δλ λ δ

δ δ δ σ

δλ

Γ Γ

Γ Γ Ω

= + − +

= + − − + Ω

+ −

∫ ∫

∫ ∫ ∫

λ

. .

u u

et b c

i i

Part B

dS u dSλ δ
Γ Γ

+∫ ∫

   (3.35) 

 
Hence, we identify i ij j un onλ σ= − Γ  
 
We may now replace the Lagrange multiplier with its physical interpretation to define the 

modified functional. 
 

,

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

u

u

u

u

sp
i i i i i

sp
i ij j i i

sp
i ijkl kl j i i

sp
i ijkl k l j i i

J u J u u u dS

J u n u u dS

J u D n u u dS

J u D u n u u dS

λ

σ

ε

Γ

Γ

Γ

Γ

= + −

= − −

= − −

= − −

∫

∫

∫

∫

λ

    (3.36) 

 
Notice that, due to minor symmetry 

, , ,
1 ( )
2ijkl kl ijkl k l l k ijkl k lD D u u D uε = + =     (3.37) 

 
The advantage of using the modified functional 

,( ) ( ) ( )
u

sp
i i ijkl k l j i iJ u J u D u n u u dS

Γ
= − −∫λ    (3.38) 

Is that the number of equations do not increase? In vector form 
( )( ) ( ) ( )

u

T spJ J dS
Γ

= − −∫u u N u uλ σ     (3.39) 
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with 

[ ]1 2
11 22 12

2 1

0
;

0
Tn n

n n
σ σ σ

⎡ ⎤
= = =⎢ ⎥

⎣ ⎦
N D U∆σ  

( )( ) ( ) ( )

( ) ( ) ( )

u

u

T sp

T T T sp

J J dS

J J dS

Γ

Γ

= − −

⇒ = − −

∫

∫

u u N u u

U U U DN U u∆ Φ

λ

λ

σ
    (3.40) 

 
Minimizing 

( )

( )

( ) ( )
u u

u

T T T

T T sp

J J dS dS

dS

Γ Γ

Γ

∂ ∂
= − +

∂ ∂

+ =

∫ ∫

∫
A

F

U U DN ND U
U U

DN u 0

∆ Φ Φ ∆

∆

λ

 

( ) ( )⇒ − = −A A U F F       (3.41) 

 Number of unknowns does not increase, 
 System matrix remains symmetric, 
 Less accurate. 

 
 
3.2.1.7 Nitsche’s Method: modified functional 

 
 In order to overcome the inaccuracy of the previous method, we combine with the one of the 
penalty method. Then, the modified functional is  

 

( ) 2

int

( ) ( ) ( ) ( )
2u u

sp sp
i i ij j i i i i

Lagrange multiplier term Penalty term enforcing
with the Lagrange multiplier the same Dirichlet condition
replaced by its physical ererpretation

J u J u u n u u dS u u dSασ
Γ Γ

= − − + −∫ ∫Ν    (3.42) 

 
 where α is a positive constant scalar parameter. 
 
 
3.2.1.8 Nitsche’s Method: consistency 

 
Then, 

( ) ( ) ( )

( )

u

u u

sp
i i ij j i i

sp
ij j i i i i

J u J u n u u dS

n u dS u u u dS

δ δ δσ

σ δ α δ

Γ

Γ Γ

= − −

− + −

∫

∫ ∫

Ν

   (3.43) 

 
with 
 

( ) ( ),

00

( )
u t

sp
i i i i i i i ij j iJ u u t dS u t t dS u f dδ δ δ δ σ

Γ Γ Ω

==

= + − − + Ω∫ ∫ ∫    (3.44) 
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Thus, 

( )

( )

00

0

( ) ( )

( )

( )

( )

u u

i

u u

u u

u

sp
i i i ij j i i

J u

sp
ij j i i i i

sp
i i ij j ij j i i

sp
i i i

J u u t dS n u u dS

n u dS u u u dS

u t n dS n u u dS

u u u dS

δ

δ δ δσ

σ δ α δ

δ σ δσ

α δ

Γ Γ

Γ Γ

Γ Γ
==

Γ
=

= − −

− + −

= − − −

+ −

∫ ∫

∫ ∫

∫ ∫

∫

Ν

   (3.45) 

 
The new terms in the r.h.s. are added to ensure consistency of the weak form. So, Nitsche’s 

method restores consistency in the formulation unlike the penalty method.  
 
 
3.2.2 Penalty method 
 

Assume boundary conditions in “standard form”  
 

( ) ( )oC D D⎡ ⎤ =⎣ ⎦        (3.46) 
 
Define an m by m “penalty matrix”  
 

[ ] ( )1 2, ,..., ; maxm i ijdiag Kκ κ κ κ κ=     (3.47) 
 
Modify the global problem as follows 

 

[ ] [ ]{ }( ) ( ) [ ]( )
T T

o⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦K C κ C D F C κ D    (3.48) 

 
The idea is to enforce a displacement boundary condition approximately by changing [K] and 

(F). 
 
For an interpolation with consistency of order p and discretization measure h the best error estimate 

gives a rate of convergence of order 
2 1

3
p

h
+

in the energy norm, provided that the penalty α is taken to be of 

order 
2 1

3
p

h
+

. In the linear case, it corresponds to the optimal rate of convergence in energy norm. For order 
2p ≥ , the lack of optimality in the rate of convergence is a direct consequence of the lack of consistency of 

the weak formulation. The choice of the penalty α to maintain the optimal rate of convergence in 2L  norm 
and the ill-conditioning of the system are commented for a particular problem. 

 
The penalty method can also be obtained from the minimization of the discrete version of the energy 

function.  
 
Obviously, the situation gets worse for denser discretizations, which need larger penalty parameters. 

The ill-conditioning of the matrix reduces the applicability of the penalty method. The penalty parameter α 
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is a positive scalar constant that must be large enough in order to impose the essential boundary condition 
with the desired accuracy. As previously observed with the Lagrange multiplier method, the penalty method 
is easily applicable to all kind of problems. 

 
Notes on the penalty method: 
 

 Very easy to implement: no re-numbering, no transformations to apply, 
 Does not eliminate dof., so no reduction in bandwidth. 

 
Assigning the penalty numbers iκ  can be tricky: 
 

 Too low => poor approximation to boundary condition. 
 Too high => can create numerical problems (e.g., locking, ill-conditioning, …). 

 
The penalty method presents two clear advantages: (i) the dimension of the system is not increased 

and (ii) the matrix in the resulting system, is symmetric and positive definite, provided that K is symmetric 
and α is large enough.  

 
However, the penalty method has also two important drawbacks: the Dirichlet boundary condition is 

weakly imposed (the parameter α controls how well the essential boundary condition is ensured) and the 
matrix is usually ill-conditioned (the condition number increases with α). 
 
 
3.2.3    Lagrange multiplier method 
 

Noted that, Lagrange multipliers can be interpreted physically as constraint forces. The main idea is 
to add extra dofs into the problem, and use these dofs to enforce the boundary conditions. 
 

There are several possibilities for the choice of the interpolation space for the Lagrange multiplier λ. 
Therefore, the Lagrange multiplier method is, in principle, general and easily applicable to all kind of 
problems. In fact, there is no need to know the weak form with Lagrange multiplier, it is sufficient to define 
the discrete energy functional, i.e. compute K and f, and the restrictions due to the boundary conditions, 
Au b= , in order to determine the system of eqs. Advantage is very effective at handling multi-point 
constraints. However, the main disadvantages of the Lagrange multiplier method are: 

 
 The dimension of the resulting system of equations is increased. More dof., it will take longer 

solution time. 
 Even for K symmetric and semi-positive definite, the global matrix is symmetric but it is no longer 

positive definite. Therefore, standard linear solvers for symmetric and positive definite matrices 
cannot be used. 

 More crucial is the fact that the system of eqs and the weak problem induce a saddle point problem 
which precludes an arbitrary choice of the interpolation space for u and λ. The discretization of the 
multiplier λ must be accurate enough in order to obtain an acceptable solution, but the resulting 
system of equations turns out to be singular if the number of Lagrange multipliers iλ is too large. In 
fact, the interpolation spaces for the Lagrange multiplier λ and for the principal unknown u must 
verify an inf-sup condition, known as the Ladygenskaya-Babuška-Brezzi (LBB) stability 
condition, in order to ensure the convergence of the approximation. In the X-FEM, it is trivial to 
choose the approximation for the Lagrange multiplier to verify the LBB condition. 
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The first two disadvantages can be neglected in front of the versatility and straightforward 
implementation of the method. However, while in the extended finite element method it is trivial to choose 
the interpolation for the Lagrange multiplier in order to verify the LBB stability condition and to impose 
accurate essential boundary conditions. 
 
 
3.2.4 Nitsche’s method 
 

In this situation, Nitsche's method represents an interesting alternative for the weak imposition of 
essential boundary conditions. Nitsche's method is a classical method for imposing essential boundary 
conditions weakly. Unlike the penalty method, it is consistent with the original differential equation. The 
strong point of Nitsche's method is that it retains the convergence rate of the underlying finite element 
method, whereas the standard penalty method either requires a very large penalty parameter, destroying the 
condition number of the resulting matrix problem, or, in case the condition number is to be retained, is 
limited to first order energy-norm accuracy. The discretization of the Nitsche's weak form leads to a system 
of equations with the same size as K and whose matrix is symmetric and positive definite, provided that K is 
symmetric and α is large enough. Although, as in the penalty method, the condition number of this matrix 
increases with parameter α, in practice not very large values are needed in order to ensure convergence and 
a proper implementation of the boundary condition. The matrix condition number is not a real problem for 
this method. 

 
Remark: Nitsche's method can be interpreted as a consistent improvement of the penalty method. 

The penalty weak form is not consistent. The only problem of Nitsche's method is the deduction of the 
weak form. The generalization of the implementation for other problems is not as straightforward as for the 
method of Lagrange multipliers or for the penalty method. The weak form and the choice of parameter α 
depends not only on the partial differential equation, but also on the essential boundary condition to be 
prescribed. For increasing values, α plays the role of a penalty parameter, giving more weight to the 
verification of the boundary condition and, therefore, affecting to the solution in the rest of the domain. The 
great advantage of Nitsche's method is that parametric tuning can be done with only one scalar parameter α, 
in front of the difficult choice of the interpolation space for the Lagrange multiplier. 
 
3.2.5 Conclusions 
 

The applicability of the penalty method is reduced due to the possible ill-conditioning problems, 
specially when refined discretizations are needed. The Lagrange multiplier method and the penalty method 
present similar properties. The advantage of Nitsche's method is that it requires only the choice of a scalar 
parameter, in front of the choice of the interpolation space for the Lagrange multiplier. For instance, the 
choice of the position of the collocation points in the Lagrange multiplier method can be a difficult task for 
irregular distributions of particles. However, it is fair to recall that the Lagrange multiplier method is easily 
applicable for the implementation of all sort of linear boundary constraints in a large variety of problems. 
The penalty method and Nitsche's method require only the choice of one scalar parameter. The applicability 
of the penalty method is reduced due to the ill-conditioning of the resulting matrix and the lack of 
consistency of the weak formulation. As an alternative, Nitsche's method introduces new terms in the weak 
form in order to maintain consistency and coercivity of the bilinear form. Moreover, moderate values of the 
scalar parameter α (α is a large enough constant which ensures the coercivity of the bilinear form) provide 
good results, avoiding the ill-conditioning problem of the penalty method. Therefore, Nitsche's method 
represents an interesting alternative to the widely used Lagrange multiplier method, mainly in those 
problems where the selection of an appropriate interpolation for the multiplier turns out to be a serious 
problem. 
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Therefore, although imposing boundary constraints is straightforward with the Lagrange multiplier 
method, the applicability of this method in particular cases can be clearly reduced due to the difficulty in the 
selection of a proper interpolation space for the Lagrange multiplier. 

 
In summary, imposition of constraints 

 
 Penalty method 

 
 Assume a large penalty parameter. 
 Matrix problem is ill-conditioned. 
 Where to integrate the penalty term and classical drawbacks (choice of the penalty parameter 

and degraded conditioning). 
 

 Lagrange multipliers 
 

 The Lagrange parameter is an unknown. 
 A “saddle point problem” results which is symmetric and well-conditioned. However, the 

problem is indefinite. 
 Physical interpretation of the Lagrange multipliers. 
 Difficulties to choose the correct space. 
 Advantage as reuse of classical contact algorithms. 

 
 Nitsche’s method 

 
 Restores consistency in the penalty formulation. 
 Difficulties of determination of a parameter to insure the stability of the system (inf-sup related 

in fact). Hard to extend to non-linear bulk behavior. Not easy to reuse all classical contact 
algorithms. 

 
 
3.3 Lagrange multiplier approach (1D Version) 

 
Physical meaning of the Lagrange multiplier: jump of the gradient (heat flux). 
Matrix form 

0T

K G u f
G qλ

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎩ ⎭
      (3.49) 

 
where ( )JK J KG x= −Φ  and ( )K Kq u x= −  

 
Note that: kx are points on the interface 

 
3.4  The choice of the Lagrange Multiplier space 
 

The results obtained with this Lagrange multiplier space are given in Figure 3.2 for a nodal 
integration. It is clear from these results that locking occurs. The suboptimal convergence rate of the 
energy error denotes an over-constrained primal variable space. As shown in reference Ji and H, 
Dolbow 2004 [15], severe oscillations affect the Lagrange multiplier field (see Figure 3.3).  
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Figure 3.2. Exact and approximated flux with the naive X-FEM approach taken from [29]. 
 

 
 

Figure 3.3. Results for non-matching structured meshes using a full Lagrange multiplier space: 
convergence of the errors and inf-sup parameter taken from [29]. 

  
 
To further illustrate why this ‘naive’ approach fails and the locking issue, we shall see the two-

element scalar problem shown in Figure 3.4 [29].  
 

 
 

Figure 3.4. Two-element scalar problem [29]. 
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The Lagrange multipliers solution is 

1 Fλ =  

( ) [ ]2
1

1
F F

e
λ = +

−
      (3.50) 

( )
[ ]3 2

1
1

F F
e

λ = −
−

 

 
where 1 2F F F= +  and [ ] 1 2F F F= − . We observe the second and third Lagrange multipliers 

become unbounded when the interface reaches the bottom layer of elements, especially 3λ whose 
support drops to zero as e  tends to one. Moreover, oscillations occur: the effect of [ ]F is positive for 

2λ and negative for 3λ .  
 

 
If we set 2 3λ λ= , we obtain the Lagrange multiplier below which still exhibit oscillations. 
 

( )
( ) [ ]

3 2

1 3 2

2 9 14 8 1
4 12 7 4

e e e
F F

ee e e
λ

− + −
= −

− + +
 

2 3λ λ=                               (3.51) 

( )
( ) [ ]

2

3 3 2

2 5 4

4 12 7 4

e e
F F

e e e
λ

− +
= −

− + +
 

 
 
On the other hand, if we set ( )2 1 31 e eλ λ λ= − + (linear variation over Γ ) then the oscillations 

disappear. We obtain 
 

( )
( ) [ ]

3 2

1 5 4 3 2

2 8 9 4

4 16 28 32 17 4

e e e
F F

e e e e e
λ

− + −
= +

− + − + −
 

( )2 1 31 e eλ λ λ= − +        (3.52) 

( )
( ) [ ]

3 2

3 5 4 3 2

2 8 9 4

4 16 28 32 17 4

e e e
F F

e e e e e
λ

− + −
= −

− + − + −
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3.5. Algorithm to design the Lagrange multiplier space 
 

Lagrange multipliers were considered for the first time within the concept of X-FEM in 
(Dolbow, Moës, and Belytschko 2001). In (Ji and Dolbow 2004), the authors illustrate through 
numerical experiments that a naive choice for the Lagrange multiplier space, i.e., a piecewise linear 
ansatz space on the interface with a degree of freedom at each node obtained by cutting the interface 
with the edges of the two dimensional mesh of the primal variable, yields oscillatory multipliers on the 
boundary. This oscillatory effect is referred as boundary locking. From the mathematical point of view, 
these oscillations result from a non-uniform but mesh dependent inf-sup condition. Roughly speaking 
this means that the Lagrange multiplier space is locally too rich, and as a consequence the constant in 
the inf-sup condition tends to zero if the mesh-size tends to zero. 

 
In order to improve the approach, a first effort was done in (Moës, Béchet, and Tourbier 2006) 

where a reduced Lagrange multiplier space has been proposed. Although the algorithm to define the 
Lagrange multiplier space passes a numerical inf-sup test, it is quite complex. Numerically, the 
Chapelle-Bathe test is used quite often (Chapelle and Bathe 1993; El-Abbasi and Bathe 2001) to verify 
the inf-sup condition. This test reduces to the computation of eigenvalues for a sequence of meshes 
with increasing density. 

 
A second algorithm was then proposed in (Geniaut, Massin, and Moës 2007), and it was 

extended for large sliding (Nistor, Guiton, Massin, Moës, and Geniaut 2008). The strategy used to build 
the Lagrange multiplier space in the second algorithm is quite easy to grasp. We consider the nodes on 
each side of the interface. These nodes are tied together across the interface by cut edges. As a subset 
of these cut edges, we define the set of vital edges as the minimum set of edges able to connect the 
nodes on each side of the interface. These vital edges and only these will hold a Lagrange multiplier 
degree of freedom. This second algorithm showed slight improvement in terms of accuracy compared 
to the first one. The major issue in implementing the second algorithm is that finding the vital edges 
requires to solve a global problem. Although both approaches perform numerically rather well and no 
oscillations can be observed, no theoretical analysis of the stability exists. 
 
 

 
 

Figure 3.5. Example of edges cut by an interface. Dotted edges are non-vital, groups of connected vital 
edges are circled. The final multiplier approximation (PO or P1) is plotted on the interface for first and 

second algorithms (taken from [49]). 
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 In this thesis, we use a new algorithm (see Appendix B.3 and B.4), was introduced in E. 

Béchet, N. Moës, B. Wohlmuth 2008, which allowing a local construction of the Lagrange multiplier 
space while improving the accuracy of the computed fields. The originality of this approach with 
regard to (Moës, Béchet, and Tourbier 2006) lies in the use of the trace of primary shape functions 
defined on the domain, and a simplified procedure to define the mesh on the interface. The proper 
design of the Lagrange multiplier space is guided by the inf-sup condition (Babuška 1973).  
 

More details about these three algorithms are described in Appendix B: Algorithm to design the 
Lagrange Multiplier space. 
 
3.6 Definition of norms and error norms 
 

In practice, we shall solve the eigen-problem. If the inf-sup condition is satisfied, optimal rates 
of convergence are expected. We shall check these rates on three relative errors, namely the error in the 
‘energy’ norm 

 

( ) ( )
,

h ex h ex

u ex ex

u u u u d

u u d
ε Ω

Ω ∇

Ω

⎛ ⎞∇ − ⋅∇ − Ω
⎜ ⎟=
⎜ ⎟∇ ⋅∇ Ω⎝ ⎠

∫
∫

    (3.53) 

 
 
The 2L error norm measuring the accuracy of the Dirichlet boundary condition 
 

( )
( )

2

, 2

h ex

u ex

u u d

u d
ε Γ

Γ

Γ

⎛ ⎞− Γ⎜ ⎟=
⎜ ⎟Γ⎝ ⎠

∫
∫

      (3.54) 

 
 
And, finally, the error norm on the Lagrange multiplier 
 

( )
( )

2

, 2

h ex
n

ex
n

u d

u d
λ

λ
ε Γ

Γ

Γ

⎛ ⎞− ∇ Γ⎜ ⎟=
⎜ ⎟∇ Γ⎝ ⎠

∫
∫

     (3.55) 

 
where ∇ is the gradient operator and n∇ is its projection on the outward normal on the boundary. 
 

 
This computation will verify that we have a convergence in energy for each method. In this 

section the energy is computed with the Eq. (3.56). 
 

1
2

tE u Ku=       (3.56) 
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This implementation of Eq. (3.56) is simple. This will give equivalent results to the strain 
energy error computed by Eq. (3.57). 

 

( ) ( )T T
exact comp exact compError C dε ε ε ε

Ω
= − − Ω∫    (3.57) 

 
 
3.7 LBB (inf-sup) condition 
 

These approximations are chosen in one part for the displacement and the other part for the 
contact pressures are seemly not satisfy the inf-sup condition in all cases. The failure to comply with 
the Ladygenskaya-Babuška-Brezzi (LBB) condition causes the oscillations of contact pressures, a 
phenomenon similar to that encountered in incompressibility. Physically, in the case of contact, it is to 
seek to impose too many contact points of the interface, making the system hyperstatic. To release it, 
we must restrict the space of Lagrange multipliers, as is done in [29] for Dirichlet conditions with X-
FEM. The algorithm proposed by Moës [29] to reduce the oscillations is extended to 3D case. Its 
purpose is to impose relations of equality or linear relations between Lagrange multipliers. This 
algorithm tends to impose more equal relationships as linear relations, so the linear approximation of 
departure is a little worse. This algorithm has been improved to make it more physical and more 
effective. 

 

inf sup 0
h h h h

h h

h hq Q v V

q divv d

v q
βΩ

∈ ∈

Ω
≥ >∫     (3.58) 

with β independent of h 
The value of β is simply the min of µ in the following generalized eigen-value problem. 

 
1 2T

up uu up ppK M K v M vµ− =     (3.59) 
 

The stability of β with respect to h is checked on a sequence of meshes. 
 
3.8.   Saddle point problem 
 
3.8.1 Lagrange Multipliers for saddle point problem  
 

0
h

h

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠

T
h w FA B

λ GB

N N N

M N M

R R

R R

×

×

∈ ∈

∈ ∈
h h

h

A     w
B       λ

   (3.60) 

0
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

T
hA BS

B
 

Observations [48]: 
 The matrix S is symmetric, 
 The matrix S is usually not ill-conditioned,  
 The matrix S is indefinite (i.e., can have eigenvalues that are zero), 
 The system has a unique solution for hw  if hA is symmetric positive definite. 
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 The system has a unique solution for hl  if anyone of the following (equivalent) statements holds 
good 

 Statement 1: TB  has a trivial null space. 
  Statement 2: The inf-sup condition is satisfied 

inf sup 0β
∈ ∈
≠ ≠

= >
M N

T T

T Tq R v Rq 0 v 0

v B q
v v q q

     (3.61) 

  Statement 3: is 1 TBA B− symmetric positive definite. 
 The system allows very attractive iterative solution procedures. 
 When a large number of constraints are imposed, solution cost increases considerably (since we 

have to solve a (N+M)x(N+M) system).  
 

Let 1

1

w
λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

and 2

2

w
λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 be two solutions of the above equation (we will find the conditions for which it 

is not possible to have two such solutions)   
 

The difference solution  
−∆ ⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟ −∆⎝ ⎠ ⎝ ⎠
1 2

1 2

w ww
λ λλ

      (3.62) 

Satisfies the homogeneous equation  

0

⎛ ⎞ ∆⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∆⎝ ⎠ ⎝ ⎠⎝ ⎠

T w 0A B
λ 0B

      (3.63) 

Can be written as two sets of equations : 
∆ + ∆ =

∆ =
0

0

TA w B λ
B w             

(*)
(**)

     (3.64) 

Premultiplying (3.64 *) by ∆ Tw and (3.64 **) by ∆ Tλ  and subtracting (3.64 **) from (3.64 *) 
0∆ ∆ =Tw A w       (3.65) 

If A  is positive definite (on the set of vectors which lie in the null space of B), then we can say 
that the above implies  

1 20∆ = =w w. .i ew        (3.66) 
The next question is, what is the condition for λ to be unique? 
Go back to equation (3.64*) with 0∆ =w   

∆ + ∆ =

⇒ ∆ =

0

0

T

T

A w B λ
B λ

      (3.67) 

If TB has a trivial null space, then 
1 20∆ = =. .i eλ λ λ       (3.68) 

The following statements are identical: 
 Statement 1: TB  has a trivial null space. 
 Statement 2: The inf-sup condition is satisfied 

inf sup 0β
∈ ∈
≠ ≠

= >
M N

T T

T Tq R v Rq 0 v 0

v B q
v v q q

      (3.69) 
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3.8.2 Inf-sup condition for saddle point problem 
 

The inf-sup parameter: 

=q
T T

T T

v B qv
v v q q

( , )f       (3.70) 

Using Cauchy-Schwartz inequality  

= ≥ = =q ∵
T TT T

T
T T T T T

v B q B qv B qv v v v
v v q q v v q q q q

( , )f    (3.71) 

Hence 

∈
≠

= =qsup ( , )f
N

T T T

T Tv R
v 0

B q q BB q
v

q q q q
     (3.72) 

Now consider the following eigenvalue problem 
 

λ= xTBB x       (3.73) 
The matrix TBB  is symmetric positive definite if TB  is full rank and therefore it will have M 

positive eigenvalues. If TB  is full rank, then the inf-sup condition is satisfied with  
 

λ β
∈ ∈
≠ ≠

= = =q
M N

T T

Tq R v R
q 0 v 0

q BB q
v

q q
mininf sup ( , )f     (3.74) 

where minλ is the minimum eigenvalue of TBB   
 
 
3.8.3 Example 
 

Consider the matrix 

1

2

0

1 4 3 0
2 7 9 0
3 4 7 0 0

σ
σ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

S

A

T

T

A B
B

;   B
     (3.75) 

with 1 2 0σ σ> >  

∈
≠

= =sup
3

T T TT T

T T T Tv R
v 0

B q q BB qv B q

v v q q q q q q
     (3.76) 

Now, for arbitrary [ ]1 2, Tq q q=   
2 2 2 2

1 1 2 2
2 2

1 2

2 2 2
1 2

1 22 1

sup

/

σ σ

σ σ

∈
≠

+
= =

+

+
= =

+

3

T TT T

T T Tv R
v 0

q BB qv B q

v v q q q q

q q
q q

q
where q q q

q

    (3.77) 
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The expression within the radical sign is a symmetric positive function of the variable ‘q’ whose 
minimum value is 2σ .  

 
Therefore, 

2 2 2
1 2

22 1
σ σ σ

∈ ∈
≠ ≠

⎛ ⎞+
⎜ ⎟= =
⎜ ⎟+⎝ ⎠

inf sup min q
q2 3

T T

T Tq R v Rq 0 v 0

v B q
v v q q

   (3.78) 

Hence, the inf-sup condition provides a very practical means of evaluating whether TB  has a 
null space in this example, 2σ  needs to be positive.  
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Chapter 4 
Numerical examples 
 
 

In this thesis, the application of the X-FEM  to impose kinematic conditions along interfaces 
problems in two-dimensional solid mechanics is explored. During this thesis many computations have 
been made. The main computations made during this report are explained below. In the following 
section you will see several case description. Mainly it was to study the influence of some parameters.  
In this research, various applications of the X-FEM were used and applied to 2D problems. Two 2D 
numerical examples are used to illustrate the methods described in previous sections for the imposition 
of essential boundary conditions. Let’s see these following cases, numerical examples are given: 
 

 Example 1: Numerical simulation of an elastic plate of dimensions (-1,1) x (-1,1) cut by a 
circle has the radius equal to R= 0.4 and then glue the parts back together.  
 

 Example 2: Numerical simulation of an elastic plate of dimensions (-1,1) x (-1,1) with a 
circular hole (radius equal to 0.4) cut by a circle has the radius equal to R= 0.7 and then glue 
the parts back together. 

 

 
 

 
Figure 4.1. The unit-square model problem with geometry and loading of two examples: (a) example 1; 

(b) example 2 (plate with a hole). 
 

The plate lies in a square domain (-1,1)x(-1,1). The center circle is located at (0,0) and has for 
radius a variable R=0.4. The material is metal for which the Young’s modulus is taken equal to 1 and 
the poisson coefficient equal to 0.3. The bottom left side is clamped. They are subjected to two types of 
loading. Firstly, we apply the loading which represented in Figure 4.1. In the other case, we consider 
the problem of a plate with a traction-free circular hole submitted to uniaxial tension. 
 

R=0.4 

2

2 

(a) (b) 

R=0.7 

R=0.4 
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Plate with hole in tension:  
 
 Suppose that the plate is a homogeneous isotropic elastic body.  
 
where a  is the radius of the hole and ( ),r θ  is a polar coordinate system, the origin of which is located 
at the center of the hole.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.2. (a) Pressure in a hole; (b) and (c) traction-free circular hole submitted to uniaxial tension. 
 

 
 
 
 

 
 
 
 

Figure 4.3. An elastic plate with a circular hole under uniaxial tension. 
 

 

T 

T 
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T

T 
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This includes the stresses around a circular hole. The expressions for stress components into 
polar coordinates, using the relations 
 

( )cosx r θ= ;   ( )siny r θ=  

atan2( , )y xθ = ;  2 2r x y= +  
 

There exists an exact solution for the stresses (Timoshenko and Goodier, 1970) 
 

( )2 4 2

2 4 2

cos 2 3 41 1
2 2r

TT a a a
r r r

θ
σ

⎛ ⎞ ⎛ ⎞
= − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠  
( )2 4

2 4

cos 2 31 1
2 2t

TT a a
r r

θ
σ

⎛ ⎞ ⎛ ⎞
= + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠  
( ) 4 2

4 2

sin 2 3 2 1
2rt

T a a
r r

θ
τ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠  
 

11 12

21 22

33

0
0

0 0

σ σ
σ σ σ

σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦  

 
 

( ) ( ) ( ) ( )2 2
11 cos sin 2 sin cosr t rtσ σ θ σ θ τ θ θ= + −  

( ) ( ) ( ) ( ) ( )( )2 2
12 sin cos cos sinr t rtσ σ σ θ θ τ θ θ= − + −  

21 12σ σ=  

( ) ( ) ( ) ( )2 2
22 sin cos 2 sin cosr t rtσ σ θ σ θ τ θ θ= + +  

( )33 11 22σ ν σ σ= ⋅ +  
 

 

 
 

Figure 4.4. Deformation of the hole under tension. 
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In order to investigate the behaviour of the new approach, we computed the 2L norm for each 
simulation.  

 
The exact energy norm and the error in energy norm are defined in chapter 2. 

 
For instance, calculate analytical the exact energy norm on Lagrange multiplier is shown the 

value of 1.482941286  
 
For a radius = 0.7 
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2 4
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a
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On the below meshes, we show some of the meshes used for the computation on the plate. 

These meshes and all the computations have been obtained with the C++ extended finite element 
methods tools which developed by Ecole Centrale de Nantes team.  

 

    
 

Figure 4.6. One of the computation with (10 x 10 elements): (a) in example 1; (b) in example 2. 
 
A couple of computations with different meshes have been made. Six different meshes are 

usually considered in each type of problems: 5 x 5 (0.400), 10 x 10 (0.200), 20 x 20 (0.100), 40 x 40 
(0.050), 80 x 80 (0.025), 160 x 160 (0.0125). Furthermore, we also use the other meshes represented in 
tables. A totally unstructured mesh could also have been used. A sample unstructured mesh (10 x 10  
elements) is shown in Figure 4.6.  

R θ 

Figure 4.5. Circular hole. 

(a) (b) 
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Moreover, we use the computations with unstructured meshes and structured meshes. The 
sample unstructured mesh and structured mesh (30 x 30  elements) is shown in Figure 4.7. 

 

    
 
 

Figure 4.7. Examples of mesh (30x30 elements) used for the plate: (a) unstructured mesh (2457 dofs); 
(b) structured mesh (2183 dofs). 

 
These mesh is obtained by meshing a plate with a hole of radius R=0.4 and by meshing also the 

interior of this hole. The computational domain and the unstructured mesh are shown in Figure 4.8.  
 

 

 
 
 
Figure 4.8. For unstructured mesh (10x10 elements): (a) refined mesh with the radius equal to 0.5 for 

example 1 (1531 dofs); (b) refined mesh with the radius equal to 0.5 for example 2 (1133 dofs); (c) 
refined mesh with the radius equal to 0.85 for example 2 (2649 dofs). 

 
 
 
 
 
 
 

(a) (b) 

(a) (b) (c) 
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4.1 Example 1 
 

Table 4.1: Unstructured mesh computations on the first example. 
 

Mesh 5x5 10x10 20x20 40x40 50x50 60x60 70x70 80x80 160x160 
energy exact  3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64 

error absolute exact  0.129892 0.076799 0.020652 0.007106 0.005427 0.003529 0.001986 0.001687 0.000776 
error relative exact 0.068082 0.040254 0.010825 0.003725 0.002844 0.00185 0.001041 0.000884 0.000407 
energy exact on LM 1.01701 1.24049 1.24732 1.25355 1.25729 1.25412 1.25525 1.25516 1.25615 
error absolute exact on LM 0.417561 0.194305 0.093589 0.044254 0.039844 0.031056 0.023019 0.021145 0.011782 
error relative exact on LM 0.414054 0.174457 0.083799 0.039526 0.035534 0.027732 0.020546 0.018874 0.010512 
Inf-Sup 1.203841 0.84819 0.670264 0.574195 * * * * * 

 
Table 4.2: Structured mesh computations on the first example. 

 
Mesh size 5x5 10x10 20x20 30x30 40x40 80x80 160x160 
energy exact  3.64 3.64 3.64 3.64 3.64 3.64 3.64 

error absolute exact  0.135507 0.074203 0.016705 0.007541 0.004913 0.001321 0.000573 
error relative exact 0.071025 0.038893 0.008756 0.003953 0.002575 0.000693 0.0003 
energy exact on LM 1.1064 1.20974 1.24393 1.24677 1.24962 1.256 1.25588 
error absolute exact on LM 0.463372 0.20336 0.099764 0.066784 0.050617 0.023894 0.012239 
error relative exact on LM 0.440528 0.184892 0.089449 0.059811 0.04528 0.021321 0.010922 
Inf-Sup 0.883513 0.633505 0.539896 0.539956 0.535193 * * 

 
Table 4.3: Unstructured refined mesh (with radius = 0.5) computations on the first example. 

 
Mesh  5x5 7x7 9x9 10x10 11x11 12x12 13x13 14x14 15x15 20x20 25x25 30x30 

energy exact  3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64 

error absolute exact  0.025119 0.009058 0.006048 0.005923 0.005114 0.004625 0.003775 0.00309 0.002399 0.00207 0.001476 0.000946 

error relative exact 0.013166 0.004747 0.00317 0.003104 0.00268 0.002424 0.001979 0.00162 0.001258 0.001085 0.000774 0.000496 

energy exact on LM 1.2786 1.25702 1.25648 1.26358 1.25878 1.25372 1.25664 1.26122 1.25659 1.25726 1.25577 1.25713 

error absolute exact on LM 0.110333 0.061094 0.047165 0.045261 0.040933 0.038293 0.032205 0.031895 0.029489 0.021917 0.018099 0.013605 

error relative exact on LM 0.097575 0.054491 0.042077 0.040265 0.036484 0.034199 0.028729 0.0284 0.026307 0.019547 0.016151 0.012134 
Inf-Sup 0.430819 0.355826 0.349526 0.330878 0.3321 0.341292 0.317271 0.32176 * * * * 

 
Remark: * shown that we are not able to obtain the computation of inf-sup value. That is a 

problem because the number of dofs is “high”. The capability of the computer was a limit for those 
computation. In those limited computations, it was not possible to use a mesh as fine as we wanted to 
obtain inf-sup value. 
 

We test the X-FEM on a problem to establish the rate of convergence of the method. The 
convergence of the numerical method is studied by the energy norm and the Lagrange multiplier. The 
relative error in the energy norm is computed as the mesh is refined. The relative error in the energy 
norm is plotted as a function of the mesh spacing (log-log plot). In theory the plot of the energy in 
function of the number of dof. in scale log-log is straight line if there is convergence and the slope of it 
(<1) give the rate of convergence. 

 
 For measuring the accuracy of the computation, in these figures all of them converge with 

mesh refinement. The energy convergence will be used. These computations will verify that we have a 
convergence for all test cases.  
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Figure 4.9. For the example 1, the comparison between structured and unstructured meshes:               
(a) convergence of the energy norm; (b) convergence of the 2L error on the Lagrange multiplier. 

 

   
 
 

Figure 4.10. For the example 1: (a) inf-sup value on the comparison between structured and 
unstructured meshes; (b) inf-sup value of the refined mesh. 

 

 
Figure 4.11. Error on the Lagrange multipliers for the interface problem (refined mesh at the radius 

equal to 0.5). 

1 
1 

(a) (b) 

(a) (b) 
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1 
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In order to investigate the behavior of the new approach, we computed the 2L norm for each 
simulation. Results for the non-matching (uniform) meshes case using of the reduced multiplier space: 
convergence of the errors and inf-sup parameter.  
 

Fields of stress and displacement are computed by the extended finite element method in square 
plate. Figures 4.12 and 4.14 shows a comparison among displacement and stress fields. 

 
 

  
 

 
Figure 4.12. For example 1, the comparisons between displacements in: (a) mesh (5x5 elements, 103 

dofs); (b) mesh(160x160 elements, 51999 dofs). 
 
 

Please note the gap (jump in the displacements) in a rough mesh and a fine mesh. In the other 
comparison, make both mesh visible and we’ll have what looks like on the appear mesh again. No 
improvement is obtained in the coarse mesh. However, the result is good for the fined mesh. 

 
  

    
 
 

Figure 4.13. Zoom on the interface of example 1 for mesh: (a) (10x10 elements, 341 dofs);  
(b) (160x160 elements, 51999 dofs). 

(a) (b) 

(a) (b) 
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As the study relative to the displacement fields leads to good conclusions, we now focus on 

stresses within the plate.  
 

 

  
 

 
 

Figure 4.14. Comparison of stress in the mesh (40x40 elements): (a) unstructured mesh (4225 dofs);  
(b) structured mesh (3661 dofs). 

 
 
 

  
 
 
 

Figure 4.15. Comparison of the mesh (20x20 elements): (a) structured mesh (1029 dofs);  
(b) unstructured mesh with the refined mesh in the radius equal to 0.5 (5717 dofs). 

 
 

 
 

(a) (b) 

(a) (b) 
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And for computing error, 
 

 

   
 
 
 

Figure 4.16. The error computations are carried out for different values of mesh: (a) mesh of 40x40 
elements (4225 dofs); (b) mesh of 160x160 elements (51999 dofs).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
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4.2 Example 2 
 

Table 4.4: Unstructured mesh computations on the second example. 
 
Mesh  5x5 10x10 20x20 25x25 30x30 35x35 40x40 50x50 80x80 160x160 
energy exact  4.529890 4.062010 4.032410 4.029740 4.026630 4.026170 4.025730 4.024650 4.023090 4.022620 
error absolute exact  0.834429 0.328234 0.212376 0.163092 0.126669 0.113101 0.101604 0.085112 0.053672 0.025131 
error relative exact 0.392054 0.162859 0.105760 0.081245 0.063125 0.056366 0.050639 0.042426 0.026759 0.012530 
energy exact on LM 1.451080 1.461360 1.480620 1.479230 1.476740 1.476130 1.477590 1.475510 1.477540 1.475550 
error absolute exact on LM 0.530019 0.179287 0.103852 0.078560 0.063427 0.053488 0.045613 0.036837 0.021957 0.010921 
error relative exact on LM 0.439992 0.148310 0.085348 0.064593 0.052194 0.044024 0.037524 0.030326 0.018063 0.008990 
Inf-Sup 1.067191 0.691359 0.650401 0.625104 0.667652 0.683250 0.728837 * * * 

 
Table 4.5: Structured mesh computations on the second example. 

 
Mesh  5x5 10x10 20x20 30x30 35x35 40x40 
energy exact  4.492590 4.082770 4.036700 4.028810 4.027060 4.026090 
error absolute exact  0.767359 0.379316 0.223537 0.160995 0.145170 0.126327 
error relative exact 0.362034 0.187726 0.111259 0.080209 0.072341 0.062958 
energy exact on LM 1.367060 1.536730 1.495210 1.484430 1.471700 1.479790 
error absolute exact on LM 0.546072 0.296083 0.125341 0.069991 0.063593 0.056134 
error relative exact on LM 0.467042 0.238844 0.102504 0.057446 0.052420 0.046145 
Inf-Sup 0.691551 0.621886 0.587801 0.546792 0.531919 0.554174 

 
Table 4.6: Unstructured refined mesh (with radius = 0.5) computations on the second example. 

 
Mesh  5x5 10x10 15x15 20x20 25x25 30x30 
energy exact  4.036110 4.025520 4.023750 4.023280 4.022920 4.022810 
error absolute exact  0.308659 0.148416 0.099044 0.074615 0.060733 0.050027 
error relative exact 0.153638 0.073973 0.049376 0.037199 0.030280 0.024942 
energy exact on LM 1.462390 1.490250 1.480360 1.480510 1.477460 1.477000 
error absolute exact on LM 0.199182 0.100781 0.073558 0.046938 0.039499 0.031136 
error relative exact on LM 0.164709 0.082556 0.060457 0.038576 0.032496 0.025620 
Inf-Sup 0.530101 0.490511 0.511335 * * * 

 
Table 4.7: Unstructured refined mesh (with radius = 0.85) computations on the second example. 

 
Mesh  3x3 5x5 6x6 8x8 9x9 10x10 11x11 12x12 14x14 15x15 20x20 
energy exact  4.055570 4.033510 4.029880 4.028180 4.025700 4.024840 4.024610 4.024470 4.024180 4.023800 4.023120 
error absolute exact  0.341845 0.217638 0.178971 0.149987 0.127157 0.110835 0.104786 0.099668 0.087163 0.077969 0.058261 
error relative exact 0.169748 0.108366 0.089153 0.074731 0.063375 0.055246 0.052232 0.049682 0.043450 0.038869 0.029047 
energy exact on LM 1.518900 1.474600 1.481080 1.472280 1.477390 1.475340 1.476100 1.476800 1.478030 1.475990 1.476870 
error absolute exact on LM 0.207665 0.104269 0.086510 0.057385 0.054747 0.047841 0.044738 0.040658 0.030778 0.028799 0.022523 
error relative exact on LM 0.168500 0.085866 0.071085 0.047293 0.045042 0.039387 0.036823 0.033457 0.025316 0.023705 0.018533 
Inf-Sup 0.399471 0.354536 0.365466 0.334062 0.341433 0.344741 0.329230 * * * * 

 
The results in this section are presented for a plate with a hole of 0.4 of radius. The inf-sup 

parameter (numerical inf-sup test) is given as well as the convergence of the errors. The upper of the 
four figures are the energy error, the following two figures are the error on the Lagrange multipliers 
and the last two bottom figures is the inf-sup value.  

Rate of convergence in energy for the plate with a hole problem. This slopes obtained in figures 
proved that the code do converge in energy.  
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Figure 4.17. Error evolution for non-matching meshes. 

 
Fig 4.17 shows a convergence of the path with mesh refinement. Also the path has smaller oscillations 

with mesh refinement. This is due to the convergence for fined meshes. 
 

   
 

Figure 4.18. Convergence of the relative error: (a) without refined mesh; (b)with circular refined mesh.  
 

In Figure 4.18 this is clearly shown, it seems that for refined meshes the rate of convergence 
becomes more stable.   

The relative error norms on the Lagrange multipliers are shown. 

   
 

Figure 4.19. Error on the Lagrange multipliers for the interface problem: (a) unstructured and 
structured meshes; (b) refined mesh at the radius equal to 0.5 and 0.85. 
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Figure 4.20. Numerical computed inf-sup value: (a) without refined radius; (b) refine with the radius 
equal to 0.85. 

 
 
In Figure 4.19, the convergence rates are indicated on the plots. In Figure 4.20, the inf-sup 

conditions do not tend to zero if the mesh-size tends to zero. 
  

These computation have been made with (20x20 elements). 
 
 

 
 

 
Figure 4.21.  Mesh (20x20 elements, 9231 dofs): (a) the displacement field; (b) stress field in the body. 
 
 
 

 
 
 
 
 

(a) (b) 

(a) (b) 
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Figure 4.22. Mesh (20x20 elements, 9231 dofs): (a) error; (b) vectors of Lagrange multipliers. 
 
 
 
 
 
 

  
 
 

Figure 4.23. For example 2, in the mesh (10x10 elements) the comparison between stresses in: (a) the 
refined mesh with the radius equal to 0.5 (1133 dofs); (b) the refined mesh with the radius equal to 

0.85 (2649 dofs). 
 
 
 
 
 

(a) (b) 

(a) (b) 
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The deformation obtained for this reference solution is represented on Figure 4.24. 
 
 

  
 

 
Figure 4.24. The displacement field in the plate with: (a) a mesh (10x10 elements, 417 dofs) display as 

continuous map; (b) a mesh (40x40 elements, 2623 dofs) display as vector field. 
 
 

In the numerical computations, it is shown that the stability issue should be clarified and 
properly analyzed. All these results came from computations with X-FEM. The error in energy norm, 
the error on the Lagrange multipliers and the inf-sup are used to evaluate the resulting algorithm. We 
described the error as a function of the mesh size. We prove energy type in 2 space dimensions, and 
present some numerical examples. For two cases all computations have been made to compare the 
results. In this study, the results obtained for the test case seems logical. 
 

 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
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Chapter 5 
Conclusions 
 
 

The aim of this thesis is to present a general overview on the existing techniques to enforce 
essential boundary conditions in X-FEM. From the general to the particular, the application of the      
X-FEM to model the kinematic condition in two-dimensional solid mechanics is explored. It is shown 
that, the Lagrange multiplier method is one of the most popular, because of its straightforward 
implementation and applicability to a large variety of problems. However, attention must be paid to the 
choice of the interpolation space for the Lagrange multiplier. The discretization of the Lagrange 
multiplier must be accurate enough in order to obtain an acceptable solution, but it can lead to singular 
matrices if the interpolation space does not verify the Ladygenskaya-Babuška-Brezzi stability 
condition. Thus, the stability issue should be clarified and properly analyzed. 
 

A simple 2D linear elasticity problem shows the major difficulties in the practical choice of the 
interpolation of the multiplier in particular situations. Particular examples are used to analyze and 
compare their performance in different situations. The computational time and costs incurred in the 
implementation and execution of any numerical method is a critical component in the evaluation of its 
feasibility, usability, and potential for applications. The numerical results demonstrated the capabilities, 
versatility, accuracy, and robustness of the numerical method. 
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Appendix A 

Calculation for the theory to illustrate the choice of 
the Lagrange Multiplier space 

 
 

To prove the theory [29], I am in the middle of all of these computations myself. In fact, it can 
be easily done by hand. 
 

 
 
 
 
 
 
 
 

 
 
 
 

Element Node 1 Node 2 Node 3 
1 1 3 4 
2 4 2 1 

 
 

 
11 12 13

21 22 23

31 32 33

e

K K K
K K K K

K K K

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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2 2 2 2

2 2

2 2

2 1 1
1 10 1 1 0

2 2
0 1 0 1

e

a b b a
K b b

ab
a a

⎡ ⎤+ − − − −⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦

 

 
 

2 2

2 2 2 2

2 2

0 1 1 0
1 1 1 2 1

2 2
0 0 1 1

e

b b
K b a b a

ab
a a

⎡ ⎤− −⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + − = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦

 

 
 
 

4 2 1 
1 3 4 

1   4 

3   2 

4   1 
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2 3 

1 2 

3 4 
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2 3
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3λ2λ1λ 3λ
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Assemble the K matrix 
 

1 2 2 1 1 2
11 33 32 12 13 31

2 2 2
23 22 21
1 1 1
21 22 23

1 2 2 1 1 2
31 13 12 32 33 11

2 1 1 0
1 2 0 10 1
1 0 2 120

0 1 1 2

K K K K K K
K K K
K K K

K K K K K K

⎡ ⎤ − −+ + ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −+ +⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 
Find the coefficient ,α β of the K matrix 
 

 Coefficient α  

1

1

2

2

1
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1 11 1
2 2

eA e e

A

A
e

A
α

Ω

∆

Ω

∆
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= × × =

= =

 

 Coefficient β  
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2

2
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e e
A e e
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A
e e

A
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= × + − =

= × =
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Multiplies the coefficient ,α β  to the stiffness matrix  
 

1 2 2 1 1 2
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 Find the B matrix  

 
 
 
 
 
 
 
 

 With 1 3 41, 0ϕ ϕ ϕ= = =  

( ) ( )
1 1
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e e
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( ) ( )
3 4
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e
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−
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Replaced to the formula of 1 2 3, ,λ λ λ in the previous calculation:  
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1 1 1

1 1
u e F F F F

e e
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In summary, we have 
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 Set 2 3λ λ= , the system of equations in (A.1) given 
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− + − − + − + +
= −

− + + − + +
    (A.15) 

Thus, 
( )

( )
( )

( )
( )
( )

4 3 2 4 3 2 4 3 2

1 1 24 3 2 3 2 3 2

2 6 4 2 2 6 3 4 2 2 6 4 2
2 2

2 6 3 4 2 4 12 7 4 4 12 7 4

e e e e e e e e e e
u F F

e e e e e e e e e e

⎡ ⎤− + + − + − − + − + +
⎢ ⎥= − − −

− + − − + − + + − + +⎢ ⎥⎣ ⎦
 

( )
( )

2

24 3 2

2 2
2 6 3 4 2

e e
F

e e e e
−

−
− + − − +

        (A.16) 

 
Consequently, 

( )
( )
( )

22

1 1 22 2

13 3
2 2

ee e u u
e e e e

λ
−− +

= −
− −

 

( )( ) ( ) ( )
( )( )

22 4 3 2 4 3 2

1 12 3 2

3 3 2 6 4 2 1 2 6 3 4 2
2

2 4 12 7 4

e e e e e e e e e e
F

e e e e e
λ

− + − + + + − − + − − +
= − +

− − + +
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( )( ) ( )( ) ( )( )
( )( )( )

22 4 3 2 2 2 3 2

22 3 2 4 3 2

3 3 2 6 4 2 3 3 2 2 4 12 7 4
2

2 4 12 7 4 2 6 3 4 2

e e e e e e e e e e e e e
F

e e e e e e e e e

− + − + + − − + − − − + +
+

− − + + − + − − +
 

( ) ( )( )
( )( )( )

2 4 3 2 4 3 2

22 3 2 4 3 2

1 2 6 4 2 2 6 3 4 2
2

2 4 12 7 4 2 6 3 4 2

e e e e e e e e
F

e e e e e e e e e

− − + + − + − − +
+

− − + + − + − − +
 

 
1 1 2I Iλ = +  

( )( ) ( ) ( ) ( ){ }
( )( )

2 22 4 3 2 4 3 2

1 13 2

3 3 2 6 4 2 1 2 6 4 2 2
2

2 4 12 7 4

e e e e e e e e e e
I F

e e e e e

⎡ ⎤− + − + + + − − − + + − −⎣ ⎦= −
− − + +

 

( )
( )

3 2

1 1 13 2

2 9 14 8

4 12 7 4

e e e
I F F

e e e e

− + −
= −

− + +
 

 
( ) ( )( )
( ) ( )( )

4 3 2 4 3 2

2 23 2 4 3 2

2 2 6 3 4 2 2 5 9 4
2

2 4 12 7 4 2 6 3 4 2

e e e e e e e e e
I F

e e e e e e e e e

− − + − − + − − + −
=

− − + + − + − − +
 

( )
( )

3 2

2 2 23 2

2 9 14 8

4 12 7 4

e e e
I F F

e e e e

− + −
= +

− + +
 

 
( )
( )

( )
( )

3 2 3 2

1 1 1 2 23 2 3 2

2 9 14 8 2 9 14 8

4 12 7 4 4 12 7 4

e e e e e e
F F F F

e e e e e e e e
λ

− + − − + −
= − + +

− + + − + +
 

( ) ( )
( ) ( )

3 2

1 1 2 1 23 2

2 9 14 8 1
4 12 7 4

e e e
F F F F

ee e e
λ

− + −
= + − −

− + +
     (A.17) 

 
Replaced u1, u2 to 2λ  

( ) ( )
4 3 2 4 3

2 1 22 22 2

3 4 2 2 2

2 2

e e e e e e eu u
e e e e

λ − + − + − +
= − −

− −
 

( ) ( )

3 2 3 2

2 1 22 2
3 4 2 2 2

2 2
e e e e eu u

e e e e
λ − + − + − +

= − −
− −

    (A.18) 

 
The coefficient of F1  

( )
( ) ( )
6 5 4 3 2

12 3 2

2 15 42 52 24
2

2 4 12 7 4

e e e e e
F

e e e e e

− + − +
=

− − + +
 

( ) ( )
5 4 3 2

12 3 2

4 30 84 104 48
2 4 12 7 4

e e e e e F
e e e e
− + − +

=
− − + +
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( ) ( ) ( )
( ) ( )

2 3 2 2

12 3 2

2 4 12 7 4 2 5 4

2 4 12 7 4

e e e e e e
F

e e e e

⎡ ⎤− − + + − − +⎣ ⎦=
− − + +

 

( )
( )

2

1 13 2

2 5 4

4 12 7 4

e e
F F

e e e

− +
= −

− + +
 

 
The coefficient of F2  

( )( ) ( )
( ) ( )( )

23 2 4 3 2

22 4 3 2 3 2

4 10 2 8 2 2 6 3 4 2

2 2 6 3 4 2 4 12 7 4

e e e e e e e e e
F

e e e e e e e e e

− + + − − + − − +
=

− − + − − + − + +
 

( ) ( )
( )

3 2 2

23 2

4 12 7 4 2 5 4

4 12 7 4

e e e e e
F

e e e

⎡ ⎤− + + + − +⎣ ⎦=
− + +

 

( )
( )

2

2 23 2

2 5 4

4 12 7 4

e e
F F

e e e

− +
= +

− + +
 

Then  

( ) ( )
( ) ( )

2

2 1 2 1 23 2

2 5 4

4 12 7 4

e e
F F F F

e e e
λ

− +
= + − −

− + +
    (A.19) 

As a consequence,  
 

( )
( ) [ ]

3 2

1 3 2

2 9 14 8 1
4 12 7 4

e e e
F F

ee e e
λ

− + −
= −

− + +
 

2 3λ λ=           (A.20) 

( )
( ) [ ]

2

3 3 2

2 5 4

4 12 7 4

e e
F F

e e e
λ

− +
= −

− + +
 

 
 

 We set ( )2 1 31 e eλ λ λ= − + , the system of equations (A.1) returns: 
 

( )
( )
( )
( )

( )
( )

( ) ( )
( )

( )

( ) ( )
( ) ( )

2 2

1 1
22 2 2

2 2
2 2 2 2

3
2 2

4

2
1

2
3

2 2 0 | 1 11 2
2 22 4 2 0 2 | 0 1
3 00 2 | 0
4 00 2 2 | 1

5 01 0 1 | 0 0
6 01 1 0 | 0 0

e e e e e e e u F
u Fe e e e e e e
ue e e e
ue e e e e e e

e e e e

e e e e

λ
λ

⎡ ⎤− − − − − −⎡ ⎤ ⎡⎢ ⎥ ⎢ ⎥ ⎢−− − − − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥⎢ ⎥× =− − − − − ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −− − − − − − −⎢ ⎥ ⎢ ⎥⎢ ⎥− − − − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣⎣ ⎦⎢ ⎥− − − − −⎣ ⎦

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

  (A.21) 
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Take the first line of the B matrix 
( ) ( )1 2 31 1 0e e eλ λ λ− − − − +  

( ) ( ) ( )1 1 31 1 1e e e e eλ λ λ= − − − − − +⎡ ⎤⎣ ⎦  

( ) ( ) ( )2
1 31 1 1e e e e eλ λ⎡ ⎤= − − − − − −⎣ ⎦  

( ) ( )
*
1 1 2

*
3 3 2

1
. 1

e
e e e e e

e

λ λ λ

λ λ λ

= + −
− − − = −

= +
 

 
( ) ( ) ( )2

1 3 45 1 1 0e u e u e e u− − − − =  

( )
2

1 3 41
eu u eu

e
= −

−
     (A.22) 

( ) ( ) ( )2
1 2 46 1 1 0e e u e u eu− − − − − =  

( ) ( ) ( )
2

2
3 4 2 41 1 0

1
ee e u eu e u eu

e
⎡ ⎤

− − − − − − =⎢ ⎥−⎣ ⎦
 

( ) ( )23 2
3 4 2 41 1 0e u e e u e u eu+ − − − − =  

( ) ( )23 2
3 4 21 1 0e u e e e u e u+ − + − − − =  

( )
( )
( )

23

2 3 42 2

1

1 1

e e eeu u u
e e

− + −
= +

− −
     (A.23) 

 
( ) 2 2 2 2

1 3 4 13 2 0e u e u e u e λ− + − − =  

( )
2

3 4 3 4 12 0
1

e u eu u u
e

λ− + + − − =
−

 

( ) ( )
2

3 4 1
2 2 1 0
1

e e u e u
e

λ− + −
+ − − =

−
 

( )
( )

( )
( )

2

3 4 12 2

1 1
2 2 2 2

e e
u u

e e e e
λ

− −
= − +

− + − − + −
    (A.24) 

 
( ) ( ) ( ) ( ) ( )22 2 2

1 2 4 3 22 2 4 2 2 1 2e e u e e u e e u e Fλ− + − + − − − = −  

( ) ( ) ( )
( )

( )
( )

( ) ( )
22 3

22 2 2
3 4 3 4 4 3 22 2

1
2 4 2 2 1 2

1 1 1

e e ee ee e u eu e e u u e e u e F
e e e

λ
⎡ ⎤− + −⎡ ⎤
⎢ ⎥− − + − + + − − − = −⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎣ ⎦

 
( )

( )
( )

( )
( )

5 4 3 5 4 3 2
2

3 4 3 22 2

2 3 3 2
1 2

1 1

e e e e e e e e
u u e F

e e
λ

− + + − − + −
+ − − = −

− −
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( )
( )

( )
( )

( )

5 4 3 5 4 3 2
2

3 3 42 4 4

2 3 3 22
1 1 1

e e e e e e e eF u u
e e e

λ
− + + − − + −

= + +
− − −
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( )

( )
( )

( )
( )

( )
( )

( )
25 4 3 5 4 3

2
3 4 12 4 42 2

2 21 12
2 2 2 21 1 1

e e e e e ee eF u
e e e ee e e

λ λ
− + + − + +− −

= − +
− + − − + −− − −

 

( )
( )

5 4 3 2

44

3 3 2

1

e e e e e
u

e

− − + −
+

−
 

( )
( )

( ) ( )
( )
( ) ( )

5 4 3 4 3 2
2

3 1 42 3 42 2

2 4 12 10 42
1 1 2 2 1 2 2

e e e e e e eF u
e e e e e e e

λ λ
− − − + − +

= + +
− − − + − − − + −

   (A.25) 

 
( ) ( ) ( )2 2

2 3 4 1 34 2 2 1 0e e u e u eu e e eλ λ− − + − − − =  
 
Replaced 2 3 3, ,u u λ into (4) 

( )
( )

( )
( )

( )
23

2 2
3 4 3 4 12 2

1
2 2 1

1 1

e e eee e u u e u eu e e
e e

λ
⎡ ⎤− + −
⎢ ⎥− + − + − − −

− −⎢ ⎥⎣ ⎦
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2
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e e e e e e eF u e
e e e e e e e

λ
⎡ ⎤− − − + − +
⎢ ⎥− + + =
⎢ ⎥− − − + − − − + −⎣ ⎦
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2
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( )
( )

( ) ( )
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2
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e e e e e e e

λ
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1 42 3 42 2

2 8 14 17 9 2 2 8 15 20 13 42 0
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e e e e e e e e e e e eeF u
e e e e e e e

λ
− + − + − + − + − + −

− + + =
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2
4 16 5 4 3 2 6 5 4 3 2

1 2 8 14 17 9 2 2 1 2 2

2 8 15 20 13 4 2 8 15 20 13 4

e e e e e e e e e e e F
u

e e e e e e e e e e e e
λ
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− + − + − − + − + −
 (A.26) 

 
Replaced u4 to 3λ  

( )
( )

( ) ( )
5 4 3

2
3 12 3 2

22
1 1 2 2

e e eF
e e e e

λ λ
− −

= + +
− − − + −
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+
( )
( ) ( )

( )( )
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4 3 2 6 5 4 3 2

14 6 5 4 3 22

4 12 10 4 1 2 8 14 17 9 2

2 8 15 20 13 41 2 2

e e e e e e e e e e e

e e e e e ee e e
λ

⎡− + − + − − + − + − +
⎢− +
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2

6 5 4 3 2
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2 8 15 20 13 4

e e e e F

e e e e e e

⎤− − + −
⎥+

− + − + − ⎥⎦
 

 

( ) ( )
6 5 4 3 2

3 22 6 5 4 3 2

4 24 54 60 34 8
1 2 8 15 20 13 4

e e e e e e F
e e e e e e e

λ − + − + −
= +

− − + − + −
 

( )
( ) ( )( )

11 10 9 8 7 6 5 4 3 2

13 2 6 5 4 3 2

2 18 75 191 327 389 320 174 56 8

1 2 2 2 8 15 20 13 4

e e e e e e e e e e

e e e e e e e e e
λ

− + − + − + − + −
+

− − + − − + − + −
  (A.27) 

 
( ) ( ) ( ) ( )2 2

1 2 3 1 3 11 2 2 1 1 2eu e e u e u e e e Fλ λ+ − − + − − − = −  
 
Replaced by u1, u2 and u3  

( )
( )

( )
( ) ( )

( )
( ) ( )

5 3 7 6 5 4 3 2 3 2

3 4 1 3 12 2 22

2 2 6 6 2 4 4 2
1 2

2 21 1 2 2

e e e e e e e e e e e
u u e e F

e ee e e e
λ λ

− − − + − + − + − +
+ + − − = −

− + −− − − + −
 

 
Replaced by u3 and 3λ  

( )
( ) ( )

( )
( ) ( ) ( )

5 4 3 2 5 4 3 2
2

4 1 13 22 2

2 6 5 3 2 8 12 14 8 2 2 2
11 2 2 1 2 2

e e e e e e e e e eFu F
ee e e e e e

λ
− + − − + − + − +

+ − = −
−− − + − − − + −

 

 
Replaced by u4 

( )( ) ( )
( )( )( )

4 3 2 5 4 3 2

1 25 4 3 2 4 3 2

3 4 2 1 4 16 26 24 8

4 16 28 32 17 4 3 4 2 1

e e e e e e e e e e
F

e e e e e e e e e e
λ

− + − + − − + − + −
= − −

− + − + − − + − + −
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4 3 2 5 4 3 2
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3 4 2 1 4 16 30 40 26 8

4 16 28 32 17 4 3 4 2 1

e e e e e e e e e e
F

e e e e e e e e e e

− + − + − − + − + − +
−

− + − + − − + − + −
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5 4 3 2 3 2

1 25 4 3 2

4 16 28 32 17 4 2 8 9 4

4 16 28 32 17 4

e e e e e e e e
F

e e e e e
λ

− + − + − − − + −
= +

− + − + −
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5 4 3 2 3 2

15 4 3 2

4 16 28 32 17 4 2 8 9 4
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e e e e e e e e
F

e e e e e

− + − + − + − + −
+

− + − + −
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2 8 9 4

4 16 28 32 17 4

e e e
F F F F

e e e e e
λ

− + −
= + + −

− + − + −
    (A.28) 
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Calculate 3λ  
From the equation (A.27) 

( )
( ) ( )

6 5 4 3 2
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4 24 54 60 34 8

1 2 8 15 20 13 4

e e e e e e
F

e e e e e e e
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= +
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λ
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+
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λ
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λ
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+
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e e e
F
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λ
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− + − + − − + − + −
 

 

( ) ( )
( ) ( )

3 2

3 1 2 1 25 4 3 2
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4 16 28 32 17 4

e e e
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e e e e e
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  (A.29) 

 
With ( )2 1 31 e eλ λ λ= − +  
 
 
 

( )
( ) [ ]

3 2

1 5 4 3 2

2 8 9 4

4 16 28 32 17 4

e e e
F F

e e e e e
λ

− + −
= +
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( )2 1 31 e eλ λ λ= − +          (A.30) 

( )
( ) [ ]

3 2

3 5 4 3 2

2 8 9 4

4 16 28 32 17 4

e e e
F F

e e e e e
λ

− + −
= −

− + − + −
 

 
 
 
 

 



65 
 

Appendix B 

Algorithm to design the Lagrange Multiplier space 
 
 

This appendix will provide additional details concerning the use of three algorithms. 
 

B.1 Description of the Moës algorithm (algo1) 
 

The algorithm introduced by Moës [29] is presented in the problem of how to impose Dirichlet 
conditions on an interface in the context of X-FEM. It shows that the technique of Lagrange multipliers 
to impose Dirichlet conditions must be used carefully, because the inf-sup condition is not always 
respected. The paper is restricted to the 2D case, but the algorithm presented is easily generalizable to 
3D case. The first phase is a phase of selection of nodes, in which selected nodes are those “important” 
for the approximation of the Lagrange multipliers. The other nodes are excessive and lead to the 
oscillations of the Lagrange multipliers. Once the nodes “important” selected, relationships of equality 
and linear combinations are placed between the Lagrange multipliers, to narrow the space of 
multipliers. Thus, the Lagrange multipliers of the edge from a same selected node are equal, and if a 
Lagrange multiplier is on an edge whose two end nodes are selected, then it is linked to the two 
Lagrange connected closest. 

 
More formally, E and N are the sets containing all the edges and all nodes of the mesh. The two 

ends of an edge e E∈ are noted ( ) ( )( ) 2
1 2,v e v e N∈ . First, it begins with an initialization step (iteration 

0k =  of the algorithm). It determines 0
eS , the set of edges that are cut by the interface. The interface is 

represented by the normal level set lsn, an edge e E∈  is cut by the interface if and only if 
( )( ) ( )( )1 2 0lsn v e lsn v e⋅ ≤ . Note that if the interface coincides with the node ( )1v e or node ( )2v e , the 

edge e  is belong to 0
eS :  

 
( )( ) ( )( ){ }0

1 2e , 0eS E lsn v e lsn v e= ∈ ⋅ ≤     (B.1) 

 
Consider eN  the set of nodes connected by the elements 0

eS : 
 

( ) ( ){ }0
1 2, ore eN n N e S n v e n v e= ∈ ∃ ∈ = =   (B.2) 

 
Consider 0

nS  the set of nodes selected in the iteration 0k =  (initialization). These nodes are 
those that coincide with the interface (this set can be empty): 

 
( ){ }0 , 0n eS n N lsn n= ∈ =      (B.3) 

 
After this initialization phase, the algorithm iterates of 1,nmax_iterk = . 
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At each iteration, we perform the following steps: 
 

 Updated all set of edges: it removes those that are connected to a node selected in previous 
iteration 

 
( ) ( ){ }1 1 1 1

1 2\ e , ork k k k k
e e e n nS S S v e S v e S− − − −= ∈ ∈ ∈   (B.4) 

 
 Calculated the score of these nodes: for each node in eN , we calculate a score composed of 

2 numbers: the first is the number of edges in k
eS  connected, and the second is the absolute value of the 

normal level set in that node. This score _sc no is a matrix with two columns that are lines represent 
the node. 

( )
( ) ( )

_ ,1

_ , 2

k

e k

sc no n number of edgeconnect at node n
n N

sc no n lsn n

⎧ =⎪∀ ∈ ⎨
=⎪⎩

  (B.5) 

 
 Calculated the score of these edges: for each edge in k

eS , we calculate a score composed of 
2 numbers: the first digit corresponds to the absolute value of the difference of the 1st digit of the score 
of 2 nodes end and the second is a relationship between the values of the 2nd digit of 2 nodes ends (ie. a 
ratio of values lsn . This score _sc ar  is a matrix with two columns that are the lines represent the 
edge.  
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1
1 2

1 2

1
1 2

1 2

1 2
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min ,
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e S j s sc no v e l sc no v e

sc ar e s s
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l l

lsc ar e s s
l l

l l
s s

l l

∀ ∈ ∀ ∈ = =
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⎪
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  (B.6) 

 
 Finding the "better edge" eb : the edge where the 1st digit of your score is greatest. In case of 

equality between 2 edges, which is that the 2nd digit of this score is greatest. 
 Finding the "better node" nb : this is the end node whose 1st digit of your score is greatest. In 

the case of equality, the node that 2nd digit of the score is the smallest (the node closest to the interface). 
The node nb  is the single node selected in this iteration: 

{ }k
n nS b=       (B.7) 

The algorithm stops if during an iteration the whole set k
eS  becomes empty. The final set of 

selected nodes will be:  
 

k
n

k

W S=∪       (B.8) 
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After this selection phase of the nodes, the algorithm constructs the space of Lagrange 
multipliers, which size is equal to that W . Thus, the multipliers space is: 

 
( ){ }{ }, 1,iS i setting Wλ λ= ∈      (B.9) 

 
All the edges e  have a common edge i W∈  given Lagrange multipliers eλ  equal among them: 

( ) ( )1 2, , ifi
e ee S i W v e i v e iλ λ∀ ∈ ∀ ∈ = = ⊕ =  (B.10) 

where the symbol ⊕  refers to the “or exclusive”. 
 
Edges with both ends in W  have Lagrange multipliers which are linear combinations of 

multipliers closest. In the original version of the algorithm presented in 2D, a Lagrange multiplier on 
that edge is a linear combination of Lagrange multipliers and following the previous interface. In 3D, 
this concept of “precedent” and “after” no longer exists because the concept of “path” along the 
interface is lost. To define a general linear relationship (in 2D/3D), we use the concept of distance, and 
each end of the edge on the research Lagrange multiplier nearest covered by an edge connected to e . 
 
B.2 Description of the modified algorithm (algo2) 
 

The algorithm is based on the work of  Geniaut, Massin, Moës [49]. Based on similar ideas, a 
new algorithm was proposed, which seeks to focus on linear relations to relations of equality between 
Lagrange multipliers. Thus, in the new version, we consider all edges on which the normal zero level 
set at least one point. Those edges connecting these points on both sides of the interface (or any points 
on the interface). The algorithm seeks the minimum subset of edges to connect all the ends of edges. 
Then, groups of connected edges are extracted. Relations are imposed as follows: 

 
 Multipliers on the edges of each group are imposed equal, 
 The multipliers on the remaining edges are linear combinations of other multipliers. 

 
In more formally, let E and  N are the sets containing all the edges and all nodes of the mesh. 

The two ends of an edge e E∈ are noted ( ) ( )( ) 2
1 2,v e v e N∈ . It first determines eS , the set of edges 

that were severely cut by the interface. The interface is represented by the normal level set lsn , an edge 
e E∈  is severely cut by the interface if and only if ( )( ) ( )( )1 2 0lsn v e lsn v e⋅ < . Note that if the interface 

coincides with the node ( )1v e or node ( )2v e , the edge e  is not in eS : 
 

( )( ) ( )( ){ }1 2e , 0eS E lsn v e lsn v e= ∈ ⋅ <     (B.11) 

 
Considered eN  the set of nodes connected by the elements eS . It separates eN  into two parts: 

nodes “below” and “above” the crack, as the sign of lsn : 
 

( ) ( ){ }
( ){ } ( ){ }

1 2, or

, 0 , 0
e e

e e e e

N n N e S n v e n v e

N n N lsn n and N n N lsn n+ −

= ∈ ∃ ∈ = =

= ∈ > = ∈ <
  (B.12) 
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The search algorithm veS , the minimum subset of eS  that connects the nodes in eN +  and the 
nodes in eN − . Each node in eN +  must be connected to at least one node in eN − , and each node in eN −  
must be connected to at least one node eN + . The edges in veS  are called “critical edges”, because if one 
of these edges disappears, at least one node in eN  is an orphan. This set of critical edges is not 
necessarily unique. In the presence of selection, the most vital edge short is preferred. As it will be 
shown, this amounts to minimize the approximation P0. For research of all veS , we chose an algorithm 
based on the concepts of scores of nodes and edges, a concept that is found in the algo1. The algorithm 
will remove one to all non-essential edges, until there is no more edges as vital. More precisely, we 
associate a score to each node, which corresponds to the number of edges connected to that node. At 
each edge, we associate a score, which is the minimum scores on both ends nodes. Let e  the edge with 
the highest score (with the same score, the longest edge is preferred). If the score ofe  is equal 1, then 
all the edges are still vital edges. veS is determined and the algorithm stops. If the score of e  is strictly 
greater than 1, the edge e  is an edge non-vital and symbolically removed from the list of edges eS . The 
algorithm starts again with a new calculation of the score of the nodes, and so on until there is no more 
edges as vital. 

 
It is important to note that veS  consists of some edges disconnected, and some certain edges 

connected between them. These groups of edges are connected vital extracts the veS . In this group, all 
edges are connected with a single node (see Figure B.2.1). Let i

cveG  the group vital edges connected by 
the node i . So i

cveG  is defined by: 
 

( ) ( ){ }1 2, ori
cve veG e S i v e i v e= ∈ = =     (B.13) 

 
All multipliers carried by edges in the same group are imposed equal. The other multipliers are 

carried by non-critical edges. These multipliers are not essential for the approximation of the contact 
pressure. They are imposed thus as linear combinations of multipliers on edges vital. These linear 
combinations are determined by the following procedure. Let eλ , \e vee S S∈  the Lagrange multiplier 
given by a non-vital edge e . For each end of the edge e , we search the closest (in terms of physical 
distance, not the distance between centre nodes) kλ  increased by an edge connected to e : 

 
( ) ( ){ }1, 2 arg min dist , , iv e

i e k cve
k

for i find k k Gλ λ= = ∈   (B.14) 

 
The linear relationship is imposed between eλ , 

1kλ  and 
2kλ : 
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( ) ( )
( )

( ) ( )
2 1

1 2
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dist , dist ,

dist , dist , dist , dist ,
e k e k

e k k
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λ λ λ λ
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λ λ λ λ λ λ λ λ
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+ +
 (B.15) 
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To illustrate this algorithm, consider the 2D case in Figure B.2.1. These edges cut by the 
interface are: 

 
{ }1 8 ; 2 8 ; 2 9 ; 2 10 ; 3 10 ; 3 11; 4 12 ; 5 12 ; 6 12 ; 7 12 ; 7 13eS = − − − − − − − − − − −  (B.16) 

 
The set of critical edges (drawn as a solid line in Figure B.2.1) and non-critical edges (in dashed 

line) are as follows: 
 

{ }
{ }

1 8 ; 2 9 ; 2 10 ; 3 11; 4 12 ; 5 12 ; 6 12 ; 7 13

\ 2 8 ; 3 10 ; 7 12
ve

e ve

S

S S

= − − − − − − − −

= − − −
  (B.17) 

 
It may be noted that the edge { }2 10−  or the edge { }3 10−  may be chosen either as vital edge. 

But as mentioned before, the shortest edge is preferred, therefore { }2 10 veS− ∈  and not { }3 10− . Two 
groups of connected critical edges can be removed (they are circled in dotted lines in Figure B.2.1): 

 
{ } { }2 122 9 ; 2 10 4 12 ; 5 12 ; 6 12cve cveG and G= − − = − − −    (B.18) 

 
For each group, the Lagrange multipliers are imposed equal: 
 

C D G H Iandλ λ λ λ λ= = =     (B.19) 
For each non-critical edge { }2 8− , { }3 10−  and { }7 12− , and a linear relationship between the 

multiplier is imposed: 
 

, ,A C D F I K
B E J

BC AB EF DE JK IJ
AB BC DE EF IJ JK
λ λ λ λ λ λλ λ λ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅

= = =
+ + +

  (B.20) 

 
In view of relations imposed on the Lagrange multipliers, one can determine the degree of 

approximation of contact pressures along the interface. For pieces of interface where the multipliers are 
equal, the approximation is P0. And the pieces of the interface where multipliers are linear 
combinations, the approximation is P1. The Figure B.2.1 compares resulting approximations between 
the two algorithms. 

 
Figure B.2.1. Example of edges cut by an interface and approximation results. 
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 Select the essential edges: these are the minimum set of edges connecting the nodes from one 
side to the other. 

 Attach a Lagrange multiplier to each essential edge. 
 If a set of edges emanate from the same node, they share the same Lagrange multiplier. 
 For the non essential edges, the Lagrange multiplier is obtained by linear combination. 

 
Remarks on relations imposed by the algorithm 1 or 2 for the multipliers of 

contact 
 
It is the linear relationship between the Lagrange multipliers of contact 1λ , 2λ  and 3λ : 

 
( )2 1 31λ αλ α λ= + −       (B.21) 

 
The relationship focuses on the pressure and not on the vector contact pressure. In case of a 

curved structure the relationship is on the vector of pressure type:  
 

( )2 1 31λ αλ α λ= + −2 1 3n n n      (B.22) 
 

is not possible because the vector 2n  is not an unknown. 
 
B.3 Algorithm to define the mesh on the interface 
 

The algorithm was introduced by Béchet, N. Moës, B. Wohlmuth 2008 [8]. The interface Γ  is 
cutting through edges of the two-dimensional mesh hT defining a graph. The vertices of this graph are 
vertices of the mesh hT  which are located exactly on Γ  or are intersection nodes of an open edge of the 
mesh hT  and  Γ . Once all the vertices of the graph have been marked, we connect the vertices based on 
the following rule: two vertices are connected in the graph if both of them result from the intersection 
of an open edge with Γ  and the associated two edges share an endpoint. We note that vertices being 
vertices of the original mesh are always isolated vertices. In Figure B.3.1, Γ  is indicated by a dashed 
line. On the left, the mesh is aligned with the interface, and the graph is a set of isolated vertices. On 
the right, the interface crosses elements but the vertices are not connected because they do not lie on 
edges sharing common nodes. The situation is different in Figure B.3.2 here vertices of the graph are 
connected. 

 
 
 
 
 
 
 
 

 
Figure B.3.1. A mesh conforming toΓ (left) and not conforming (right). Below each case is the vertex 

graph as well as the selected vital vertices (squared). 
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The naive approach for building the Lagrange multiplier space is to set one independent 
multiplier on each vertex of the graph. We know that this does not pass the numerical inf-sup test (Ji 
and Dolbow 2004 [15]). 

We thus choose to select a subset of the vertices in the graph to define independent Lagrange 
multipliers. We call them vital vertices. They are selected based on the following rules 

(i) An isolated vertex is always vital. 
(ii) A vital vertex is not allowed to be connected to any other vital vertex. 
(iii) A non vital vertex must be connected to at least one vital vertex. 
The squared vertices in Figure B.3.1 and B.3.2 are vital. Note that for a given graph, the choice 

of vital vertices is not unique, see Figure B.3.2. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure B.3.2. Two different situations of a non-adapted mesh. Below each case is the vertex graph as 
well as possible vital vertices. 

 
The algorithm for the selection of the vital vertices that is used in the implementation closely 

follows the rules defined above. It can handle 3D problems with surface boundary conditions as well. 
 
Algorithm in 2D and 3D used to define the vital vertices. 
 

0. Define an empty set of vital vertices called vital and an empty set of regular (non vital) vertices 
called non_vital. 

1. The vertices on the interface that are also vertices of the mesh are introduced in the vital set. 
The rest of the vertices on the interface, denoted V, emanate from cut edges. For each such 
vertex iv V∈ , we denote by [ ]iv k ; k = 0, 1., the end-points of the cutting edge. 

2. For every vertex iv V∈  on the interface, count the number of intersections of the interface by 
the edges incident to [ ]iv k . This defines the set [ ]int in v . 

3. Sort the set [ ]int in v  (low number of intersections first). 

4. Loop: Pick up the first item of [ ]int in v  and the corresponding iv . 

5. Check that for the every node [ ]iv k , none of its incident edges are intersecting the interface at 
an already vital vertex. If this condition is fulfilled, mark iv  as vital and also mark every vertex 
that is the intersection of the interface from an edge incident to [ ]iv k  as non_vital. If the 
condition does not hold, simply mark iv  as non_vital. 
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6. Remove iv  from [ ]int in v . 

7. If [ ]int in v  is not empty, go to 4. 
8. The set called vital contains the vital vertices. The set called non_vital contains the other 

vertices. 
 
REMARK B.3.1 Roughly speaking criteria (iii) makes the set of vital vertices as large as possible to 
get a good best approximation property for the discrete Lagrange multiplier space, and criteria (ii) 
makes the dimension of hL  as small as necessary to satisfy a uniform inf-sup condition. Criteria (i) 
guarantees that in the case of an aligned interface, the one-dimensional mesh is inherited from the two-
dimensional mesh. 
 
B.4 Definition of a stable Lagrange multiplier space  
 

The details on this matter may be found in Béchet, Moës and Wohlmuth [8]. For each vital 
vertex hp V∈ , we define the associated basis function h

p Lµ ∈  as a linear combination of some nodal 
hat functions qφ , hq P∈  restricted to Γ . The definition of the coefficients is based on some preliminary 
observations and remarks. We note that the number of vertices in hP such that |qφ Γ is not equal to zero 

is of order 1h− . Introducing the subset hPΓ , see Figure B.4.1, by 
 

{ }: ; | not identical zero ,h h pP p P φΓ
Γ= ∈  

 
it is trivial to see that | |

h h
pq q pq qq P q P

α φ α φΓΓ Γ∈ ∈
=∑ ∑ , and thus we set 

 
: | ,

h

p pq q h
q P

p Vµ α φ
Γ

Γ
∈

= ∈∑ . 

 

 
 

Figure B.4.1. Set of vertices in h
Γ℘ . 

 
In a next step, we define for each vital vertex hq V∈  a q hP PΓ∈ . We recall that each vital vertex 

q is in hP or is the intersection point of an open edge qe of the mesh hT .In the first case, we set { }:qP q=  

and in the second case, we define { }1 2: ,q q qP p p= , where 1 2,q qp p are the two endpoints of qe . In addition, 
we set  

 
: \ : \

h

V
h h q V q h hP U P P PΓ Γ Γ

∈= =  
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and observe that h

Γ  might be the empty set. Due to criteria (iii), each hq Γ∈  is connected by at least 
one closed edge qe  cutting the interface with an element in V

hP , see also Figure B.4.2. The number of 

such edges qe , i.e., one endpoint is q, the other endpoint 0q is in V
hP and qe Γ∩  is not empty, is denoted 

by qn . Because all ,p hP p V∈ , are pairwise disjoint, there exists a unique hp V∈ such that 0 pq P∈ ,and 

we put q into p ,i.e., 
hp V p hU Γ

∈ = . 
 

 
 

Figure B.4.2. The set of vertices in h
Γ℘ (left) and in h

Γ  (right) are marked with empty squares, the 
vertices in hV  are marked with filled circles. 

 
 In the example of the right picture in Figure B.4.3, 1qn =  or 2qn =  .We note that p can be 

empty and that p q∩  does not have to be empty for , hp q V∈ , see the right picture in Figure B.4.3. 
 

 
 

Figure B.4.3. Sets of vertices from the left to the right h
Γ℘ , v

h℘ , h
Γ and pQ . 

 
In terms of these subsets, we define now the values of the coefficients , ,pq h hp V q Pα Γ∈ ∈  
 

1,
1: ,

0,

p

pq p
p

q P

q
n

otherwise

α

⎧ ∈
⎪
⎪= ∈⎨
⎪
⎪⎩

 

 
Then pµ has a local support and can be written as 

1

p p

p q q
q P q qn

µ φ φ
∈ ∈

= +∑ ∑  
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Figure B.4.4 shows which nodes hq Γ∈℘ contributes to the definition of ,p hp Vµ ∈  
 

 
 

Figure B.4.4. Nodes in p℘ are marked with a square, nodes in p with a diamond. 
 

LEMMA  B.4.1 The set { }
h

p p V
µ

∈
forms a positive partition of unity with local supports on Γ , i.e.,  

 
1

h

p
p V

µ
∈

=∑  

 
REMARK B.4.2  Lemma B.4.1 yields that the Lagrange multiplier space hL reproduces constants and 
thus the best approximation property gives an ( )O h term in the a priori analysis.  
 
LEMMA  B.4.3 There exist constants independent of the mesh-size such that for all elements he ε∈  
 

,T e T ech h Ch T T≤ ≤ ∈  
 

where eh  is the length of e , and Th is the diameter of the element T , and e hT T⊂ is the set of all 
elements T such that the intersection with e is not empty.  
 
THEOREM  B.4.4  There exists a constant independent of the mesh-size such that for all h hLµ ⊂  
 

1;
2

1;

sup
h h h

h h
h

h
v U

v d
c

v

µ
µΓ

− Γ∈
Ω

⎡ ⎤ Γ⎣ ⎦ ≥∫  

 
REMARK B.4.5 Both algorithms, the one to construct the vital vertices and the one to define the basis 
functions of hL are not restricted to the two-dimensional setting. They can easily be generalized to the 
three-dimensional case. Using the alternative approach of using standard hat functions for the Lagrange 
multiplier on the mesh hε would require in 3D to construct a mesh of the interface from the vital 
vertices, that satisfies some regularity requirements (e.g. using a Delaunay approach). By using for the 
definition of the Lagrange multiplier shape functions defined on the background mesh this can be 
avoided. 
 


