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Abstract

The coupled thermo-mechanical problems in solid mechanics are the deformable solids, pos-
sibly undergoing a large deformations, possessing viscosity, internal processes and capable of
conducting heat. Problems of such a nature arises in variety of important fields of applica-
tions, including; metal forming, machining, casting and other manufacturing processes, high
velocity impact such as ballistic penetration, and many others. The variational form of such
problems mean a functional satisfying all the energy, momentum and entropy equations and
whose stationary points are the solution of such problems. The coupled thermo-mechanical
problems usually consists of a deformable, inelastic and dissipative solid with heat conduc-
tion. The variational formulation of the coupled thermo-mechanical boundary value problem
for general dissipative solids is investigated by considering a specific example of necking prob-
lem and the results are then compared with academic code and commercial code.

The energy based variational formulation is used for the general dissipative solids, includ-
ing finite elastic and plastic deformations, non-Newtonian viscosity, rate sensitivity, arbitrary
flow and hardening rules, as well as heat conduction. In the recent years,the more concen-
tration was put on finding a joint potential function such that both the energy conservation
equations and linear momentum balance equations should be satisfied including amount of
dissipated energy. It has been an important field from computational point of view also
because of its different nature from conventional finite element method. The famous radial
return mapping method was under consideration in many PhD thesis. Here in the thesis,
the results of the methods used in computations for thermoplasticity are compared, and the
radial return mapping method for viscoplasticity is also investigated. The effect of change
of flow criteria with respect to temperature due to the evolution of plastic entropy are dis-
cussed along the J2 flow theory and the incompressibility constraints on plastic flow. The
model incorporating the multiplicative decomposition of deformation gradient into elastic
and plastic parts, as in the phenomenological models described by Lee and Mandel as well
as the micromechanical models of single crystal plasticity inspired in the classical Taylor,
Simo and Miehe models are investigated along the progression of work. The models by Simo
and Miehe, 1992 [13], Marko Canadijia and Josip Brnic, 2003 [29], and P. Wriggers et al.,
1991 [16] are discussed in detailed to give the complete idea of balance equations, governing
equations, constitutive equations, and evolution equations with reference to J2 flow theory.
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Here in the mentioned thesis, few of the constitutive models of solid mechanics are tried to
be explained along with their computational solution methods. These constitutive models are
narrated completely in the sense that what is meant by the solution of problem, what sort of
values are given, what are the governing equations, what is the new in the governing equation
as compared to the previous one, what are the new developments in such models, what is
the numerical methods adopted for formulating such models and what is the main point of
focus in the current model during numerical simulation by comparing with the last model.
The constitutive models are started from the simplest one, which is static linear elastic
model,hyperelasticity and viscoplasticity. The computational part of the thesis is presented
in the part II, which is the comparison for different varying parameters of academic code and
Abaqus simulations for necking problem, e.g. change of temperature, mesh sizes, integration
types, effect of convection heat coefficient, variation of time step of load application, and
many other parameters. Different types of mesh are used for the same geometry, the classical
necking problem. The load, displacements, temperature, strains and stresses are computed
and compared with the academic code which is coded by Prof. Dr. Laurent Stainier in the
Intitute-Gem Ecole Centrale de Nantes, France.
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Chapter 1

Basic Laws of Mechanics and
Thermodynamics

It is well understood that the thermomechanical response of the solid undergoing plastic
deformation is governed by the balance of a linear momentum equaion and the energy equa-
tions, supplemented by the constitutive equations along the appropriate boundary condi-
tions. All these basic laws are defined in terms of continuum.There are always two ways of
observing these laws with respect to time and position, and two ways of writing it.These
two ways of observation are called, Lagrangian Form and Eulerian form. Lagrangian form
always observe the thing with respect to reference confuguation (and is mostly used in solid
mechanics, because we need reference configuration to observe the deformed state of solid)
and the Eulerian form observe the things in the current configurations (and is mostly used
in fluids, because in fluids we do not need the reference configuration as much). All these
laws are explained here briefly.

Theorem 1 Reynold’s Theorem: The Reynold Theorem refers to any extensive property of
the fluid in a particular control volume. It is expressed with the material derivative on left
side, as;

DNsys

Dt
=

∫
c.v

∂

∂t
(ρη)dV +

∫
c.s

ρη~vb · n̂dA+

∫
c.s

ρη~vr · n̂dA (1.1)

Theorem 2 Green’s Theorem: The Green theorem is the vector identity and is equivalent
to curl theorem in plane. It states that line integral for closed path can be written as a surface
integral as; ∫

∂D

f(x, y)dx+ g(x, y)dy =

∫ ∫
D

(∂f
∂x
− ∂g

∂y

)
dxdy (1.2)

1.1 Conservation of Mass

The conservation of mass is always the change of density with respect to position and time,
or in other words, the time derivative of the density with respect to time and position. It
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should always be zero in order to satsify the law of conservation of mass in solid mechanics.
Balance of the mass is enforced at the outset merely by requiring , where is the reference
density, and the balance of angular momentum reduces to the symmetry condition, it is
also enforced at the outset. Expressing the differential form of mass conservation in Eulerian
form gives the Continuity equation and the integral form of mass conservation equation helps
in derivation of Reynold’s Transport theorem. The differential and integral form of mass
conservation equation are shown below both for Lagrangian and Eulerian form respectively.

∂ρij

∂t
= 0 (1.3a)∫

V

ρ(x, t)dV = 0 (1.3b)

∂ρij

∂t
+∇(ρv) = 0 (1.3c)∫

V

[ρ̇(x, t) + ρ(x, t)∇v] = 0 (1.3d)

1.2 Conservation of Momentum

This is the newton law of momentum. It says that the rate change of momentum (due to
body forces and traction forces) is equal to the change of force. Using the Green Theorem

we get the following integral and differential forms of Newton’s Law of momentum
(F=ma).∫

V

ρv̇dv =

∫
∂V

ρbdv +

∫
V

tdA (1.4a)∫
V

ρv̇dv =

∫
∂V

ρbdv +

∫
V

σ · ndA (1.4b)

ρv̇ = ρb+∇ · σ (1.4c)

Similarly by multiplying with velocity, we get the angular momentum balance.

1.3 First Law of Thermodynamic

The first law of thermodynamics is simply the conservation of energy, that energy can never
be created and can never be destroyed, but it just can be changed from one state to another.
In simplest way, it states that the change in energy (internal energy and kinetic energy) of the
system is equal to the heat supplied minus the work done by the system on the surrounding,
or the heat supplied to a system is equal to the change in internal energy of the system and
the work done by system, e.g. if one supply a heat to the glass of water, then that heat will
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be there in the form of change of internal energy and the work of thermal expansion of glass,
and it will remain forever if one consider there is no sink.

dU = δQ− δW
δQ = dU + δW

(1.5)

If the work is also done on the body (usually in mechanics), then the change in the energy of
the body is equal to heat supplied and the work done on the system, i.e. change in power of
system (internal power)should be equal to the power supplied by the surrounding (external
power). In the other words, the external power and heat supplied is equal to change in
kinetic energy of the body and the internal energy of the body.

dU = δQ+ δW

κ̇+ u̇ = Q̇+ Ẇ
(1.6)

Putting the kinetic energy and internal energy of the body (after using Reynold’s Transport
Theorem),heat supplied and external power (after using the Green Theorem), we get the
following differential form of the energy balance equation.

ρu̇ = σ : ∇v + ρr −∇ · q (1.7)

Having the symmetry of σ , we get the following differential equation of energy in Eulerian
form.

ρu̇ = σ : D + ρr −∇ · q (1.8)

where D is the symmetric part of the velocity gradient, ∇v.

1.4 Second Law of Thermodynamic

The second law of thermodynamics explain the relation of two state variables, temperature
and entropy. The second law of thermodynamics says that the net entropy generated by
the system should always be positive, in other words, the order of the internal fineness of
the system can never be refined further, it is always disturbed whenever we activate some
process on it, and this disturbance is termed as entropy generation. If we (surrounding) do
some work or supply heat to the body (system), so it only disturb the fineness and generates
the entropy. In other words, one cay say that the difference between the entropy supplied
to the body and the entropy contained by the body can be either zero or positive number,
it can never be a negative number.

Sb − Se ≥ 0 (1.9)

Where Sb and Se are given as:

Sb =

∫
V

ρη(x, t)dV (entropy of the body) (1.10)
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Se =

∫
V

ρr

θ
−
∫
∂V

q · n
θ

dS (entropy from external sources) (1.11)

Using the Reynold’s theorem and Divergence theorem, we get the renowned form of Second
Law of Thermodynamics ∫

V

[
ρη̇ − ρr

θ
+∇ ·

(q
θ

)
dV
]
≥ 0 (1.12)

Solving futher and writing in the differential form, we get the Clausius Duhem Inequality.

θγ̇ = ρθη̇ − ρr +∇ · q − 1

θ
q · ∇θ ≥ 0 (1.13)

From first law of thermodynamics, putting the value of ρr, we get the following relation.

θγ̇ = σ : D − ρu̇+ ρθη̇︸ ︷︷ ︸
Internal Dissipation

− 1

θ
q · ∇θ︸ ︷︷ ︸

External Dissipation

≥ 0 (1.14)

The Helmholtz Free Energy function is always obtained by subtracting the ηθ from the
internal energy of the body.

ψ = u− ηθ
ψ̇ = u̇− η̇θ − ηθ̇

(1.15)

Therefore the Clausius Duhem Inequality in the form of Helmholtz Free Energy Function
can be written in the following form.

θγ̇ = σ : D − ρψ̇ − ρθ̇η − 1

θ
q · ∇θ ≥ 0 (1.16)

1.5 Strain Energy Density

It is a measure of the energy stored by the strains produced within the system. It is defined
as;

U(ε) =

∫ ε

0

σ : dε (1.17)

If the strain energy density is path independent then, the U(ε) acts as potential for stress.

σ =
∂U(ε)

∂εij
(1.18)

In perfect elasticity, for adiabatic process, U(ε) is the change in internal energy per unit
volume and for isothermal process, it is the change in Helmholtz free energy per unit volume.
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1.6 Principle of Virtual Work

It states that if the stress field σij satisfy the following equation∫
R

σijδεijdVo −
∫
R

biδvidVo −
∫
∂2R

tiδvidA = 0 (1.19)

where δεij = 1/2(∂δvi/∂xj + ∂uj/∂xi), for all possible virtual displacements and strains,
then it will automatically satisfy the stress equilibrium equation ∂σij/∂xi + bj = 0 and also
traction boundary conditions σijni = t∗j on ∂2R.

1.7 Variational Formulation

To illustrate the variational formulation, the simple governing equations of the bar will be
derived from the Minimum Potential Energy principle. Here the example of bar is taken.
The general procedure of handling the equations is illustrated in the tonti diagram Figure

Figure 1.1: The one dimensional bar variational formulation

1.2 for the one dimensional bar example.

1.7.1 The Total Potential Energy Functional

The construction of structural and continuum finite elements using a variational formulation
is based on the Total Potential Energy Principle. In a linear elastic bar, the strain energy
density at one point under the stress σ and strain e is:

U =
1

2
σ(x)e(x) (1.20)

Where σ = Ee and e = du/dx. Integration over the volume gives the total internal energy
of the structure, which can be written as:

U =
1

2

∫
V

σedV =
1

2

∫ L

0

Fedx =
1

2

∫ L

0

(EAu′)u′dx =
1

2

∫ L

0

u′EAu′dx (1.21)
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Figure 1.2: Tonti diagram for the continuum model of a bar member. Field equations and
BCs are represented as lines connecting the boxes. Yellow (brown) boxes contain unknown
(given) quantities.

The external energy due to applied mechanical loads is from two sources:

• The distributed load q(x). This contributes a cross-section density of q(x)u(x) because
q is assumed to be already integrated over the section.

• Any applied end load. In case of bar (one end fixed, and one end is free)the end load
P would contribute Pu(L).

The second source may be folded into the first by conventionally writing any point load P
acting at a cross section x = a as a contribution Pδ(a) to q(x), where δ(a) denotes the
one-dimensional Dirac delta function at x = a. If this is done the external energy can be
concisely expressed as

W =

∫ L

0

qudx. (1.22)

The total potential energy of the bar is given by

Π = U −W (1.23)

Mathematically this is a functional, called the Total Potential Energy functional or TPE.
It depends only on the axial displacement u(x) here in current case. In variational calculus
this is called the primary variable of the functional. When the dependence of π on u needs
to be emphasized we shall write Π[u] = U [u]W [u], with brackets enclosing the primary
variable. To display both primary and independent variables we write, for example,Π[u(x)] =
U [u(x)]W [u(x)].
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1.7.2 Variation of Admissible Function

The concept of admissible variation is fundamental in both variational calculus and the
variationally formulated FEM. Only the primary variable(s) of a functional may be varied.
In current case, for the TPE functional, this is the axial displacement u(x).

Figure 1.3: Admissibility of the variations

Suppose that u(x) is changed to u(x) + δu(x). This is illustrated in Figure 1.3, where
for convenience u(x) is plotted normal to x. The func-tional changes from Π to Π + δΠ .
The function δu(x) and the scalar δΠ are called the variations of u(x) and Π, respectively.
The variation δu(x) should not be confused with the ordinary differential du(x) = u(x)dx
since on taking the variation the independent variable x is frozen; that is, δx = 0. A
displacement variation δu(x) is said to be admissible when both u(x) and u(x) + δu(x) are
kinematically admissible in the sense of the Principle of Virtual Work (PVW). This agrees
with the conditions stated in the classic variational calculus.
A kinematically admissible axial displacement u(x) obeys two conditions:

• It is continuous over the bar length, that is, u(x) ∈ C0in x ∈ [0, L].

• It satisfies exactly any displacement boundary condition, such as the fixed-end speci-
fication, u(0) = 0 here in current case.

The variation u(x) depicted in Figure 1.3 is kinematically admissible because both u(x)
and u(x) + δu(x) satisfy the foregoing conditions.

1.7.3 The Minimum Potential Energy Principle

The Minimum Potential Energy (MPE) principle states that the actual displacement solution
u(x) that satisfies the governing equations is that which renders Π stationary:

δΠ = δU − δW = 0 iff u = u (1.24)

With respect to admissible variations u = u + δu of the exact displacement field u(x).
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Figure 1.4: Discretization of the bar

1.7.4 TPE Discretization

To apply the TPE functional 1.23 to the derivation of finite element equations we replace the
continuum mathematical model by a discrete one consisting of a union of bar elements. For
example, Figure 1.4 illustrates the subdivision of a bar member into four two-node elements.

Functionals are scalars. Therefore, corresponding to a discretization such as that shown
in Figure 1.4, the TPE functional 1.23 may be decomposed into a sum of contributions of
individual elements:

Π = Π(1) + Π(2) + ...+ Π(Ne) (1.25)

where Ne is the number of elements. The same decomposition applies to the internal and
external energies, as well as to the stationarity condition 1.24:

δΠ = δΠ(1) + δΠ(2) + ...+ δΠ(Ne) = 0 (1.26)

Using the fundamental lemma of variational calculus,4 it can be shown that 1.26 implies
that for a generic element e we may write:

δΠ = δU e − δW e (1.27)

This variational equation is the basis for the derivation of element stiffness equations
once the displacement field has been discretized over the element, but here in the current
thesis report, the rest of the finite element discretization is not carried. In mathematics the
equation 1.27 is called a weak form. In mechanics it also states the Principle of Virtual Work
for each element: δU e = δW e , which says that the virtual work of internal and external
forces on admissible displacement variations is equal if the element is in equilibrium. Note:
The above detail on variational formulation is taken from;
www.colorado.edu/engineering/cas/courses.d/.../IFEM.Ch11.pdf by Carlos Felippa.
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1.8 Overview of Constitutive Models in Plasticity

Here in the mentioned thesis, three different constitutive models of solid mechanics are
explained along with their computational solution methods. The constitutive models are
narrated completely in the sense that what is meant by the solution of problem, what we are
given with, what are the governing equations, what is the new in the governing equation as
compared to the previous one, what are the new developments in such models, what is the
numerical methods adopted for formulating such models and what is the main point of focus
in the current model during numerical simulation in present simulation comparing with the
last model. The constitutive model will be started from the simplest one, which is static
linear elastic model. Consequently, the core part of the thesis will be presented after.

• Static Linear Elasticity

• Hyperelasticity (large deformations)

• Viscoelasticity

The analytical solutions to all these problems are not well established, but some of them
like for linear elastic solids and dynamic linear elastic solids are solved with Airy Stress Func-
tion Solution, Complex Variable Solution, Papkovich-Neuber Solution, and Stroth methods
etc. But here in the current thesis, the variational principles based on energy and the
main governing equations for some of the models are discussed briefly, and a short gen-
eral FEM formulation terms are given. The mathematical forms of these terms are given
in Appendix B. The model which are discussed here are linear elasticity, hyper-elasticity
and visco-plasticity. The thermo-mechanical problem can be studied with any one of the
above material models. The model become very complex when it becomes as rate dependent.
The details of the following models can be seen from http://solidmechanics.org/contents.html

by Allan F. Bower.

1.8.1 Static Linear Elasticity

Here in this section, the given values, values to be calculated, governing equations and their
formulation through Principle of Virtual Work will be shortly introduced in order to get an
idea about the general way of dealing problems in elasticity and plasticity.

Given Shape of the problem R, Cijkl (elastic modulus), initial stresses and thermal ex-
pansion coefficients (if given), boundary conditions(displacement on ∂1R and traction
boundary condition on ∂2R).

Calculate the displacement, strain, and stress (ui, εij,and σij) while satisfying the following
governing equations.
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1. Strain-displacement equation

εij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
(1.28)

2. Elastic stress-strain law
σij = Cijklεkl (1.29)

3. Stress equilibrium equations
∂σij
∂xi

+ bj = 0 (1.30)

4. Boundary equations

ui = u∗ on ∂1R (1.31a)

σijni = t∗j on ∂2R (1.31b)

Now we have to get the displacement from weak form which is always obtained by replacing
the stress equilibrium equation by an equivalent virtual work equation. So, as it is clear
from weak form of equation, given in Appendix B, we have displacement field and velocity
field, the interpolation of these filed is needed. The interpolated values for displacement
field and velocity field are inserted into the weak form. Now the body is discretized in
many finite elements and for each element one will use the interpolated form of equation
to find displacement and then other values from other equations as mentioned. The values
of displacement will be interpolated from element to element. Putting the displacement in
εij = 1/2(∂ui/∂xj + ∂uj/∂xi) and obtain the strain and then finally get the stresses from
σij = Cijklεkl by inserting the values of strains.

1.8.2 Hyper-elasticity

The model discussed by Simo and Miehe, 1992 [13] used the basics of hyperelastic models.
It is based on the Neo-Hookean constitutive law.

Given Shape of the problem R, material constants µ1 and K1for Neo-Hookean law, mass
density in its reference configuration ρ0, body force distribution b, initial stresses and
thermal expansion coefficients (if given), boundary conditions (displacement on ∂1R
and traction boundary condition on ∂2R).

Calculate The displacement, deformation gradient, and Cauchy stresses (ui, Fij,and σij)
while satisfying the governing equations and boundary conditions. Here we have:

yi = xi + ui(xk) , Fij = δij +
∂ui
∂xj

, J = det(F ) and bij = FikFjk (1.32)

∂σij
∂xi

+ bj = 0 (1.33)
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ui = u∗ on ∂1R (1.34a)

σijni = t∗j on ∂2R (1.34b)

with Cauchy stress related to the left Cauchy Green tensor by the Neo-Hookean con-
stitutive law

σij =
µ1

J5/3

(
bij −

1

3
bkkδij

)
+K1(J − 1)δij (1.35)

As always the stress equilibrium equation is replaced by the equivalent principle of virtual
work which now has to be in a form appropriate for finite deformations. The virtual work
equation can be given in terms of various types of stresses and deformation measures. Here
the stresses are taken in terms of Kirchhoff stress as it is the most convenient.
The virtual work form of the equation is given in Appendix B. There are two additional terms
in the stiffness matrix, which arises from the finite geometric deformations. The Kirchhoff
stresses here depend on the displacement through deformation gradient. The strain measure
can be taken as Hencky’s logrithmic strain tensor. The Newton Raphson method is used to
solve the virtual work equation. The tangent stiffness is solved after solving the left Cauchy
Green tensor and finally the stresses are found through the neo-Hookean law.

1.8.3 Viscoplasticity

The viscoplasticity is about the history and time dependent materials modeling. As the
Simo and Miehe, 1992 [13] has explained the plasticity of finite strains, approximately a
hyper-elastic model, but here a the small strain viscoplasticity is explained for an overview.

Given Shape of the problem R, material constants Y, n,m, ε̇0, Q and ε0(for viscoplastic
creep law) , body force distribution b, initial stresses and thermal expansion coeffi-
cients (if given), boundary conditions (displacement on ∂1R and traction boundary
condition on ∂2R).

Calculate the displacement, strain, and stress (ui, εij,and σij) while satisfying the following
governing equations.

1. Strain-displacement equation

εij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
(1.36)

2. Stress equilibrium equation
∂σij
∂xi

+ bj = 0 (1.37)
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3. Boundary equations

ui = u∗ on ∂1R (1.38a)

σijni = t∗j on ∂2R (1.38b)

4. The constitutive equation for small strain, power law rate dependent plasticity
is given below. It is important to note that this is one of the simplest case of
plasticity. Plasticity with various internal variables and hardening parameters
are not discussed here, but in chapeter three.

ε̇ij = ε̇eij + ε̇pij (1.39)

Where,

ε̇eij =
1 + ν

E

(
σ̇ij −

ν

1 + ν
σ̇kkδij

)
(1.40)

ε̇pij = ε̇0 exp(−Q/kT )
(σe
σ0

)m3

2

Sij
σe

(1.41)

Where, E is the Young Modulus, and ν is the Poisson ration.

σ0 = Y
(

1 +
εe
ε0

)1/n

(1.42a)

σe =

√
2

3
SijSij (1.42b)

Sij = σij −
1

3
σkkδij (1.42c)

ε̇e =

√
3

2
ε̇pij ε̇

p
ij (1.42d)

Where E, ν are the Elastic modulus and poisson ratio respectively (1.42e)

Now this is history dependent problem and one has to specify the time variation of the
applied load and boundary conditions. Here we have to find the displacement, strain and
then stresses as a function of time. Here the stress equilibrium equation is replaced by
equivalent principle virtual work equation, and the displacements are found as function of
time, and then the strains from the equation given above and then finally the stresses from
the constitutive equation as a function of time.
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Chapter 2

Thermo-Mechanical Coupled
Problems in Solid Mechanics

In the current chapter, the plasticity models covered by Abaqus will be discussed as a first
part. Secondly the general theory of thermoplasticity is explained briefly starting from the
pure mechanics models of rate-independent plasticity. The inelasticity model narrated by
Abaqus is necessary to know before modeling any type of material. They give an overall
overview of all the models which are currently under observations all over the world. All the
constitutive models in mechanics in all the universities are somehow related to the inelastic
models discussed by Abaqus. So it is extremely important to know commercialized form of
models before starting the modeling. Similarly the general frame work for thermoplasticity
need to be well defined for each model before starting the numerical implementation.

2.1 Plasticity

The material library of the Abaqus includes the following models. These models are explained
with the basics before starting the simulation in Abaqus. The main foundations of each
model are detailed with reference to selection of the elements, theoretical frame work, time
increment, numerical method, and references to the renowned papers and books.
For further detail, one can see the User Manuals, section 19.1.1 (volume 3, Abaqus 6.8).

• Classical metal plasticity

• Metal plasticity in cyclic loading

• Rate-dependent yield

• Creep and swelling

• Annealing or melting

• Anisotropic yield and creep
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• Johnson-Cook plasticity

• Dynamic failure models

• Porous metal plasticity

• Cast iron plasticity

• Two-layer viscoplasticity

• ORNL constitutive model

• Deformation plasticity

• Extended Drucker-Prager plasticity and creep

• Modified Drucker-Prager/Cap plasticity and creep

• Mohr-Coulomb plasticity

• Critical state (clay) plasticity

• Crushable foam plasticity

• Jointed material

• Concrete

• Progressive damage and failure

Here in the current thesis, the classical metal plasticity model is used. This is mostly
used to model the perfect plasticity, and plasticity with isotropic hardening at relatively low
temperatures and small strains. It use the Mises or Hill yield surface with associated plastic
flow. Each model can be further enriched by including other factors, e.g. rate dependency
of strain, creep and swelling, anisotropy, kinematic hardening etc. The ORNL model (Oak-
Ridge National Laboratory) is basically used to consider the factor of cyclic loading and
high-temperature creep in 304 and 316 stainless steel grades which are mostly used in high
temperature and high pressure applications, e.g. fertilizer industry, steam and gas power
plants, fire-tube boilers, syn gas production zone etc. The models in the Abaqus include
almost all sort of models; models for foam, concrete, porosity, fully plastic, polymers, clay,
geological, sand, and many others. It is very important to know each point of modeling
before the start of practical industrial material modeling, and here in this section of the
Abaqus manuals, all the points are explained well.

2.2 Thermoplasticity

In early nineteenth century, the studies on mechanics of material lead to the development
of plastic flow yielding criteria for metals and soils. Due to the lack of highly sophisticated
measuring tools, the plasticity studies did not advanced much with time.
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By the mid-twentieth century, the research carried to the rate-independent incompressible
plastic flow in isotropic materials. The research explained the yield criteria and the relation
between stress and rate of strain. The most successful yield criteria was of Von Mises.

Later on the the hardening effects were included by Taylor, Quinney, Schmidt, and Odquist
and the constant yield criteria was replaced by a function of some hardening parameter. The
hardening parameters were chosen to provide a suitable measure of the strain history and
were usually represented by quantities like plastic work and plastic distortion.

At the same time, Saint-Venant, Levy, Prandtl, and Reusse proposed plastic flow rules
which expressed the proportionality of deviatoric stress and deviatoric rate of plastic strain.
For finding the complete solution at that time, the plastic flow rule combined with the yield
criteria, the equilibrium condition for stress, and the boundary conditions, were sufficient to
solve a boundary value problem of macroscopic plastic flow.

A rate-dependent generalization was provided by Sokolovsky and Malvern, and advanced
by Perzyna. The rate-dependent theory was motivated by the observation of higher yield val-
ues for high loading rates, and was found to be more suitable in the dynamic studies of plas-
ticity. The flow rules in rate-dependent theories are different than that of rate-independent
theories, because one has to put effort in considering some suitable scales of time.

After some decades, the two major advancement were established regarding the geometric
and thermodynamic nature of the plastic flow. These advances, e.g. by Kroner, Noll, and
Edelen, proved the dislocations to be the main objects causing the plastic flow and they are
distributed over the whole body.

At the same time, the plasticity was tried to be formulated under the frame work of ther-
modynamics. From the papers of Eckart and Bridgman, it became increasingly evident that
a general theory of plasticity must has to satisfy the fundamental laws of thermodynamics.
So, Kestin, Green and Naghdi introduced the plastic strain as the internal variable whose
evolution contributes to the dissipation. Similarly postulates of maximum dissipation were
provided by Drucker and Ilyushin, which established plastic flow rules for rateindependent
materials and also provided restrictions on the nature of the yield surface. The postulate of
maximum plastic dissipation is a stronger inequality than the second law of thermodynamics,
which in itself is insufficient to establish a plastic flow rule.

In the last two decade and till now, there were more sophisticated advances including the
computational filed of studies. Now the dislocations are studied with much variations in
sizes, densities, strain-rates and many other internal variables. There is no need to tackle
now millions of dislocations analytically. The concepts of condensed matter physics, non-
linear thermodynamics, and continuum mechanics are combined to formulate a well-founded
theory of plasticity with an aim to understand both the micro-scale and the macro-scale
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behavior of solids, with deformation processes occurring for a wide range of time durations,
e.g. from instantaneous pattern formation to creep.
(The above hierarchical detail of plasticity was taken from Anurag Gupta’s lecture notes on
Theory of Plasticity, http://home.iitk.ac.in/ag/ME721/intro.pdf )

Here in the next section, the plasticity governing equations for 1-D, with isotropic harden-
ing, kinematic hardening, and combined isotropic and kinematic hardening are given in the
boxes. The models are taken from Incremental Theory of Plasticity, by Dr. Sebastian Nervi,
and Dr. Ricardo L. Actis, October 1, 2008,[34]. In the end the positions of thermodynamics
relations with mechanics are detailed.

2.2.1 An elementary model for isotropic hardening

There are two assumptions taken; First the hardening is isotropic, i.e. the center of the yield
surface, Eσ, remains at origin at any loading condition. Second, the hardening is linear for
the amount of plastic flow ε̇p and independent of sign. These two assumptions are illustrated
with the following figures.

(a) Illustration of the center (b) Illustration of the linearity

Figure 2.1: Assumptions used for isotropic hardening

Th admissible stresses can be defined as

Eσ = {(σ,α) ∈ R×R | f(σ,α) = |σ|− [σy +Kα ] ≤ 0}

The constitutive model is summarized in Box 1.
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i- Elastic strain relationship

σ = E(ε− εp)
ii- Flow rule and isotropic hardening law

ε̇p = γ
∂f

∂σ
= γsign(σ)

α̇ = γ

iii- Yield condition

f(σ,α) = |σ | −
(
σy +Kα

)
≤ 0

iv- Kuhn-Tucker complementary conditions

γ ≥ 0, f(σ,α) ≤ 0, γf(σ,α) = 0

v- Consistency conditions

γ̇ḟ(σ,α) = 0 (if f(σ,α) = 0)

Box 1: Constitutive model of thermoplasticity with isotropic Hardening

2.2.2 An elementary model for kinematic hardening

There are also two assumptions, the hardening is kinematic as the size of the yield surface Eσ

cannot change and its center can move with respect to the origin at any loading. The second
assumption is also almost the same, as the hardening is linear for the amount of plastic flow
ε̇p and independent of sign. These two assumptions are illustrated with the following figures.

(a) Illustration of the center (b) Illustration of the linearity

Figure 2.2: Assumptions used for kinematic hardening

The admissible stress range can be written as:

Eσ = {(σ,α) ∈ R×R | f(σ,α) = |σ − q|−σy ≤ 0}
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The constitutive model is summarized in Box 2.

i- Elastic strain relationship

σ = E(ε− εp)
ii- Flow rule and isotropic hardening law

ε̇p = γ
∂f

∂σ
= γsign(σ)

α̇ = γ

iii- Yield condition

f(σ,α) = |σ − q| − σy ≤ 0

q = sign(σ − q)Kα

iv- Khun-Tucker complementary conditions

γ ≥ 0, f(σ,α) ≤ 0, γf(σ,α) = 0

v- Consistency conditions

γ̇ḟ(σ,α) = 0 (if f(σ,α) = 0)

Box 2: Constitutive model of thermoplasticity with kinematic Hardening

2.2.3 An elementary model for mixed hardening

Here, it is assumed that the hardening is both isotropic and kinematic, i.e. the size of the
yield surface, Eσ can be increased, and the center of the yield surface can be moved with
respect to origin. The assumption is explained through the the following diagram. The set

Figure 2.3: Illustration of mixed hardening

of admissible stresses can be defined as;

Eσ = {(σ,α) ∈ R×R | f(σ,α) = |σ − q|− [σy + K̄α ] ≤ 0}
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i- Elastic strain relationship

σ = E(ε− εp)
ii- Flow rule and isotropic hardening law

ε̇p = γ
∂f

∂σ
= γsign(σ)

α̇ = γ

iii- Yield condition

f(σ,α) = |σ − q| −
(
σy + K̄α

)
≤ 0

q = sign(σ − q)βKα

K̄ = (1− β)K

iv- Khun-Tucker complementary conditions

γ ≥ 0, f(σ,α) ≤ 0, γf(σ,α) = 0

v- Consistency conditions

γ̇ḟ(σ,α) = 0 (if f(σ,α) = 0)

Box 3: Constitutive model of thermoplasticity with mixed Hardening

2.2.4 Thermoplasticity with isotropic hardening

As the thermodynamics frame work was developed to study the mechanics under thermal
effects, so there was a need to define some state variables,and these state variables were
named as internal variables. These variables were introduced in order to verify or justify the
increase of yield strenght due to strain effects at micro and macro level. Similarly there was
a need to justify the temperature increase in the body under plastic strain, so the second
law of thermodynamics need to be consider if there are some temperature changes. A term
of free energy was introduced in order to justify heat dissipation due to mechanical power.

In order to find the number of internal variables for introducing in the body, it is necessary
to find the the number of ways in which one can store the energy in the body. These ways
can be strain (elastic or plastic), latent heat, temperature etc. There are some variables
introduced for isotropic hardening and also for kinematic hardening. A variable entropy was
explained in order to cope with temperature changes, and principle of maximum dissipation
were introduced for heat dissipation, either latent or entered from surrounding. Similarly,
some other variables can be introduced in order to justify or include the influence of the
other theories, e.g. the isomorphism effects, as A. Bertram in his paper, Finite thermoplas-
ticity based on isomorphisms: April, 2003 (Otto-von-Guericke-Universita 39106 Magdeburg,
Germany), [35], introduced εc and ηc, the new terms to justify the isomorphism. So, the
thing is to match the theoretical and computational studies with the experimental and real
graphs and values by introducing the new variables, either in tensor form, vector or scalar
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form.
Here in the following box 4, isotropic model of thermoplasticity is detailed. The model is
taken from Simo and Miehe, 1992.,[13].

i- Free energy function [T̂ ′′′ = ∂2
θθM̂(J ,θ) = 0 ]:

ψ̂ = T̂ (θ) + M̂ (J ,θ)︸ ︷︷ ︸
thermal

+ Û(J) + Ŵ (b̄e)︸ ︷︷ ︸
hyperelastic

+ K̂(α)︸ ︷︷ ︸
hardening

ii- Kirchoff stress and entropy [be = F eF et = FGpF t; b̄e = J−2/3be ]:

τ = pJ1 + dev [τ ] η = ηt + ηe + ηp

p = Û ′(J) + ∂jM̂(θ, J), ηt = −T̂ ′(θ)
dev [τ ] = 2dev [b̄e∂b̄eŴ (b̄e) ], ηe = −∂θM̂(J ,θ),

iii- Von Mises yield criterion:

φ̂ = ‖dev [τ ]‖ −
√

2

3
[K̂ ′(α) + ŷ(θ) ] ≤ 0

iv- Evolution equations [λ ≥ 0, λφ̂ = 0, ∂τ φ̂ = dev [τ ]/‖dev [τ ]‖ ]:

Lvbe = −2λ [∂τ φ̂ ]be,

η̇p = −
√

2

3
λθ ŷ′(θ)

α̇ =

√
2

3
λ

v- Capacity, mechanical dissipation, elastic heating, heat flux:

c = −θT̂ ′′(θ)

Dmech = ŷ(θ)

√
2

3
λ

H = −θ∂2
θθM̂ (J ,θ)J̇ ,

q = − [k1 ]∇θ

Box 4: Simo and Miehe Isotropic model of thermoviscoplasticity, (1992)[13]
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Chapter 3

Review of Reference Papers in
Thermo-visco-Plasticity

3.1 J.C. Simo and C. Miehe; Jan,1991 [13]:

Introduction:

The paper, J.C. Simo, C. Miehe, Associative coupled thermo-plasticity, is considered as
a bench mark paper in the studies of thermoplasticity both with reference to governing
equations and numerical formulation. Many of the authors later mentioned the reference
from this paper. The governing equations and computational implementation are explained
thoroughly for isothermal, non-isothermal, non-isothermal adiabatic, and non-isothermal
convective problems are discussed in the paper with the help of renowned representative
examples which later on were discussed by many of the authors as a reference solution.

Local governing equations for thermoplasticity:

The local governing equations in Simo and Miehe starts from thermoelastic domain, de-
scribing the internal energy, entropy, kinematic relations, free energy, local dissipation, con-
stitutive equations, evolution equations,maximum dissipation, interpretation of the flow rule,
temperature evolution equation and ended by summarizing the model of J2 flow theory.
The elastic domain expressed in terms of the true stresses and in current configuration is
given by;

E = {(τ ,β,θ) : φ̂(τ ,β,θ) ≤ 0} (3.1)

Where τ is the Kirchoff stress tensor, β is the vector of internal variables and θ is the
absolute temperature. The classical Von Mises yield criterion is expressed by;

φ̂(τ ,β,θ) = ‖dev [τ ]‖+

√
2

3
[β − ŷ(θ) ] ≤ 0 (3.2)
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3.1.1 Internal energy and plastic configurational entropy

Simo and Miehe described the internal energy as;

e = ê(X;C,Γ, η − ηp) (3.3)

Where, X is related to the possible in-homogeneities in the lattice structure, C is the left
Cauchy Green deformation tensor, Γ is the set of strain-line internal variables responsible for
inelastic response of the material,η is the total entropy of the material and ηp is the plastic
entropy of the material which is also introduced as an internal variable.
Many of the model were introduced by neglecting the thermal part in plasticity(i.e there is
no η − ηp term).

3.1.2 Kinematic relations for multiplicative decomposition

According to Taylor et al. [6],Simo and Miehe considered the local multiplicative decomposi-
tion of deformation gradient, F = F eF p and introduced the two strain measures associated
with reference and current configurations.

Gp = [F ptF p ]−1 and be = F eF et (3.4)

The two relations are related by;

be = FGpF t and 1 = F−tCF−1 (3.5)

The time differentiation of the above equation give the following relations.

be = lbe + belt +Lvb
e with Lvb

e = FĠpF t (3.6)

where l is the velocity gradient and Lvb
e is called the Lie derivative of elastic left Cauchy

Green tensor be.

3.1.3 Free energy, local dissipation and constitutive equations

The free energy takes the following form:

e = ê(be, α, ηe), with ηe = η − ηp (3.7)

Where ηp is the plastic entropy.
By Legendre transformation, we get the free energy function ψ̂ by subtracting the entropy
of the material from the internal energy of the material.

ψ̂(be, α,θ) = ê(be, α, ηe)− ηeθ (3.8)
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Reduced dissipation inequality:

According to Clausius Plank form of second law of thermodynamics( which is only the local
dissipation inequality).

D = θγloc = θη̇ + τ · d− ė ≥ 0 (3.9)

Where d is the symmetric part of velocity gradient. Inserting the values of ė and η̇ into
the Clausius Plank form of second law of thermodynamics, we get the dissipation inequality.
But it should be noted that η = ηe + ηp; and ψ̂ depends on three variables, be, α, and θ.

D = [−(η−ηp)−∂θψ̂ ]θ̇+ [τ−2∂beψ̂b
e ]·d+ [2∂beψ̂b

e ]· [−1

2
(Lvbe)be−1 ]+ [−∂αψ̂ ]α̇+θη̇p ≥ 0

(3.10)
It gives the following constitutive equations ( see e.g. [51, 49]).

τ = 2∂beψ̂b
e and η = ηp − ∂θψ̂ (3.11)

By setting β = −∂αψ̂, the reduced form of the dissipation inequality can be written as;

D = τ · [−1

2
(Lvbe)be−1 ] + βα̇︸ ︷︷ ︸
Dmech

+ θη̇p︸︷︷︸
Dther

≥ 0 (3.12)

The term Dther is the new term by Simo and Miehe, and shows the pure thermal dissipation
in the form of entropy production, η̇p introduced earlier in the internal energy as an internal
variable.

3.1.4 Evolution equations; maximum dissipation

Now the evolution equations for all internal variables are derived according to the Principle
of maximum plastic work defined by Von Mises (see [6]) which says that the total dissipation
is always maximum in the material. Here Simo and Miehe extended this principle of maxi-
mum dissipation to thermomechanical problems and resulted that the maximum dissipation
depends on the plastic entropy which they have introduced.

Thermomechanical principle of maximum dissipation:

The maximum dissipation principle for thermomechanical problems can be written as;

[τ − ∗
τ ] · [−1

2
(Lvbe)be−1 ] + [β −

∗
β ]α̇ + [θ −

∗
θ ]η̇p ≥ 0 (3.13)

It is assumed to hold for all admissible
∗
τ ,
∗
β and

∗
θ. If the elastic domain is given by the first

equation as mentioned in the start, then the evolution equations can be obtained as;

− 1

2
Lvbe = λ [∂τ φ̂ ]be, α̇ = λ∂βφ̂ , η̇p = λ∂θφ̂ , (3.14)

Where λ is the Lagrange multiplier and satisfy the Kuhn-Tucker conditions,

λ ≥ 0 , φ̂(τ ,β,θ) ≤ 0 , λφ̂(τ ,β,θ) = 0 (3.15)
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Interpretation of the flow rule:

The flow rule −1
2
Lvbe = λ [∂τ φ̂ ]be, in the above equation is interpreted with reference to

pressure insensitivity of yield criterion and showed that tr [∂τ φ̂ ] = 0 and Jp = 1.
The flow rule is also expressed in terms of intermediate configuration for Piola-Kirchoff
stresses as below.

sym [Lp ] = λNCe , where Ce = F etF e , and Lp = Ḟ pF p−1 (3.16)

The flow rule is also tried to extend for rate-temperature dependent response of the material,
where the Kuhn-Tucker conditions are replaced by constitutive equations.

3.1.5 The temperature evolution equation

Here the local balance of energy equation reduces to,

− Jdiv [q/J ] +R = ė− τ · d (3.17)

Inserting the value of ė− τ · d from Clausius Plank form of second law of thermodynamics
in equation (3.17), we get

− Jdiv [q/J ] +R = θη̇ −D = θ(η̇ − η̇p)−Dmech (3.18)

From the reduced dissipation inequality and the corresponding constitutive equations we get
the evolution equation for total entropy as

θη̇ = θη̇p − θ∂θ ˙̂
ψ = θη̇p + cθ̇ +H, (3.19)

Where H is the elastic-plastic structural heating. It is associated with the non-dissipative
(latent) elastic and plastic structural changes. Here the structural heating is given as;

H = −θ[∂θbeψ̂ · ḃe + ∂θαψ̂α̇] (3.20)

Substituting the evolution equation of total entropy into the equation (3.18), we get the
temperature evolution equation

cθ̇ = [Dmech −H ] + [−Jdiv [q/J ] +R ] (3.21)

In adiabatic case, the second bracket vanishes. The constitutive equation for heat flux is
defined by the Fourier’s Law

q = −k∇θ (3.22)
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3.1.6 Application: A thermomechanical model of J2-flow theory

Considering the given elastic domain, flow rules and evolution equations for entropy and
temperature, the J2 flow theory can be modeled with the following specific form of free
energy function;

ψ̂ = T̂ (θ) + M̂ (J ,θ)︸ ︷︷ ︸
thermal

+ Û(J) + Ŵ (b̄e)︸ ︷︷ ︸
hyperelastic

+ K̂(α)︸ ︷︷ ︸
hardening

(3.23)

Since total dissipation is given by D = Dmech+Dther, by substituting the evolution equations,
and using the Von Mises yield criterion, we get the simplified forms of Dmech and Dther as

Dmech =

√
2

3
ŷ(θ)λ and Dther = −

√
2

3
λθ ŷ′(θ) (3.24)

Considering the generalized form of linear isotropic elastic hardening,

Û(J) = κ [
1

2
(J2 − 1)− lnJ ] and Ŵ (b̄e) =

1

2
µ [tr [b̄e ]− 3 ] (3.25)

An explicit expressions for T̂ (θ) and M̂ (J ,θ) is obtained as:

T̂ (θ) = c [(θ − θ0)− θ log [θ/θ0 ] ] , M̂(J ,θ) = (θ − θ0)Ĝ(J) (3.26)

Where Ĝ(J) is the function contributing for the thermal expansion, and is given by,

Ĝ(J) = −3βÛ ′(J) (3.27)

3.2 Marko Canadijia, Josip Brnic; November, 2003 [29]:

Introduction:

The paper by Marko Canadijia and Josip Brnic deals with associative coupled thermo-
plasticity at finite strains and based on the multiplicative decomposition of deformation
gradient. The exception in this paper is the temperature dependence of all the material
properties. A variational formulation is carried by mixed finite element method. There are
some new terms in the tangent operators and structural elasto-plastic heating due to the
temperature dependence of the material properties. This paper is also restricted to isotropic
hardening and hyperelastic formulation as was of classical Simo and Miehe paper. This
may cause some problem like anisotropic modeling, the problem discussed with the help of
isomorphism by Bertram, 2003 [35] and Dachkovski and Böhm, 2004. The basic equations
under the classical headings are given here briefly.
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3.2.1 Basic Kinematics

Here in the paper by Marko Canadijia and Josip Brnic, the two strain measures are taken,
the plastic part of the right Cauchy -Green tensor

Cp = (F p)TF p (3.28)

and the elastic left Cauchy-Green tensor

be = F (Cp)−1F T (3.29)

3.2.2 Balance equations

The local form of momentum and energy balance equations are taken as

ρ0V̇ = divP + f̄

ρ0Ė + divQ = S ·D + ρ0Ṙ

}
for Ω , and t = [0,T ] (3.30)

The free energy is obtained by Legendre transformation, and the free energy function here
is taken the same as Miehe.

e = ê(be, ξ, ηe), and ψ = e− θη (3.31)

The ξ represents the internal strain hardening variable.
Thermomechanical model is completed by calculating the free energy function, constitutive
equation for heat flux vector, evolution equation for internal variable, flow rules and evolu-
tion equation for temperature It should be noted that the Principle of objectivity restricts
the above theory to isotropic materials, so dealing with anisotropic materials would cause
problem.

3.2.3 Model of J2-flow theory; multiplicative plasticity

The basis of stress tensor calculation in hyperelastic materials is the Helmholtz free energy
function. The free energy function here is

ψ̂ = T̂ (θ) + M̂ (J ,θ) + Û(J ,θ) + Ŵ (b̄e,θ) + K̂(ξ,θ) (3.32)

The difference in Marko Canadijia and Josip Brnic paper is that here is the additional term
θ in the last three terms. Also the heat capacity c(θ) in the purely thermal part, T̂ (θ) which
represents the purely thermal entropy, is different from Simo and Miehe, 1992 paper.

c(θ) = −θ∂2
θθψ̂ = −θ∂2

θθT̂ − θ∂2
θθ(M̂ + Û + Ŵ + K̂) (3.33)

c(θ) = c0(θ)− θ∂2
θθ(M̂ + Û + Ŵ + K̂) (3.34)

Similarly, the values for M̂ , Û , Ŵ , K̂ and H(ξ) are explained onward. But this paper from
Marko Canadijia and Josip Brnic, also deals the case of linear isotropic hardening, and this
is clear by looking at the functions of K̂, H(ξ) and linear softening functions y0(θ), h(θ)
and y∞(θ).
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3.2.4 Local dissipation inequalities

The momentum and energy balance equations for a body is constrained by second law of
thermodynamics, in other words they have to be within the second law of thermodynamics.
In the current paper, the law is mentioned in the form narrated by Truesdell and Noll,
1965 [36].

γloc = η̇ − r
θ

+ 1
ρθ
divq ≥ 0

γcon = − q
θ2
· ∇θ ≥ 0

}
(3.35)

Considering the local energy balance of material and the Legendre transformation, one get
the following dissipation inequality.

D = θγloc + θγcond =

internal dissipation︷ ︸︸ ︷
θη̇ + τ · d− ė︸ ︷︷ ︸
Dmech+Dther︸ ︷︷ ︸
Dloc≥0

− 1

θ
q · ∇θ︸ ︷︷ ︸
Dcond≥0

≥ 0 (3.36)

From the local dissipation inequality and following the arguments presented by Coleman and
Gurtin, 1965 [10], we get the constitutive equations for Kirchoff stress tensor and entropy,
almost same as in Simo and Miehe, 1992 [13].

τ = 2∂beψb
e and η = ηp − ∂θψ (3.37)

Next, the values of Dmech and Dther are deduced in the reduced form as was by Simo and
Miehe, 1992.

3.2.5 Maximum plastic dissipation and flow rule

The elastic domain expression used here is same as of Simo and Miehe, 1992.

E = {(τ ,β,θ) : φ(τ ,β,θ) ≤ 0} (3.38)

Also the same Von Mises yield criterion is considered(metal plasticity).

φ(τ ,β,θ) = ‖dev [τ ]‖+

√
2

3
[β − σy(θ) ] ≤ 0 (3.39)

Using the principle of maximum plastic dissipation: from all admissible states (τ ∗,β∗,θ∗)
the plastic dissipation attains its maximum for the actual state(τ ,β,θ), they derived the
following evolution equations:

− 1

2
Lvbe = λ [∂τφ ]be, ξ̇ = λ∂βφ , η̇p = λ∂θφ , (3.40)

λ ≥ 0 , φ(τ ,β,θ) ≤ 0 , λφ(τ ,β,θ) = 0 (3.41)

and consistency condition,
λ · φ̇(τ ,β,θ) = 0 (3.42)

29



3.2.6 Temperature evolution

Considering the energy balance equation of material, using the Piola transformation and
taking Kirchoff stress tensor as a stress measure, the local energy balance can be written as,

− Jdiv [q/J ] + r = ė− τ · d (3.43)

Using the reduced dissipation inequality,

− Jdiv [q/J ] + r = θη̇ −Dloc = θ(η̇ − η̇p)−Dmech (3.44)

By substituting the constitutive equation of entropy into the above equation, the temperature
evolution can obtained as

cθ̇ = [Dmech −H ] + [−Jdiv [q/J ] + r ] (3.45)

The constitutive equation for heat flux for metal plasticity is always given by,

q = −k∇θ (3.46)

3.2.7 Mechanical dissipation and structural elasto-plastic heating

There is a term of mechanical dissipation, Dmech in the temperature evolution equation which
is usually defined by many authors as

Dmech = χPpmech =

√
2

3
λ(β − σy(θ)) (3.47)

Where χ ∈ [0, 1 ] is a dissipation factor. Because, the mechanical power is mostly converted
to thermal power and dissipated as heat and rising the temperature, but some of the me-
chanical power during plastic dissipation is left inside the material and stored due to the
interaction of lattice structures, dislocations arrangements and many other micro-mechanics
theories. The dissipation factor is usually taken as 0.85 to 0.95, but in some cases like
Rosakis et al., 2000 [32], this factor goes to 0.30 in certain cases. This stored amount of
energy depends on many factors, strain rate, strain level, temperature, structural lattice etc.
Considering the same free energy function, the elasto-plastic structural heating can be finally
written as;

H = −θ(∂2
θb̄eW ∂be · ˙̄be + ∂2

θJU∂beJ · ḃe + ∂2
θJM∂beJ · ḃe) (3.48)

This is in accordance with the procedure adopted by Rosakis et al.(2000).

3.3 P. Wriggers, C. Miehe, M. Kleiber, and Simo; March,

1991

Introduction:
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In the paper P. Wriggers et al., 1991 [16], the same thermomechanical problem is discussed
with isothermal, adiabatic and non-adiabatic case. It also showed that there is no bifurca-
tion in the problem with heat flux as contrast to isothermal and adiabatic case. The same
problem was also discussed by Oden for finite strains but for thermoelastic responses. The
numerical formulation adopted by P. Wriggers et al., 1991 is similar to that of developed
by Simo[13], except the discussion on plastic incompressibility and incremental objectivity
for thermomechanical problems.

3.3.1 Kinematic relations, multiplicative split

According to the multiplicative decomposition of the deformation gradient, P. Wriggers et
al., 1991 introduced the deformation gradient as

F = FeFθFp (3.49)

Where Fe is the deformation gradient by elastic contribution, Fθ is the deformation gradient
by thermal contribution and Fp by plastic contribution.

And splitting the F into volume preserving part F̂ and dilatoric part J1/31.

F = J1/3F̂ with det F̂ = 1 (3.50)

According to the classical plastic incompressibility and pure volumetric thermal deforma-
tions, Jp = 1, and F̂θ = 1, they get the following derivations.

J = JeJθ F̂ = F̂eF̂p (3.51)

where Fe = J1/3
e F̂e , Fp = F̂p , Fθ = J

1/3
θ 1 (3.52)

Next the right Cauchy Green tensor C and elastic left Cauchy Green tensor be are then
defined, finally the Lie derivative as

Lv(be) = FC−1
p F

T (3.53)

3.3.2 Thermoelastic constitutive law

The free Helmholtz enegy introduced by P. Wriggers et. al., is derivation from thermoelastic
case and was written as

ψ(Je, b̂e, θ) =
1

2
µ(Ib̂e − 3) +

1

2
K(ln Je)

2 + T (θ) (3.54)

And derived the constitutive equations for Kirchoff stresses and thermoelastic entropy quot-
ing the paper Thermoviscoplasticity by finite elements, by H. Ghoneim and S. Matsuoka,
1987 [22]:

τ = 2be
∂ψ

∂be
= −pI + µ dev b̂e , ηe = −∂ψ

∂θ
(3.55)

The equations for change of volume due to thermal contribution (Jθ) and elastic deformation
(Je) are also given here.
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3.3.3 Elastoplastic constitutive law

According to Von Mises yield criterion in terms of Kirchoff stresses:

f = ‖dev [τ ]‖ −
√

2

3
κ(α, θ) ≤ 0 (3.56)

Here the strain hardening depends on hardening variable α, and thermal softening θ. The
hardening-softening law is given as:

κ(α, θ) = {Y0 + (Y∞ − Y0)(1− e−δα) +H1α}{1−Hθ(θ − θ0)} (3.57)

Here the evolution of hardening variable is also given, and derived the flow rule same as by
Simo et al.

Lv(b̂e) = −2

3
γ̇tr [be ]n with n =

dev τ

‖dev τ‖
(3.58)

and consistency conditions,

γ̇ ≥ 0 , f(τ , α, θ) ≤ 0 , γ̇f(τ , α, θ) = 0 (3.59)

3.3.4 Balance laws and Variational formulation

In the current configuration, the local law of momentum for static case is written as

J div(τ/J) + b̂ = 0 (3.60)

The thermal effects were included by the balance of internal energy

ε̇ = ẇ − J div(h/J) + r (3.61)

where ε̇ and ẇ are the internal energy and total stress power. After neglecting the source
term, r and the relatively small thermoelastic coupling effect, the temperature evolution
equation is derived as:

ceθ̇ = χẇp − J div(h/J) with ẇp = κ(α, θ)

√
2

3
γ̇ (3.62)

Where ce is the heat capacity, ce = θ(∂ηe/∂θ).

This is the coupled heat conduction equation for thermomechanical problems with heat
dissipation. Here ẇp is the plastic power and χ is the factor which indicates that how much
plastic power is dissipated during plastic deformation. The term −J div(h/J) become zero
in case of adiabatic. So the equation can be written without temperature term, simply as

θ̇ =
χ

ce
γ̇ (3.63)
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But here, in P. Wriggers et al., 1991 paper, they have ignored the thermoelastic coupling
effect, so the expressions for plastic power ẇp, and temperature evolution equation are dif-
ferent than that of Simo and Miehe- 1992, because they have considered the effect of elastic
thermal coupling. They introduced H, as Elastic-plastic structural heating, and said that H
is associated to the non-dissipative (latent) elastic and plastic structural changes.

In order to formulate the non-linear variational equations, it is said that the pure displace-
ment approach is not being adopted due to isochoric nature of problem which may lead
to locking. They consider a five field mixed formulation consistent with thermomechani-
cal problem. The momentum balance equation and the temperature evolution equation are
formulated with Galerkin formulation, with the test functions ηu and ηθ respectively and
finally formulated the following functionals.

Gφ =

∫
Ω

[dev τ · dev (∇ηu)− P ∇ · ηu ]dV −
∫

Ω

b̂ · ηudV −
∫
∂τφ(Ω)

t̂ · ηuda = 0 (3.64)

GD =

∫
Ω

(D − J)ηD dV = 0 (3.65)

GT =

∫
Ω

(T − θ)ηT dV = 0 (3.66)

GP =

∫
Ω

[P −K ln (D e−3α(T−θ0)) ]ηpdV = 0 (3.67)

Gθ =

∫
Ω

[ceθ̇ηθ − h · ∇ηθ − χẇpηθ ]dV −
∫
∂qφ(Ω)

(−̂qn)ηθ da = 0 (3.68)

And detailed the effect of plastic dissipation on temperature, influence of deformation on
heat generation, and the change of stress behavior due to rise of temperature.
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Part II

Computational Experiments and
Comparison
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Chapter 4

Results from Abaqus Simulations

Here in the current chapter, the problem will be defined completely along with a brief history
of the specific problem. The computational procedure via Abaqus will be discussed in detail,
step by step. After the discussion of the Abaqus Procedure of tackling plasticity problems,
the results will be presented. The results include the comparison of temperature distribution,
load distribution, stress-strain curves, and reduction of the diameter during necking process.

Thermally triggered necking; A classical thermomechanical test case:

The necking problem is one of the very known cases for verification of the studies and numer-
ical formulations developed in the field of thermomechanical plasticity, dealing with isother-
mal, adiabatic and non-adiabatic cases. This is the standard size cylindrical bar of radius
6.413 mm and length of 53.334 mm. The total axial elongation of the specimen is prescribed
to be 16 mm. The total time period is 8 seconds, and the rate of application of the stretch-
ing is kept constant. The cylindrical bar has the properties detailed in table 1. The similar
problem was dealt by many of the authors, including Needleman, 1972 [25], Lehmann and U.
Blix, 1985 [24], T.J.R Hughes et al., 1983 [28], H. Ghoneim and S. Matsuoka, 1987 [22], P.
Wriggers et al. 1992 [16], F. Armero et al. 1992 [12], J.H. Argyris, J.S. Doltsinis,1979 [19],
J.C. Simo and C. Miehe, 1992 [13], Marko Canadija and Josip Brnic, 2003 [29], A. Ibrahim-
begovic and L. Chorfi, 2002 [30], Q. Yang, L. Stainier, and M.Ortiz, 2006 [14] etc. are the
most prominent scientists in the field of computational thermo-plasticity. First of all, the
problem was dealt with simple plasticity, i.e. plasticity without the conversion of plastic
power in thermal power raising the temperature in the material. Then later on, the same
problem was dealt in context of non-isothermal but with adiabatic surface and with bifurca-
tions. Afterward the problem was studied with heat conduction but in context of isotropic
hardening only by some of the authors.

The work in Simo and Miehe, 1992 [13] proved to be an excellent bench mark in thermo-
mechanical plasticity, both in governing equations and computational formulations. Seven
representative examples were studied and explained with the computational formulations
by Simo and Miehe, 1992 [13]. The results of these seven examples were regarded as refer-
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ence work for many of the authors later on. Their work for metal plasticity got the status
of reference for other disciplines, like composite materials, porous materials, temperature
dependent material properties, thermoplasticity with kinematic hardening only, thermoplas-
ticity with isomorphism, thermoplasticity with both kinematic and isotropic hardening (e.g.
A. Ibrahimbegovic and L. Chorfi, 2002 [30] and for Aluminium by Q. Yang, L. Stainier, M.
Ortiz, 2006 [14] and by many others). . One point to note that, the case dealt by Simo and
Miehe, 1992 [13] is the isotropic hardening case only, with constant material properties. The
temperature-dependent material properties are detailed in the work by Marko Canadija and
Josip Brnic, 2003 [29].

Here, the problem is studied from three perspectives.First the theoretical study of the laws
of mechanics and thermodynamics are studied from many of the internationally renowned
papers and from the books as are detailed in bibliography. These laws include the equations
of kinematics, mass balance, momentum balance, constitutive, energy, entropy, temperature
evolution, entropy evolution, and plastic flow equations. Secondly, the problem was carried
through Abaqus formulations of numerical coding. Many of the parameters, e.g. mesh size,
strain rate, load rate, coefficient of convective heat, temperature variation, necking zone
radius, material properties, stresses, strains and computational time were observed. Thirdly,
the problem was tested in the code, Zorglib developed by Prof. Dr. Laurent Stainier .
Here in this part, the GMSH was used along with the python script, input files of material
properties and mesh. The GMSH is software used for meshing and post processing, it is an
open source code provided by GNU General Public License.

4.1 Excution Detail in Abaqus

The given sample for tensile test is a cylindrical shape bar of radius 6.413 mm and length
53.334 mm discussed by in [13]. The specific problem of thermal necking in a cylindrical bar
is investigated by many of the authors. The problem is detailed first as an isothermal case
by Needleman[?], Argyris and Doltsins [19][18], and Simo [27]. The same problem with same
geometry is also discussed as non-isothermal (adiabatic problem) by T. Lehmann and U. Blix,
1972 [24]. Recently the same problem with self heat generation and convection (convective
problem) with the same geometry is discussed by [13], [29], [31] and [30]. The sample
considered here has axisymmetric conditions; One-quarter of the specimen is taken. So the
2D shape of the specimen can have only Quadrilateral and Triangular elements and it can
be of order 1 and 2 only, in other words, we can have only linear and quadratic quadrilateral
elements and triangular elements. Here the main steps of Abaqus are discussed.

4.1.1 Properties of Material

The table (4.1) shows the properties of the necking problem considered here. The properties
taken by other authors for the same geometry are mostly the same. There are very little
changes in the properties, e.g. thermal conductivity, coefficient of convection heat, and some
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Table 4.1: Material properties for thermally triggered necking

Bulk modulus κ 164206 N/mm2

Shear modulus µ 801938 N/mm2

Flow stress yo 450 N/mm2

Linear hardening h 129.24 N/mm2

Saturation hardening yo,∞ 715 N/mm2

Hardening exponent δ 16.93
Density ρ 7.8 · 10−9 Ns2/mm4

Expansion coefficient α 1·10−5 K−1

Conductivity κ 45 N/sK
Capacity c 0.46 · 109 mm2/s2K
Dissipation factor χ 0.9
Flow stress softening ωo 0.002 K−1

Hardening softening ωh 0.002 K−1

b)Values taken from Simo and Miehe, 1992

other constants, of other authors who worked on the necking problem, and those changes
does not count much in the general results. Here in the current Abaqus simulation, the
mechanical properties of the specimen is taken at constant temperature, in other words, the
properties are independent of the temperature. The analysis become more complex if one
take the temperature dependent properties.

4.1.2 Plastic Strain Data

Similarly, the plastic strain data introduced in Abaqus simulation is given in the table
(4.2). The plastic strain data is taken from the analytical expression from Simo and Miehe,
1992 paper. The plastic strain data is taken at two different temperatures. This is the
experimental data used in the Abaqus computational simulations.

4.1.3 Analysis step

Here in the Step, the values and observation found are explained for one of the many cases
performed. The case is 200 quadrilateral element with first order of shape functions. A stan-
dard structured mesh with thermocoupled temperature displacement element was set. Time
period was set to 8 sec, with Nlgeo on, initial increment size as 0.02, minimum increment
8e-5 and maximum increment size 0.02. Allowable temperature change per increment was
set to 10. The analysis stopped at 405th increment while the total number of increments
were given 1000. The computational time was almost 3 minutes. The necking started at
148th increment when the Avg Mises Stress at the bottom of the bar, at 145th increment
changed from 6.735e8 Pa to 6.594e8 Pa at 148th increment. But there was one region (blue)
with 5.493e8 Pa in the middle of the bar on the axis of symmetry, still in these increments.
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Table 4.2: Experimental data for thermally triggered necking

Plastic strain data
Yield stress(MPa) Plastic strain Temperature(K)
450 0 0
520 0.02 0
580 0.04 0
640 0.08 0
700 0.15 0
780 0.5 0
840 1 0
270 0 200
312 0.02 200
348 0.04 200
384 0.08 200
420 0.15 200
468 0.5 200
504 1 200
c)Experimental data for medium carbon steel

At 200th increment the stress on these bottom elements decreased to 5.847e8 Pa along with
the blue region at 2.824e8 Pa, but shifted and spread towards bottom. At 300th, 350th and
400th increment, the stresses at the bottom of the bar were noted as 5.361e8 Pa, 4.065e8 Pa
and 5.435e8 Pa.

4.1.4 Interaction

Interaction of type Surface Film Condition with Film Coefficient 17.5 N/msK , Skin Temper-
ature, 0, with respect to the reference temperature taken as outside temperature, is created
in step 1 which is a Coupled Temperature Displacement step. In the Interaction Property,
the Film Coefficient is 17.5 N/msK at Temp 0. In Abaqus, first it needs to define type of
interaction, and then for each interaction type there are some interaction properties. Here,
the upper and right line of 2D rectangular axisymmetric specimen was given the interaction
with surrounding for heat transfer. So one can observe the temperature difference for the ele-
ments on the line of symmetry and on right line elements. The temperature on axisymmetric
line is always greater than that of right line elements.

4.1.5 Load and Boundary Conditions

BC1, BC2 and BC3 are created in step 1 (Coupled Temperature Displacement), BC1 and
BC2 are of type Symmetry/Antisymmetry/ncastre, while BC3 is of type Displacement/Ro-
tation. BC1 and BC2 are XSYMM and YSYMM. BC3 is given a displacement of 8 m only
to U2, in other words, a velocity of 1mm/s was given to the upper end of the specimen. This
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: The various forms of meshes for different test cases

step is very crucial because varying the time step vary the results unexpectedly most of the
time.

4.1.6 Mesh

The Figure (4.1) represents the different sizes of meshes. The mesh can be structured or
free. The specimen is divided into two parts, the upper part and the lower part. The lower
part is the necking zone, which is concentrated with more number of elements with respect
to the upper part for the convergence of results. As the case is axisymmetric, so it can be
assigned only two dimensional elements, which can be triangular or quadrilateral. The order
can be changed to first and second, with type of mesh, number of elements, time increment,
convection heat coefficient, time of applied load, properties of the material etc.
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Case 1:

In Mesh Control the element shape is Quadrilateral and is structured. In the Element
Type, the family is Coupled Temperature Displacement, standard, and the geometric order
is linear. In other words, the elements are CAX4T (4 node axisymmetric thermally coupled
quadrilateral, bilinear displacement and temperature). Here is the partitioning in the necking
region. There are 100 elements in the necking region and 150 elements in the upper region,
the calculations completed at 405 elements. There were some problems, first, when the mesh
was not structured, it shows the necking in between the bar not at the end, and such behavior
was unexpected and the analysis stopped at almost the same number of increments, 402 in
this case. Similarly when the elements were structured, but the number of elements in the
bottom was increased from 100 to 200 and the upper region elements were increased from
150 to 200 elements, then the results showed necking at both ends of the bar. These were
weird results. In one another attempt, when the upper elements changed to 160 and the
lower elements were remained same, it showed necking in the center of the bar even this time
the mesh was structured. In the 4th attempt, the number of elements lower region kept 200
same, but changed the width to length and vice versa, and the upper part was kept same at
150 elements. This time it gave the error of excessive distortion.

Case 2:

After that, the time step was changed and the initial increment was made to 0.01s and the
maximum increment was also changed to 0.01s. The lengths of the specimen were changed
to meters. This time the analysis completed at 806th increment, necking only at the bottom,
the blue region shifted to above a little and then came back at the same location, and the
computational time was increased from 3 min to 10 min and the necking started at 707th
increment with 6.254e8 Pa at the bottom elements instead of 148th increment with 100
elements on bottom and 150 elements in upper region. The Avg. Mises stress at 804th
increment was almost the same as was observed with case of 100 and 150 elements bar
(5.201e8 Pa) at bottom elements.

4.1.7 Job

The Job module comes after the completion of all graphics, properties of materials, in-
teractions, boundary conditions and loading conditions and finally meshing. After all the
requirements for the job are completed, then the problem is called a job and is given a name
which defines the type and nature of job. The job is then submitted for solution. The mon-
itor window is then opened to observe all the steps one by one. One can observe the log file,
data file, dot file to look at the errors and warnings during the execution of job.
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4.1.8 Results

The results stage of the Abaqus comes after the execution of job, it is called as post pro-
cessing. Here the Abaqus has a large variety of results. In Abaqus,there is one very helpful
feature, Operate on data, which help to make any mathematical operation on data. One
can operate on the data mathematically and there are a lot of mathematical operations one
can do just with one click. But it also sometime create complexity and ambiguity of results
if one is not familiar with all those result measures, for example there are many measures
of strains, stress, displacements, and load and various point of interest. So, the bearer of
the undergoing thesis tried to explain the results with the help of options given in Abaqus.
These specific details are mentioned in appendix B only for the current problem of necking.

(a) Undeformed Shape (b) Deformed Shape

Figure 4.2: Simo and Miehe test cases of 50 and 200 quadrilateral elements

(a) The 24-element
Quadrilaterals

(b) The 200-element
Quadrilateral

(c) The 400-element
Quadrilateral

Figure 4.3: Various size of Quadrilateral Elements in their Necking

43



(a) Abaqus Contour Plot (b) Lin and Brocks
Contour Plot

Figure 4.4: S11 Contour Plot Comparison

(a) Abaqus Contour Plot (b) Lin and Brocks Con-
tour Plot

Figure 4.5: S22 Contour Plot Comparison

In the Figure (4.11), a mesh of 200 quadrilateral elements of coupled temperature dis-
placement with first order, from standard library were taken to test the necking problem
with temperature dependent material properties. The properties were taken at the average
temperature of 323K and 373K. The maximum temperature change was about 125 as com-
pared to the change of 115 in constant material properties. The graph (b) of the same figure
shows that the rise decreased to 120 with material properties dependent at temperature of

44



(a) Simo-Miehe Temperature Distribution (b) Wriggers Temperature Distribution

Figure 4.6: Simo-Miehe and Wriggers cases for adiabatic and non-adiabatic temperature
distribution

(a) Quadrialateral elements order 1 and 2 (b) Triangular elements of order 1 and 2

Figure 4.7: Abaqus cases for adiabatic and non-adiabatic temperature distribution

average 373K. The case in Canadija and Brnic [29], is different. It shows a high temperature
change of about 160, and moreover the slope of the graph at the end of necking is still too
high contrary to the graph of constant material properties, as the case in Simo and Miehe,
1992 [13]. During the simulation process and from Newton Raphson method, it evident
that the time increment plays an important role during the calculations of non-linear equa-
tions. Here in the specific case, the outcome as a result of too high increment reveals the
unstability of the necking process. Sometimes it becomes difficult to judge, whether it came
from bifurcation or high time increment. Due to the crucial nature of time step in the whole
simulation, it is better to get good result on the expense of large computational time. The
number of time increment was taken high and the initial time time step was taken very low.
The details of some simulation result were written precisely in detail in the beginning of the
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(a) Simo-Miehe Temperature Dis-
tribution

(b) Abaqus results

Figure 4.8: Abaqus cases for adiabatic and non-adiabatic temperature distribution

(a) P. Wriggers Temperature Distribution (b) Abaqus results

Figure 4.9: Comparison for adiabatic and non-adiabatic temperature distribution

current chapter. The Newton Raphson method was given with more options in Abaqus, as
it can choose between minimum time increment and maximum time increment starting from
initial time increment. The number of iterations per increment are defined earlier in order
to abort the simulations in case of divergence of results.
So, in order to verify the effect of total time, the time in the simulation results were reduced
to 6 seconds and 7 seconds successively. Evident from the the Figure (4.12) , it reveals that
the necking time started earlier and the temperature increment is also higher. The end slope
of the line is almost same as before indicating the gradual decrease of high temperature
increment after the setting of crystal lattice layers movement initiated by necking.

The inelastic heat fraction factor is taken as constant for metal plasticity. It is usually
taken as χ [0.85− 0.95 ] for metal plasticity. In fact it shows the dissipation of plastic power
into thermal power, in other words it is the fraction of plastic work dissipated into heat. It
is detailed by Cervera et al. (1999), Zdebel and Lehmann(1987), Kamlah and Haupt (1998)
and Rosakis et al. (2000). The Rosakis et al. (2000) [32], presents that the factor can
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(a) Temperature Distribution (b) Birfurcation in adiabatic lines

Figure 4.10: Bifurcation of adiabatic temperature distribution

(a) Canadija-Brnic Temperature Dis-
tribution

(b) Abaqus results

Figure 4.11: Temperature dependent data; Comparison

reach to a value of 0.30 in some materials.
Here the effect of the dissipation factor shows the drop of temperature change successively
by lowering the value of dissipation factor. In Figure (4.13), the graphs for values of 0.9
(blue), 0.8, 0.7 and 0.5 are taken. At dissipation factor of value 0.5, the problem show
unstability and the necking starts at different positions. Since the convection coefficient is
highly dependent on the velocity of the convective medium, air in the case of necking. Here
the convection coefficient was doubled and then tripled, but there was negligible change in
the graph as shown in the Figure (4.14).This area need more realistic approach in numerical
implementations. Here in the Figure (4.16), the two lines shows the temperature at the
right of specimen (outside periphery) and left side (on the center line of specimen). The
upper line in both the graphs shows the temperature on the element which lie in the necking
zone and on the line of symmetry. It has slightly more temperature which is due to the
lack of convection heat transfer on the center line of the specimen. But there is difference
between these two graphs when we perform the reduced integration, which saves little time
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(a) Temperature Distribution t= 6 sec (b) Temperature Distribution t= 7 sec

Figure 4.12: Effect of time increment on temperature distribution

(a) Dissipation factor of 0.9 and 0.7 (b) Varying dissipation factors (0.9, 0.8,
0.7, 0.5)

Figure 4.13: Temperature distribution under varying dissipation factor

in the current sample problem, but it shows some difference of curves mainly at the end of
necking.

The Figure (4.17) and shows the various possibilities of the unstability conditions. Here
due necking starts at the upper end of the bar and similarly at the center of the bar. It may
be due to bifurcations, adiabatic conditions, improper meshing, unstable time increment,
reduced integration for a mesh of less elements, isothermal conditions, improper element
type or unsuitable strain rate.

Similarly Figure (4.19) shows the unstability in the triangular elements. In addition to
the very less number of the elements in the mesh, the the type of mesh is structured. For
the specific, when the mesh made of free, then it shows stability of necking zone for suitable
number of elements.

There are various kinds of measures for stress-strain graph. Here, only the Figure (4.20)
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(a) Conv. coeff; Two times the origional
value

(b) Conv. coeff; Three times the origional
value

Figure 4.14: Temperature distribution with higher convective coefficients

(a) Properties at aveg. tempe. 323K (b) Properties at aveg. tempe. 373K

Figure 4.15: Temperature dependent material properties;Comparison

is explained. It is stress-strain graph for LE, Logrithmic strain components LE22 (vertical
direction) at the integration points of each element, here the element is 4 node, and the
integration points are 4, so we have 4 strain-time graphs for each element and 4 stress-
time graphs, but here is given only one graph for strain, and one for stress, and one by then
combining these two graphs, for each element. The element considered here is on the bottom
line along the symmetric side where the necking was developed.

Here first of all, the results at integration points are taken, which includes the stress-
time, strain-time, and the stress-strain graphs. One point to clear, the strain component is
LEE, it is logarithmic strain, while the stress component is S22. We have four data for four
intregration points of the node, the node is at the bottom left of the specimen. The strain
here is the logarithmic strain at one of the integration point.
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(a) Convection with Full Integration (b) Convection with Reduced Integration

Figure 4.16: Quadrilateral Elements with 200 Elements

(a) Displacements of all nodes (b) Displacement of midpoint
in time

Figure 4.17: Unstability due to Adabatic Case

The Figure (4.20) shows the stress strain graph for LE, Logrithmic strain components
LE22 and stress component S22. The measurement is taken at integration points of each
element; Here the element is 4 node, quadrilateral and the integration points are 4, so we
have four strain-time graphs for each element. Similarly four stress-time graphs for each
element. The elements considered here are on line along the symmetric side and on outer
periphery where the necking was developed.By combining the two graphs of strain-time and
stress-time at any of the integration point we get the stress-strain graph for that specific
integration point. Here the values of strain are logrithmic, and mostly we have nominal
values in stress-strain graphs.

Similarly in Figure (4.24), the temperature distribution at the elements on the right
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(a) Quadrilateral elements with full integration (b) Quadrilateral elements with reduced inte-
gration

Figure 4.18: Unstability of Adabatic Case

(a) Unstability with
structured Meshing

(b) Unstability with
free Meshing

Figure 4.19: Triangular element adiabatic case

edge of the specimen are investigated for the value of convection heat values at normal
temperature and at the value of 293 K.

The Figure (??) represents the load-time graph for quadrilateral elements with free mesh-
ing techniques. For the case of Simo and Miehe [13] the values are taken for one element on
the top. In other papers, the values are added for all the elements on the top of the specimen
and results in the value ranging between 70 to 100 KN after the elastic range.
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(a) Element on top (b) Element on bottom

Figure 4.20: Stress-strain diagram: logrithmic strain component LE22 and stress component
S22

(a) Stress-strain on outer periphery node (b) Stress-strain on the symmetric axis node

Figure 4.21: Stress-strain diagram: Equivalent plastic strain component PEEQ and Mises
stresses

(a) Magnitude of plastic strain, PEMAG (b) Plastic strain, PE22

Figure 4.22: Stress-strain: Quadrilateral 8 node element with Mises stresses
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(a) PEEQ and Mises stress with 8-node
element

(b) LE22 with 4-node element and S22

Figure 4.23: Stress-strain: Quadrilateral elements on the right

(a) With Convection Coeff. by Simo and
Miehe

(b) With Convection Coeff. of Higher Value

Figure 4.24: Temperature distribution of all nodes on periphery during necking
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(a) Simo and Miehe Load Distribution (b) Load Distribution

Figure 4.25: Comparison of load-time graph

(a) Abaqus Results (b) Lin and Brocks Results

Figure 4.26: Radius and Length Ratio During Necking

The Figure (4.28) shows the vertical and horizontal displacements of the nodes on the
right line of the axisymmetric two dimensional geometry considered here. There is very
evident difference in the behavior of nodes just before and after necking which start just
after 4th second in most of the cases in Abaqus. One can observe in the Figure (4.28a),
the elements near the necking zone have very less vertical displacement in the start and it
just increased exponentially after the start of necking. This behavior makes the necking
phenomenon as a unique case to study in the tensile behavior. Such behavior is also clear
from Figure (4.28b) for the horizontal displacement where the elements near the necking
zone has sudden increase of horizontal displacement resulting in the reduction of diameter
at necking zone specifically.

54



(a) Quadrilateral elements (b) Triangular elements

Figure 4.27: Abaqus: Radius and Length Ratio During Necking

(a) Vertical displacement (b) Horizontal displacement

Figure 4.28: Displacement of all nodes on periphery during Necking

4.2 Tables of Observations

The simulations for the first order triangular elements are non-linear and they have un-
expected behavior of necking at different values of mesh size, step time increment, initial
increment size and varying velocity applied to the end of the bar. The specimen shows the
necking at different location of the of bar, for example with less number of elements it shows
the necking at both the upper and lower sides of the symmetric portion. Similarly with high
number of elements it shows the necking at center which is not the case in actual experi-
mental cases. Sometime, by changing the mesh control values, like making it as free mesh
instead of structured one, it change the behavior. So an unstable case is unpredictable by
varying the parameters. So, the graph for CAX3T (linear three node triangular elements) is
not fruitful to take into considerations.
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Table 4.3: Abaqus Results for CAX4T element

Case No. No. of Comp. Time Necking Start Final Rad. Necking Start Final Tempe.
Elements (hr:min:sec) Radius (mm) (mm) Time (mm) (oC).

1 24 00:01:08 5.815 3.023 Unstable 42
2 50 00:01:43 6.010 2.713. 4.10 109
3 100 00:02:25 6.013 2.631 4.15 109.50
4 200 00:04:42 6.015 2.511 4.28 110.0
5 400 00:06:01 6.015 2.500 4.30 111.0
a)(All the values are for structured mesh)

Table 4.4: Abaqus Results for CAX8RT element

Case No. No. of Comp. Time Necking Start Final Rad. Necking Start Final Tempe.
Elements (hr:min:sec) Radius (mm) (mm) Time (mm) (oC).

1 24 00:01:44 5.811 3.073 4.001 114.0
2 50 00:03:02. 6.050 2.771 4.000 114.5
3 100 00:03:26 6.066 2.691 3.342 115.0
4 200 00:05:08 6.072 2.553 3.612 116.0
5 400 01:08:53 6.072 2.292 3.75 116.0
b)(All the values 2nd order structured mesh)

Table 4.5: Abaqus results for CAX6MT

Case No. No. of Comp. Time Necking Start Final Rad. Necking Start Final Tempe.
Elements (hr:min:sec) Radius (mm) (mm) Time (mm) (oC).

1 24 00:02:11 5.910 3.097 4.000 114.5
2 50 00:03:05 6.060 2.913 3.893 114.5
3 100 00:04:27 6.083 2.826 3.754 115.0
4 200 00:05:42 6.179 2.921 3.643 115.0
5 400 01:10:49 6.287 2.827 3.667 115.5
c)(All the values are for 2nd order)
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Chapter 5

Results from Academic Code

5.1 Introduction

The academic code is developed by Prof. Dr. Laurent STAINIER at Ecole Centrale de
Nantes and Institute GeM. It consist of separate files for material, mesh, and python script.
All these files were put on interaction with the help of gmsh in linux system. The results
were taken by investigating the mesh parameters, material, and some other parameters.

5.2 Gmsh and Academic Code Files

Gmsh is open source code used for geometrical modeling and mesh generation with, initially
developed by Christophe Geuzaine and Jean-François Remacle. The gmsh is developed as
a fast, light and user-friendly software to easily create geometries and meshes that could be
used in three-dimensional finite element solvers, and then visualize and export the computa-
tional results with maximum flexibility. There are also other open-source softwares available
combining a CAD engine, a mesh generator and a post-processor, but the gmsh is mostly
used among academic community, because of its easy availability and no charges, capability
to integrate other software files and CAD capacity for all dimensions, and good post pro-
cessing abilities. Gmsh however is unique in its design: It consist of a very small kernel with
four modules, geometry, mesh, solver and post-processing, not tied to any particular com-
putational solver, and designed to be driven both using a user-friendly graphical interface
(GUI) and its own scripting language.

Each module can be controlled either interactively using the GUI or using the scripting
language. The design of all four modules relies on a simple philosophybe fast, light and
user-friendly.
Fast like, on a standard personal computer at any given point in time Gmsh should launch
instantaneously, be able to generate a larger than aver- age mesh (compared to the standards
of the finite element community; say, one million tetrahedron in 2008) in less than a minute,
and be able to visualize such a mesh together with associated post-processing datasets at
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interactive speeds.
Light like, the memory footprint of the application should be minimal and the source code
should be small enough so that a single developer can understand it. Installing or running
the software does not depend on any non-widely available third-party software package.
User-friendly, like the graphical user interface is designed in such a way that a new user
can create simple meshes in a matter of minutes. In addition, the code is robust, portable,
scriptable, extensible and thoroughly documented,all features contributing to a user-friendly
experience.

The Url, http://www.geuz.org/gmsh/doc/texinfo/gmsh.html can be consulted for fur-
ther information on gmsh. The link contains a free information, and is very useful for
students interested in creating their own mesh and post-processing. The above passages of
text have been excerpted from [33].

5.3 Test cases for quadrilateral and triangular elements

Here in the current chapter, the results of force, displacements, temperature, stress-strain
curves and necking radius are explained with varying mesh sizes, element types and varying
span of load application in some cases.

Case 1 The first case deals with the mesh of quadrilaterals of order one, with 12 elements
each the necking zone and the zone without necking. The same mesh size is done with
the triangular elements of order two. The values are noted separately in the tables
listed below. The details and the graphs are shown respectively below.

Case 2 In the second case the mesh is of quadrilateral elements of order one, with 25
elements in both the necking zone and the zone without necking. The same mesh size
is tested with the triangular elements of order two. The details and the graphs are
shown respectively in the following.

Case 3 Here we have the quadrilaterals of order one, with 50 elements in both the necking
zone and the zone without necking. The same mesh size is analyzed for triangular ele-
ments of order two. The details and the graphs are shown respectively in the following.

Case 4 This case deals with the mesh of quadrilaterals of order one, with 100 elements in
both the necking zone and the zone without necking. The same mesh size is done for
the triangular elements of order two. The details and the graphs are shown respectively
in the following.

Case 5 The 5th case deals with the mesh of quadrilaterals of order one, with 200 elements in
both the necking zone and the zone without necking. The same mesh size is simulated
with the triangular elements of order two. The details and the graphs are shown
respectively in the following.

58



Table 5.1: Quadrilateral Elements with Different Mesh Sizes

Case No. No. of Comp. Time Necking Start Final Rad. Necking Start Final Tempe.
Elements (hr:min:sec) Radius (mm) (mm) Time (mm) (oC).

1 24 00:02:19 5.913 3.063 4.25 111.50
2 50 00:04:39. 6.012 2.813 4.20 112.0
3 100 00:14:15 6.013 2.513 4.20 113.0
4 200 00:17:40 6.013 2.413 4.10 114.5
5 400 01:36:41 6.013 2.313 4.10 115.0
a)(All the values are for 1st order)

Table 5.2: Triangular Elements with Different Mesh Sizes

Case No. No. of Comp. Time Necking Start Final Rad. Necking Start Final Tempe.
Elements (hr:min:sec) Radius (mm) (mm) Time (mm) (oC).

1 24 00:01:12 5.813 3.613 4.2 93.50
2 50 00:02:38. 5.913 3.013 4.2 100.0
3 100 00:05:53 6.013 2.813 4.2 102.5
4 200 00:15:37 6.013 2.413 4.1 113.5
5 400 01:51:56 6.013 2.410 4.1 114.5
b)All the values are for 2nd order

The results obtained in case of quadrilateral elements for academic code is given the table
[5.1]. It is for the first order quadrilateral elements. The second order can not be executed
in academic code. Similarly the results obtained for second order triangular elements is
given in table [5.2]. The green line represents the first order quadrilateral elements while the
red-brown line represents second order triangular elements. Here in academic code, the first
order triangular elements (Constant strain triangular elements) show unstable behavior.

Necking radius for Abaqus and Academic code is also compared in the Figure [5.1], both
for quadrilateral and triangular elements. The necking radius converges after the mesh size
of 400 elements in both the cases.

The Figure:[5.2] represents the computational time variations and temperature variations
for different number of elements. As usual the green line is for Abaqus result and the reddish
brown shows the academic code. The first of Figure [5.2] are quadrilateral elements, it shows
the high increase of computational time for academic code. While the second graph of Figure
[5.2] are the triangular elements, the academic code starts the temperature variation from
95, and then it converge with Abaqus simulation for higher number of elements, but at the
cost of high computational time.

The start of necking time for academic code is shown in the Figure [5.3]. Necking start
earlier in the case of quadrilateral element as compared to triangular elements, and it con-
verge for larger number of elements. The Figure [5.4] represents the first order and second
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(a) Radius when the necking starts (b) Radius when the necking ends

Figure 5.1: Radius variation for quadrilateral and triangular elements

(a) Computational time variation (b) Temperature variation

Figure 5.2: Academic Code: Quadrilateral and triangular element

order quadrilateral elements simulated in Abaqus. The results shows that the computational
time in Abaqus is less than that of Academic code. For 400 elements and 800 elements, the
computational time play a key role. For Abaqus, it is much less than the computational time
for academic code. The green line represents the first order and the reddish line represents
the second order quadrilateral elements. In the graph on the right, there is comparison of
second order quadrilateral elements with the second order triangular elements in Abaqus. It
is clear that for the second order quadrilateral elements the computational time is more than
that of for second order triangular elements. The reason is the more number of integration
points on the quadrilateral elements.

Here in the graph [5.5], the comparison of the computational time is given. The green line
represents the Abaqus simulation and the reddish brown line represents the Academic code
simulation. It is clear that the Abaqus is more takes less time for the simulation. But there
are some difficulties with the some of the sections in Abaqus, e.g. during the interaction
module and during the time-step module. The slight variation of the time changes the
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Figure 5.3: Necking start time: Quadrilateral and triangular element

(a) 1st and 2nd order quadrilateral elements (b) 2nd order quadrilateral and triangular elements

Figure 5.4: Abaqus: Computational time for elements of first order and second order

solution a lot and as result the necking starts at different locations.
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(a) 1st order quadrilateral elements (b) 2nd order triangular elements

Figure 5.5: Abaqus and Academic Code: Computational time

(a) Temperature on Inside element (b) Temperature on Outside element

Figure 5.6: Academic Code, Temperature-time variation

(a) Displacement of Outside element (b) Load-time Graph

Figure 5.7: Academic Code, Displacement and Load variation
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Conclusion:

First of all, as advised by the professor, the reference papers in context of thermoplasticity
and especially the tensile necking problem was studied. After getting the idea of thermoplas-
tic constitutive models, the model was built in Abaqus, and in gmsh, in order to compare
the Abaqus results with the results of reference paper results and with the academic code
developed by Prof. Dr. Laurnt Stainiere ECN.

It worth to mention the different strain measures that one can get through Abaqus Post-
processing facilities. There are various measures of strains which are mentioned in Appendix
A. Besides numerous number of strain types, each element has different strain values accord-
ing to the geometrical location of elements. So, the stress-strain graph need much care.

Although the temperature variation at normal temperature and constant material proper-
ties has very less variation with mesh size and other numerical parameters , but the numerical
model of Abaqus was tested with temperature-dependent material properties, the same be-
havior was observed, with negligible variation, which is contrary to the results by, [29]. The
numerical model can be further studied for such changes.

As for as the model by Simo and Miehe [13] is concerned, the model is formulated only
for isotropic material. The kinematic hardening is not considered, as well the elastic thermal
heat generation is also neglected. So, the kinematic relations of the model can be revised in
future and formulated for both kinematic and isotropic hardening as well as for isomorphism,
[30].
Similarly, the numerical formulation in Abaqus has shown unexpected result for convection
heat coefficient. The convection heat coefficient was increased more than three times of the
original, as was taken in Simo and Miehe [13], but the effect was observed as negligible. It can
be investigated further upon taking the dependence of material properties on temperature.

Most important observation was the computational time, which was observed to be con-
verged in case of Abaqus much earlier than the computational time observed in the academic
code for the same mesh size. Among all of them, the most important was the time increment,
which can result in a very long calculation with no results. At the end, the necking may
occur at different location after simulation of 800 elements due to unsuitable time increment.

63



It is the time increment that define the strain rate and hardening, consequently, the plastic
heat dissipation varies and it results in unstability.

As the necking starts at almost the same time in the current model, but it shows changes
in varying the mesh types, especially the type of geometry of elements, but the overall
behavior does not vary the results much. For triangular elements, it shows variation in
Abaqus simulations for mesh size, but in academic code, these variations are negligible.
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Appendix A

Strain Measure Types: The measurement options of strain results in the thermally trig-
gered necking problem are given in the following.

1. Integration Points: At integration points , we can get the following results.

(a) AC Yield (Active Yield Flag)

(b) HFL (Heat Flux vector)

i. Magnitude

ii. HFL1

iii. HFL2

(c) LE (Logrithmic Strain Components)

i. Max In-plane Principle

ii. Min In-plane Principle

iii. Out-of-plane Principle

iv. Max Principle

v. Mid Principle

vi. Min Principle

vii. LE11

viii. LE22

ix. LE33

x. LE12

(d) PE (Plastic Strain Components)

(e) PEEQ (Equivalent Plastic Strain Components)

(f) PEMAG (Magnitude of Plastic Strain)

(g) S (Stress Components)

i. Mises

ii. Max In-plane Principle

iii. Min In-plane Principle
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iv. Out-of-plane Principle

v. Max Principle

vi. Mid Principle

vii. Min Principle

viii. Tresca

ix. Pressure

x. Third Invariant

xi. S11

xii. S22

xiii. S33

xiv. S12

2. Centroid: The same results as mentioned for Integration Points can be obtained for
the Centoidal Points.

3. Element nodal: Same results can be obtained at each node of element but now for
nodes istead of integration point and centoids.

4. Unique nodal: At the Unique nodal points, we have the same results with some extra
results of force, temperature, point load, and temperature.

(a) CF (Point loads)

i. Magnitude

ii. CF1

iii. CF2

(b) RF (Reaction force)

i. Magnitude

ii. RF1

iii. RF2

(c) U (Spatial displacement)

i. Magnitude

ii. U1

iii. U2

(d) RFL11 (Reaction Fluxes)

5. Whole element In the current thesis, there are no results to get for whole element.

6. Surface face nodal: As the case here is axisymmetric, the surface face nodal values
are not important for the current case.
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7. Element face: The element face can be taken in the list of post processing file data,
but here we do not the element face results.

Weak form With the help of virtual strain, elastic stress-strain law and symmetricity of
σij, we get the weak form of the Principle of virtual work as follow.∫

R

Cijkl
∂uk
∂xl

∂δvi
δxj

dV −
∫
R

biδvidVo −
∫
∂2R

t∗i δvidA = 0 (A.1)

ubi =
n∑
a=1

Na(xb)uai (A.2)

δvi(x) =
n∑
a=1

Na(x)δvai (A.3)

Substituting these interpolated values into the weak form, we get the equation:∫
R

Cijkl
∂N b(x)

∂xl
ubk
∂Na(x)

δxj
δvai dV −

∫
R

biN
a(x)δvai dV −

∫
∂2R

t∗iN
a(x)δvai dA = 0 (A.4)

Writing in the matrix form,
(Kaibku

b
k − F a

i )δvai = 0 (A.5)

where

Kaibk =

∫
R

Cijkl
∂Na(x)

∂xj

∂N b(x)

δxl
δvai dV (A.6a)

F a
i =

∫
R

biN
a(x)dV −

∫
∂2R

t∗iN
a(x)dA (A.6b)

So due to Principle of virtual work we get the stress equilibrium equations in the form of
integrals instead of differential equations. The integral equations are easy to handle. The
Principle of virtual work is same as principle of minimun potential energy, but this is more
easy to extend to non-linear problems and large shape changes.

Hyperelasticity; Equivalent principle virtual work equation: This equation now in-
cludes the deformation gradient and tangent stiffness for neo-Hookean materials.∫

V0

τij

(
Fpq(uk

b)
)∂Na

∂xm
Fmj

−1dV0 −
∫
V0

ρ0biN
adV0 −

∫
∂V0

ti
∗ηdA0 = 0 (A.7)

The stiffness matrix and reaction force force matrix for hyperelasticity can be written
as;

Kaibk =

∫
V0

Ce
ijkl

∂Na

∂yj

∂N b

∂yl
dV0 −

∫
V0

τij
∂Na

∂yk

∂N b

∂yj
dV0 −

∫
∂2R

t∗iN
a(x)

∂η

∂wbk
dA0 (A.8)

Ra
i =

∫
V0

τij
∂Na

∂yj
dV0 (A.9)
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