

Integration of PETSc Linear Solver Package

into ISIS-CFD Flow Solver

by

Jarunan PANYASANTISUK

Master Thesis

Presented to the Equipe de Modélisation Numérique
Of the Ecole Central de Nantes

in Partial Fulfillment of the Requirements
for the Degree of

Master of Science in Computation Mechanics

Ecole Centrale de Nantes
June 2009

Integration of PETSc Linear Solver Package

into ISIS-CFD Flow Solver

by

Jarunan PANYASANTISUK
Ecole Centrale de Nantes, 2009

SUPERVISOR: Dr. Ganbo DENG

Abstract: In an incompressive flow solver ISIS-CFD, the most time consuming
part is the linear solver for the pressure equation. Its preconditioning method and
solver are neither scalable nor optimized for parallel computation. The Portable,
Extensible Toolkit for Scientific Computation (PETSc) contains many of the
mechanisms needed within parallel application codes as well as scalable parallel
preconditioners. The performances of linear solver programmed with PETSc and
one in ISIS-CFD are analyzed through this research.

CONTENTS

Contents

1 Introduction 1
 1.1 ISIS-CFD……………………... 1
 1.2 PETSc………………………………………………………………….... 1
 1.3 Installation PETSc and MPICH…………………………………….…… 2
 1.3.1 Installation MPICH……………………………………………….. 2
 1.3.2 Installation PETSc………………………………………………... 3

2 Writing PETSc program in Fortran 5
 2.1 Include Files……………………………………………………………. 5
 2.2 Initialization and Finalization………………………………………….. 5
 2.3 Passing Null Pointers…………………………………………………… 6
 2.4 Error Checking…………………………………………………………. 6
 2.5 Matrix and Vector Indices……………………………………………… 6

3 Programming with PETSc 7
 3.1 Vector…………………………………………………………………... 7
 3.2 Matrix…………………………………………………………………... 8
 3.3 KSP solver and Preconditioner……………………………………....... 10

4 Compiling and running PETSc program 14
 4.1 Makefile……………………………………………………………….. 14
 4.2 Running PETSc program……………………………………………… 15

5 Tests 16
 5.1 Preconditioners………………………………………………………... 16
 5.2 Krylov methods………………………………………………………... 18
 5.3 Method used in the tests……………………………………………….. 19
 5.3.1 The Conjugate Gradient Algorithm……………………………… 19
 5.3.2 BiCGStab………………………………………………………… 20
 5.3.3 Incompleted LU…………………………………………………. 20
 5.3.4 Algebraic Multigrid Method…………………………………….. .23
 5.3.5 Block Jacobi Method…………………………………………….. 24
 5.4 Scalability test…………………………………………………………. 25
 5.5 Memory usage…………………………………………………………. 25
 5.6 Speed up……………………………………………………………….. 26
 5.7 Convergence test………………………………………………………. 29

6 Conclusion and Future work 35

Appendix A The Petsc program 36
Appendix B A result file 48
Appendix C Preallocation of Memory for Parallel AIJ Sparse Matrices 50

REFERENCES 53

 1

1. INTRODUCTION

1.1 ISIS-CFD

ISIS-CFD is an incompressible flow solver, uses the incompressible unsteady
Raynold-averaged Navier Stokes equation (RANSE). The solver is based on
the finite volume method to build the spatial discretization of the transport
equations. The face-based method is generalized to two-dimensional,
rotationally-symmetric, or three-dimensional unstructured meshes for which
non-overlapping control volumes are bounded by an arbitrary number of
constitutive faces.

The ISIS-CFD flow solver has developed by EMN (Equipe Modélisation
Numérique) at Ecole Centrale de Nantes since more than 10 years. Its accuracy
and robustness have been demonstrated in various international workshops,
classical benchmarks, and EU research projects. From the end of 2006, it is
commercialized by Numeca in a software package named Fine/Marine
including Hexpress, a hexahedral unstructured mesh generator, ISIS-CFD flow
solver, and a postprocessor CFView. Fine/Marine users grow quickly in spite
of dominating position of a few CFD commercial softwares.

To remain competitive in the market, constant improvements are required.
Reducing the computation time is one of the tasks with top priority. With the
current version of ISIS-CFD, a typical computation using a grid with several
million nodes requires 3-4 days of computation with about 20 processors. It is
desirable to reduce the computation time within 1 day. The most time
consuming part of the code is the linear solver for the pressure equation. It is
solved with the BICGSTAB algorithm with an incomplete LU preconditioner,
which is not scalable and is not optimized for parallel computation.

1.2 PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite
of data structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations. It employs the MPI
standard for all message-passing communication for parallel computation.

PETSc consists of a variety of libraries (similar to classes in C++). Each library
manipulates a particular family of objects (for instance, vectors) and the
operations one would like to perform on the objects. A large suite of parallel
linear and nonlinear equation solvers are easily used in application codes
written in C, C++, Fortran and Python. PETSc provides many of the

 2

mechanisms needed within parallel application codes, such as simple parallel
matrix and vector assembly routines that allow the overlap of communication
and computation. Features include:

• Parallel vectors
• Parallel matrices
• Scalable parallel preconditioners
• Krylov subspace methods
• Parallel Newton-based nonlinear solvers
• Parallel timestepping (ODE) solvers
• Complete documentation
• Automatic profiling of floating point and memory usage
• Consistent user interface
• Intensive error checking
• Portable to UNIX and Windows
• Over one hundred examples
• PETSc is supported and will be actively enhanced for many years

In this research, on the features parallel vectors, parallel matrices, scalable
parallel preconditioners and Krylov subspace methods are focused.

1.3 Installation PETSc and MPICH

1.3.1 Installation MPICH

MPICH is an essential part in installing PETSc as a compiler wrapper such as
mpicc, mpicxx and mpif90. Although PETSc offers an option --download-
mpich=1 in the configuration to download MPICH2 but this latest released of
MPI is not compatible to cluster computing. If no standard MPICH in the
system is provided, the installation can be processed by the following steps.

 The current release mpich-1.2.7p1 can be downloaded at

http://www-unix.mcs.anl.gov/mpi/mpich1/download.html

tar zxof mpich.tar.gz
(gunzip -c mpich.tar.gz | tar zxovf -)

cd mpich-1.2.7p1

 Define fortran compiler.

export FC=/usr/local/intel_91/fc/bin/ifort
export F77=/usr/local/intel_91/fc/bin/ifort
export F90=/usr/local/intel_91/fc/bin/ifort

 3

 Set the configuration and install MPICH. The option --with-common-
prefix=dir can be used to set the directory path for installing tools such as
upshot and jumpshot that are independent of the MPICH device.

./configure --with-device=ch_p4 \
--prefix=/work/common/petsc/mpich-1.2.7p1/ch_p4 \
--with-commen-prefix=/work/common/petsc/mpich-1.2.7p1

make
make install

 Run the test to check if the MPICH is installed correctly.

cd example/test/pt2pt/
make testing

Notes: pi3f90.f in ch_p4 device is missing, therefore, an error occurs
during make install. The problem can be fixed by commands

cd /work/common/petsc/mpich-1.2.7p1/ch_p4/examples
/work/common/petsc/mpich-1.2.7p1/ch_p4/bin/mpif90 -c pi3f90.f90
/work/common/petsc/mpich-1.2.7p1/ch_p4/bin/mpif90 -o pi3f90 pi3f90.o
cd /work/common/petsc/mpich-1.2.7p1/
make install

1.3.2 Installation PETSc

 The latest PETSc release tarball (petsc-3.0.0-p2.tar.gz) can be downloaded

from http://www.mcs.anl.gov/petsc/petsc-as/download/index.html

cd $PATH
gunzip -c petsc-3.0.0-p2.tar.gz | tar -xof –

cd petsc-3.0.0-p2/

 Set the environment/make variable PETSC_DIR (bash shell) to define the

directory where PETSc is installed.

export PETSC_DIR= $PATH/petsc-3.0.0-p2

 Set the configuration. In this research, the external packages, HyPre and

Trillinos/ML, are included.

./config/configure.py --with-mpi-dir=$PATH/mpich-1.2.7p1 \
--download-f-blas-lapack=1 --download-hypre=1 \
--download-ml=1 --with-shared=0

 4

 Add the environment variables and paths in ~/.bashrc. The environment

variable PETSC_ARCH must be set to specify the architecture. For shared
libraries which could not be found, the user can set their path with
LD_LIBRARY_PATH.

PATH=/work/common/petsc/mpich-1.2.7p1/bin:
/work/common/isiscfd/interface/numeca_software/bin:${PATH}
export PETSC_DIR=/work/common/petsc/petsc-3.0.0-p2
export PETSC_ARCH=linux
export LD_LIBRARY_PATH=/usr/local/intel_91/fc/lib

 5

2. WRITING PETSC PROGRAM IN FORTRAN

2.1 Include Files

The Fortran include files for PETSc are located in the directory
${PETSC_DIR}/include/finclude and should be used via statements such as
the following:

#include "finclude/includefile.h"

In Fortran one must explicitly list each of the include files and must be very
careful to not include each file no more than once. The Fortran file suffix must
be .F rather than .f. This convention enables use of the CPP preprocessor,
which allows the use of the #include statements that define PETSc objects
and variables.

2.2 Initialization and Finalization

Most PETSc programs in Fortran begin with a call to

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)

PetscInitialize() automatically calls MPI_Init() if MPI has not been not
previously initialized. In certain circumstances in which MPI needs to be
initialized directly (or is initialized by some other library), the user can first call
MPI_Init(), or have the other library do it, and then call
PetscInitialize(). By default, PetscInitialize() sets the PETSc
“world” communicator, given by PETSC_COMM_WORLD, to MPI_COMM_WORLD.

MPI communicator is a way of indicating a collection of processes that will be
involved together in a calculation or communication. Communicators have the
variable type MPI_COMM. In most cases users can employ the communicator
PETSC_COMM_WORLD to indicate all processes in a given run and
PETSC_COMM_SELF to indicate a single process.

All PETSc programs should call PetscFinalize() as their final (or nearly
final) statement.

call PetscFinalize(ierr)

This routine handles options to be called at the conclusion of the program, and
calls MPI_Finalize() if PetscInitialize() began MPI. If MPI was

 6

initiated externally from PETSc but by either the user or another software
package, the user is responsible for calling MPI_Finalize().

2.3 Passing Null Pointers

In several PETSc functions, there are options of passing null argument, for
example

KSPMonitorSet(ksp,Monitor,PETSC_NULL_OBJECT,
 $ PETSC_NULL_FUNCTION,ierr)

For Fortran, users must pass PETSC_NULL_XXX to indicate a null argument,
where XXX is INTEGER, DOUBLE, CHARACTER, or SCALAR depending on the
type of argument required.

2.4 Error Checking

Each PETSc routine has as its final argument an integer error variable. For
example,

call KSPSolve(ksp,rhs,u,ierr)

where ierr denotes the error variable. The error code is set to be nonzero if
an error has been detected, otherwise, it is zero.

2.5 Matrix and Vector Indices

All matrices and vectors in PETSc use zero-based indexing, whereas Fortran is
one-based indexing language. The interface routines, such as MatSetValues()
and VecSetValues(), always use zero-based indexing.

 7

3. PROGRAMMING WITH PETSC

3.1 Vector

Vector module is denoted by Vec. A vector for parallel computing can be
created by command

call VecCreateMPI(PETSC_COMM_WORLD,N,PETSC_DECIDE,x,ierr)

where integer N is local size and x is the vector. In this routine, the size of each
processor's local portion (N) is specified, and let PETSc compute the global size
by passing PETSC_DECIDE instead of giving global size. Alternatively, if one
can pass the global size and use PETSC_DECIDE for the local size. PETSc will
choose a reasonable partition trying to put nearly an equal number of elements
on each processor. To create a new vector, here is vector u, of the same format
as an existing vector, the command is

call VecDuplicate(x,u,ierr)

Setting values to a vector by calling VecSetValues() always specify global
locations of vector entries. The array Local_to_Global_Mapping contains
global indices where to add values. Each processor can contribute any vector
entries, regardless of which processor "owns" them. Any nonlocal contributions
will be transferred to the appropriate processor during the assembly process.
Here the flag INSERT_VALUES indicates that all contributions will be inserted
and delete the old value.

call VecSetValues(x,N,Local_to_Global_Mapping,
 $ Sol,INSERT_VALUES,ierr)

Sol is an array containing the referenced solutions. To Assemble vector, using
the 2-step process VecAssemblyBegin() and VecAssemblyEnd().
Computations can be done while messages are in transition by placing code
between these two statements.

 call VecAssemblyBegin(x,ierr)

call VecAssemblyEnd(x,ierr)

A vector can be examine with the command VecView(), while the option
PETSC_VIEWER_STDOUT_WORLD synchronize standard output where only the
first processor opens the file. All other processors send their data to the first
processor to print. By default, the option PETSC_VIEWER_STDOUT_SELF is set

 8

for the standard output. When a vector is no longer needed, it should be
destroyed by calling VecDestroy()

call VecView(x,PETSC_VIEWER_STDOUT_WORLD,ierr)
call VecDestroy(x,ierr)

3.2 Matrix

Matrix module is denoted by Mat. The routine below shows an easy mechanism
of creating a matrix and setting its configuration.

MatCreate() is the simplest routine for creating a matrix, as seen in line 1 it
creates a matrix D. MatSetSizes() in line 2 is used for defining the matrix
size, in which the local dimension N x N is specified and let PETSc computes
the global size by passing PETSC_DETERMINE into the command. A matrix type
for parallel computation is MATMPIAIJ set via MatSetType(), line 3.

1 call MatCreate(PETSC_COMM_WORLD,D,ierr)
2 call MatSetSizes(D,N,N,PETSC_DETERMINE,PETSC_DETERMINE,
 $ ierr)
3 call MatSetType(D,MATMPIAIJ,ierr)
4 call MatMPIAIJSetPreallocation(D,nz,PETSC_NULL_INTEGER,
 $ 2,PETSC_NULL_INTEGER,ierr)

nz and 2 in the command MatMPIAIJSetPreallocation(), line 4, are
numbers of diagonal nonzero and off-diagonal nonzero per row, respectively.
Consequently, PETSC_NULL_INTEGER can be passed into the command instead
of passing arrays containing number of nonzero in the various rows of the
diagonal and off-diagonal portion of the local submatrix, which are possibly
different for each row. The preallocation of memory for parallel AIJ sparse
matrices is explained in Appendix C.

In each iteration, ISIS-CFD computes new matrix values, array a, and new
right hand side values, array src, therefore, updating the matrix must be redone
before starting a new iteration. To define a matrix with arrays, ISIS-CFD gives
 - The array a contains values of the matrix
 - The array IndCon_CC contains local column indices of value in a

- The array IpntCF_CC contains indices pointing into IndCon_CC,
where to begin a new row.

From these arrays, the values can be passed to a Matrix in PETSc with the
command MatSetValues() which inserts or adds a block of values into a
matrix. ADD_VALUES indicates to add a value into the specified location, if there

 9

previously was no value, just put the value into that location. The following
routine shows adding values by row into the matrix D.

1 LoToGlo=Local_to_Global_Mapping(IndCon_CC)

2 do i=1,N
3 globalIndRow=Local_to_Global_Mapping(i)
4 pntBegin=IpntCF_CC(i)
5 pntEnd=IpntCF_CC(i+1)-1
6 j=pntEnd-pntBegin+1
7 call MatSetValues(D,1,globalIndRow,j,
 $ LoToGlo(pntBegin:pntEnd),
 $ a(pntBegin:pntEnd),ADD_VALUES,ierr)
8 end do

Setting values to the matrix D in line 7, 1 is number of row and the integer
globalIndRow is its global index. The integer j and the integer array LoToGlo
are number of columns and their global indices.

 Table 3.1 Time of updating a matrix in second run with 2 processors

Preconditioner Fine Medium Coarse Very coarse Vv coarse
ISIS-CFD 11.8470 5.6323 3.3168 1.3877 0.6346
HyPre/ILU(1) 2285.3920 659.3274 124.1123 7.2885 17.5339
HyPre/Multigrid 2181.5770 688.6473 144.2728 41.0015 24.4377

From Table 3.1, we can see that this routine takes much time to update a matrix
which refers to high computation cost. Alternatively, we can create a matrix
and set its values with the command MatCreateMPIAIJWithSplitArrays()
by giving arrays of values and their indices. In this way, we could save
computation cost in updating a matrix as seen in Table 3.2. However, values
and their indices must be prepared by separating between diagonal portion and
off-diagonal portion, and sorting the column indices.

 call MatCreateMPIAIJWithSplitArrays(PETSC_COMM_WORLD,N,
 $ N,PETSC_DETERMINE,PETSC_DETERMINE,pointer,column,v,
 $ opointer,ocolumn,ov,D,ierr)

The local dimension N x N is set for the matrix D. Passing PETSC_DETERMINE
let PETSc calculates the global dimension. pointer, column and v are the
row indices, column indices and values for diagonal portion of matrix, while
opointer, ocolumn and ov are for off-diagonal portion.

 Table 3.2 Time of updating a matrix in second

Preconditioner Fine Medium Coarse Very coarse Vv coarse
ISIS-CFD 11.8470 5.6323 3.3168 1.3877 0.6346
Block Jacobi 14.7509 7.5555 1.0829 2.0193 0.3630

 10

However, this routine can run neither with preconditioners in the external
package HyPre nor with a single processor. Anyway, this routine will be used
for the tests in chapter 5, when the preconditioner is set to Block Jacobi,
Additive schwarz method, Multigrid method in PETSc, or Multigrid method in
the external package Trillinos.

After the matrix completed setting the values, these values may be cached, so
MatAssemblyBegin() and MatAssemblyEnd() must be called.

call MatAssemblyBegin(D,MAT_FINAL_ASSEMBLY,ierr)
call MatAssemblyEnd(D,MAT_FINAL_ASSEMBLY,ierr)

MatView() let the users examine the matrix, and MatDestroy() is called
when a matrix is no longer needed and should be destroyed.

 call MatView(D,PETSC_VIEWER_STDOUT_WORLD,ierr)

call MatDestroy(D,ierr)

3.3 KSP solver and Preconditioner

To solve a linear system with Krylov subspace methods, a solver context (KSP)
must be created with KSPCreate(). The flag DIFFERENT_NONZERO_PATTERN
in KSPSetOperators() is to indicate that the preconditioner matrix does not
have the same nonzero structure. Alternatively, users can set the flag
SAME_PRECONDITIONER to indicate that the preconditioner matrix is identical to
that of the previous linear solver, and SAME_NONZERO_PATTERN to indicate that
the preconditioning matrix has the same nonzero structure during successive
linear solvers. In case the structure of a matrix is not known a priori, one
should use the flag DIFFERENT_NONZERO_PATTERN. Here the matrix that
defines the linear system, the matrix D, also serves as the preconditioning
matrix.

call KSPCreate(PETSC_COMM_WORLD,ksp,ierr)
call KSPSetOperators(ksp,D,D,

 $ DIFFERENT_NONZERO_PATTERN,ierr)

The default solver within KSP is restarted GMRES, preconditioned for the
uniprocess case with ILU(0), and for the multiprocess case with the block
Jacobi method (with one block per process, each of which is solved with
ILU(0)). A variety of other solvers and options are also available. To set any of
the preconditioner or Krylov subspace options directly within the code, PETSc
provide routines that extract the PC and KSP contexts

call KSPGetPC(ksp,pc,ierr)

 11

To employ a particular preconditioning method, the user can either select it
from the options database using input of the form -pc_type <methodname> or
set the method with the command

call PCSetType(pc,PCType,ierr)

The list of preconditioning method supported in PETSc is shown in Table 3.3.
For the external package HyPre, its type can be set with the command
PCHYPRESetType(), where by default is ‘boomeramg’, the Algebraic
Multigrid method.

KSPSetTolerances() is to set the relative, absolute, divergence, and
maximum iteration tolerances used by the default KSP convergence testers.
PETSC_DEFAULT_DOUBLE_PRECISION is used for retaining the default values of
any tolerances.

call KSPSetTolerances(ksp,tol,
 $ PETSC_DEFAULT_DOUBLE_PRECISION,
 $ PETSC_DEFAULT_DOUBLE_PRECISION,maxits,ierr)

The option -ksp_monitor_true_residual prints the true residual norm as
well as the preconditioned residual norm in each iteration of an iterative solver.

call PetscOptionsSetValue('-ksp_monitor_true_residual',
 $ 'monitor.dat',ierr)

To set the Krylov solver, KSPSetType() is provided, the KSPType is listed in
Table 3.4. KSPSetFromOptions() indicates that KSP options are set from the
options database. To solve a linear system, the right hand side vector, rhs, and
solution vector, u, must be set, then execute the command KSPSolve().

call KSPSetType(ksp,KSPType,ierr)
call KSPSetFromOptions(ksp,ierr)
call KSPSolve(ksp,rhs,u,ierr)

KSPView() prints KSP data structure. Once the KSP context is no longer
needed, it should be destroyed with the command

 call KSPView(ksp,PETSC_VIEWER_STDOUT_WORLD,ierr)

call KSPDestroy(ksp,ierr)

 12

Table 3.3 Preconditioning methods
Preconditioner

Algorithm PCType Matrix types* External Package Parallel Complex
Jacobi PCJACOBI aij,baij,sbaij,dense X X
Point Block Jacobi PCPBJACOBI baij,bs=2,3,4,5 X X

SOR seqdense,seqaij,
seqsbaij,mpiaij X

Point Block SOR

PCSOR
 seqbaij,bs=2,3,4,5 X

Block Jacobi PCBJACOBI aij,baij,sbaij X X
Additive Schwarz PCASM aij,baij,sbaij X X
ILU(k) seqaij,seqbaij X
ICC(k) seqaij,seqbaij X
ILU dt seqaij Sparsekit
ILU(0)/ICC(0)

PCILU/PCICC

 aij BlockSolve95 X

ILU(k) aij Euclid/HyPre X
ILU dt

PCHYPRE
 aij Euclid/HyPre X

Matrix-free PCSHELL X X
Multigrid/infrastructure PCMG X X
Multigrid/geometric
structured grid DMMG X X

PCHYPRE aij BoomerAMG/HyPre X Multigrid algebraic
 PCML aij ML/Trilinos X
 PC baij Prometheus X
Approximate inverses PCHYPRE aij Parasails/HyPre X
 PCSPAI aij SPAI X
Balancing Neumann-
Neumann PCNN is X X

Direct solver
seqaij,seqbaij X
seqaij MATLAB X
aij Spooles X X
aij PastuiX X X

aij SuperLU,
Sequential/Parallel X X

aij MUMPS X X
seqaij ESSL
seqaij UMFPACK

LU

PCLU

 dense PLAPACK X X

seqaij,seqbaij X
sbaij Spooles X X
sbaij PastuiX X X
sbaij MUMPS X X
seqsbaij DSCPACK X
dense PLAPACK X X
matlab MATLAB

Cholesky

PCCHOLESKY

 aij X

QR matlab MATLAB
XXt and XYt aij X

 13

* Matrix types
aij - A matrix type to be used for sparse matrix

 baij - A matrix types to be used for block sparse matrix
 sbaij - A matrix type to be used for symmetric block sparse matrices

seqaij - A matrix type to be used for sequential sparse matrices, based on
compressed sparse row format.

 mpiaij - A matrix type to be used for parallel sparse matrices.
seqbaij - A matrix type to be used for sequential block sparse matrices,

based on block sparse compressed row format.
seqsbaij - A matrix type to be used for sequential symmetric block sparse

matrices, based on block compressed sparse row format.
 dense - A matrix type to be used for dense matrices.
 seqdense - A matrix type to be used for sequential dense matrices.

is - A matrix type to be used for using the Neumann-Neumann type
preconditioners.

 Table 3.4 Krylov Sybspace Methods

Krylov Sybspace Method KSPType
Richardson KSPRICHARDSON
Chebychev KSPCHEVBYCHEV
Conjugate Gradients KSPCG
GMRES KSPGMRES
Bi-CG-stab KSPBCGS
Transpose-free Quasi Minimal-Residual KSPTFQMR
Conjugate Residuals KSPCR
Conjugate Gradient Squared KSPCGS
Bi-Conjugate Gradient KSPBICG
Minimum Residual Method KSPMINRES
Flexible GMRES KSPFGMRES
Least Squares Method KSPLSQR
SYMMLQ KSPSYMMLQ
LGMRES KSPLGMRES
Conjugate gradient on the normal equations KSPCGNE

 14

4. COMPILING AND RUNNING PETSC PROGRAM

4.1. Makefile

All makefile commands and customizations to enable portability across
different architectures can be found in the directory ${PETSC_DIR}/conf,
whereas most makefile commands for maintaining the PETSc system are
defined in the file ${PETSC_DIR}/conf.

Two makefiles petscvariables and petscrules are automatically generated
in ${PETSC_DIR}/${PETSC_ARCH}/conf, when config/configure.py is
run. They contain rules specific to this machine and the definition of compilers
and linkers, respectively. The architecture independent makefiles, are located in
${PETSC_DIR}/conf, and the machine specific makefiles get included from
here.

The most important line in the makefile is the line starting with include

include ${PETSC_DIR}/conf/base

This line includes other makefiles that provide the needed definitions and rules
for the particular base PETSc installation specified by ${PETSC_DIR} and
architecture specified by ${PETSC_ARCH}. The library required for the linker is
the highest level library in that PETSc program. The makefile used for the
PETSc program in this research reads

RM = /bin/rm

MYSRCS = $(wildcard *.F)
MYOBJS = $(subst .F,.o,$(MYSRCS))

include ${PETSC_DIR}/conf/base

test_with_petsc: $(MYOBJS) chkopts
 -${FLINKER} -o test_with_petsc $(MYOBJS) ${PETSC_KSP_LIB}
 ${RM} *.o

include ${PETSC_DIR}/conf/test

 15

4.2. Running a PETSc program

To run the PETSc executable in multiprocessor, the command is

mpirun –np 2 –machinefile machines ./test_with_petsc

Options in PETSc can be added at the end of command. For example, to list the
options available in the program test_with_petsc

mpirun –np 2 –machinefile machines ./test_with_petsc –help

 16

5. TESTS

The linear solver of ISIS-CFD uses a preconditioner ILU(1) with Block Jacobi
and a solver PCGSTAB, which equal to BiCGStab. Pressure equation in a
double model computation with different grid density is used for the test. The
geometry is the KVLCC2 tanker. Wall function is used for the computation.

In this chapter, properties of preconditioning methods and Krylov solvers in
PETSc are examined and compared with the ones in ISIS-CFD. The tests
presenting are:-

• Convergence of PETSc preconditioning methods, section 5.1
• Convergence of PETSc Krylov methods, section 5.2
• Scalability, section 5.4
• Memory usage, section 5.5
• Speedup, section 5.6
• Convergence, section 5.7

Grids using for the tests are:-

• Fine grid, 1813351 cells
• Medium grid, 962717 cells
• Coarse grid, 397625 cells
• Very coarse grid, 242374 cells
• The coarsest grid named as Vv coarse grid, 115836 cells

Two methods of matrix creation in PETSc are used depending on the
preconditioner using
a) Adding values by row by the command MatSetValues() is used when the

preconditioner is set to ILU(k) and Multigrid method in the external
Package HyPre , and

b) MatCreateMPIAIJWithSplitArrays() is used when the preconditioner is
set to Block Jacobi, Additive Schwarz method, Multigrid method in PETSc
or Multigrid method in the external package Trillinos.

Hereafter, only CPU time of one processor used to solve the linear system is
compared. All the tests are run on PC local station.

5.1 Preconditioners

This test compares convergences of preconditioners:

- ILU(1) (with Block Jacobi) in ISIS-CFD
- ILU(k) (with Block Jacobi) in HyPre package
- Additive Schwarz method(ILU(k))
- Multigrid methods in PETSc, Trillinos package and HyPre package.

 17

The Krylov methods of PETSc linear solver is set to BiCGStab, the same as the
one in ISIS-CFD. This test is run with the coarse grid with 2 processors.

Figure 5.1 Convergence of ISIS-CFD, PETSc with
preconditioners HyPre/ILU(k) and Block Jacobi

Figure 5.2 Convergence of ISIS-CFD, PETSc with
 preconditioner Additive Schwarz Method

 18

Figure 5.3 Convergence of ISIS-CFD, PETSc with
preconditioner Multigrid Method

From Figure 5.1, 5.2 and 5.3, preconditioners which provide fast convergences
are selected for testing properties of PETSc linear solvers in section 5.4-5.7.
They are Block Jacobi, ILU(1) and Multigrid method in the external package
HyPre.

5.2 Krylov methods

Convergences of different Krylov solvers are examined in this test. The PETSc
preconditioner Block Jacobi is retained while comparing Krylov methods
BiCGStab, Conjugate Gradient, GMRES, Chebychev and Richardson. The test
is run with coarse grid with 2 processors.

 19

Figure 5.4 Convergence of ISIS-CFD and PETSc
with different Krylov methods

From Figure 5.4, obviously, Krylov methods BiCGStab and Conjugate
Gradient have the fastest convergences. BiCGStab will be used in the
scalability test, Memory usage, Speedup and the convergence test, while
Conjugate Gradient will be applied in the convergence test.

5.3 Methods used in the tests

5.3.1 The Conjugate Gradient Algorithm

The Conjugate Gradient algorithm is one of the best known iterative techniques
for solving sparse Symmetric Positive Definite linear systems. Described in
one sentence, the method is a realization of an orthogonal projection technique
onto the Krylov subspace 0(,)mK r A where 0r is the initial residual. It is therefore
mathematically equivalent to FOM.

Algorithm 5.3.1: Conjugate Gradient
1. Compute 0 0 0 0: ,r b Az p r= − =
2. For 0,1,...,j = until convergence Do:
3. : (,) / (,)j j j j jr r Ap pα =
4. 1 :j j j jx x pα+ = +
5. 1 :j j j jr r Apα+ = −
6. 1 1: (,) / (,)j j j j jr r r rβ + +=
7. 1 1:j j j jp r pβ+ += +

 20

8. EndDo

5.3.2 BiCGStab

The Bi-Conjugate Gradient Stabilized (BiCGStab) algorithm is a variation of
Conjugate Gradient Squared (CGS). As CGS is based on squaring the residual
polynomial, and, in cases of irregular convergence, this may lead to substantial
build-up of rounding errors, or possibly even overflow. BICGSTAB was
developed to remedy this difficulty.

Algorithm 5.3.2: BiCGStab
1. Compute 0 0 0: ;r b Ax r∗= − arbitary;
2. 0 0p r=
3. For 0,1,...,j = until convergence Do:
4. : (,) / (,)j j j j jr r Ap rα ∗ ∗=
5. :j j j js r Apα= +
6. : (,) / (,)j j j j jAs s As rω =
7. 1 :j j j j j jx x p sα ω+ = + +
8. 1 :j j j jr s Asω+ = −

9. 1 0

0

(,)
:

(,)
j j

j
j j

r r
r r

α
β

ω

∗
+

∗= ×

10. 1 1: ()j j j j j jp r p Apβ ω+ += + −
11. EndDo

5.3.3 Incompleted LU

The Incomplete LU factorization technique with no fill-in, denoted by ILU(0),
consists of taking the zero pattern P to be precisely the zero pattern of A. In the
following, we denote by ,ib ∗ the i-th row of a given matrix B, and by NZ(B) ,
the set of pairs (,),1 ,i j i j n≤ ≤ such that , 0i jb ≠

 21

Figure 5.5 The ILU(0) factorization for a five-point matrix

The accuracy of the ILU(0) incomplete factorization may be insufficient to
yield an adequate rate of convergence. More accurate Incomplete LU
factorizations are often more efficient as well as more reliable. These more
accurate factorizations will differ from ILU(0) by allowing some fill-in. Thus,
ILU(1) keeps the “first order fill-ins” a term which will be explained shortly.

To illustrate ILU(p) with the same example as before, the ILU(1) factorization
results from taking P to be the zero pattern of the product LU of the factors L,U
obtained from ILU(0). This pattern is shown at the bottom right of Figure 5.5.
Pretend that the original matrix has this “augmented” pattern 1()NZ A . In other
words, the fill-in positions created in this product belong to the augmented
pattern 1()NZ A , but their actual values are zero. The new pattern of the matrix
A is shown at the bottom left part of Figure 5.6. The factors 1L and 1U of the
ILU(1) factorization are obtained by performing an ILU(0) factorization on this
“augmented pattern” matrix. The patterns of 1L and 1U are illustrated at the top
of Figure 5.6. The new LU matrix shown at the bottom right of the figure has
now two additional diagonals in the lower and upper parts.

 22

Figure 5.6 The ILU(1) factorization

Algorithm 5.3.3: ILU(p)
1. For all nonzero elements ija define () 0ijlev a =
2. For 2,...,i n= Do:
3. For each 1,..., 1k i= − and for ()ijlev a p≤ Do:
4. Compute /ik ik kka a a=
5. Compute :i i ik ka a a a∗ ∗ ∗= −
6. Update the level of fill of the nonzero ,i ja 's using (10.18)
7. EndDo
8. Replace any element in row i with ()ijlev a p> by zero
9. EndDo

In PETSc, ILU(k) can be called when the external package HyPre is installed.
After setting preconditioning type to PCHYPRE (line1) we have to set HyPre
type to 'euclid' as seen in line 2. By default in HyPre is 'boomeramg', the
algebraic Multigrid method. Many HyPre options can be set with the command
PetscOptionsSetValue() as seen in line 3 and 4. The option to set its fill-ins
is -pc_hypre_euclid_levels and -pc_hypre_euclid_bj is to set the
ILU(k) method with block Jacobi. To list the HyPre options put –help after the
run command line at runtime.

1 call PCSetType(pc,PCHYPRE,ierr)
2 call PCHYPRESetType(pc,'euclid',ierr)
3 call PetscOptionsSetValue('-pc_hypre_euclid_levels',
 $ '1',ierr)
4 call PetscOptionsSetValue('-pc_hypre_euclid_bj',
 $ 'TRUE',ierr)

 23

5.3.4 Algebraic Multigrid Method

Multigrid methods are a state-of-the art technique to solve large systems of
linear equations A x = b, where n nA ×∈\ and , nx b∈\ . This system can be
represented as a graph of n nodes where an edge (i,j) represents a non-zero
coefficient ,i jA . To simplify the following illustration, we assume that graph to
be a regular two dimensional grid. The basic idea of multigrid is to define a
hierarchy of grids as illustrated in Figure 5.7. Each node at the coarser grid
level represents a set of nodes at the finer level. Coefficients at some grid level
i are derived from coefficients at grid level i+1 (prolongation) or from
coefficients at grid level i-1 (restriction). The grid hierarchy is traversed in V or
W-cycles. On each level of the hierarchy an iterative solver is called.

Figure 5.7 Multigrid Method

In geometric multigrid methods, coarse grids are determined based on
geometry information (such as grid spacing) alone. In contrast, algebraic
multigrid takes into account coefficient values, too. The algorithm below is a
simple multigrid method.

Given a system of linear equations Au=f and an approximate solution v. The
error e is defined as e = v - u. Thus, Ae = A(v-u) and from linearity of matrix-
vector products we get Ae = Av-Au. We substitute f for Au, and get Ae = Av - f,
that is, Ae is equal to the residue, as defined above.

Given A and f

1. Perform one step of an iterative method towards solving Au = f using
initial guess of v=0

2. Calculate the residue r=Av - f

 24

3. Reduce A and r to a coarser grid
4. Determine the error e by solving Ae=r on the coarser grid
5. Prolong e to the original grid
6. Correct v = v-e
7. Perform another step of the iterative method towards solving A u = f,

now using initial guess v

Observe that step 4 can be solved by applying this algorithm recursively, until
the grid only contains a trivial number of points. Thus, one can descend
through coarser and coarser grids, and then ascend back to the original grid.

There are many options database keys for HyPre/Multigrid (BoomerAMG). Its
information can be seen in Annexe B as a result file. In the code it is set as the
following.

call PCSetType(pc,PCHYPRE,ierr)
call PCHYPRESetType(pc,'boomeramg',ierr)
call PetscOptionsSetValue(

 $ '-pc_hypre_boomeramg_max_levels','10',ierr)

5.3.5 Block Jacobi Method

Block versions of the Jacobi preconditioner can be derived by a partitioning of
the variables. If the index set {1,..., }S n= is partitioned as ii

S S=∪ with the sets

iS mutually disjoint, then

,
,

 if and are in the same index subset

0 otherwise
i j

i j

a i j
m

⎧
= ⎨
⎩

The preconditioner is now a block-diagonal matrix.

Often, natural choices for the partitioning suggest themselves:

• In problems with multiple physical variables per node, blocks can be
formed by grouping the equations per node.

• In structured matrices, such as those from partial differential equations
on regular grids, a partitioning can be based on the physical domain.
Examples are a partitioning along lines in the 2D case, or planes in the
3D case.

• On parallel computers it is natural to let the partitioning coincide with
the division of variables over the processors.

 25

5.4 Scalability test

Scalable precondition is desired in large-scale computation. Scalability
indicates its ability to maintain the number of iterations when the number of
processor used for computation increases.

The test is run with the coarse grid with a single processor, 2, 4, 8 and 16
processors, using BiCGStab as a solver. The number of iterations is observed
as seen in Table 5.1.

 Table 5.1 Number of iterations

Solver Preconditioner 1 bloc 2 blocs 4 blocs 8 blocs 16 blocs
ISIS-CFD ILU(1) 90 93 92 97 99

HyPre/ILU(1) 79 77 82 84 87
HyPre/Multigrid 8 10 9 8 10

PETSc

 Block Jacobi - 121 119 121 123

As expected, the Multigrid method is scalable. The iteration number remains
fairly constant as well as Block Jacobi which shows its scalability. The number
of iteration in single-processor of the preconditioner Block Jacobi case is
missing because its matrix creation MatCreateMPIAIJWithSplitArrays()
does not work with a single processor.

5.5 Memory usage

To monitor the maximum memory usage, the option –memory_info can be set
at runtime. The memory usage will be printed at the end of the run. The
medium grid is used for this test, run with 2, 4, 8 and 16 processors.

Table 5.2 Memory usage

Solver Preconditioner 2 blocs 4 blocs 8 blocs 16 blocs
ISIS-CFD ILU(1) 405.6 Mb 384.8 Mb 374.4 Mb 374.4 Mb

HyPre/ILU(1) 716.8 Mb 738.4 Mb 761.8 Mb 819.1 Mb
HyPre/Multigrid 1,432.1 Mb 1,421.2 Mb 1,520.0 Mb 1,696.8 Mb

PETSc

 Block Jacobi 532.6 Mb 545.3 Mb 569.5 Mb 617.0 Mb

From Table 5.2, the total memory of PETSc increases according to number of
processors and behaves as

6

4 _ (_)_ ()
10

N cells a N procs bTotal Memory Mb ∗ ∗ ∗ +
=

 26

where a is the number of integer array of global size per processor, and b is the
number of integer array of local size per processor, shown in Table 5.3. The
total memory of ISIS-CFD is fairly constant.

 Table 5.3 a and b constant

Solver Preconditioner a b
HyPre/ILU(1) 1.948 182.245
HyPre/Multigrid 3.804 364.281

PETSc

 Block Jacobi 1.597 135.112

5.6 Speed up

This test is to see the convergence of the linear solvers run with the medium
grid with 2, 4, 8 and 16 processors. For the PETSc linear solver, the Krylov
method BiCGStab is used. Figure 5.8-5.11 shows the speed up performance of
the linear solvers in ISIS-CFD and PETSc with the preconditioner
HyPre/ILU(1), HyPre/Multigrid and Block Jacobi, respectively. Table 5.4
shows number of iterations in the computations.

 Table 5.4 Number of iteration of Speed up test

Solver Preconditioner 2 blocs 4 blocs 8 blocs 16 blocs
ISIS-CFD ILU(1) 141 131 133 122

HyPre/Multigrid 7 9 8 34
HyPre/ILU(1) 57 62 59 61

PETSc

 Block Jacobi 93 92 99 93

According to the tests are run on the PC local station, no speed up is observed
in the beginning from 8 blocs due to the hardware limitation of local PC
network.

 27

Figure 5.8 Convergence of ISIS-CFD run with 2, 4, 8 and 16 blocks

Figure 5.9 Convergence of PETSc with preconditioner HyPre/ILU(1)
run with 2, 4, 8 and 16 blocks

 28

Figure 5.10 Convergence of PETSc with preconditioner HyPre/Multigrid
run with 2, 4, 8 and 16 blocks

Figure 5.11 Convergence of PETSc with Preconditioner Block Jacobi
run with 2, 4, 8 and 16 blocks

 29

5.7 Convergence test

The objective of this test is to study the variation of number of iteration with
respect to number of cells. The convergence test is run with 2 blocks with
different grids. BiCGStab and Conjugate Gradient are used as the solver
methods, and preconditioners in PETSc such as ILU(1) and Multigrid method
from the external package HyPre and Block Jacobi are applied. Figure 5.12 –
5.18 illustrate convergences of linear solver in ISIS-CFD and PETSc.

• ISIS-CFD linear solver

Figure 5.12 Convergence of ISIS-CFD run with different grids

 30

• PETSc linear solver with preconditioner HyPre/ILU(1)

Figure 5.13 Convergence of PETSc- HyPre/ILU(1),
BiCGStab run with different grids

Figure 5.14 Convergence of PETSc- HyPre/ILU(1),
Conjugate Gradient run with different grids

 31

• PETSc linear solver with preconditioner HyPre/Multigrid method

Figure 5.15 Convergence of PETSc- HyPre/Multigrid,
BiCGStab run with different grids

Figure 5.16 Convergence of PETSc- HyPre/Multigrid,
Conjugate Gradient run with different grids

 32

• PETSc linear solver with the preconditioner Block Jacobi

Figure 5.17 Convergence of PETSc- Block Jacobi,
BiCGStab run with different grids

Figure 5.18 Convergence of PETSc- Block Jacobi,
Conjugate Gradient run with different grids

 33

 Table 5.5 Number of iterations

 Preconditioner Solver Fine Medium Coarse
Very

coarse
Vv

coarse
ISIS-CFD ILU(1) PCGSTAB 153 141 93 82 149

HyPre/ILU(1) BiCGStab 74 57 46 43 88
HyPre/ILU(1) CG 140 102 83 72 199
HyPre/MG BiCGStab 9 7 10 34 7
HyPre/MG CG 11 12 10 9 252
Block Jacobi BiCGStab 115 93 71 61 140

PETSc

 Block Jacobi CG 206 170 121 104 212

Table 5.5 shows the number of iterations with respect to number of cells.
Suppose that the Multigrid method has a constant number of iterations and the
vv coarse grid case is not taken into account, comparison of ratios of number of
iterations per cell are shown in Table 5.6. From the table, we can see that the
higher of ratio of number of cells, the smaller change of number of iterations
per cell. Every linear solver has fairly the same ratio for the same number of
cells; 0.65 for Fine/Medium, 0.5 for Medium/Coarse and 0.7 for Coarse/Very
coarse.

 Table 5.6 Ratios of mumber of iterations per cells

 Preconditioner Solver Fine/Medium Medium/Coarse Coarse/Very c
ISIS-CFD ILU(1) PCGSTAB 5.76088E-01 6.26197E-01 6.91324E-01

HyPre/ILU(1) BiCGStab 6.89245E-01 5.11790E-01 6.52081E-01
HyPre/ILU(1) CG 7.28693E-01 5.07571E-01 7.02681E-01
Block Jacobi BiCGStab 6.56495E-01 5.41003E-01 7.09481E-01

PETSc

 Block Jacobi CG 6.43332E-01 5.80281E-01 7.09193E-01
Ratio of number of cells 1.883576378 2.421168186 1.640543128

CPU times used for reducing 5-order residual divided by number of cells are
shown in Table 5.7, in which the fastest and the second fastest convergence are
comment in red and blue, respectively. We can also see that, in general, the
linear solvers in PETSc can reduce the residual faster than the linear solver in
ISIS-CFD, except the case with the preconditioner HyPre/Multigrid for the fine
grid and the case with the preconditioner Block Jacobi and the solver
Conjugate Gradient for the vv coarse grid. There is an effect of the hardware
limitation of PC local station in these tests. Multigrid Method in the external
package HyPre with the solver BiCGStab performs best for the coarse grid and
the very coarse grid cases with a very good performance for the medium grid
case. A linear solver with the fastest convergence for the fine grid in this test is
the case with the preconditioner Block Jacobi and the solver BiCGStab.

 34

Table 5.7 CPU time for reducing 5-order residual divided by number of cells

 Preconditioner Solver Fine Medium Coarse
Very

coarse Vv coarse
ISIS-CFD ILU(1) PCGSTAB 3.83E-05 4.49E-05 2.72E-05 2.43E-05 3.80E-05

HyPre/ILU(1) BiCGStab 3.36E-05 1.97E-05 1.61E-05 1.73E-05 1.55E-05
HyPre/ILU(1) CG 3.31E-05 2.43E-05 2.11E-05 2.22E-05 2.76E-05
HyPre/MG BiCGStab 4.59E-05 2.17E-05 1.28E-05 2.89E-06 2.07E-05
HyPre/MG CG 6.07E-05 3.12E-05 1.73E-05 1.53E-05 6.47E-06
Block Jacobi BiCGStab 2.58E-05 3.32E-05 1.53E-05 1.61E-05 3.11E-05

PETSc

 Block Jacobi CG 3.42E-05 3.00E-05 2.49E-05 2.02E-05 4.58E-05

 35

6. CONCLUSION AND FUTURE WORK

In this research, PETSc linear solver has in general better convergence than the
linear solver in ISIS-CFD, especially, the Multigrid method in the external
package HyPre solved with BiCGStab perform very well in most of grid sizes.
Its number of iterations is fairly constant, when the number of cells increases as
well as when the number of processors increases.

PETSc linear solver package contains scalable parallel preconditioners such as
the Multigrid method in the external package HyPre and Block Jacobi.
However, the PETSc linear solvers increase consuming memory when the
number of processors increases, while the linear solver in ISIS-CFD remains
fairly the constant memory usage.

The hardware limitation of PC local network affects the tests and their results
such as in the convergence test, the performance of Multigrid method for the
fine grid. As well as in the speed up test, no speed up beginning from 8 blocs is
observed.

In the future work, I would like to recommend studying:

• The Multigrid method in the external package HyPre as it performs very
well in different grid sizes and scalable. Its various options should be
studied to develop its performance.

• MatCreateMPIAIJWithSplitArrays() can update the matrix very fast
and should be enabled to work with the linear solvers in the external
package HyPre.

• Smoothness is also a desirable property for the computation and should
be focused

 36

APPENDIX A The PETSc program

* -
* The program solves the linear system by using PETSc linear solver
* Toolkids combining with MPI
* -

 program test_with_petsc
 Include "precision.h"

* -
* Include files
* -
!
! petsc.h - base PETSc routines petscvec.h - vectors
! petscmat.h - matrices petscksp.h - Krylov subspace methods
! petscpc.h - preconditioners

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
#include "finclude/petscmat.h"
#include "finclude/petscpc.h"
#include "finclude/petscsys.h"
#include "finclude/petscksp.h"

* -
* Variable declarations
* -
!
! Variables:
! pc - preconditioner context
! ksp - Krylov subspace method context, linear solver context
! D - matrix that defines linear system
! x,u,b,rhs - exact and approx sol, computed and given RHS vectors
! errRHSmax - maximum error of the right-hand-side
! me,nproc - The processor I am and the total number of processor
! IpntCF_CC,IndCon_CC – local indices of 'a' where to begin a new row

 PC pc
 KSP ksp
 Mat D
 Vec u,rhs,x,b
 PetscInt N,NN,i,j,globalIndRow,globalIndCol,its,maxits,dummy,
 $ Istart,Iend,ii,jj,kk,ll,ojj,okk,kkA,kkB,kkN,pntBegin,
 $ pntEnd,yy,nrow,ncolumn,lg,matopt,pcopt,nz
 PetscErrorCode ierr
 PetscMPIInt rank
 PetscScalar neg_one
 PetscReal errRHSmax,mem
 PetscTruth flg0,flg1,oflg1,oflg2
 KSPType kspt
 PCType pct

 common /pvmmb/me,nproc
 Common/parallele/mybloc
 common /com/mytid,itids(1000)
 COMMON/STMPI /bloc

 37

 character*4 bloc

 Common /umesg/ imesg
 CHARACTER*150 fname
 character*5 iluk

 integer,dimension (:), allocatable:: IpntCF_CC,IndCon_CC,
 $ nfcom,nblcom,ncell_local,Local_to_Global_Mapping,LoToGlo,
 $ column,pointer,ocolumn,opointer
 integer,dimension (:,:), allocatable:: Ind_send,Ind_Receive
 double precision,dimension (:), allocatable::
 $ a,Src,Sol,p,v,ov

! Note: Any user-defined Fortran routines (such as MyKSPMonitor)
! MUST be declared as external.

 external MyKSPMonitor,MyKSPConverged

 ! Timing variables
 Integer, Parameter :: iprec_single=selected_real_kind(4)
 Integer, Parameter :: iprec_double=selected_real_kind(8)

 Real(iprec_single) :: time
 Integer :: itime_start, itime_end, itime_rate, time_max
--
* Pré-Initialisations par défaut
* o Langue, etc ...
 me=0
 nproc=1
 imesg=6

* -
* Choose the defining matrix, preconditioner and solver type
* -
*** Select Matrix creation case
! [1] MatCreate() and MatSetValues() by row
! [2] MatCreateMPIAIJWithSplitArrays()
 matopt=2

*** Preconditioner options
! [0] PETSc Preconditioners; bjacobi,mg,asm
! [1] Additive Schwarz Method
! [2] HYPRE/ILU(K)
! [3] HYPRE/Multigrid
! [4] TRILLINOS/Multigrid
 pcopt=3
! if 0 please enter type
 pct=PCBJACOBI
! If 1,2 please enter the ilu level
 iluk='1'

*** KSP type
 kspt=KSPCG

* -
* Begin the program
* -

 38

 ! >>> Start timing 1
 Call SYSTEM_CLOCK(COUNT=itime_start, COUNT_RATE=itime_rate,
 $ COUNT_MAX=time_max)

 call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
 call initmb1
 mybloc=me

* -
* Extract the values of pressure equation and indices, then define
* the number of local nodes and global nodes
* -

* Open files and get the values or send indices and receive indices
 if (me.gt.1) imesg=100+me
 if (nproc.eq.1) then
 open(10,file='pressure_equation.bin',status='unknown',
 $ form='unformatted')
 else
 write(bloc,'(A,I3.3)') 'b',me
 open(10,file=bloc//'/pressure_equation.bin',status='unknown',
 $ form='unformatted')
 open(11,file=bloc//'/index_send_receive.dat',status='unknown')
 read(11,*) nbloc,NFCOMMAX
 allocate(nfcom(nbloc),nblcom(nbloc),Ind_Send(NFCOMMAX,nbloc))
 allocate(Ind_Receive(NFCOMMAX,nbloc))
 do ibloc=1,nbloc ! boucle sur les blocs de communication
 read(11,*) nfcom(ibloc),nblcom(ibloc)
 nbloc_nb=nblcom(ibloc) ! numero de bloc a communiquer
 if (nbloc_nb.ne.mybloc) then
 do iface=1,nfcom(ibloc)
 read(11,*) Ind_Send(iface,ibloc),
 $ Ind_Receive(iface,ibloc)
 end do
 else
 write(0,*) 'Unexpected communication'
 call killallmpi
 end if
 end do
 close(11)
 end if

 read(10) ncellule,nvariable
 write(imesg,*) 'Number of cells : ',ncellule
 write(imesg,*) 'Number of variables: ',nvariable

* Import the connectivity
 allocate(IpntCF_CC(ncellule+1))
 call read_bin_int(ncellule+1,IpntCF_CC)
 ndim_mat=IpntCF_CC(ncellule+1)-1
 allocate(IndCon_CC(ndim_mat),a(ndim_mat))
 call read_bin_int(ndim_mat,IndCon_CC)
* Import the matrix
 call read_bin_float(ndim_mat,a)
 allocate(Src(nvariable),Sol(nvariable))
* Import the right hand side
 call read_bin_float(nvariable,Src)
* Import the solution

 39

 call read_bin_float(nvariable,Sol)
 close(10)

* Compute the total number of cells
 ncell_total=ncellule
 call glbsum_int(ncell_total)
 write(imesg,*) 'Total number of cells: ',ncell_total

 N=ncellule
 NN=ncell_total

* Gather the local number of each bloc
 allocate(ncell_local(nproc))
 ncell_local(1)=ncellule
 call gather_int(nproc,1,ncell_local,nleng)
 write(imesg,*) 'Local number of cell for each bloc:'
 do i=1,nproc
 write(imesg,*) i,ncell_local(i)
 end do

* -
* Establish local to global index mapping
* -

 allocate(Local_to_Global_Mapping(Nvariable))
 index0=0
 if (me.ne.1) then
 do i=1,me-1
 index0=index0+ncell_local(i)
 end do
 end if
 Local_to_Global_Mapping=0
 do i=1,ncellule
 Local_to_Global_Mapping(i)=index0+i-1
 end do
 call communicationint1(Local_to_Global_Mapping,
 $ mybloc,nbloc,nfcom,nblcom,
 & Ind_Send,Ind_Receive,NFCOMMAX)

* -
* Create vectors and matrix
* -

* Vector: Creatte a parallel vector and duplicate it.
! Create a parallel vector.
! - In this case, we specify the size of each processor's local
! portion, and PETSc computes the global size. Alternatively,
! if we pass the global size and use PETSC_DECIDE for the
! local size PETSc will choose a reasonable partition trying
! to put nearly an equal number of elements on each processor.
! rhs - the given right hand side

 call VecCreateMPI(PETSC_COMM_WORLD,N,PETSC_DECIDE,rhs,ierr)
 call VecDuplicate(rhs,u,ierr) ! u - the approximated solution
 call VecDuplicate(rhs,b,ierr) ! b - the computed RHS
 call VecDuplicate(rhs,x,ierr)! x - the exact solution
*

 40

* LoToGlo - the global column indices of the array a
*
 allocate(LoToGlo(ndim_mat))
 LoToGlo=Local_to_Global_Mapping(IndCon_CC)

* The matrix creation case must be select at the top of the program
 select case (matopt)

* [1] MatCreate() and MatSetValues() by row
 case (1)
 nz=0
 do i=IpntCF_CC(1),IpntCF_CC(2)-1
 if (a(i).ne.0.0) nz=nz+1
 enddo
 write(imesg,*) 'nz:',nz

 call MatCreate(PETSC_COMM_WORLD,D,ierr)
 call MatSetSizes(D,N,N,PETSC_DETERMINE,PETSC_DETERMINE,
 $ ierr)
 call MatSetType(D,MATMPIAIJ,ierr) ! to set type a parallel matrix
 call MatMPIAIJSetPreallocation(D,nz,PETSC_NULL_INTEGER,
 $ 2,PETSC_NULL_INTEGER,ierr)
 call MatZeroEntries(D,ierr)

 write(imesg,*) '[1] MatCreate() and MatSetValues() by row'
 do i=1,N
 globalIndRow=Local_to_Global_Mapping(i)
 pntBegin=IpntCF_CC(i)
 pntEnd=IpntCF_CC(i+1)-1
 j=pntEnd-pntBegin+1
 call MatSetValues(D,1,globalIndRow,j,LoToGlo(pntBegin:pntEnd),
 $ a(pntBegin:pntEnd),ADD_VALUES,ierr)
 end do

* [2] MatCreateMPIAIJWithSplitArrays()

case (2)

 Istart=index0 ! Istart - the start global column index of that bloc
 Iend=index0+N ! Iend - the end global column index of that bloc
 write(imesg,*) 'Istart:',Istart,'Iend:',Iend

 allocate(v(ndim_mat)) ! v - diagonal values
 allocate(column(ndim_mat)) ! column - diagonal column indices
 allocate(pointer(N+1)) ! pointer - diag row indices into column
 allocate(ov(ndim_mat)) ! ov - off-diagonal values
 allocate(ocolumn(ndim_mat))! ocolumn - off-diagonal column indices
 allocate(opointer(N+1)) ! opointer - off-diag ind into ocolumn

 v=0
 column=0
 pointer=0
 ov=0
 ocolumn=Iend
 if (Iend.eq.NN) ocolumn=Istart-1
 opointer=NN

 jj=1 ! index of v and column

 41

 kk=1 ! index of pointer
 ojj=1 ! index of ov
 okk=1 ! index of opinter

 oflg2=PETSC_TRUE

 do ii=1,(ndim_mat+1) !index of array a and LoToGlo

 flg0=(abs(a(ii)-0).gt.(1.e-20))
 flg1=((LoToGlo(ii).ge.(Istart)).and.(LoToGlo(ii).lt.(Iend)))
 oflg1=((LoToGlo(ii).ge.0).and.(LoToGlo(ii).lt.NN))

 if (flg0) then! if nonzero

 if (flg1) then

 v(jj)=a(ii) ! put matrix value to diagonal array
 column(jj)=LoToGlo(ii)

 if (ii.ge.(IpntCF_CC(kk))) then ! if the index starts new row
 pointer(kk)=jj-1 ! PETSc is zero-based; FORTRAN is one-based
 kk=kk+1 ! index of new row pointer array
 end if
 jj=jj+1 ! move column index address and value to the next one
 yy=IpntCF_CC(kk)-1

elseif (oflg1) then
 ov(ojj)=a(ii) ! put matrix value to off-diagonal array
 ocolumn(ojj)=LoToGlo(ii)
 if (ii.ge.(IpntCF_CC(okk))) then ! if the index starts new row
 opointer(okk)=ojj-1 ! PETSc:zero-based; FORTRAN:one-based
 okk=okk+1
 endif
 ojj=ojj+1
 oflg2=PETSC_FALSE
 endif

 endif

 if (ii.eq.yy) then
 if (oflg2) then

 opointer(okk)=ojj-1
 ojj=ojj+1

 okk=okk+1
 else
 oflg2=PETSC_TRUE
 endif
 endif
 end do

 pointer(kk)=jj-1 ! Last row pointer may missing
 opointer(okk)=ojj-1 ! Last off-diag row pointer may missing

 write(imesg,*) '[2] MatCreateMPIAIJWithSplitArrays()'

 column=column-Istart ! set global column indices to local indices
 do kk=1,N
 kkA=pointer(kk)+1
 kkB=pointer(kk+1)
 kkN=kkB-kkA+1
 call isort(column(kkA:kkB),v(kkA:kkB),kkN,2)

 42

 end do

 ! Create the matrix
 call MatCreateMPIAIJWithSplitArrays(PETSC_COMM_WORLD,N,N,
 $ PETSC_DETERMINE,PETSC_DETERMINE,pointer,column,v,
 $ opointer,ocolumn,ov,D,ierr)

 end select
*
* Assemble the matrix
*
 call MatAssemblyBegin(D,MAT_FINAL_ASSEMBLY,ierr) ! Assemble it
 call MatAssemblyEnd(D,MAT_FINAL_ASSEMBLY,ierr)

* -
* Set values to vectors
* -

* Set Value to the exact solution vector and RHS
! Set the vector elements.
! - Always specify global locations of vector entries.
! - Each processor can contribute any vector entries,
! regardless of which processor "owns" them; any nonlocal
! contributions will be transferred to the appropriate processor
! during the assembly process.
! - In this example, the flag INSERT_VALUES indicates that all
! contributions will be inserted and delete the old value.

 call VecSetValues(x,N,Local_to_Global_Mapping,
 $ Sol,INSERT_VALUES,ierr) ! Set the exact solution vector

! Assemble vector, using the 2-step process:
! VecAssemblyBegin(), VecAssemblyEnd()
! Computations can be done while messages are in transition
! by placing code between these two statements.
 call VecAssemblyBegin(x,ierr)
 call VecAssemblyEnd(x,ierr)

! Set values for the right hand side vector
 call VecSetValues(rhs,N,Local_to_Global_Mapping,
 $ Src,INSERT_VALUES,ierr)
 call VecAssemblyBegin(rhs,ierr)
 call VecAssemblyEnd(rhs,ierr)
 write(imesg,*) 'The vector value is set and assembled.'

 ! <<< Stop timing 2
 Call SYSTEM_CLOCK(itime_end)

 ! The elapsed time in seconds 2
 time=REAL(itime_end - itime_start)/REAL(itime_rate)
 Print *, 'Elapsed time in seconds, Vec & Mat, proc',me,':',time

* Check if the matrix has been defined correctly
 neg_one=-1.0
 call MatMult(D,x,b,ierr)
 call VecAXPY(b,neg_one,rhs,ierr)
 call VecAbs(b,ierr)

 43

 call VecMax(b,i,errRHSmax,ierr)
 write(imesg,*) 'rhs-b =',errRHSmax

* -
* Create the linear solver and set various options
* -
 ! >>> Start timing 3
 Call SYSTEM_CLOCK(COUNT=itime_start, COUNT_RATE=itime_rate,
 $ COUNT_MAX=time_max)

* Create linear solver context
 call KSPCreate(PETSC_COMM_WORLD,ksp,ierr)

* Set operators. Here the matrix that defines the linear system
! also serves as the preconditioning matrix. Here are matrix D.
 call KSPSetOperators(ksp,D,D,DIFFERENT_NONZERO_PATTERN,ierr)

* Returns a pointer to the preconditioner context
 call KSPGetPC(ksp,pc,ierr)

* Preconditioner options can be selected at the top of the program
 select case (pcopt)

 case (0)
* 0 Preconditioner of PETSc which can be used for parallel computing
* without external package: Block Jacobi, Additive Schwarz
 call PCSetType(pc,pct,ierr)

 case (1)
* 1 Preconditioner: Additive Schwarz Method
! By default: subdomain=1, overlab=1, type=restrict, level=0
! ilu - if want to use icc, set the matrix is symmetric.
! Use in place is to destroy the matrix after use to save memory
 call PCSetType(pc,PCASM,ierr)
 call PCASMSetUseInPlace(pc,ierr)
 call PetscOptionsSetValue('-sub_pc_factor_levels',iluk,ierr)
 call PetscOptionsSetValue('-sub_pc_factor_shift_positive_definite'
 $,PETSC_NULL_CHARACTER,ierr) ! to avoid zero pivot

 case (2,3)
* 2,3 Preconditioner: HYPRE
 call PCSetType(pc,PCHYPRE,ierr)

 if (pcopt.eq.2) then
* 2 Euclid for ILU(k)
 call PCHYPRESetType(pc,'euclid',ierr)
 call PetscOptionsSetValue('-pc_hypre_euclid_levels',iluk,ierr)
 call PetscOptionsSetValue('-pc_hypre_euclid_bj','TRUE',ierr)

 else
* 3 BoomerAMG for Multigrid
 call PCHYPRESetType(pc,'boomeramg',ierr)
 call PetscOptionsSetValue('-pc_hypre_boomeramg_max_levels',
 $ '10',ierr)

 endif

 case (4)

 44

* 2 Preconditioner: ML
 call PCSetType(pc,PCML,ierr)
 call PetscOptionsSetValue('-pc_ml_maxNlevels','5',ierr)
 call PetscOptionsSetValue(
 $ '-mg_coarse_redundant_pc_factor_zeropivot',
 $ '1e-25',ierr)

 end select
* End Preconditioner options---

* Set the relative,absolute,divergence,and maximum iteration
* tolerances
 tol = 1.e-7
 maxits = 1000
 call KSPSetTolerances(ksp,tol,PETSC_DEFAULT_DOUBLE_PRECISION, &
 & PETSC_DEFAULT_DOUBLE_PRECISION,maxits,ierr)

* Set user-defined monitoring routine if desired
 call PetscOptionsHasName(PETSC_NULL_CHARACTER,'-my_ksp_monitor', &
 & flg,ierr)
 if (flg .eq. 1) then
 call KSPMonitorSet(ksp,MyKSPMonitor,PETSC_NULL_OBJECT,
&
 & PETSC_NULL_FUNCTION,ierr)
 Endif

* To enable the ksp monitoring and write in a file
 call PetscOptionsSetValue('-ksp_monitor_true_residual',
 $ 'monitor.dat',ierr)

*--------------Set KSP solver type-------------------
 call KSPSetType(ksp,kspt,ierr)
 call KSPSetFromOptions(ksp,ierr)

*--

* Set convergence test routine if desired
 call PetscOptionsHasName(PETSC_NULL_CHARACTER, &
 & '-my_ksp_convergence',flg,ierr)
 if (flg .eq. 1) then
 call KSPSetConvergenceTest(ksp,MyKSPConverged,
&
 & PETSC_NULL_OBJECT,ierr)
 endif

* -
* Solve the linear system and see the computing time and view KSP
* -

*-----------Solve the linear system-----------------

 call KSPSolve(ksp,rhs,u,ierr)

*---

 ! <<< Stop timing 3

 45

 Call SYSTEM_CLOCK(itime_end)

 ! The elapsed time in seconds 3
 time=REAL(itime_end - itime_start)/REAL(itime_rate)
 Print *, 'Elapsed time in seconds, PC & KSP, proc',me,':',time

* View the information of solver, preconditioner and matrix
 call KSPView(ksp,PETSC_VIEWER_STDOUT_WORLD,ierr)

* -
* check the error
* -

* Transfer the values from vector u, N elements, to array p.
! Local_to_Global_Mapping is the global location to get the values.
 allocate(p(N))
 call VecGetValues(u,N,Local_to_Global_Mapping,p,ierr)

* Check errors of the approximated solution
 err0=-1.0e+8
 err1=p(1)-sol(1)
 do i=1,ncellule
 err0=max(err0,abs(p(i)-sol(i)-err1))
 end do
 write(imesg,*) 'Maximum error = ',err0
 write(imesg,*) 'Difference at node 1 = ',err1

* To get the iterations number used for computing
 call KSPGetIterationNumber(ksp,its,ierr)
 write(imesg,*) 'Iterations =', its

* -
* Clean up and exit the programFree work space.
* All PETSc objects should be destroyed when they are no longer needed.
* -

 call VecDestroy(x,ierr)
 call VecDestroy(b,ierr)
 call VecDestroy(u,ierr)
 call VecDestroy(rhs,ierr)
 call MatDestroy(D,ierr)
 call KSPDestroy(ksp,ierr)

* -
* End the program.
* Always call PetscFinalize() before exiting a program
* -

 call PetscFinalize(ierr)
 write(imesg,*) 'Normal end'
 end

* -
!
! MyKSPMonitor - This is a user-defined routine for monitoring
! the KSP iterative solvers.
!
! Input Parameters:

 46

! ksp - iterative context
! n - iteration number
! rnorm - 2-norm (preconditioned) residual value (may be estimated)
! dummy - optional user-defined monitor context (unused here)
!
 subroutine MyKSPMonitor(ksp,n,rnorm,dummy,ierr)
 implicit none

#include 'finclude/petsc.h'
#include 'finclude/petscvec.h'
#include 'finclude/petscksp.h'

 KSP ksp
 Vec x
 PetscErrorCode ierr
 PetscInt n,dummy
 PetscMPIInt rank
 double precision rnorm

* Build the solution vector

 call KSPBuildSolution(ksp,PETSC_NULL_OBJECT,x,ierr)

* Write the solution vector and residual norm to stdout
! - Note that the parallel viewer PETSC_VIEWER_STDOUT_WORLD
! handles data from multiple processors so that the
! output is not jumbled.

 call MPI_COMM_RANK(PETSC_COMM_WORLD,rank,ierr)
 if (rank .eq. 0) write(6,100) n
 call VecView(x,PETSC_VIEWER_STDOUT_WORLD,ierr)
 if (rank .eq. 0) write(6,200) n,rnorm

 100 format('iteration ',i5,' solution vector:')
 200 format('iteration ',i5,' residual norm ',e10.4)
 ierr = 0
 end

* -
!
! MyKSPConverged - This is a user-defined routine for testing
! convergence of the KSP iterative solvers.
!
! Input Parameters:
! ksp - iterative context
! n - iteration number
! rnorm - 2-norm (preconditioned) residual value (may be estimated)
! dummy - optional user-defined monitor context (unused here)
!
 subroutine MyKSPConverged(ksp,n,rnorm,flag,dummy,ierr)

 implicit none

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
#include "finclude/petscksp.h"

 KSP ksp

 47

 PetscErrorCode ierr
 PetscInt n,dummy
 KSPConvergedReason flag
 double precision rnorm

 if (rnorm .le. .05) then
 flag = 1
 else
 flag = 0
 endif
 ierr = 0

 end

 48

APPENDIX B A result file

 Number of cells : 198812
 Number of variables: 220903
 Total number of cells: 397625
 Local number of cell for each bloc:
 1 198812
 2 198813
 nz: 7
 [2] MatCreate() and MatSetValues() by row
 The vector value is set and assembled.
 Elapsed time in seconds, Vec & Mat, proc 1 : 144.3628
 Elapsed time in seconds, Vec & Mat, proc 2 : 144.2728
 rhs-b = 3.774324602856538E-015
 Elapsed time in seconds, PC & KSP, proc 1 : 18.80410
KSP Object:
 type: bcgs
 maximum iterations=1000, initial guess is zero
 tolerances: relative=1e-07, absolute=1e-50, divergence=10000
 left preconditioning
PC Object:
 type: hypre
 HYPRE BoomerAMG preconditioning
 HYPRE BoomerAMG: Cycle type V
 HYPRE BoomerAMG: Maximum number of levels 10
 HYPRE BoomerAMG: Maximum number of iterations PER hypre call 1
 HYPRE BoomerAMG: Convergence tolerance PER hypre call 0
 HYPRE BoomerAMG: Threshold for strong coupling 0.25
 HYPRE BoomerAMG: Interpolation truncation factor 0
 HYPRE BoomerAMG: Interpolation: max elements per row 0
 HYPRE BoomerAMG: Number of levels of aggressive coarsening 0
 HYPRE BoomerAMG: Number of paths for aggressive coarsening 1
 HYPRE BoomerAMG: Maximum row sums 0.9
 HYPRE BoomerAMG: Sweeps down 1
 HYPRE BoomerAMG: Sweeps up 1
 HYPRE BoomerAMG: Sweeps on coarse 1
 HYPRE BoomerAMG: Relax down symmetric-SOR/Jacobi
 HYPRE BoomerAMG: Relax up symmetric-SOR/Jacobi
 HYPRE BoomerAMG: Relax on coarse Gaussian-elimination
 HYPRE BoomerAMG: Relax weight (all) 1
 HYPRE BoomerAMG: Outer relax weight (all) 1
 HYPRE BoomerAMG: Using CF-relaxation
 HYPRE BoomerAMG: Measure type local
 HYPRE BoomerAMG: Coarsen type Falgout
 HYPRE BoomerAMG: Interpolation type classical
 linear system matrix = precond matrix:
 Matrix Object:
 type=mpiaij, rows=397625, cols=397625
 total: nonzeros=2811329, allocated nonzeros=4261494
 not using I-node (on process 0) routines
 Elapsed time in seconds, PC & KSP, proc 2 : 18.80070
 Maximum error = 0.159961173834830
 Difference at node 1 = -26.9312163083231
 Iterations = 4
Summary of Memory Usage in PETSc
[0]Current space PetscMalloc()ed 26708, max space PetscMalloced()
5.19728e+07

 49

[0]Current process memory 3.92315e+07 max process memory 2.5618e+08
[1]Current space PetscMalloc()ed 26708, max space PetscMalloced()
6.46507e+07
[1]Current process memory 3.90021e+07 max process memory 2.82411e+08
 Normal end

 50

APPENDIX C Preallocation of Memory for Parallel AIJ Sparse
Matrices

 call MatMPIAIJSetPreallocation(Mat A,PetscInt d_nz,
 $ const PetscInt d_nnz[],PetscInt o_nz,
 $ const PetscInt o_nnz[],ierr)

Input parameter:-
A - the matrix.
d_nz - number of nonzeros per row in DIAGONAL portion of
 local submatrix (same value is used for all local rows)
d_nnz - array containing the number of nonzeros in the various rows of the

DIAGONAL portion of the local submatrix (possibly different for
each row) or PETSC_NULL_INTEGER, if d_nz is used to specify the
nonzero structure. The size of this array is equal to the number of
local rows. One must leave room for the diagonal entry even if it is
zero.

o_nz - number of nonzeros per row in the OFF-DIAGONAL portion of
local submatrix (same value is used for all local rows).

o_nnz - array containing the number of nonzeros in the various rows of the
OFF-DIAGONAL portion of the local submatrix (possibly different
for each row) or PETSC_NULL_INTEGER, if o_nz is used to specify
the nonzero structure. The size of this array is equal to the number of
local rows.

Preallocation of memory is critical for achieving good performance during
matrix assembly, as this reduces the number of allocations and copies required.
We present an example for three processes to indicate how this may be done
for the MATMPIAIJ matrix format. Consider the 8 by 8 matrix, which is
partitioned by default with three rows on the first process, three on the second
and two on the third.

 1 2 0 | 0 3 0 | 0 4
 0 5 6 | 7 0 0 | 8 0
 9 0 10 | 11 0 0 | 12 0

 13 0 14 | 15 16 17
 0 18 0 | 19 20 21
 0 0 0 | 22

− − − − − − − − − − − −
| 0 0
| 0 0

23 0 | 24 0

 25 26 27 | 0 0 28 | 29 0
 30 0 0 | 31 32 33 | 0 34

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− − − −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
− − − − − − − − − − − − − − − −⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 51

The “diagonal” submatrix, d, on the first process is given by

1 2 0
0 5 6
9 0 10

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

while the “off-diagonal” submatrix, o, matrix is given by

 0 3 0 0 4
 7 0 0 8 0
11 0 0 12 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

For the first process one could set d_nz to 2 (since each row has 2 nonzeros) or,
alternatively, set d_nnz to {2,2,2}. The o_nz could be set to 2 since each row
of the o matrix has 2 nonzeros, or o_nnz could be set to {2,2,2}.

For the second process the d submatrix is given by

15 16 17
19 20 21
22 23 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Thus, one could set d_nz to 3, since the maximum number of nonzeros in each
row is 3, or alternatively, one could set d_nnz to {3,3,2}, thereby indicating
that the first two rows will have 3 nonzeros while the third has 2. The
corresponding o submatrix for the second process is

13 0 14 0 0
 0 18 0 0 0
 0 0 0 24 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

so that one could set o_nz to 2 or o_nnz to {2,1,1}.

Note that the user never directly works with the d and o submatrices, except
when preallocating storage space as indicated above. Also, the user need not
preallocate exactly the correct amount of space; as long as a sufficiently close
estimate is given, the high efficiency for matrix assembly will remain.

The option -info will print information about the success of preallocation
during matrix assembly. For the MATMPIAIJ and MATMPIBAIJ formats, PETSc

 52

will also list the number of elements owned by on each process that were
generated on a different process. For example, the statements

MatAssemblyBegin MPIAIJ:Stash has 10 entries, uses 0 mallocs
MatAssemblyBegin MPIAIJ:Stash has 3 entries, uses 0 mallocs

indicate that very few values have been generated on different processes. On
the other hand, the statements

MatAssemblyBegin MPIAIJ:Stash has 100000 entries,
uses 100 mallocs
MatAssemblyBegin MPIAIJ:Stash has 77777 entries

indicate that many values have been generated on the “wrong” processes. This
situation can be very inefficient, since the transfer of values to the “correct”
process is generally expensive. By using the command
MatGetOwnershipRange() in application codes, the user should be able to
generate most entries on the owning process.

Note: It is fine to generate some entries on the “wrong” process. Often this can
lead to cleaner, simpler, less buggy codes. One should never make code overly
complicated in order to generate all values locally. Rather, one should organize
the code in such a way that most values are generated locally.

 53

REFERENCES

Yousef Saad. Iterative Methods for Sparse Linear Systems. 2nd edition. N.p.:

January 2000.

S. Balay, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L.

Curfman McInnes, B. Smith, and H. Zhang. PETSc Users Manual
Revision 3.0.0. December 2008.

	MasterThesisReport_CoverContent.pdf
	MasterThesisReport.pdf

