
Performance Test of PETSc Library for the solution

of Fully Coupled Velocity-Pressure Formulation for

an Unstructured Finite Volume RANSE Solver

by

Hasnat Jamil

Supervisor: Michel Visonneau

A thesis submitted in partial fulfillment for the

degree of Erasmus Mundus Master of Science

in the

Computational Mechanics

Equipe Modélisation Numérique, CNRS

ECOLE CENTRALE DE NANTES

May 2010

file:hasnatjamil@yahoo.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
http://www.ec-nantes.fr

Abstract

This research includes a numerical description of a coupled system of momentum and pressure

equation and performance analysis in solving the system. The linear system of the coupled

method is very hard to solve and time consuming compared to the segregated method (SIM-

PLE). It requires high memory also. So in this research, two solvers are used to check the

performance in solving the coupled system. One is a linear solver included in ISIS-CFD,

developed by EMN (Equipe Modélisation Numérique), CNRS at Ecole Centrale de Nantes.

And another one is, Portable, Extensible Toolkit for Scientific Computation (PETSc) which

is a set of data structures and routines for the scalable (parallel) solution of scientific appli-

cations modelled by partial differential equation.

Acknowledgements

I would like to express my gratitude to all of my group members to give me the opportunity

to complete this research. I am deeply indebted to my supervisor Dr. Michel Visonneau,

the Head of the CFD team (CNRS), Ecole Centrale de Nantes, whose support, stimulating

suggestions and encouragement guided me all the time of research and writing this paper.

Without his help, it would have been difficult.

I am very grateful to Dr. Patrick Queutey and Dr. Ganbo Deng for their relentless assistance

in going through the ups and downs of the road. Their effective discussion and enthusiasm

motivated me a lot.

I also want to thank Dr. Emmanuel Guilmineau, Dr. Kunihide Ohashi and Dr. Jeroen

Wackers who lend their helping hand in the hours of need.

At the end, I am thankful to my family for their support and love throughout this period.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Strongly Coupled System . 1

1.2 ISIS-CFD . 2

1.3 PETSc . 3

2 Strongly Coupled Velocity-Pressure Formulation 4

2.1 Governing Equations . 4

2.2 Generic Discretisation Form . 6

2.2.1 Discretised Momentum Equation . 6

2.2.2 Discretised Pressure Equation . 8

2.3 The Velocity-Pseudo-velocity Pressure coupled System 10

2.4 Global Structure of the Linear Coupled System 10

3 Programming with PETSc 12

3.1 MPICH and PETSc Installation . 12

3.1.1 MPICH Installation . 12

3.1.2 PETSc Installation . 13

3.2 Writing PETSc Programs . 13

3.2.1 Include Files . 13

3.2.2 PETSc Objects . 14

3.2.3 PETSc Initialization and Finalization 14

3.2.4 Error Checking . 15

3.2.5 Passing Null Pointers . 15

3.2.6 Vector Operations . 15

3.2.7 Matrix Operations . 17

3.2.8 KSP solver and Preconditioner . 20

3.3 Compile and Run PETSc . 24

3.3.1 Makefile . 24

3.3.2 Running a PETSc Program . 25

iii

Contents iv

4 Results and Discussion 26

4.1 Test Case . 26

4.2 Tests with BiCGStab . 27

4.2.1 1st Case . 27

4.2.2 2nd Case . 30

4.3 Tests with GMRES . 32

4.3.1 1st Case . 32

4.3.2 2nd Case . 35

4.4 Comparison . 38

4.5 Memory Usage . 40

5 Conclusion 42

6 Further Recommendation 44

A The PETSc Program 45

B An Output File 57

Bibliography 59

List of Figures

4.1 Convergence of ISIS and PETSc with BiCGStab-ILU(0) (case 1) 27

4.2 Convergence of ISIS and PETSc with BiCGStab-ILU(1) (case 1) 28

4.3 Convergence of ISIS and PETSc with BiCGStab-ILU(2) (case 1) 28

4.4 Convergence of ISIS and PETSc with BiCGStab-Block Jacobi (case 1) 29

4.5 Convergence of ISIS and PETSc with BiCGStab-Multigrid (case 1) 29

4.6 Convergence of ISIS and PETSc with BiCGStab-ILU(0) (case 2) 30

4.7 Convergence of ISIS and PETSc with BiCGStab-ILU(1) (case 2) 30

4.8 Convergence of ISIS and PETSc with BiCGStab-ILU(2) (case 2) 31

4.9 Convergence of ISIS and PETSc with BiCGStab-ILU(2) (case 2) 31

4.10 Convergence of ISIS and PETSc with BiCGStab-Block Jacobi (case 2) 32

4.11 Convergence of ISIS and PETSc with GMRES-ILU(0) (case 1) 33

4.12 Convergence of ISIS and PETSc with GMRES-ILU(1) (case 1) 33

4.13 Convergence of ISIS and PETSc with GMRES-ILU(2) (case 1) 34

4.14 Convergence of ISIS and PETSc with GMRES-Multigrid (case 1) 34

4.15 Convergence of ISIS and PETSc with GMRES-Block Jacobi (case 1) 35

4.16 Convergence of ISIS and PETSc with GMRES-ILU(0) (case 2) 35

4.17 Convergence of ISIS and PETSc with GMRES-ILU(1) (case 2) 36

4.18 Convergence of ISIS and PETSc with GMRES-ILU(2) (case 2) 36

4.19 Convergence of ISIS and PETSc with GMRES-Multigrid (case 2) 37

4.20 Convergence of ISIS and PETSc with GMRES-Block Jacobi (case 2) 37

4.21 Convergence of ILU(0) preconditioner with GMRES and BiCGStab(case 2) . 38

4.22 Convergence of ILU(1) preconditioner with GMRES and BiCGStab (case 2) . 38

4.23 Convergence of BJACOBI preconditioner with GMRES and BiCGStab (case 2) 39

4.24 Convergence of some of the best preconditioners with GMRES (case 2) 39

v

List of Tables

3.1 PETSc Vector Operation . 17

3.2 PETSc Matrix Operation . 20

3.3 Preconditioner in PETSc . 23

3.4 Krylov Sybspace Methods in PETSc . 24

4.1 Memory Usage in PETSc . 40

vi

Chapter 1

Introduction

1.1 Strongly Coupled System

During the recent decades, most of the methodologies which have been developed to solve the

Navier-Stokes equation, mostly rely on the Segregated or Decoupled method. The segregated

method is based on the succecive solution of the momentum and pressure equation, instead

of solving the whole global linear system of velocity and pressure unknowns. The momentum

equation provides the velocity unknowns for a known pressure field and the pressure equation

which derived from the mass equation, provides the pressure unknowns for the velocity field

determined before. There are many external algorithm based on the prediction and correction

phases developed to get an interative solution of the linear coupled system (SIMPLE, PISO,

etc.). In the segregated method, the linear coupling is never solved to machine accuracy

within a non-linear iteration, because it is considered that it would be waste of time to

solved the coupled linear system where the non-linearities have not converged.

Although Segregated method has some certain advantages like, it requires less memory since

it does not require to build the coupled linear system, it requires less time by avoiding the

complete solution of the coupled system in a non-linear iteration; but most of the time, the

under-relaxation is strongly needed for pressure, velocity, etc. Also the use of a pseudo-time

derivative is mandatory (for steady flows) to create a diagonal dominance necessary for the

segregated coupling method. So, because of under-relaxation factors (seldomly higher than

0.5) and pseudo-transient terms, the segregated approach is usually very slow to converge.

On the other hand, the strongly coupled system considers the coupling between the momen-

tum and pressure equation and this whole global linear system is solved at once in every

non-linear iteration. By using fully-coupled system, one may expect following benefits:

1

Chapter 1. Introduction 2

• It requires less number of non-linear iterations (compared to segregated method) as it

delts the linear system in a coupled way.

• Higher under-relaxation parameter (>0.6) can be used for fully coupled method.

• The pseudo-time derivative is not necessary (unlike segregated method).

• It requires higher memory to build the coupled system as the system is ill conditioned

and unsymmetric; but now a days the memory is becoming cheaper and thus this

requirement doesnt give that much of a challenge.

• The linear system may take more time to be solved but availability of new powerful

linear systems give opportunities to use fully coupled method; thanks to the use of

more powerful preconditioning.

1.2 ISIS-CFD

The ISIS-CFD is an incompressible flow solver developed by the EMN (Equipe Modélisation

Numérique), CNRS at Ecole Centrale de Nantes. It uses the incompressible unsteady

Raynold-averaged Navier Stokes equation (RANSE). The solver is based on the finite volume

method to build the spatial discretization of the transport equations. The face-based method

is generalized to two-dimensional, rotationally-symmetric, or three-dimensional unstructured

meshes for which nonoverlapping control volumes are bounded by an arbitrary number of

constitutive faces. The velocity field is obtained from the momentum conservation equations

and the pressure field is extracted from the mass conservation constraint, or continuity equa-

tion, transformed into a pressure-equation.In the case of turbulent flows, additional transport

equations for modeled variables are solved in a form similar to the momentum equations and

they can be discretized and solved using the same principles. The whole system is solved

by Segregated or decoupled method (SIMPLE). Besides, the velocity-sudo-velocity-pressure

coupled system is also implemented in ISIS-CFD for both 2D and 3D cases.1

The accuracy and robustness of the ISIS-CFD have been demonstrated in many international

workshop, classical benchmarks and EU research projects. It is now available as a part of

computing suite FINETM/MARINE commercialized by Numeca.

Now a days, one of the most important concern in CFD simulation is to reduce the computa-

tion time. The coupled system, which we are dealing with, is a huge, ill-conditioned matrix

and it requires more time and more memory to be solved. So, although the coupled method

is implemented in ISIS-CFD, it is important to analyse the performance. In this research

1Most of this paragraph is taken from the theoretical manual of FINETM/MARINE

Chapter 1. Introduction 3

we are going to check the performance of ISIS-CFD solver in solving coupled system and

compare it with the PETSc.

1.3 PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a powerful package

to develop large scale scientific application codes in Fortran, C and C++.This software

has powerful set of tools for the numerical solution of partial differential equations and

related problems on high-performance computers. It also supports parallel computations by

employing Message Passing Interface (MPI) to communicate with multi-processor.

PETSc includes variety of libraries, each of which deals with particular family of objects

(e.g. vectors, matrices, etc.) and operations. These objects and operations are derived from

experience of the scientific computations. Some of the PETSc modules deals with:

• Index sets, including permutations, for indexing into vectors, renumbering, etc.

• Vectors

• Matrices (generally sparse)

• Distributed arrays (useful for parallelizing regular grid-based problems)

• Krylov subspace methods

• Preconditioners, including multigrid and sparse direct solvers

• Nonlinear solvers and

• Timesteppers for solving time-dependent (nonlinear) PDEs.

Each consists of an abstract interface (simply a set of calling sequences) and one or more

implementations using particular data structures. Thus, PETSc provides clean and effective

codes for the various phases of solving PDEs, with a uniform approach for each class of

problems.

Chapter 2

Strongly Coupled Velocity-Pressure

Formulation

2.1 Governing Equations

In a multi-phase incompressible flow of viscous fluid under isothermal conditions, the mass,

momentum and volume fraction conservation equations can be written in Cartesian co-

ordinates as (using the generalized Gauss’ theorem):

∂

∂t

∫
V
ρdV +

∫
S
ρ
(
~U − ~Ud

)
· ~ndS = 0 (2.1)

∂

∂t

∫
V
ρUidV +

∫
S
ρUi

(
~U − ~Ud

)
· ~ndS =

∫
S

(τijIj − pIi) · ~ndS +

∫
V
ρgidV (2.2)

∂

∂t

∫
V
cidV +

∫
S
ci

(
~U − ~Ud

)
· ~ndS = 0 (2.3)

where,

V is the control volume bounded by the closed surface S moving with a velocity ~Ui with a

unit normal vector ~n directed outward.

~U and p represent, velocity and pressure field respectively.

τij and gi are viscous tensor and gravity vector respectively and Ij is a vector whose compo-

nents vanish, except for the component j which is equal to unity.

ci is the ith volume fraction for fluid i and is used to distinguish the presence (ci = 1) or the

absence (ci = 0) of fluid i. Since volume fraction between 0 and 1 indicates the presence of

mixture, the value of 1/2 is selected as a definition of the interface.

4

Chapter 2. Strongly Coupled Velocity-Pressure Formulation 5

The effective flow physical properties (viscosity µ and density ρ) are obtained from each

physical properties of constituent fluids (µi and ρi) with the following constitutive relations:

ρ =
∑
i

ciρi; µ =
∑
i

ciµi; 1 =
∑
i

ci; (2.4)

For a moving grid, the space conservation law also must be satisfied:

∂

∂t

∫
V
dV +

∫
S

~Ud · ~ndS = 0 (2.5)

The general mass conservation Eq.(2.1) can be simplified by considering incompressible

phases with constant densities ρi. By considering the constitutive relations (2.4) one ar-

bitrary phase j can be isolated as (such that ρ 6= 0):

ci = 1−
∑
i 6=j

ci (2.6)

ρ = cjρj +
∑
i 6=j

ciρi = ρj +
∑
i 6=j

ci(ρi − ρj) (2.7)

Substituting these relations (2.6) and (2.7) into the global mass conservation Eq.(2.1) yields

0 =
∂

∂t

∫
V

ρj +
∑
i 6=j

ci(ρi − ρj)

 dV +

∫
S

ρj +
∑
i 6=j

ci(ρi − ρj)

(~U − ~Ud

)
· ~ndS

= ρj

[
∂

∂t

∫
V
dV +

∫
S

(
~U − ~Ud

)
· ~ndS

]
+

∑
i 6=j

(ρi − ρj)

[∂
∂t

∫
V
cidV +

∫
S
ci

(
~U − ~Ud

)
· ~ndS

]

= ρj

[∫
S

~U · ~ndS
]

(2.8)

So the mass conservation simplifies as:∫
S

~U · ~ndS = 0 (2.9)

Chapter 2. Strongly Coupled Velocity-Pressure Formulation 6

2.2 Generic Discretisation Form

2.2.1 Discretised Momentum Equation

According to second order discretisation form of the Gauss theorem, the momentum equation

Eq.(2.2) can be rewritten in a semi-discrete form as (in 2D for the sake of simplicity):

∂

∂τ
(ρV ol~U)C +

∂

∂t
(ρV ol~U)C +

∑
CUUnb

~Unb + Cd~UC +
−−−→
SrcU +

∫
V olC

(
−−→
∇pi +

−−→
∇pe)dV

+

∫
V olC

ρ~gdV +

∫
V olC

−−−−→
SrcRijdV = ~0 (2.10)

where
∑
CUUnb

~Unb corresponds to the generic implicit discretisation of the convective and

diffusive terms of momentum equations in which the excluded contribution from the center

point is explicitly defined in the term Cd~UC . The source terms that are evaluated at the

center point C are:

•
−−−→
SrcU is a source term containing all the explicit terms coming from the spatial dis-

cretisation and from the isotropic turbulence model.

•
∫
V olC

(
−−→
∇pi +

−−→
∇pe)dV is the integral of the pressure where terms treated implicitly and

explicitly in the pressure equation are distinguished by indices i and e.

•
−−−−→
SrcRij is a source term containing the additional contributions appearing when an

anisotropic non-linear turbulence model is used.

The time derivative in Eq.(2.11) can be evaluated using three-level Euler second-order accu-

rate approximations:
∂Q

∂t
≈ δQ

δt
= ecQc + epQp + eqQq (2.11)

where Q is a generic term and subscript c refers to the current time tc, p the previous time

tp, and q the time tq anterior to p. If the time step ∆t is constant, then tp = tc − 2∆t.

Coefficient {ec, ep, eq} are odtained from Taylor series expansion from tc and depend on a

possibly prescribed variable time step law ∆t(t). The fictitious local time differencing is

evaluated by:
∂Q

∂τ
= (Qc −Qo)/∆τ (2.12)

where Qo is a previous estimation of Qc in the framework of the non-linear process. Finally

the Eq.(2.11) can be rewritten as:

V olCeCρC ~UC + V olP ePρP ~UP + V olQeQρQ~UQ + V olC(ρC ~UC − ρ0
~U0)/∆τ +

∑
CUUnb

~Unb

+ Cd~UC +
−−−→
SrcU +

∫
V olC

(
−−→
∇pi +

−−→
∇pe)dV +

∫
V olC

ρ~gdV +

∫
V olC

−−−−→
SrcRijdV = ~0 (2.13)

Chapter 2. Strongly Coupled Velocity-Pressure Formulation 7

In order to build a pressure equation, a new pseudo-velocity field
~̂
UC can be introduced:

~̂
UC −

1

V olC

∑
CUUnb

~Unb =

−−−→
SrcU

V olC
(2.14)

Injecting the definition of pseudo-velocity into the discretised momentum equation leads to:[
Cd + V olCeCρC +

V olCρC
∆τ

]
~UC + V olC

~̂
U +

∫
V olC

(
−−→
∇pi +

−−→
∇pe)dV + V olP ePρP ~UP

+ V olQeQρQ~UQ − V olCρ0
~U0/∆τ +

∫
V olC

ρ~gdV +

∫
V olC

−−−−→
SrcRijdV = ~0 (2.15)

The following notations are introduced in ISIS-CFD:∫
V olC

−−−−→
SrcRijdV = V olC

−−−−→
SrcUh (2.16)

and:

Skimp = SrcU + V olC

[
∂pe

∂x
+ ρgx + SrcUh

]
+ V olP ePρPUP

+ V olQeQρQUQ + V olCρ0U0/τ (2.17)

Skexp = SrcV + V olC

[
∂pe

∂y
+ ρgy + SrcV h

]
+ V olP ePρPVP

+ V olQeQρQVQ + V olCρ0V0/τ (2.18)

By introducing the discretisation coefficients for the integrated implicit pressure gradient,

one gets: ∫
V olC

∂pi

∂x
dV = V olC

∑
CU Pnb pnb (2.19)∫

V olC

∂pi

∂y
dV = V olC

∑
CV Pnb pnb (2.20)

where the summation is made here on all the points of the stencil (including the central point

C). Using the notations introduced in the ISIS-CFD code, one gets:[
Cd + V olCeCρC +

V olCρC
∆τ

]
UC + V olCÛ + V olC

∑
CU Pnb pnb + Skimp− SrcU = 0

(2.21)[
Cd + V olCeCρC +

V olCρC
∆τ

]
VC + V olC V̂ + V olC

∑
CV Pnb pnb + Skexp− SrcV = 0

(2.22)

Chapter 2. Strongly Coupled Velocity-Pressure Formulation 8

In ISIS-CFD,
−−−→
Suhh =

−−−→
SrcU
V olC

, which will be stored in the arrays Suhh and Svhh. The

Eqn.(2.22) and (2.23) can be finally rewritten as:

CDiag−SolvUC + V olCÛ + V olC
∑

CU Pnb pnb = −Skimp+ V olCSuhh (2.23)

CDiag−SolvUC + V olC V̂ + V olC
∑

CV Pnb pnb = −Skimp+ V olCSvhh (2.24)

with CDiag−Solv = Cd + V olCeCρC + V olCρC
∆τ .

2.2.2 Discretised Pressure Equation

To build the pressure equation, the starting point is the mass conservation equation for

multi-fluid or mono-fluid incompressible flows integrated on a control volume V olC .∫
∂V olC

~U · ~ndS = 0 (2.25)

The mass flux can be computed by using the discretised expression of the velocity at point

C from Eqn.(2.23) and (2.24):

UC =
1

CDiag−Solv
[−V olCÛ − V olC

∑
CU Pnb pnb − Skimp + V olCSuhh] (2.26)

VC =
1

CDiag−Solv
[−V olC V̂ − V olC

∑
CV Pnb pnb − Skexp + V olCSvhh] (2.27)

The source terms Skimp and Skexp can be re-arranged to make each elementary fluxes visible:

−Skimp + V olCSuhh = −SrcU − V olC
[
∂pe

∂x
+ ρgx + SrcUh

]
+ SrcU − V olP ePρPUP

− V olQeQρQUQ + V olCρ0U0/∆τ

= −V olC
[
∂pe

∂x
+ ρgx + SrcUh

]
− V olP ePρPUP

− V olQeQρQUQ + V olCρ0U0/∆τ (2.28)

−Skexp + V olCSvhh = −SrcV − V olC
[
∂pe

∂y
+ ρgy + SrcV h

]
+ SrcV − V olP ePρPVP

− V olQeQρQVQ + V olCρ0V0/∆τ

= −V olC
[
∂pe

∂y
+ ρgy + SrcV h

]
− V olP ePρPVP

− V olQeQρQVQ + V olCρ0V0/∆τ (2.29)

Chapter 2. Strongly Coupled Velocity-Pressure Formulation 9

Finally the mass flux can be expressed as:

~U · ~n =

[
1

CDiag−Solv

[
V olC

(
−
−→
Û −

−−→
∇pi −

−−→
∇pe − ρ~g −

−−−−→
SrcUh

)]
− 1

CDiag−Solv

[
V olP ePρP

−→
UP + V olQeQρQ

−→
UQ − V olCρ0

−→
U0/∆τ

]]
· ~n (2.30)

The pressure equation is then obtained reconstructing the fluxes at the faces and the assem-

bling them:

−Div
(

V olC
CDiag−Solv

−→
Û

)
−Div

(
V olC

CDiag−Solv

−−→
∇pi

)
−Div

(
V olC

CDiag−Solv
ρ~g

)
−Div

(
V olC

CDiag−Solv

−−−−→
ˆSrcUh

)
−Div

(
V olC

CDiag−Solv

−−→
∇pe

)
−Div

(
V olP

CDiag−Solv
ePρP ~UP

)
−Div

(
V olQ

CDiag−Solv
eQρQ~UQ

)
+Div

(
V olC

CDiag−Solv
ρ0

~U0

∆τ

)
= 0 (2.31)

which leads to the follwoing discritized form of the pressure equation:

∑
CP Pnb Pnb +

∑
CP Ûnb Ûnb +

∑
CP V̂nb V̂nb = −SP (2.32)

where:

Div

[
V olC

CDiag−Solv

−−→
∇pi

]
=
∑

CP Pnb Pnb

Div

[
V olC

CDiag−Solv

−→
Û

]
=
∑

CP Ûnb Ûnb +
∑

CP V̂nb V̂nb (2.33)

Div

[
V olC

CDiag−Solv

(
−−→
∇pe + ρ~g +

−−−−→
SrcUh− ρ0

~U0

∆τ

)]

+Div

[
V olP

CDiag−Solv
ePρP ~UP +

V olQ
CDiag−Solv

eQρQ~UQ

]
=SP

Chapter 2. Strongly Coupled Velocity-Pressure Formulation 10

2.3 The Velocity-Pseudo-velocity Pressure coupled System

Now the linear coupled linear system can be built for the current control volume from the

previous equations:

CDiag−SolvUC + V olCÛ + V olC
∑

CU Pnb pnb =− Skimp+ V olCSuhh

CDiag−SolvUC + V olC V̂ + V olC
∑

CV Pnb pnb =− Skimp+ V olCSvhh

ÛC −
1

V olC

∑
CUUnb Unb =

SrcUC
V olC

(2.34)

V̂C −
1

V olC

∑
CV Vnb Vnb =

SrcVC
V olC∑

CP Pnb Pnb +
∑

CP Ûnb Ûnb +
∑

CP V̂nb V̂nb =− SP

The data-structure that was used for this research is:

~X =
(
Û1, V̂1, U1, V1, P1, . . . , Ûi, V̂i, Ui, Vi, Pi, . . . , Ûncell, V̂ncell, Uncell, Vncell, Pncell,

Ûbnd, V̂bnd, Ubnd, Vbnd, Pbnd

)
(2.35)

2.4 Global Structure of the Linear Coupled System

The system of momentum and mass conservation equations can be written as:

(E +A)~U +Gx ~P =
−→
fU

(E +A)~U +Gx ~P =
−→
fV (2.36)

Dx
~U +Dy

~V = 0

where ~U , ~V and ~P are grouping all the unknowns for the whole computational domain. E

is the diagonal matrix and A is such that diag(A) = 0. E + A contains all the dicretisation

coefficients corresponding to the implicit unsteady, pseudo-steady, convective and diffusive

terms. Gx (resp. Gy) is the matrix corresponding to the discretization of d
dx (resp. d

dy) and

Dx (Dy) are the matrices corresponding to the discretization of Div. One can recall here

that Dx = Gx and Dy = Gy if the discretization formula used to build the divergence and

gradient operators are identical, which should be the case since the continuous operators are

identical. Now one can introduces the pseudo-velocity fields by:

~̂
U = −A~U +

−→
fU

~̂
V = −A~V +

−→
fV

(2.37)

Chapter 2. Strongly Coupled Velocity-Pressure Formulation 11

Using this definition, we can build the usual pressure equation:

~U + E−1 ~̂U + E−1Gx ~P = ~0

~V + E−1 ~̂V + E−1Gy ~P = ~0

~̂
U = −A~U +

−→
fU (2.38)

~̂
V = −A~V +

−→
fV

GxE
−1 ~̂U +GyE

−1 ~̂V +GxE
−1Gx ~P +GyE

−1Gy ~P = ~0

which leads to the new coupled formulation:

M ~X = ~f (2.39)

with ~X = [
~̂
U,
~̂
V, ~U, ~V , ~P]. M is given by:

M =

E−1 0 Id 0 E−1Gx

0 E−1 0 Id E−1Gy

Id 0 A 0 0

0 Id 0 A 0

GxE
−1 GyE

−1 0 0 GxE
−1Gx +GyE

−1Gy

(2.40)

Chapter 3

Programming with PETSc

3.1 MPICH and PETSc Installation

3.1.1 MPICH Installation

All PETSc programs use the MPI(Message Passing Interface) standard for message-passing

communication. MPICH provides compiler wrappers such as mpif90, mpicc and mpicxx. The

latest version of MPI, “MPICH2” can be downloaded and installed while configuring PETSc

by including --download-mpich=1 option. But because of the limitation of lab’s computer,

the previous version was installed (mpich-1.2.7p1). This version can be downloaded from the

site http://www.mcs.anl.gov/research/projects/mpi/mpich1/download.html.

One can create a folder in /work/common/, say ”PETSc” to install MPICH and PETSc there.

The compressed mpich installation file can be extracted in this folder and then cofigured and

installed by using the following commands:

tar zxof mpich.tar.gz

cd mpich-1.2.7p1

./configure --with-device=ch p4 --prefix=/work/common/PETSc/mpich-1.2.7p1/ch p4\
--with-common-prefix=/work/common/PETSc/mpich-1.2.7p1

make

make install

After installing MPICH, it can be tested, whether the mpich is installed correctly or not, by

using the commands:

cd example/test/pt2pt/

make testing

12

Chapter 3. Programming with PETSc 13

3.1.2 PETSc Installation

The latest version of PETSc ”Petsc-3.0.0-p8” can be downloaded from the site www.mcs.anl.gov

/petsc. The compressed installation file can be extracted at the same folder ”/work/com-

mon/PETSc”.

tar zxof petsc-3.0.0-p8.tar.gz

cd petsc-3.0.0-p8/

Before the installation one should specify PETSC DIR and PETSC ARCH variable in ~/.bashrc

as the path of petsc directory and the architecture respectively.

PATH=/work/common/PETSc/mpich-1.2.7p1/bin:${PATH}
export PETSC DIR=/work/common/PETSc/petsc-3.0.0-p8

export PETSC ARCH=linux-gnu-c-debug

The PETSc can be configured and installed by the commands

./config/configure.py --with-mpi-dir=/work/common/PETSc/mpich-1.2.7p1 \
--download-f-blas-lapack=1 --download-hypre=1 --download-ml=1 --with-shared=0

make all

For this research, the external packages, Hypre and Trillion/ML are included with the in-

stallation. To check the correct installation of PETSc, one can test the examples by using

command:

make test

3.2 Writing PETSc Programs

3.2.1 Include Files

PETSc has fortran interface which can work with fortran 77 and 90 compiler. The PETSc

program uses CPP preprocessing, for which it requires to use the PETSc include files in

the directory petsc/include/finclude. It allows the use of #include statements that define

PETSc objects and variables. The include files can be used by the statement such as:

#include "finclude/includefiles.h"

Some of the include files that are used for the research are as follows:

petsc.h - base PETSc routines

petscvec.h - vectors

Chapter 3. Programming with PETSc 14

petscmat.h - matrices

petscpc.h - preconditioners

petscksp.h - Krylov subspace methods

petscsys.h - system routines

3.2.2 PETSc Objects

The PETSc has its own objects or data type to be used in the program. Some of them

are same as fortran. The fortran data type also can also be used in the program. But it

is important that one should not mix the variable with different data types. Some of the

objects used in the research are given below:

• PetscInt - PETSc type that represents integer. Similar to integer in fortran.

• PetscReal - PETSc type that represents a real number. Similar to real in fortran.

• PetscScalar - PETSc type that represents either a double precision real number or a

double precision complex number. Similar to double precision in fortran.

• Vec - The is one of the simplest PETSc objects which is used to denote vectors. Vectors

are used to store discrete PDE solutions, right-hand sides for linear systems, etc.

• Mat - Abstract PETSc matrix object which is used in various matrix computation.

• KSP - Abstract PETSc object that manages all Krylov methods.

• PC - Abstract PETSc object that manages all preconditioners.

3.2.3 PETSc Initialization and Finalization

In fortran the PETSc is initialize by the command,

call PetscInitialize(PETSC NULL CHARACTER,ierr)

PetscInitialize() automatically calls MPI Init() if MPI has not been not previously

initialized. In certain circumstances in which MPI needs to be initialized directly (or is

initialized by some other library),the user can first call MPI Init() (or have the other library

do it), and then call PetscInitialize(). By default, PetscInitialize() sets the PETSc

world communicator, given by PETSC COMM WORLD, to MPI COMM WORLD.

All PETSc programs should call PetscFinalize() as their final (or nearly final) statement,

as given in Fortran formats:

Chapter 3. Programming with PETSc 15

call PetscFinalize(ierr)

This routine handles options to be called at the conclusion of the program, and calls MPI Finalize()

if PetscInitialize() began MPI. If MPI was initiated externally from PETSc (by either

the user or another software package), the user is responsible for calling MPI Finalize().

3.2.4 Error Checking

The Fortran version of PETSc routine has as its final argument an integer error variable.

The error code is set to be nonzero if an error has been detected; otherwise, it is zero. For

example, the call of KSPSolve() in Fortran is given below, where ierr denotes the error

variable:

call KSPSolve(ksp,b,x,ierr)

The most common reason for crashing PETSc Fortran code is forgetting the final ierr

argument.

3.2.5 Passing Null Pointers

In PETSc fortran functions, if one wants to pass a 0 (null) argument, users must pass

PETSC NULL XXX to indicate a null argument (where XXX is INTEGER, DOUBLE, CHARACTER,

or SCALAR depending on the type of argument required); otherwise passing 0 from For-

tran will crash the code. For example, to pass a null argument for the 5th element of

MatCreateSeqAIJ() can be written as:

call MatCreateSeqAIJ(PETSC COMM WORLD,N,N,5,PETSC NULL INTEGER,A,ierr)

3.2.6 Vector Operations

In PETSc, the vector objects are defined as Vec. There are many commands that can be

used for various vector operations. Here, some of them, which are used in the research, will

be explained. There are two types of vector in PETSc: sequential and parallel (MPI based).

This two types of vector can be created by the following commands respectively:

call VecCreateSeq(PETSC COMM WORLD,PetscInt n,Vec v,PetscErrorCode ierr)

call VecCreateMPI(PETSC COMM WORLD,PetscInt n,PetscInt N,Vec v,PetscErrorCode

ierr)

where PETSC COMM WORLD is used to communicate with the MPI. The local size of the vector

(for current processor) is defined by ’n’, and global size is defined by ’N’ (requires for

Chapter 3. Programming with PETSc 16

parallel vector). For parallel vector, one can either specify the local size ’n’ and let the

PETSc to determine about the global size by putting PETSC DETERMINE or specify the global

size and let the PETSc to decide about the local size by putting PETSC DECIDE. For example:

call VecCreateMPI(PETSC COMM WORLD,n,PETSC DETERMINE,v,ierr)

or

call VecCreateMPI(PETSC COMM WORLD,PETSC DECIDE,N,v,ierr)

In the 2nd case, the PETSc will choose a reasonable partition trying to put nearly an equal

number of elements on each processor.

One can create a vector with the same format of an existing vector by using the command:

call VecDuplicate(Vec old,Vec new,ierr)

There are couple of functions to assign values in a vector. To assign one by one value in a

vector, one can use VecSet(); but it is not a very efficient way. By using VecSetValues()

one can assign many values (in array format) in a vector at a time. The command can be

written as:

call VecSetValues(Vec x,PetscInt ni,PetscInt ix[],PetscScalar y[],InsertMode

$ iora,ierr)

where x is the vector in which the values will be inserted, ni the number of elements to be

added. ix is the array of global indices of the vector where the values will be added and

y is the array of values. The iora is a flag which has two options, either INSERT VALUES

or ADD VALUES, where ADD VALUES adds values to any existing entries, and INSERT VALUES

replaces existing entries with new values. As the vector entries are specified in global loca-

tion, each processor can contribute any vector entries, regardless of which processor ’owns’

them; any nonlocal contributions will be transferred to the appropriate processor during the

assembly process. One thing must be noted that VecSetValues() uses 0-based row and

column numbers in fortran as well as C.

Once all of the values have been inserted with VecSetValues(), one must call

call VecAssemblyBegin(Vec x,ierr)

followed by

call VecAssemblyEnd(Vec x,ierr)

to perform any needed message passing of nonlocal components. In order to allow the

overlap of communication and calculation, the users code can perform any series of other

actions between these two calls while the messages are in transition.

Chapter 3. Programming with PETSc 17

Function Name Operation

VecAXPY(Vec y,PetscScalar a,Vec x,ierr) y = y + a ∗ x
VecAYPX(Vec y,PetscScalar a,Vec x,ierr) y = y + a ∗ y
VecWAXPY(Vec w,PetscScalar a,Vec x,Vec y,ierr) w = a ∗ x+ y
VecAXPBY(Vec y,PetscScalar a,PetscScalar b,Vec x,ierr) y = a ∗ x+ b ∗ y
VecScale(Vec x, PetscScalar a,ierr) x = a ∗ x
VecMAXPY(Vec y,int n, PetscScalar *a, Vec x[]) y = y +

∑
i ai ∗ x[i]

VecNorm(Vec x,NormType type, double *r,ierr) r =|| x ||type
VecMax(Vec x, int *idx, double *r,ierr) r = max xi
VecMin(Vec x, int *idx, double *r,ierr) r = min xi
VecAbs(Vec x,ierr) xi =| xi |
VecReciprocal(Vec x,ierr) xi = 1/xi

Table 3.1: PETSc Vector Operation

To visualize a vector, one can use the command:

call VecView(Vec vec,PetscViewer viewer,ierr)

where viewer is an visualization option which includes PETSC VIEWER STDOUT SELF and

PETSC VIEWER STDOUT WORLD. The PETSC VIEWER STDOUT SELF is a default standard output

option. The PETSC VIEWER STDOUT WORLD is a synchronized standard output option where

only the first processor opens the file. All other processors send their data to the first

processor to print.

When a vector is no longer needed, it should be destroyed with the command

call VecDestroy(Vec x,ierr)

3.2.7 Matrix Operations

The matrix is the most important part of a system to be solved. There are different types of

matrix format appropriate for different problems. PETSc currently supports dense storage

and compressed sparse row storage (both sequential and parallel) formats. The use of PETSc

matrices involves the following actions: create a particular type of matrix, insert values into

it, process the matrix, use the matrix for various computations, and finally destroy the

matrix. The matrix object is denoted by Mat.

Before understanding the use of matrix in PETSc, one must know how the ISIS-CFD sents

the system to the solver to solve. In each iteration, ISIS-CFD creates the system of matrix

in compressed sparse row format. It actually creates three set of arrays which are:

• The array a contains the values of the matrix

• The array IndCon CC contains the local column indices of the values in "a"

Chapter 3. Programming with PETSc 18

• The array IpntCF CC contains the location pointing into IndCon CC, where to begin a new

row.

These information can be passed to the PETSc to build the Matrix and by using this matrix

and the src term one can solve the system with PETSc.

The simplest routine to create a matrix is MatCreate() which can be followed by MatSetSizes()

to set the size and MatSetType() to set the type of the matrix (sequential or parallel). One

can also add MatMPIAIJSetPreallocation() (for parallel matrix) to preallocate the nonzero

terms of the matrix (for sequential matrix MatSeqAIJSetPreallocation()). The commands

can be written as follows:

call MatCreate(PETSC COMM WORLD,Mat A,ierr)

call MatSetSizes(Mat A,PetscInt m,PetscInt n,PetscInt M,PetscInt N,ierr)

call MatSetType(Mat A,MatType matype,ierr)

call MatMPIAIJSetPreallocation(Mat A,PetscInt d nz,PetscInt d nnz[],PetscInt

o nz,PetscInt o nnz[],ierr)

where A is a matrix. In MatSetSizes(), m and n are the number of local rows and columns

and M and N are the number of global rows and columns of the matrix respectively. One

can either set the number of local rows and columns and let the PETSc determine the

number of global rows and columns by using PETSC DETERMINE instead of M and N; or set

the number of global rows and columns and let the PETSc decide about the local ones

by using PETSC DECIDE instead of m and n. The both approaches can be used for parallel

matrix but for sequential matrix the first one is preferable. The MatSetType() is used to

set the type of the matrix. The matype can be set as MATMPIAIJ (for parallel matrix) or

as MATSEQAIJ (for sequential matrix). In MatMPIAIJSetPreallocation() routine, d nz is

the number of nonzeros per row in DIAGONAL portion of local submatrix, d nnz is the

array containing the number of nonzeros in the various rows of the DIAGONAL portion of

the local submatrix (possibly different for each row) or PETSC NULL, o nz is the number of

nonzeros per row in the OFF-DIAGONAL portion of local submatrix and o nnz is the array

containing the number of nonzeros in the various rows of the OFF-DIAGONAL portion of

the local submatrix (possibly different for each row) or PETSC NULL.

One can also use MatCreateMPIAIJ() which can do the same thing as the four routines

described above. It can be called as:

call MatCreateMPIAIJ(PETSC COMM WORLD,PetscInt m,PetscInt n,PetscInt M,PetscInt

N,PetscInt d nz,const PetscInt d nnz[],PetscInt o nz,const PetscInt o nnz[],Mat

A,ierr)

To assign values into a matrix, one can use MatSetValues() which inserts or adds a block

of values into a matrix. The command can be written as:

Chapter 3. Programming with PETSc 19

call MatSetValues(Mat mat,PetscInt m,PetscInt idxm[],PetscInt n,PetscInt

idxn[],PetscScalar values[],InsertMode addv,ierr)

This routine inserts or adds a logically dense subblock of dimension m× n into the matrix.

The integer indices idxm and idxn, respectively, indicate the global row and column numbers

to be inserted. MatSetValues() uses the standard C convention, where the row and column

matrix indices begin with zero regardless of the storage format employed. The array values

is logically two-dimensional, containing the values that are to be inserted. After the matrix

elements have been inserted or added into the matrix, they must be processed (also called

assembled) before they can be used. The routines for matrix processing are:

call MatAssemblyBegin(Mat A,MAT FINAL ASSEMBLY,ierr)

call MatAssemblyEnd(Mat A,MAT FINAL ASSEMBLY,ierr)

There are some other routines which speacially deals with the CSR matrix format. For ex-

ample, MatMPIAIJSetPreallocationCSR() can be used for the preallocation of the nonzeros

as well as to assign values of the matrix by using the CSR informations. The command can

be written as:

call MatMPIAIJSetPreallocationCSR(Mat A,PetscInt irow[],PetscInt jcol[],

PetscScalar v[],ierr)

where jcol is the column indices (starts with zero) for each local row (same as IndCon CC),

irow the indices (starts with zero) into jcol for the start of each local row (same as Ip-

ntCF CC) and v is the array of values of the matrix (same as a). Before calling this routine,

one should call MatCeate(), MatSetSize() and MatSetType(); and this routine doesn’t

require the assemble routine, MatAssemblyBegin() and MatAssemblyEnd().

Another routine for CSR format is MatCreateMPIAIJWithArrays() (for sequential matrix

MatCreateSeqAIJWithArrays()), which is one the best routines for matrix because by only

one routine one can create MPI matrix, set sizes, and assign values by using the arrays from

CSR format. It also doesn’t need assymbly routines (same as the previous one). So only one

line is sufficient to complete the matrix initialization which is very efficient as it requires less

step and less computational time. That’s why, it is extensively used for the research. This

routine can be called as:

MatCreateMPIAIJWithArrays(PETSC COMM WORLD,PetscInt m,PetscInt n,PetscInt M,

PetscInt N,PetscInt irow[],PetscInt jcol[],PetscScalar v[],Mat A,ierr)

where the notations are same as described for the previous routines.

MatCreateMPIAIJWithSplitArrays() is another routine which also deals with the CSR

format. But this routine requires the arrays (a, IpntCF CC and IndCon CC) to be splited

Chapter 3. Programming with PETSc 20

Function Name Operation

MatAXPY(Mat Y,PetscScalar a,Mat X,MatStructure,ierr) Y = Y + a ∗X
MatMult(Mat A,Vec x,Vec y,ierr) y = A ∗ x
MatMultAdd(Mat A,Vec x, Vec y,Vec z,ierr) z = y +A ∗ x
MatMultTranspose(Mat A,Vec x, Vec y,ierr) y = AT ∗ x
MatMultTransposeAdd(Mat A,Vec x, Vec y,Vec z,ierr) z = y +AT ∗ x
MatScale(Mat A,PetscScalar a,ierr) A = a ∗A
MatTranspose(Mat A,MatReuse,Mat B,ierr) B = AT

MatGetDiagonal(Mat A,Vec x,ierr) x = diag(A)
MatNorm(Mat A,NormType type,double r,ierr) r =|| A ||type

Table 3.2: PETSc Matrix Operation

into diagonal and off-diagonal parts which makes the code bigger and time consuming. Also

there are certain packages in PETSc (e.g. Hypre, etc.) that doesn’t work with this routine

and cannot be used for single processor.

One can print a matrix (sequential or parallel) to the screen with the command:

call MatView(Mat mat,PETSC VIEWER STDOUT WORLD,ierr)

When a matrix is no longer needed, it should be destroyed by:

call MatDestroy(A,ierr)

3.2.8 KSP solver and Preconditioner

The object KSP is the heart of PETSc, because it provides uniform and efficient access to all

of the packages linear system solvers, including parallel and sequential, direct and iterative.

KSP is intended for solving nonsingular systems of the form

Ax = b (3.1)

where A denotes the matrix representation of a linear operator, b is the right-hand-side

vector, and x is the solution vector.

To solve a linear system with KSP, one must first create a solver context with the command

call KSPCreate(PETSC COMM WORLD,KSP ksp,ierr)

Here comm is the MPI communicator, and ksp is the newly formed solver context. Before

actually solving a linear system with KSP, the user must call the following routine to set the

matrices associated with the linear system:

call KSPSetOperators(KSP ksp,Mat Amat,Mat Pmat,MatStructure flag,ierr)

Chapter 3. Programming with PETSc 21

The argument Amat, representing the matrix that defines the linear system, is a symbolic

place holder for any kind of matrix. In particular, KSP does support matrix-free methods.

Typically the preconditioning matrix (i.e., the matrix from which the preconditioner is to be

constructed), Pmat, is the same as the matrix that defines the linear system, Amat; however,

occasionally these matrices differ. The argument flag can be used to eliminate unnecessary

work when repeatedly solving linear systems of the same size with the same preconditioning

method; when solving just one linear system, this flag is ignored. The user can set flag as

follows:

• SAME NONZERO PATTERN - the preconditioning matrix has the same nonzero structure during

successive linear solves,

• DIFFERENT NONZERO PATTERN - the preconditioning matrix does not have the same nonzero

structure during successive linear solves,

• SAME PRECONDITIONER - the preconditioner matrix is identical to that of the previous linear

solve.

By default the PETSc uses GMRES method as KSP and ILU(0) as preconditioner (for

single processor). If the computation runs in multi-processors the default preconditioner will

be BLOCK JACOBI method (with one block per processor, each of them will be solved

with ILU(0)). However one can change the default methods of the KSP as well as the

preconditioner. To set any preconditioner within the code, the PETSc provides a routine

which extracts the PC context:

call KSPGetPC(KSP ksp,PC pc,ierr)

where ksp is the Krylov Subspace context (which is created earlier by using KSPCreate())

and pc is the preconditioner context which will be extracted by this routine. Now to specify

the particular preconditioning method, the user can either select it from the option database

using the input of the form -pc type <methodname> or set the method in the code by

writing the command:

call PCSetType(PC pc,PCType type,ierr)

The PC types supported by PETSc is given in the table. For some external packages like

HYPRE, the type can be set by using the routine PCHYPRESetType(), where the default type

for this package is boomeramg, the Algebric Multigrid Method.

The KSPSetTolerances() routine can be used to set the relative, absolute, divergence tol-

erance and maximum iteration used by the default KSP convergence testers.

call KSPSetTolerances(KSP ksp,PetscReal rtol,PetscReal abstol,PetscReal dtol,

PetscInt maxits,ierr)

Chapter 3. Programming with PETSc 22

where ksp is the Krylov subspace context, rtol is the relative convergence tolerance (rela-

tive decrease in the residual norm), abstol is the absolute convergence tolerance (absolute

size of the residual norm), dtol is the divergence tolerance (amount residual can increase

before KSPDefaultConverged() concludes that the method is diverging) and maxits is the

maximum number of iterations to use. The PETSC DEFAULT DOUBLE PRECISION can be used

to retain the default values of any tolerance.

While solving the system, sometimes it is needed to print and observe the residual norm.

PETSc has options by which one can print true residual norm as well as preconditioned

norm. The option for printing both residual is -ksp monitor true residual. If one wants

to print only preconditioned residual, can use -ksp monitor. The command to specify these

can be written as:

call PetscOptionsSetValue(’-ksp monitor true residual’,’monitor.dat’,ierr)

where ’monitor.dat’ is the file where the residuals will be printed.

KSPSetType() is the routine which is used to set the Krylov Subspace context. The PETSc

soupported KSP type are listed in the Table. To set the default options for other KSP

options (except those whice are already defined before) one can call KSPSetFromOptions().

To solve the linear system, KSPSolve() can be called finally. All these three routine can be

written as:

call KSPSetType(KSP ksp,KSPType type,ierr)

call KSPSetFromOptions(KSP ksp,ierr)

call KSPSolve(KSP ksp,Vec b,Vec x,ierr)

where the vector ’b’ is the right hand side of the system and vector ’x’ is the solution vector

which can be created as empty vector or assigning values as initial value for the system. If

the vector is kept empty, the PETSc will solve the system with zero initial value.

To print the KSP information and data structure used in solving the system, KSPView() can

be used. Once the KSP context is no longer needed, it should be destroyed with the routine

KSPDestroy().

call KSPView(ksp,PETSC VIEWER STDOUT WORLD,ierr)

call KSPDestroy(ksp,ierr)

Chapter 3. Programming with PETSc 23

PRECONDITIONER

Algorithm PCType Matrix Type* External
Package

Parallel Complex

Jacobi PCJACOBI aij, baij, sbaij,
dence, mpiaij

– × ×

Point Block
Jacobi

PCPBJACOBI baij, bs=2,3,4,5 – × ×

SOR
PCSOR

seqdence, seqaij,
seqbaij

– ×

Point Block
SOR

seqbaij,
bs=2,3,4,5

– ×

Block Jacobi PCBJACOBI aij, baij, sbaij,
mpiaij

– × ×

Additive
Schwarz

PCASM aij, baij, sbaij,
mpiaij

– × ×

ILU(k)

PCILU/PCICC

seqaij, seqbaij – ×
ICC(k) seqaij, seqbaij – ×
ILU dt seqaij Sparsekit
ILU(0)/ICC(0) aij, mpiaij BlockSolve95 ×
ILU(k)

PCHYPRE
aij, mpiaij Euclid/HyPre ×

ILU dt aij, mpiaij Pilut/HyPre ×
Matrix-free PCSHELL × ×
Multigrid/ in-
frastructure

PCMG × ×

Multigrid/ ge-
ometric struc-
tured grid

DMMG × ×

Multigrid
Algebric

PCHYPRE aij, mpiaij BoomerAMG/
Hypre

×

PCML aij, mpiaij ML/Trilinos ×
Approximate
Inverses

PCHYPRE aij, mpiaij Parasails/
Hypre

×

PCSPAI aij, mpiaij SPAI ×
Balancing
Neumann-
Neumann

PCNN is × ×

DIRECT SOLVER

LU PCLU

seqaij, seqbaij ×
seqaij MATLAB ×

aij, mpiaij Spooles × ×
aij, mpiaij PastuiX × ×
aij, mpiaij SuperLU,

Sequential
/Parallel

× ×

aij, mpiaij MUMPS × ×
seqaij ESSL
seqaij UMFPACK
dence PLAPACK × ×

Cholesky
PCCHOLESKY

seqaij, seqbaij ×
sbaij Spooles × ×
sbaij PastuiX × ×
sbaij MUMPS × ×

seqsbaij DSCPACK ×
dense PLAPACK × ×
matlab MATLAB

aij, mpiaij ×
QR matlab MATLAB

XXt and XYt aij, mpiaij ×

Table 3.3: Preconditioner in PETSc

Chapter 3. Programming with PETSc 24

*Matrix Type

aij - Sparse matrix.

bij - Block sparse matrix.

sbaij - Symmetric block sparse matrix.

seqaij - Sequential sparse matrix.

mpiaij - Parallel sparse matrix.

seqbaij - Sequential block sparse matrix.

seqsbaij - Sequential symmetric block sparse matrix.

dense - Dense matrix.

seqdense - Sequential dense matrix.

is - A matrix type to be used for using the Neumann-Neumann

type preconditioners.

Krylov Subspace Method KSP Type in PETSc
Richardson KSPRICHARDSON
Chebychev KSPCHEVBYCHEV
Conjugate Gradients KSPCG
GMRES KSPGMRES
Bi-CG-Stab KSPBCGS
Transpose-free Quasi Minimal-Residual KSPTFQMR
Conjugate Residuals KSPCR
Conjugate Gradient Squared KSPCGS
Bi-Conjugate Gradient KSPBICG
Minimum Residual Method KSPMINRES
Flexible GMRES KSPFGMRES
Least Squares Method KSPLSQR
SYMMLQ KSPSYMMLQ
LGMRES KSPLGMRES
Conjugate gradient on the normal equations KSPCGNE

Table 3.4: Krylov Sybspace Methods in PETSc

3.3 Compile and Run PETSc

3.3.1 Makefile

The directory $PETSC DIR/conf contains virtually all makefile commands and customizations

to enable portability across different architectures. Most makefile commands for maintaining

the PETSc system are defined in the file $PETSC DIR/conf. These commands, which process

all appropriate files within the directory of execution, include:

• lib - Updates the PETSc libraries based on the source code in the directory.

• libfast - Updates the libraries faster. Since libfast recompiles all source files in the directory

Chapter 3. Programming with PETSc 25

at once, rather than individually, this command saves time when many files must be compiled.

• clean - Removes garbage files.

So the most important line in the makefile is the line starting with include:

include $PETSC DIR/conf/base

This line includes other makefiles that provide the needed definitions and rules for the par-

ticular base PETSc installation (specified by $PETSC DIR) and architecture (specified by

$PETSC ARCH). The makefiles that is used in this research is given below:

RM = /bin/rm

MYSRCS = $(wildcard *.F)

MYOBJS = $(subst .F,.o,$(MYSRCS))

include $PETSC DIR/conf/base

test system: $(MYOBJS) chkopts

-$FLINKER -o test system $(MYOBJS) $PETSC KSP LIB

$RM *.o

include $PETSC DIR/conf/test

3.3.2 Running a PETSc Program

To run a PETSc program in multiprocessor one can write the command as:

mpirun -np 2 machinefile machines ./test system

One can also add options at the end of the command. To see the available options one can

use -help with the previous command.

mpirun -np 2 machinefile machines ./test system -help

Chapter 4

Results and Discussion

4.1 Test Case

Generally the linear solver ISIS-CFD uses PCGSTAB (same as BiCGStab) as krylov subspace

with ILU(1) preconditioner. But in this research, two types of krylov subspace, BiCGStab

and GMRES were used, for both ISIS-CFD and PETSc. In ISIS-CFD solver, only ILU(0)

and ILU(1) can be utilized as preconditioner for the strongly coupled system. The PETSc

has a number of preconditioners (including external package) most of which can be applied

for coupled system. The krylov subspace and preconditioner used in the test are tabulated

below:

KSP Preconditioner

ISIS-CFD
BiCGStab ILU(0)
GMRES ILU(1)

PETSc

ILU(0)
BiCGStab ILU(1)
GMRES ILU(2)

Block Jacobi
Multigrid

Although PETSc has Additive Schwardz method to provide ILU preconditioner, there are

some external package like HyPre which also has ILU preconditioners. In this research, the

both approaches are used to see the efficiency.

In this research the geometry of the KVLCC2 tanker was used. The coupled system that

was used for the test is described below:

• The mesh is a coarse grid mesh with 56800 cells which makes the coupled system with

397600 variables.

• The computation was run in single processor.

26

Chapter 4. Results and Discussion 27

• The residual reduction was up to 1e−3.

• The maximum iteration was fixed to 500.

• There are two systems which were used for the test. One is a linear system after 1st non-

linear iteration (lets call it ”1st case”) and the other is a linear system after 30th non-linear

iteration(lets call it ”2nd case”)

• For the 1st case, zero (0) initial value was assigned and for the 2nd case, results from the

30th non-linear iteration was used as initial value.

In the research, the residual reduction is considered up to 1e − 3 because at the starting of

the computation the difference in values (specially pressure) between the boundary and the

free stream is large. So, some very first non-linear iterations will not give good results and

thats why the residual reduction (of linear system) up to machine accuracy may lead to a

difficulty to reach the accurate result at the end of the non-linear iterations. Moreover, it

will be a waste of time to go to machine accuracy for every non-linear iteration.

4.2 Tests with BiCGStab

4.2.1 1st Case

The system is tested with BiCGStab krylov subspace and different preconditioners to com-

pare the convergence of ISIS-CFD solver and PETSc. The Fig.(4.1) presents the convergence

test of ISIS-CFD and PETSc with ILU(0) preconditioner. In case of PETSc, two types of

ILU(0) were used. One is from PETSc itself (Additive Schward method) and other one is

from HyPre package(Euclid).From the Fig.(4.1), one can see that all the cases are similarly

fluctuating where none of them shows any distinct characteristics.

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

R
e

si
d

u
a

l
(l

o
g

 s
ca

le
)

CPU time (sec)

ISIS (ILU_0)

ASM /ILU (0)

Hypre/ILU (0)

Figure 4.1: Convergence of ISIS and PETSc with BiCGStab-ILU(0)

Chapter 4. Results and Discussion 28

The Fig.(4.2) shows the convergence with ILU(1) preconditioner. In this plot, both ASM

and Hypre method are showing better result than the ISIS-CFD. The ASM-ILU(1) seems

the fastest among the three although it shows some big fluctuations.

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

R
e

si
d

u
a

l
(l

o
g

 s
ca

le
)

CPU time (sec)

ISIS (ILU_1)

Hypre/ILU (1)

ASM (1)

Figure 4.2: Convergence of ISIS and PETSc with BiCGStab-ILU(1)

In ISIS-CFD solver, ILU(2) cannot be used as a preconditioner for the coupled system because

of the limitation of the code. Thats why, in Fig.(4.3) the convergence of ILU(2) precondi-

tioners of the PETSc were compared with the ILU(1) of the ISIS-CFD. The ASM/ILU(2)

and HyPre/ILU(2) are almost same in convergence. But there is a big difference between

ISIS-CFD and them, although ISIS-CFD is compared with ILU(1).

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 2.00 4.00 6.00 8.00 10.00 12.00

R
e

si
d

u
a

l
(l

o
g

 s
ca

le
)

CPU time (sec)

ISIS (ILU_1)

Hypre/ILU (2)

ASM (2)

Figure 4.3: Convergence of ISIS and PETSc with BiCGStab-ILU(2)

Chapter 4. Results and Discussion 29

The Block Jacobi preconditioner (PETSc) gives almost similar result to ILU(0) (ISIS-CFD),

both of which contain big fluctuations as shown in Fig.(4.4). On the other hand ILU(1)

(ISIS-CFD) has less fluctuation compared to the previous two, although the convergence

rate is almost same as the previous two cases.

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

R
e

si
d

u
a

l (
lo

g
 s

ca
le

)

CPU time (sec)

ISIS (ILU_0)

BJACOBI

ISIS (ILU_1)

Figure 4.4: Convergence of ISIS and PETSc with BiCGStab-Block Jacobi

The Fig.(4.5) presents the convergence of the Multigrid preconditioner from different package

of the PETSc and ISIS-CFD with ILU(1) preconditioner. The preconditioner MG is from

PETSc itself, AMG is the Algebric Multigrid provided by Hypre package and other multigrid

method is from Trillion package. From the Fig.(4.5) it can be seen that the multigrid (PETSc)

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0.00 2.00 4.00 6.00 8.00 10.00 12.00

R
e

si
d

u
a

l
(l

o
g

 s
ca

le
)

CPU time (sec)

ISIS (ILU_1)

Hypre/AMG (B)

MG (PETSc)

Trillion/MG

Figure 4.5: Convergence of ISIS and PETSc with BiCGStab-Multigrid

is not giving good results with compared to ILU(1) (ISIS-CFD). The reason may be, the

Chapter 4. Results and Discussion 30

coupled system is a badly-conditioned because of the pressure equation which is difficult to

solve and multigrid is quite aggressive method to solve a system.

4.2.2 2nd Case

The system of the 2nd case is more matured as it is taken after the 30th iteration of the non-

linear iteration. And in this case the initial value assigned is taken from the result of previous

non-linear iteration. In the Fig.(4.6) the comparison in convergence is presented with ILU(0)

preconditioner. There is a sharp reduction in residual in the first step for both the solvers

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

R
e

si
d

u
a

l
 (

lo
g

 s
ca

le
)

CPU time (sec)

ASM/ILU(0)

Hypre/ILU (0)

ISIS (BiCGSTAB_ILU_0)

Figure 4.6: Convergence of ISIS and PETSc with BiCGStab-ILU(0)

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

R
e

si
d

u
a

l
 (

lo
g

 s
ca

le
)

CPU time (sec)

ISIS (BiCGSTAB_ILU_1)

ASM/ILU(1)

Hypre/ILU (1)

Figure 4.7: Convergence of ISIS and PETSc with BiCGStab-ILU(1)

(ISIS-CFD & PETSc) although they are fluctuating at the end. If one considers the residual

Chapter 4. Results and Discussion 31

reduction up to 1e−2 surely PETSc shows (both ASM & HyPre) a quick reduction (0.12sec)

within one step whereas ISIS-CFD finishes the first step with 0.16sec.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

R
e

si
d

u
a

l
 (

lo
g

 s
ca

le
)

CPU time (sec)

ISIS (BiCGSTAB_ILU_1)

ASM/ILU(2)

Hypre/ILU (2)

Figure 4.8: Convergence of ISIS and PETSc with BiCGStab-ILU(2)

The Fig. (4.7) shows the convergence for ILU(1) preconditioner. Although the overall

convergence rate is almost similar for both ISIS-CFD and PETSc, there is a steeper slope

at the start for ASM and Hypre compared to ISIS-CFD. So considering the residual up to

around 1e − 2, the PETSc solver has faster convergence within the 1st iteration compared

to ISIS-CFD.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

R
e

si
d

u
a

l
 (

lo
g

 s
ca

le
)

CPU time (sec)

ISIS (BiCGSTAB_ILU_1)

Hypre/AMG (B)

MG (PETSc)

Trillion/MG

Figure 4.9: Convergence of ISIS and PETSc with BiCGStab-Multigrid

The ILU(2) preconditioner has slower rate of convergence with BiCGStab. In the Fig.(4.8),

the ASM and Hypre package with ILU(2) is compared with ISIS-CFD where ISIS-CFD is

Chapter 4. Results and Discussion 32

faster compared to PETSc.

The convergence of Multigrid preconditioner is shown in Fig.(4.9). Among the packages, the

MG from PETSc itself and the Tillion/MG have comparable results with ILU(1) of ISIS-

CFD. By considering the residual up to 1e−2, the MG (PETSc) is the faster in the first step

(0.22sec) compared to ISIS-CFD (0.99sec). Also the Trilloin/MG has better convergence

within residual 1e− 2 (0.69sec).

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0.00 1.00 2.00 3.00 4.00 5.00 6.00

R
e

si
d

u
a

l
 (

lo
g

 s
ca

le
)

CPU time (sec)

ISIS (BiCGSTAB_ILU_1)

BJACOBI

ISIS (BiCGSTAB_ILU_0)

Figure 4.10: Convergence of ISIS and PETSc with BiCGStab-Block Jacobi

The Fig.(4.10) shows the convergence of Block Jacobi (PETSc) preconditioner along with

ILU(0) and ILU(1) preconditioner from ISIS-CFD. The Block Jacobi and ILU(0) (ISIS-CFD)

have almost similar slope in first iteration which is steeper than the ILU(1). Also Block Jacobi

is seen to be faster considering the residual limiting up to 1e− 2 in a non-linear iteration.

4.3 Tests with GMRES

4.3.1 1st Case

The GMRES krylov subspace method is also used for the 1st test and 2nd case with the

several preconditioners from both ISIS-CFD and PETSc. Here the results from the 1st case

are discussed. In the Fig.(4.11), the convergence of the ILU(0) preconditioner are presented

for both ISIS-CFD and PETSc with GMRES. Both ASM and Hypre ILU(0) are very similar

in convergence rate. They have steeper slope up to around 1e − 1 compared to ISIS-CFD,

although later ISIS-CFD became faster than the previous two method.

Chapter 4. Results and Discussion 33

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

R
e

si
d

u
a

l
(l

o
g

 s
ca

le
)

CPU time (sec)

ISIS (GMRES_ILU_0)

ASM (0)

Hypre/ILU (0)

Figure 4.11: Convergence of ISIS and PETSc with GMRES-ILU(0)

The ILU(1) preconditioner from PETSc shows an interesting result in Fig.(4.12). The PETSc

packages show faster convergence with almost 40% less time compared to ISIS-CFD ILU(1)

where Hypre package is the fastest one.

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

R
e

si
d

u
a

l
(l

o
g

 s
ca

le
)

CPU time (sec)

ISIS (GMRES_ILU_1)

Hypre/ILU (1)

ASM (1)

Figure 4.12: Convergence of ISIS and PETSc with GMRES-ILU(1)

The Fig.(4.13) shows the convergence of the ILU(2) preconditioner (PETSc) which compared

with the ILU(1) of ISIS-CFD (because ILU(2) cannot be run in ISIS-CFD). Here also the

PETSc packages are almost 60% faster than the ISIS-CFD.

The convergence rate of Multigrid preconditioner (from PETSc) is almost same as the ISIS-

CFD ILU(1) except the Hypre/AMG and MG method. The MG from PETSc is showing

very slow convergence. But Hypre/AMG Multigrid method is quite faster than ISIS-CFD

Chapter 4. Results and Discussion 34

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

R
e

si
d

u
a

l
(l

o
g

 s
ca

le
)

CPU time (sec)

ISIS (GMRES_ILU_1)

Hypre/ILU (2)

ASM (2)

Figure 4.13: Convergence of ISIS and PETSc with GMRES-ILU(2)

within the residual reduction up to 1e − 2 and it requires 40% less time to reach this level

compared to ISIS-CFD.

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 5.00 10.00 15.00 20.00 25.00

R
e

si
d

u
a

l
(l

o
g

 s
ca

le
)

CPU time (sec)

ISIS (GMRES_ILU_1)

Hypre/AMG (B)

MG (PETSc)

Trillion/MG

Figure 4.14: Convergence of ISIS and PETSc with GMRES-Multigrid

In the Fig.(4.15), the Block Jacobi preconditioner (PETSc) is presented with the ILU(0) and

ILU(1) of ISIS-CFD. The Block Jacobi is a little bit faster up to 1e− 1 (approx.) compared

to others but ISIS-CFD ILU(0) is the fastest at the end among the others.

Chapter 4. Results and Discussion 35

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

R
e

si
d

u
a

l
(l

o
g

 s
ca

le
)

CPU time (sec)

ISIS (GMRES_ILU_1)

BJACOBI

ISIS (GMRES_ILU_0)

Figure 4.15: Convergence of ISIS and PETSc with GMRES-Block Jacobi

4.3.2 2nd Case

The 2nd case is also tested with the GMRES Krylov subspace method with the different

preconditioners. The Fig.(4.16) presents the convergence of the ILU(0) preconditioner of

both ISIS-CFD and PETSc. The results of the ASM and Hypre are same as they cannot be

seen seperated. Also both have steeper slope for the very 1st iteration (0.10sec) compared

to ISIS-CFD (0.45sec) to reach the residual reduction up to 1e− 2.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

R
e

si
d

u
a

l
 (

lo
g

 s
ca

le
)

CPU time (sec)

ASM/ILU(0)

Hypre/ILU (0)

ISIS (GMRES_ILU_0)

Figure 4.16: Convergence of ISIS and PETSc with GMRES-ILU(0)

The GMRES-ILU(1) method showed very good convergence for the 1st case. In the second

case also better slope compared to ISIS-CFD up to 1e − 2 as shown in the Fig.(4.17). The

Chapter 4. Results and Discussion 36

residual reduction reaches up to the 1e−2 with almost 50% faster rate than ISIS-CFD’s first

iteration.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

R
e

si
d

u
a

l
 (

lo
g

 s
ca

le
)

CPU time (sec)

ISIS (GMRES_ILU_1)

Hypre/ILU (1)

ASM/ILU(1)

Figure 4.17: Convergence of ISIS and PETSc with GMRES-ILU(1)

The ILU(2) preconditioner (PETSc) has different result for this case than the 1st case. In

the 1st case ILU(2) of PETSc was faster than the ILU(1) of ISIS-CFD. But in the Fig.(4.18),

it can be seen that the ILU(2) of the PETSc packages have very slow convergence comapared

to ILU(1) of ISIS-CFD.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

R
e

si
d

u
a

l
 (

lo
g

 s
ca

le
)

CPU time (sec)

ISIS (GMRES_ILU_1)

Hypre/ILU (2)

ASM/ILU(2)

Figure 4.18: Convergence of ISIS and PETSc with GMRES-ILU(2)

The Fig.(4.19) shows the convergence of the Multigrid preconditioner from PETSc compared

with ILU(1) of ISIS-CFD. As the residual reduction is considered up to 1e − 2 for non-

linear iteration,among the PETSc packages, MG (from PETSc itself) and Trillion/MG shows

Chapter 4. Results and Discussion 37

promising result compared to ISIS-CFD. The ILU(1) of ISIS-CFD takes 2.33sec to reduce the

residual below 1e−2 where MG takes 0.16sec and Trillion/MG takes 0.44sec which indicates

faster convergence compared to ISIS-CFD.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

R
e

si
d

u
a

l
 (

lo
g

 s
ca

le
)

CPU time (sec)

ISIS (GMRES_ILU_1)

Hypre/AMG (B)

MG (PETSc)

Trillion/MG

Figure 4.19: Convergence of ISIS and PETSc with GMRES-Multigrid

The Block Jacobi shows better convergence rate for the 2nd case than the 1st one. In

the Fig.(4.20), the Block Jacobi (PETSc) is compared with ILU(0) and ILU(1) of ISIS-CFD

where it shows sharp reduction of residual within 1st iteration which goes below 1e−2 within

0.09sec where ILU(0) takes 0.45sec and ILU(1) takes 2.33sec. So Block Jacobi seems good

for more matured system like the 2nd case where the system is taken after 30th non-linear

iteration.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

R
e

si
d

u
a

l
 (

lo
g

 s
ca

le
)

CPU time (sec)

ISIS (GMRES_ILU_1)

BJACOBI

ISIS (GMRES_ILU_0)

Figure 4.20: Convergence of ISIS and PETSc with GMRES-Block Jacobi

Chapter 4. Results and Discussion 38

4.4 Comparison

From the previous sections one has seen that some of the PETSc preconditioners have shown

better results compared to ISIS-CFD. Here some of those good results from BiCGStab and

GMRES will be compared together. As the 2nd case is more reliable and mature system,

only this case will be considered here to compare between the KSPs.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

R
e

si
d

u
a

l
 (

lo
g

 s
ca

le
)

CPU time (sec)

Hypre(GMRES_ILU_0)

ISIS (GMRES_ILU_0)

ISIS (BiCGSTAB_ILU_0)

Hypre(BiCGStab_ILU_0)

Figure 4.21: Convergence of ILU(0) preconditioner with GMRES and BiCGStab

The convergence ILU(0) preconditioner with GMRES and BiCGStab is compared in Fig.(4.21).

The Hypre/ILU(0) is used from the PETSc as it has similar convergence rate (most cases)

as ASM. Also in some cases it is better than ASM. The Hypre/ILU(0) with both BiCGStab

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.0 2.0 4.0 6.0 8.0 10.0

R
e

si
d

u
a

l
(l

o
g

 s
ca

le
)

CPU time (sec)

ISIS (BiCGSTAB_ILU_1)

Hypre (BCGS_ILU_1)

ISIS (GMRES_ILU_1)

Hypre(GMRES_ILU_1)

Figure 4.22: Convergence of ILU(1) preconditioner with GMRES and BiCGStab

and GMRES is showing same slope of residual reduction for 1st iteration (1e − 2) which is

Chapter 4. Results and Discussion 39

similar to ISIS-BiCGStab where ISIS-GMRES is a bit slower than others. The plot from

BiCGStab krylov space have fluctuations for both ISIS and PETSc cases where the GMRES

cases have smoother reduction of residuals.

The Hypre/ILU(1) has similar slope for both KSPs as shown in (4.22). And it has better

convergence within first few iterations with both KSPs comapared to ISIS-CFD.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.00 1.00 2.00 3.00 4.00 5.00

R
e

si
d

u
a

l
 (

lo
g

 s
ca

le
)

CPU time (sec)

BJACOBI (GMRES)

ISIS (GMRES_ILU_0)

BJACOBI (BiCGStab)

ISIS (BiCGSTAB_ILU_0)

Figure 4.23: Convergence of BJACOBI preconditioner with GMRES and BiCGStab

The Block Jacobi has faster convergence slope with both GMRES and BiCGStab at the start-

ing (Fig(4.23)) which is similar to ISIS-BiCGStab/ILU(0) where the ISIS-GMRES/ILU(0)

has slower convergence. The BJACOBI with GMRES has smoother plot where plot from

BiCGStab (ISIS and PETSc) are not consistant.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

R
e

si
d

u
a

l
(l

o
g

 s
ca

le
)

CPU time (sec)

ISIS (GMRES_ILU_1) Hypre(GMRES_ILU_1)

Hypre(GMRES_ILU_0) BJACOBI(GMRES)

MG(GMRES) ISIS (GMRES_ILU_0)

Figure 4.24: Convergence of some of the best preconditioners with GMRES (case 2)

Chapter 4. Results and Discussion 40

Some of the preconditioners which have shown better results so far, have been presented all

together in Fig.(4.24). Here only GMRES Krylov subspace is considered as it has smoother

convergence. Among the preconditioners presented in the figure, the Hypre/ILU(0), BJA-

COBI and MG has almost similar slope up to 1e− 2 which are the fastesr than others. The

Hypre/ILU(1) had similar slope as the ISIS-ILU(0) but it could not reduce the residual up

to 1e− 2.

4.5 Memory Usage

In PETSc, one can see the memory usage information by using runtime option database

key ”-memory info” which prints the current and maximum memory information at the end

of run. The PetscMemoryGetCurrentUsage() or PetscMemorySetGetMaximumUsage() and

PetscMemoryGetMaximumUsage() can also be used in the code to see the memory info.

The Table(4.1) shows the memory usage of PETSc and ISIS for different KSP and precon-

ditioner. From the table one can conclude following points:

• For any case (case 1 or 2) the memory usage is almost same for the same KSP and same

preconditioner. So, memory usage does not depend on the cases or systems as long as the

structure is similar and number of variable is same.

• The memory usage of ISIS-CFD is farely constant for different KSP as long as precondi-

tioner is same.

Table 4.1: Memory Usage in PETSc

Solver
1st Case 2nd Case

BiCGStab GMRES BiCGStab GMRES

ISIS/ILU(0) 134 Mb 140 Mb 134 Mb 140 Mb

PETSc/ASM ILU(0) 306 Mb 395 Mb 309 Mb 398 Mb

PETSc/Hypre ILU(0) 311 Mb 400 Mb 314 Mb 404 Mb

BJACOBI 244 Mb 333 Mb 247 Mb 336 Mb

ISIS/ILU(1) 225 Mb 231 Mb 197 Mb 231 Mb

PETSc/ASM ILU(1) 398 Mb 487 Mb 401 Mb 490 Mb

PETSc/Hypre ILU(1) 437 Mb 526 Mb 440 Mb 529 Mb

PETSc/ASM ILU(2) 753 Mb 842 Mb 756 Mb 784 Mb

PETSc/Hypre ILU(2) 904 Mb 993 Mb 907 Mb 936 Mb

PETSc/Hypre AMG 273 Mb 363 Mb 276 Mb 337 Mb

PETSc/MG 260 Mb 349 Mb 263 Mb 352 Mb

PETSc/Trillion(MG) 519 Mb 608 Mb 522 Mb 611 Mb

• In case of PETSc, BiCGStab has less memory usage than the GMRES for any specific

preconditioner.

• For any specific preconditioner the ISIS-CFD has less memory consumption than PETSc.

Chapter 4. Results and Discussion 41

• The memory usage increases with the ILU level for ILU preconditioner (ILU 0, 1 and 2) of

both PETSc and ISIS-CFD. The Hypre/ILU(2) has the highest memory consumption among

all the preconditioners used here.

• In case of PETSc ILU preconditioners, the ASM has lower memory consumption than the

Hypre package.

• Among the PETSc Multigrid preconditioners, the MG and and the Hypre BoomerAMG

have reasonable memory usage specially with BiCGStab krylov subspace. Trillon/MG has

the highest memory consumption among the multigrid preconditioner.

Chapter 5

Conclusion

The strongly coupled system is a huge, unsymmetric and badly conditioned system. It is

very difficult to solve specially at the starting of the non-linear iteration because of initial

and boundary conditions. Thats why, the 1st case which is taken after the 1st non-linear

iteration, creates more fluctuations while solving than the 2nd case (taken after 30th non-

linear iteration). So the 2nd case is more mature and the result is more reliable than the 1st

one.

Among the KSP used in this research, the results from the GMRES are less fluctuating and

smoother than BiCGStab. This is because GMRES method approaches by approximating

the solution by the vector in a Krylov subspace with minimal residual. So the GMRES is

more preferable than the BiCGStab for stable convergence although the memory usage of

GMRES is more than BiCGStab (but memory is cheap!).

The residual was not reduced to machine accuracy but 1e − 3. The results are compared

by considering the residual reduction up to 1e − 2. The reason is, as written in the first

paragraph, because of the ill-conditioned system and its initial and boundary conditions,

the solutions are not as reliable as to reduce the residual to machine accuracy (specially for

first few iterations). Because it may lead the solutions far from convergence with non-linear

iterations.

Among the ILU preconditioners of PETSc, the ILU(1) shows a better convergence than

ISIS-CFD which is fairly consistant for cases and KSP methods. Most cases of ASM/ILU(1)

and Hypre/ILU(1) have similar results whereas some cases Hypre/ILU(1) is better, although

Hypre demands more memory than ASM. ILU(1) of PETSc can be preferably used with

GMRES krylov subspace as it has less fluctuations and smooth reduction of residual than

BiCGStab. In some cases, ILU(0) and BJACOBI has good results specially for 2nd case

42

Chapter 5. Conclusion 43

with GMRES krylov subspace although non-linear iteration is needed to be checked for these

methods.

Among the multigrid preconditioners, MG of PETSc and Trillion/MG have interesting re-

sults with GMRES. They have shown better convergence than ISIS for 2nd case (Fig.4.19).

Although in 1st case, MG has slower convergence and Trillion has similar to ISIS/ILU(1)

(Fig.4.14), the 2nd case is more reliable than the 1st one.

Chapter 6

Further Recommendation

To carry out the research further, the following points can be considered for future work:

• In this research only one grid (coarse mesh) was tested thoughout. One can go further

by analyzing different grids (coarse, medium, fine, very fine, etc.) of the same geometry

to see the change in convergence of methods for changing grids.

• The main PETSc code is written as functions so that it can be integrated readily

in ISIS. By using this subroutine the PETSc can be used throughout the non-linear

iterations and convergence results can be compared with ISIS-CFD solver.

• Multi-block analysis can be carried out and parallel computation can be compared

between ISIS and PETSc. To facilitate parallel computation, the code is written closer

to parallel code as much as possible so that one can use it with minor change.

44

Appendix A

The PETSc Program

! -

! MAIN ROUTINE

! -

program main_file

include "precision.h"

! -

! Variable declarations

! -

integer,dimension (:), allocatable:: IpntCF_CC,IndCon_CC

double precision,dimension (:), allocatable::a,Src,

$ Sol,i_value

integer :: matopt,ivalue,pcopt,nvariable,ndim_mat,maxits,restype

!

common /pvmmb/me,nproc

Common /umesg/ imesg

!

character*5 iluk

character*10 pctype

character*10 ksptype

! Timing variables

Integer, Parameter :: iprec_single=selected_real_kind(4)

Integer, Parameter :: iprec_double=selected_real_kind(8)

!

Real(iprec_single) :: time

Integer :: itime_start, itime_end, itime_rate, time_max

!

45

Appendix A. The PETSc Program 46

me=0

nproc=1

imesg=6

! -

! Choose the defining matrix, preconditioner and solver type

! -

!!! Select Matrix creation options

! [1] MatCreate() and MatMPIAIJSetPreallocationCSR()

! [2] MatCreateMPIAIJWithArrays()

!

matopt=2

!

!!! Select Initial value options (assigned through ’Sol’ vector)

! [1] Zero Initial value

! [2] Assigned initial value

ivalue=1

!*** Preconditioner options

! [0] PETSc Preconditioners; PCBJACOBI,PCMG

! [1] Additive Schwarz Method (PCASM)

! [2] HYPRE/ILU(K)

! [3] HYPRE/Multigrid

! [4] ML/Multigrid

!

pcopt=2

!

! if 0 please enter type

pctype="bjacobi" ! bjacobi,mg

!

! If 1,2 please enter the ILU level

iluk=’1’

!*** Enter KSP type

!

ksptype="gmres" !richardson,gmres,bcgs,cg...

!

!

! Set the Tolerance (relative/preconditioned residual tol.)

tol = 1.e-3

Appendix A. The PETSc Program 47

!

! Set maximum iteration number

maxits = 500

!

! To write the ksp residual norm in residual.dat file

! [1] True residual

! [2] Preconditioned residual

!

restype=1

!

! >>> Start timing 1

Call SYSTEM_CLOCK(COUNT=itime_start, COUNT_RATE=itime_rate,

$ COUNT_MAX=time_max)

! -

! Extract system information

! -

!

open(10,file=’Strongly_Coupled_System.bin’,status=’unknown’,

$ form=’unformatted’)

read(10) nvariable

c Import the connectivity

allocate(IpntCF_CC(nvariable+1))

call read_bin_int(nvariable+1,IpntCF_CC)

ndim_mat=IpntCF_CC(nvariable+1)-1

allocate(IndCon_CC(ndim_mat),a(ndim_mat))

call read_bin_int(ndim_mat,IndCon_CC)

c Import the matrix

call read_bin_float(ndim_mat,a)

c Import the right hand side

allocate(Src(nvariable),Sol(nvariable))

call read_bin_float(nvariable,Src)

c Import the solution

call read_bin_float(nvariable,Sol)

close(10)

allocate(i_value(nvariable))

c Initialization of the system

do i=1,nvariable

i_value(i)=Sol(i)

enddo

Appendix A. The PETSc Program 48

!--

! Call PETSc routine

!--

call test_system(matopt,ivalue,pcopt,iluk,nvariable,ndim_mat,

$ IpntCF_CC,IndCon_CC,a,Src,Sol,i_value,tol,pctype,ksptype,

$ maxits,restype)

!**

!

! <<< Stop timing 1

Call SYSTEM_CLOCK(itime_end)

! The elapsed time in seconds in PETSc

time=REAL(itime_end - itime_start)/REAL(itime_rate)

Print *, ’Elapsed time in PETSc: ’,time,’sec’

end

Appendix A. The PETSc Program 49

! -

! PETSc SUBROUTINE

! -

subroutine test_system(matopt,ivalue,pcopt,iluk,nvariable,

$ ndim_mat,IpntCF_CC,IndCon_CC,a,Src,Sol,i_value,tol,

$ pctype,ksptype,maxits,restype)

!

Include "precision.h"

! -

! Include files

! -

!

! petsc.h - base PETSc routines petscvec.h - vectors

! petscmat.h - matrices petscksp.h - Krylov subspace methods

! petscpc.h - preconditioners

#include "finclude/petsc.h"

#include "finclude/petscvec.h"

#include "finclude/petscmat.h"

#include "finclude/petscpc.h"

#include "finclude/petscsys.h"

#include "finclude/petscksp.h"

! -

! Variable declarations

! -

PC pc

KSP ksp

Mat D

Vec u,rhs,x,b

PetscInt N,k,i,j,globalIndRow,globalIndCol,its,maxits,dummy,

$ Istart,Iend,ii,jj,kk,ll,ojj,okk,kkA,kkB,kkN,pntBegin,

$ pntEnd,yy,nrow,ncolumn,lg,matopt,pcopt,nz,nvariable

$ ivalue,count_zero,ndim_mat,Irow,Ipnt,ivar,nn,neig,

$ restype

PetscErrorCode ierr

PetscMPIInt rank

PetscScalar neg_one,Resmax,Res,msr

Appendix A. The PETSc Program 50

PetscReal errRHSmax,mem,r,c

PetscTruth iflag

KSPType kspt

PCType pct

PetscLogDouble memory

common /pvmmb/me,nproc

Common/parallele/mybloc

common /com/mytid,itids(1000)

COMMON/STMPI /bloc

character*4 bloc

Common /umesg/ imesg

CHARACTER*150 fname

character*5 iluk

character*10 pctype

character*10 ksptype

integer,dimension (:), allocatable::nfcom,nblcom,ncell_local,

$ Local_to_Global_Mapping,LoToGlo,

$ column,ocolumn,opointer,LoToGloR,col,row

integer,dimension (:,:), allocatable:: Ind_send,Ind_Receive

double precision,dimension (:), allocatable::

$ p,v,ov,aa,ModSrc

integer,dimension(nvariable+1):: IpntCF_CC

integer,dimension(ndim_mat):: IndCon_CC

double precision,dimension(ndim_mat):: a

double precision,dimension(nvariable):: Src,Sol,i_value

!

! -

! Initialize PETSc

! -

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)

call PetscMemorySetGetMaximumUsage(ierr) ! used to get memory info

call initmb1

* mybloc=me

!

! Open files and get the values or send indices and receive indices

Appendix A. The PETSc Program 51

if(nproc .ne. 1)then

if(me .eq. 1) then

write(*,*) ’This is a uniprocessor example only’

endif

SETERRQ(1,’ ’,ierr)

endif

! -

! Establish local to global index mapping

!- -

N=nvariable

write(imesg,*)’Number of variables: ’,N

allocate(Local_to_Global_Mapping(ndim_mat+1))

index0=0

Local_to_Global_Mapping=0

do i=1,ndim_mat+1

Local_to_Global_Mapping(i)=index0+i-1

end do

! -

! Create matrix

! -

!

! LoToGlo - the global column indices of the array a

! LoToGloR - the global indices pointing at LoToGlo to start a new row

!

allocate(LoToGlo(ndim_mat))

allocate(LoToGloR(N+1))

LoToGlo=Local_to_Global_Mapping(IndCon_CC)

LoToGloR=Local_to_Global_Mapping(IpntCF_CC)

!---

select case (matopt)

!

! [1] MatCreate() and MatMPIAIJSetPreallocationCSR()

case (1)

write(imesg,*)’[1] MatCreate() and MatMPIAIJSetPreallocationCSR()’

call MatCreate(PETSC_COMM_WORLD,D,ierr)

call MatSetSizes(D,N,N,PETSC_DETERMINE,PETSC_DETERMINE,ierr)

call MatSetType(D,MATMPIAIJ,ierr)

call MatMPIAIJSetPreallocationCSR(D,LoToGloR,LoToGlo,a,ierr)

Appendix A. The PETSc Program 52

!

! [2] MatCreateMPIAIJWithArrays()

case (2)

write(imesg,*) ’[2] MatCreateMPIAIJWithArrays()’

call MatCreateMPIAIJWithArrays(PETSC_COMM_WORLD,N,N,

$ PETSC_DETERMINE,PETSC_DETERMINE,LoToGloR,LoToGlo,a,D,ierr)

!

end select

!

* -

* Create and Set values to vectors

* -

call VecCreateMPI(PETSC_COMM_WORLD,N,PETSC_DETERMINE,rhs,ierr)

call VecDuplicate(rhs,u,ierr) ! u - the approximated solution

call VecDuplicate(rhs,b,ierr) ! b - the computed RHS from the matrix

call VecDuplicate(rhs,x,ierr)! x - the exact solution

call VecSetValues(x,N,Local_to_Global_Mapping,

$ Sol,INSERT_VALUES,ierr) ! Set the exact solution vector

call VecAssemblyBegin(x,ierr)

call VecAssemblyEnd(x,ierr)

! Set values for the right hand side vector

call VecSetValues(rhs,N,Local_to_Global_Mapping,

$ Src,INSERT_VALUES,ierr)

call VecAssemblyBegin(rhs,ierr)

call VecAssemblyEnd(rhs,ierr)

write(imesg,*) ’The vector and matrix values’,

$ ’ are set and assembled.’

* Check if the matrix has been defined correctly

neg_one=-1.0

call MatMult(D,x,b,ierr)

call VecAXPY(b,neg_one,rhs,ierr)

call VecAbs(b,ierr)

call VecMax(b,i,errRHSmax,ierr)

Appendix A. The PETSc Program 53

write(imesg,*) ’rhs-b =’,errRHSmax

* -

* Create the linear solver and set various options

* -

* Create linear solver context

call KSPCreate(PETSC_COMM_WORLD,ksp,ierr)

* Set operators. Here the matrix that defines the linear system

! also serves as the preconditioning matrix. Here are matrix D.

call KSPSetOperators(ksp,D,D,DIFFERENT_NONZERO_PATTERN,ierr)

* Returns a pointer to the preconditioner context

call KSPGetPC(ksp,pc,ierr)

! -

! Select the Preconditioner

! -

select case (pcopt)

case (0)

* 0 Preconditioner of PETSc which can be used for parallel computing

* without external package: Jacobi, SOR, Block Jacobi, Additive Schwarz

!

call PetscOptionsSetValue(’-pc_type’,pctype,ierr)

case (1)

* 1 Preconditioner: Additive Schwarz Method

! By default: subdomain=1, overlab=1, type=restrict, level=0

! ilu - if want to use icc, set the matrix is symmetric.

! Use in place is to destroy the matrix after use to save memory

call PCSetType(pc,PCASM,ierr)

call PCASMSetUseInPlace(pc,ierr)

call PetscOptionsSetValue(’-sub_pc_factor_levels’,iluk,ierr)

call PetscOptionsSetValue(’-sub_pc_factor_shift_positive_definite’

$,PETSC_NULL_CHARACTER,ierr) ! to avoid zero pivot

case (2,3)

* 2,3 Preconditioner: HYPRE

call PCSetType(pc,PCHYPRE,ierr)

Appendix A. The PETSc Program 54

if (pcopt.eq.2) then

* 2 Euclid for ILU(k)

call PCHYPRESetType(pc,’euclid’,ierr)

call PetscOptionsSetValue(’-pc_hypre_euclid_levels’,iluk,ierr)

call PetscOptionsSetValue(’-pc_hypre_euclid_bj’,’TRUE’,ierr)

else

* 3 BoomerAMG for Multigrid

call PCHYPRESetType(pc,’boomeramg’,ierr)

call PetscOptionsSetValue(’-pc_hypre_boomeramg_max_levels’,

$ ’10’,ierr)

call PetscOptionsSetValue(’-pc_hypre_boomeramg_relax_type_all’,

$ ’backward-SOR/Jacobi’,ierr)

endif

case (4)

* 2 Preconditioner: ML

call PCSetType(pc,PCML,ierr)

call PetscOptionsSetValue(’-pc_ml_maxNlevels’,’5’,ierr)

call PetscOptionsSetValue(’-mg_coarse_pc_factor_zeropivot’,

$ ’1e-25’,ierr)

end select

! -

! Set the relative,absolute,divergence, tolerances,

! maximum iteration and KSP solver type

! -

call KSPSetTolerances(ksp,tol,PETSC_DEFAULT_DOUBLE_PRECISION, &

& PETSC_DEFAULT_DOUBLE_PRECISION,maxits,ierr)

!

! To enable the ksp monitoring and write in a file

!

if(restype .eq. 1) then

call PetscOptionsSetValue(’-ksp_monitor_true_residual’,

$ ’residual.dat’,ierr)

elseif(restype .eq. 2) then

call PetscOptionsSetValue(’-ksp_monitor’,

$ ’residual.dat’,ierr)

endif

Appendix A. The PETSc Program 55

!

! Set KSP solver type

call PetscOptionsSetValue(’-ksp_type’,ksptype,ierr)

call KSPSetFromOptions(ksp,ierr)

! -

! Solve the linear system

! -

if(ivalue .eq. 1) then

iflag = PETSC_FALSE

elseif(ivalue .eq. 2) then

iflag = PETSC_TRUE

call VecSetValues(u,N,Local_to_Global_Mapping,

$ i_value,INSERT_VALUES,ierr) ! Set the initial vector

call VecAssemblyBegin(u,ierr)

call VecAssemblyEnd(u,ierr)

endif

call KSPSetInitialGuessNonzero(ksp,iflag,ierr)

call KSPSolve(ksp,rhs,u,ierr)

* -

* View the information of solver, preconditioner and matrix

call KSPView(ksp,PETSC_VIEWER_STDOUT_WORLD,ierr)

! -

! check the error

! -

* Transfer the values from vector u, N elements, to array p.

! Local_to_Global_Mapping is the global location to get the values.

call VecGetValues(u,N,Local_to_Global_Mapping,Sol,ierr)

! -

! Max_Sol and Min_Sol

Solmin = 1e30

Solmax = -1e30

Do iv=1,nvariable

Solmin=Min(Solmin,Sol(iv))

Solmax=Max(Solmax,Sol(iv))

EndDo

Write(imesg,*) ’Min(Sol)=’,Solmin,’ Max(Sol)=’,Solmax

Appendix A. The PETSc Program 56

! -

* To get the iterations number used for computing

call KSPGetIterationNumber(ksp,its,ierr)

write(imesg,*) ’Total Iterations =’, its

* -

* Clean up and exit the programFree work space.

* All PETSc objects should be destroyed when they are no longer needed.

* -

call KSPDestroy(ksp,ierr)

call VecDestroy(x,ierr)

call VecDestroy(b,ierr)

call VecDestroy(u,ierr)

call VecDestroy(rhs,ierr)

call MatDestroy(D,ierr)

* -

* End the program.

* Always call PetscFinalize() before exiting a program

* -

call PetscLogPrintSummary(MPI_COMM_SELF,

$ ’test_system.log’,ierr)

! Memory info

call PetscMemoryGetMaximumUsage(memory,ierr)

memory=memory*1.0d-6

write(imesg,*) ’Maximum Memory usage = ’,memory,’Mb’

! Petsc Finalization

call PetscFinalize(ierr)

write(imesg,*) ’Normal end’

end

Appendix B

An Output File

Number of variables: 397600

[1] MatCreateMPIAIJWithArrays()

The vector value is set and assembled.

rhs-b = 9314.84349615265

0 KSP Residual norm 9.997386552591e+04

1 KSP Residual norm 1.906239411055e+03

2 KSP Residual norm 1.515021400569e+03

3 KSP Residual norm 1.411146600606e+03

4 KSP Residual norm 1.191624009204e+03

5 KSP Residual norm 8.052818722618e+02

6 KSP Residual norm 5.888752359267e+02

7 KSP Residual norm 5.059841042376e+02

8 KSP Residual norm 4.769151017274e+02

9 KSP Residual norm 4.253128546915e+02

10 KSP Residual norm 3.298173385642e+02

11 KSP Residual norm 2.343863701271e+02

12 KSP Residual norm 2.090430289623e+02

13 KSP Residual norm 1.869535145600e+02

14 KSP Residual norm 1.634909140818e+02

15 KSP Residual norm 1.436915208402e+02

16 KSP Residual norm 1.305067901716e+02

17 KSP Residual norm 1.129509724929e+02

18 KSP Residual norm 9.238550828669e+01

19 KSP Residual norm 8.081840559938e+01

20 KSP Residual norm 7.007679651287e+01

21 KSP Residual norm 6.140609196231e+01

57

Appendix B. An Output File 58

22 KSP Residual norm 5.383704137012e+01

23 KSP Residual norm 4.737426575836e+01

KSP Object:

type: gmres

GMRES: restart=30, using Classical (unmodified) Gram-Schmidt

Orthogonalization with no iterative refinement

GMRES: happy breakdown tolerance 1e-30

maximum iterations=500

tolerances: relative=0.001, absolute=1e-50, divergence=10000

left preconditioning

PC Object:

type: hypre

HYPRE Euclid preconditioning

HYPRE Euclid: number of levels 1

HYPRE Euclid: Using block Jacobi ILU instead of parallel ILU

linear system matrix = precond matrix:

Matrix Object:

type=mpiaij, rows=397600, cols=397600

total: nonzeros=3824000, allocated nonzeros=3824000

not using I-node (on process 0) routines

Maximum error = 9194.30827928375

Minimum error = 0.000000000000000E+000

Iterations = 23

Min(Sol)= -9194.30827928375 Max(Sol)= 7434.84136860208

Petsc Resmax = 1.36929558190539

Elapsed time in PETSc : 6.1251 sec

Normal end

Bibliography

[1] S. Balay, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. Curfman

McInnes, B. Smith, and H. Zhang, PETSc Users Manual,Revision 3.1, December 2008.

URL http://www.mcs.anl.gov/petsc/petsc-as/documentation/index.html.

[2] G.B. Deng, J. Piquet, P.Queutey, and M. Visonneau A fully coupled Solution of the

Navier-Stokes equation, International Journal of Numerical Method in Fluid, Vol 19, No.

7, Page 605-640, 1994.

[3] G. B. Deng, J. Piquet, X. Vasseur, M. Visonneau, A new fully coupled method for comput-

ing turbulent flows, Computers & Fluids, Volume 30, Issue 4, May 2001, Pages 445-472.

[6] J. Panyasantisuk, Integration of PETSc Linear Solver Package into ISIS-CFD Flow

Solver, Master Thesis for M.Sc. in Computational Mechanics, June 2009.

[6] M. Visonneau, A strongly-coupled velocity-pressure formulation for ISIS-CFD, Internal

report, Dec 2008.

[6] Division Modélisation Numérique, Laboratoire de Mcanique des Fluides, CNRS-UMR

6598, FINETM/MARINE Theoretical manual, Version 2.1, Feb 2009.

59

http://www.mcs.anl.gov/petsc/petsc-as/documentation/index.html

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Strongly Coupled System
	1.2 ISIS-CFD
	1.3 PETSc

	2 Strongly Coupled Velocity-Pressure Formulation
	2.1 Governing Equations
	2.2 Generic Discretisation Form
	2.2.1 Discretised Momentum Equation
	2.2.2 Discretised Pressure Equation

	2.3 The Velocity-Pseudo-velocity Pressure coupled System
	2.4 Global Structure of the Linear Coupled System

	3 Programming with PETSc
	3.1 MPICH and PETSc Installation
	3.1.1 MPICH Installation
	3.1.2 PETSc Installation

	3.2 Writing PETSc Programs
	3.2.1 Include Files
	3.2.2 PETSc Objects
	3.2.3 PETSc Initialization and Finalization
	3.2.4 Error Checking
	3.2.5 Passing Null Pointers
	3.2.6 Vector Operations
	3.2.7 Matrix Operations
	3.2.8 KSP solver and Preconditioner

	3.3 Compile and Run PETSc
	3.3.1 Makefile
	3.3.2 Running a PETSc Program

	4 Results and Discussion
	4.1 Test Case
	4.2 Tests with BiCGStab
	4.2.1 1st Case
	4.2.2 2nd Case

	4.3 Tests with GMRES
	4.3.1 1st Case
	4.3.2 2nd Case

	4.4 Comparison
	4.5 Memory Usage

	5 Conclusion
	6 Further Recommendation
	A The PETSc Program
	B An Output File
	Bibliography

