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Abstract

An improvement to the integration scheme under the eXtended Finite Element Method
is presented. The problem to be treated arrives when the order of the approximation
functions are increased to accelerate convergence. A finer sub-mesh is defined to perform
a more accurate approximation of the level set (defining geometrical characteristics such
as holes, cracks or material interfaces) while preserving the computational mesh intact.
The integration over the resulting elements is performed over the finer sub-mesh, the
higher the order of the approximation functions, the increased number of gauss points
required to do it.

The integration becomes operation intensive, increasing computational times. In order
to make higher order approximation viable and interesting to pursue, special care must
be taken in the integration procedure. Parallel computing models and strategies are ex-
plored and advantage of the possibilities of processing data on commodity graphic cards
is presented for the current code suite.

Examples to demonstrate how the computational load can be alleviated with the use
of GPU are presented. The driving concept is to execute parallelizable sections of code
where possible to accelerate the solution of problems, maintaining accuracy or improving
it. Future work for the challenges encountered and new strategies are suggested as well.
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Objectives

Objective.

To improve the integration algorithm executed by the X-Fem suite, improve computational
times using parallelization strategies.

Specific Objectives.

1. To undertake a literature review on the subjects of high order X-Fem and applications
of GPU computing to solid mechanics.

2. Fit the code to function under OS X with support for NVidia CUDA and OpenMP.

3. Modify the integration algorithm and explore parallelization options, taking advan-
tage of shared geometrical information used for several integration steps.

17





1. Introduction

The eXtended Finite Element Method appears as an alternative to classic Finite Element
to approach the problem of growing mesh sizes. Growing complexity of geometries makes
it more challenging to deliver accurate result in engineering analysis nowadays. Current
problems driven by industry’s interest demand higher computational resources. High Per-
formance Computing, which can provide the computational throughput to solve close to
reality, close to real time problems is still an exclusive option.

HPC systems are bound by current processors, with current clock speed ceilings that
appear to have stalled. Efforts have turned from clock speed to multicore processors,
having reached as well a point where in current architecture is not useful to increase
the number of cores. Then the efforts have gone from improving the memory transfer
bandwidth to increasing the number of processors available in a server, even in the case
of shared memory (one of the expensive options) Moore’s law proves to be holding back
this systems for more demanding problems being solved in less time.

Parallel computing strategies have been widely implemented were the problems allow
so, and more optimized language instructions and architecture are bringing new function-
ality to this models. But still the number of processors would be holding back more ac-
celerated developments. Adding more processors into and HPC machine is not an option
most of the times, usually they are closed systems, being hardware bound by manufac-
turers. In the case of Blade-type clusters, adding more processors, memory and disk still
is a matter of several thousands of dollars.

Modeling problems in engineering, where geometries are becoming even more com-
plex, constraint the accuracy of possible simulations in great part to proper meshing.
Having to conform to physical surfaces becomes a starting point for meshes of substan-
tial size. X-FEM using Level Sets to define the geometrical and topological characteristics
appears as an interesting option to tackle the computationally intensive process. Another
strategy to improve the performance of the method is to use higher order approximation
functions, in order to accelerate convergence maintaining acceptable ranges of accuracy
[1].

The construction of the stiffness matrix yielded by the numerical integration process
must be done with proper care. Increasing the degree of the approximation functions
demands a higher number of integration (Gauss) points, this translates as an increased
number of operations and data stored by finite element. On the provided routines, in-
tegration cells are created from the sub-mesh related to the Level-set. The geometrical
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information is shared with the computational mesh, but the information required to inte-
grate properties over each cell (up to the defined level of refinement) comes from the
sub-mesh and the level-set. From this cell partition is where parallel computing strategies
can profit.

After the advent of new GPUs with more horse-power, the advance in architecture and
the development of a firm basis to enable users to develop applications to harness the
power of GPUs for their applications, scientific computing capabilities became available
for commodity graphic cards. The amount of cores available per multiprocessor and the
amount of multiprocessors in a single GPU has increased dramatically over the last few
years. This meant a steep climb in the number of floating point operations per second
that it can be performed, aiming to desired TFLOP range. As well, efforts to lower trans-
fer rates and increase the communications bandwidth has accompanied the evolution
of GPUs. Nowadays, past the implementation of double precision operations -demand
driven by the community- the power of scientific computing has become available to per-
sonal computers. Then HPC systems that involve several stacked high end GPUs (like
Tesla WS) are available for a few thousands of dollars (in comparison to traditional HPC
systems).

Given that the implementation of routines for the numerical integration has already
been pursued, the aim of the manuscript is to provide founding basis to help the develop-
ment of the x-FEM code at ECN that has been under development many years now.
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2. Theoretical Framework

The topics reviewed for this document span along the Finite Element Method (FEM),
the Extended Finite Element Method (X-FEM), High order X-FEM and GPU computing.
Introductions to these topics are presented for clarity purposes.

In solid mechanics one widely used assumption that simplifies greatly the treatment
of the equations involved is the one of linear elasticity. The outline and illustration of the
methods derived to solve the differential equations for such problem, can profit from an
introduction to linear elasticity.

2.1 Linear Elasticity

Linear elasticity is a common problem in solid mechanics, many practical structures be-
have as linearly elastic bodies -from aircraft to baby strollers-. Linear elasticity deals with
bodies subjected to forces and their deformations. This physical phenomenon is governed
by Partial Differential Equations (PDE) that describe deformation, internal equilibrium and
material properties of the body. Once these equations are described they will lead to the
variational formulation of the elasticity problem which is the starting point to obtain a finite
element solution, thus further an extended finite element solution.

Let the solid body be represented by Ω. Then Ω refers to the domain on Figure 2.1
with its boundary Γ. The concepts presented deal with both R2 and R3 cases (two and
three dimensions). However, this work is focused initially on two dimensional problems
(R2).

Let there be a set Ω ⊂ Rn. A point x ∈ Ω is an internal point when in the neighborhood
of x contains only points that belong to Ω. A point y is a boundary point (y ∈ Γ) if every
neighborhood of y contains points that belong to Ω and some that do not belong to Ω.
These concepts are illustrated in figure 2.1.

When a solid body (represented by Ω) is subjected to external forces Fi, each point
of the body experiences a displacement ui. The relative positions between the points of
unloaded and loaded structure is called deformation. The aim of elasticity theory is to
relate the forces experienced by the deformable body with the displacements caused by
the loads when a certain behavior (elastic behavior) is assumed to be followed by the
body [2].

The following section are introductory to the basic equations of elasticity. For more
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Figure 2.1: A deformable body

detail refer to the work of Kikuchi [3] or the book by Zienkiewicz [4].

2.1.1 Kinematic equations

The relative changes of position of the points of a body due to an applied load can be
related to the changes of shape and volume. If the deformation of a body is infinitesimal,
that is |∂ui/∂xj| � 1, then the relationship between displacement and strain are given by
Equation (2.1).

εij(u) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.1)

The tensor εij was introduced by Cauchy for infinitesimal deformations and by Almansi
and Hamel when the deformation is finite [5].

2.1.2 Internal Equilibrium

The balance of internal forces along the x axis for a differential volume inside of a de-
formed body is shown in Figure 2.2. In the same way, if the balance of forces was applied
along the y and z axis, the equation of internal force equilibrium can be obtained as Equa-
tion (2.2).

∂

∂xj
σji + ρfi = 0 (2.2)

where:

σij is the component of the stress tensor and represents the projection in the i direction
of a traction on a plane with normal j. (i and j represent the direction of the x, y or
z axis).
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Figure 2.2: Balance of forces in the x direction for a differential element

ρ is the density of the body.

fi represents the component i of the volume forces acting on the differential element.

The result of imposing moment equilibrium is the symmetry of the stress tensor which
is given by Equation (2.3)

σij = σji (2.3)

2.1.3 Constitutive equations

The constitutive equations describe the material characteristic of a solid body. For a linear
elastic material the stress-strain relationship is given by Equation (2.4)

σij = Eijkl εkl (2.4)

where E is a fourth order tensor of constant values that represent the physical properties
of the material.

E is known as the elasticity tensor. In a three dimensional body subindexes i, j, k
and l take range from 1 to 3 ( x, y and z axis) and the elasticity tensor E comprises 81
constants. This number can be reduced by applying considerations of different kind, such
as: symmetry of the strain tensor and existence of the strain energy density. The simplest
form of the tensor E is found for isotropic materials were Equation (2.4) becomes:

σij = λ εkk δij + 2µ εij (2.5)

where λ and µ are the Lamé constants related to Young’s modulus E and Poisson’s ratio
ν by
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λ =
Eν

(1− 2ν)(1 + ν)
, µ =

E

2(1 + ν)
(2.6)

2.2 Finite Element Approximation

The differential equations governing the behavior of a linear elastic body were described
in the previous section. The Finite Element Analysis is a numerical method developed to
approximate the solution to such equations.

The stationary boundary value problem for a linear elastic body is given by the equilib-
rium (2.2), kinematic (2.1) and constitutive (2.4) equations and is summarized by Equation
(2.7) with boundary conditions given by equations (2.8).

− ∂

∂xj
σji = ρfi (2.7)

εij = 1/2

(
∂ui
∂xj

+
∂uj
∂xi

)
σij = Eijkl εkl

and the boundary conditions

ui = gi on Γi1

σjinj = hi on Γi2 (2.8)

where

Γ = Γi1 ∪ Γi2 for each i = 1, 2, 3.

Γi1 denotes the boundary where the i component of the displacement is known

Γi2 denotes the boundary where the i component of traction is known. It is assumed that
boundaries Γi1 and Γi2 are mutually disjointed.

In PDE literature the first condition is called the Dirichlet boundary condition and cor-
responds to the displacement boundary condition. That is, if ui is the i component of the
displacement, then, along the boundary Γi1, ui is equal to gi. When the body is fixed over
Γi1, gi is equal to zero. That is, if no movement is allowed in any direction then gi = 0 for
each i = 1, 2, 3.

The second condition corresponds to the i component of traction hi on boundary Γi2.
The traction represents the force per unit area or volume normal to the surface. In case
of a free boundary hi = 0.

Another kind of boundary condition in elasticity problems corresponds to the spring
support. For simplicity purposes this condition is not considered.
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To approximate a solution by the Finite Element Method, a weak form of the boundary
problem defined by equations (2.7) and (2.8) is necessary [6]. This form can be obtained
by multiplying the first of equations (2.7) by a virtual displacement fv and integrate over
the domain Ω. The resulting term is integrated by parts to yield the terms of Equation
(2.9). ∫

Ω

σji(u)vi,jdΩ−
∫

Γ

σji(u)njvidΓ =

∫
Ω

ρfividΩ (2.9)

where σji(u) represents the component of the stress caused by the actual displacement
u.

The first term of Equation (2.9) can be further simplified by applying the symmetry of
the stress tensors as follows

σji(u)vi,j =
1

2
(σij + σji) vi,j (2.10)

=
1

2
σij vi,j +

1

2
σij vj,i (2.11)

= σij
1

2
(vi,j + vj,i) (2.12)

And according to the definition of strain in Equation (2.1)

εij(v) =
1

2
(vi,j + vj,i) (2.13)

then

σji(u)vi,j = σij(u)εij(v) (2.14)

replacing this result into Equation (2.9) and combining this with boundary conditions from
Equation (2.8), the weak form of the boundary problem is obtained as follows:

ui = gi on Γi1∫
Ω

σij(u)εij(v)dΩ =

∫
Ω

ρfividΩ +

∫
Γi2

hividΓ (2.15)

∀v 3 vi = 0 on Γi1

The LHS of Equation (2.15),
∫

Ω
σij(u)εij(v)dΩ, represent the internal work done due

to a virtual displacement v from the equilibrium configuration defined by the displacement
field u. The first term of the right hand side

∫
Ω
ρfividΩ is the virtual work produced by the

volume force ρfi. The second term
∫

Γi2
hividΓ is the virtual work by the boundary traction

hi. As such, the weak form (2.15) is the principle of virtual work in solid mechanics.
In contracted notation, the weak form of the boundary problem, Equation (2.15), reads:
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∫
Ω

σr(u)εr(v) dΩ =

∫
Ω

ρfivi dΩ +

∫
Γi2

hivi dΓ (2.16)

For linear elastic materials the stress can be expressed as a linear combination of the
strain, Equation (2.4). Therefore, the weak form for linear elastic materials becomes:

ui = gi on Γi1∫
Ω

Crsεs(u)εr(v) dΩ =

∫
Ω

ρfivi dΩ +

∫
Γi2

hivi dΓ (2.17)

∀v 3 vi = 0 on Γi1

This equation is usually referred as the finite element equation and is the starting point
to obtain the finite element solution.

2.2.1 Discretization of the Domain Ω

In order to solve Equation (2.17) by the Finite Element Method, the domain Ω is discretized
into a set of elements, each of them with shape functions {Nα(x)} that must be defined.
Shape functions describe how the displacement u(x) is interpolated from the values of
the displacement (uα) at the nodes of the elements.

The displacement u and the virtual displacement v can be approximated by linear
combinations of their node values and the shape functions.

u(x) = uαjNα(x) ej (2.18)

v(x) = vβi Nβ(x) ei (2.19)

where

i, j = 1, 2, 3 represent the x, y, z components of the displacement.

α, β = 1, . . . nn are the nodal values. (nn is the number of nodes).

ei, ej are unit vectors in the i, j direction.

The discretization of the LHS of the weak form (Equation (2.17)) derives from express-
ing the displacement u, and v in terms of the approximated displacement.∫

Ω

Crsεs(u)εr(v)dΩ =

∫
Ω

Crsεs(u
α
j Nαej)εr(v

β
i Nβei)dΩ (2.20)

Then, by applying the linearity of the strain, Equation (2.20) becomes∫
Ω

Crsεs(u)εr(v)dΩ = uαj vβi

∫
Ω

Crsεs(Nαej)εr(Nβei)dΩ (2.21)
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where εs(Nαej) and εr(Nβei) are defined in terms of the B matrix as

ε(Nαej) = B


Nαδ1j

Nαδ2j

Nαδ3j

 ε(Nβei) = B


Nβδ1i

Nβδ2i

Nβδ3i

 (2.22)

where δ1j is the Kronecker’s delta.
In a similar way, the discretization of the RHS of the weak form of the boundary prob-

lem, Equation (2.17), can be obtained by expressing displacements u and virtual displace-
ments v in terms of the approximated displacement defined by Equation (2.18). That is,

∫
Ω

ρfividΩ +

∫
Γi2

hividΓ =

∫
Ω

ρfiv
β
i Nβ dΩ +

∫
Γi2

hiv
β
i Nβ dΓ

= vβi

(∫
Ω

ρfiNβ dΩ +

∫
Γi2

hiNβ dΓ

)
(2.23)

The discrete version of the weak form of the boundary problem for a linear elastic
material can be obtained by replacing Equations (2.23) and (2.21) into Equation (2.17).

uαj v
β
i

(∫
Ω

Crsεs(Nαej)εr(Nβei)dΩ

)
= vβi

(∫
Ω

ρfiNβdΩ +

∫
Γi2

hiNβdΓ

)
(2.24)

Since the virtual displacement v is arbitrary, Equation (2.24) yields the finite element
equation

uαj

(∫
Ω

Crsεs(Nαej)εr(Nβei)dΩ

)
=

(∫
Ω

ρfiNβdΩ +

∫
Γi2

hiNβdΓ

)
(2.25)

or in a simplified way

Kαβji u
α
j = Lβi i, j = 1 . . . 3 α, β = 1..nn (2.26)

where

Kαβji =

∫
Ω

Crsεs(Nαej)εr(Nβei)dΩ (2.27)

and
Lβi =

∫
Ω

ρfiNβdΩ +

∫
Γi2

hiNβdΓ (2.28)

Equation (2.25) constitutes a linear system of equations where the displacement at the
nodes uαj are the unknown variable. The matrix Kαβji is known as the stiffness matrix and
the vector Lβi is referred as the vector of loads. In order to compute the stiffness matrix
and the vector of loads, it is necessary to calculate the integral over the whole domain Ω.
In finite element analysis, the domain is subdivided into a set of elements Ω =

∑
e Ωe, so
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the stiffness matrix can be calculated as the sum of the integrals over all the elements in
the domain, that is:

Kαβji =
∑
e

∫
Ωe

Crsεs(Nαej)εr(Nβei)dΩe (2.29)

Computation of the integrals over the elements depends upon the geometry of the
element and shape functions are selected to approximate the displacement. The following
section introduces the representation of the domain under the extended finite element
proposal and presents the integration of the shape functions using high order polynomials.

2.3 An enriched Finite Element Method (X-FEM)

To deal with complex geometries and the subsequent problems with numerical integra-
tion and treatment of essential boundary conditions, the the eXtended Finite Element
Method (XFEM) was developed around the year 2000, with the aim of mesh simplification
in crack propagation problems [7]. In this method, some mesh boundaries are implicitly
represented by the iso-zero values of a level set function. This has proven useful when
following the evolution of cracks as moving interfaces.

The basic notion of partition of the unity [8] is used to enrich the finite element approx-
imation with additional functions, the modeling of crack tip expansion serves as example
of this treatment and its consequences on convergence rates [9]. To solve problems that
involve topological and geometrical changes X-FEM presents as a good alternative to
classical FEM.

Level Set functions are used to define the enrichment functions, allowing to determine
the distance to the interface on a given point. The integration must be done carefully over
elements that comprise a discontinuity and are enriched with additional functions to form
correctly the element stiffness matrix, this can be done without meshing the interfaces.
Partition cells are the elements that are split for separate regular integration on each of
the sides of the iso-zero of the LS.

The LS is used to determine wether the partitioned integration cell is within the material
or not when the case of a free surface. But when multiple interfaces or crack propagation
is being considered, additional functions for the displacement field are needed [10].

The integration procedure then becomes under X-FEM a challenge comparable to sur-
face representation under FEM. Replacing the discontinuous, non-differentiable functions
with equivalent polynomials is presented to avoid the subdivision of elements during inte-
gration of the stiffness matrix. This proposal works only with straight discontinuity across
an element and linear shape functions. Yet, good result with linear LS in linear elements
have been achieved, even applied to curved geometries [11].

The previous approach proposes a representation of the LS on a finer submesh par-
allel to the finite element mesh, the representation of the LS is maintained as piecewise
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linear on each element, but no DOF are added to the actual mechanical field. A strat-
egy to use high order X-FEM is introduced, this is also applied to domains with curved
boundaries.

As the order of the polynomials is raised the integration procedure becomes com-
putation intensive. A solution to this problem is explored with the aid of current parallel
computing capabilities that could alleviate the load and computation times significantly.

2.3.1 eXtended Finite Element Method

The problem is treated under the assumptions of a linear elastic, isotropic homogeneous
solid, the same conditions mentioned on section 2.2 are applied, from which the same
treatment and governing equations as in FEA are used. Small strains and no volumic
forces are considered.

As discussed on the FEA section, the domain Ω is discretized into elements -finite
elements- which constitute a mesh. Over these elements and approximation of the dis-
placement field is done:

u(x) =
n∑
i

φi(x)ui (2.30)

where φi(x) are the finite element shape functions, and ui are nodal displacements. Using
the X-FEM approach, conforming the mesh to internal geometric characteristics such
as holes, cracks, material interfaces is not mandatory. Hence, the possibility of using
structured or unstructured simple meshes. Then, the FEA approximation is enriched with
additional functions that approach the behaviour of boundaries as:

uh(x) =
∑
i∈N

φi(x)ui +
∑
j∈Ng

φj(x) F(x)aj (2.31)

where F (x) is the enrichment function, aj are the additional DOFs for enriched nodes, N
is the mesh node set, and Ng the enriched nodes set. When the mesh nodes conform to
geometrical characteristics, the classical finite element approximation is recovered.

2.3.2 High Order X-FEM

Classically , linear approximation shape functions φi(x) and linear LS are used in X-
FEM. Rates of convergence close to optimal or optimal are achieved for given cases
like material interfaces or cracks ([11], [10]).

High order shape function applied to the FE approximation have been used to accel-
erate the convergence of the method. Yet, the convergence rates are highly dependent
on the quality of the geometrical representation, unless the description is improved, geo-
metrical errors surpass the approximation errors [1].
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The approach presented in such paper is to improve the description of the discontinuity
to conform more to the real geometry maintaining a linear representation. A finer mesh
to represent the level set is used, preserving the number of DOF of the real mesh, hence
keeping the mechanical field intact. This approach allows to improve the representation
of discontinuities and boundaries in a simple manner. This mesh is refined recursively
up to a determined depth (as can be seen on Figure 2.4) to conform to the geometry but
staying parallel to the computational mesh that remains unchanged.

2.3.3 Numerical Integration

Direct integration over discontinuous elements is not feasible, special care is taken over
the cells where the iso-zero value level set intersects, a partition is created to generate
integration cells (see Figure 2.3). These parted elements are tied to the computational
mesh elements [7]. Then, a simple Gauss integration can be done on the cell that corre-
sponds to the side on the element with material.

Figure 2.3: Numerical integration: partition creation

The resulting partition cells are classified depending on their distance to the interface,
wether there are on the material or the void side (See Figure 2.4). The validity of this
process on a benchmark problem is shown by the convergence of the energy norm on
[1].

2.4 General Purpose GPU Computing

Current roofs on clock speeds for processors of major chip companies pushed the ef-
forts from achieving higher clock speed to increasing the number of cores available in a
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Figure 2.4: Numerical integration with High order X-FEM -Element associated partition-
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processor. As Intel is bounded to top clock speed of 4GHz and AMD to 3GHz due to
technical and power constraints. Though placing more cores into the processor boosts
performance, this performance is not significantly improved unless the algorithms are de-
veloped with parallel computation in mind.

Parallel computing has been tackled over the past years with notable results, yet the
access to HPC computing lies only by the ones with the monetary capacity to acquire
quite expensive systems (i.e: Clusters, either blade-type or shared memory). Such con-
ditioning has pushed the development of new strategies to approach scientific computing
in a different manner.

One of these approaches, and one that has gotten a lot of attention is General Pur-
pose Computations using Graphics Processing Units (GP-GPU). GPU have increased in
capacity, precision, performance and programmability at incredible rates. Being one of
their main driving forces the multi-billion dollar gaming industry, innovations in hardware
architecture and capabilities are increasing at elevated rates.

Figure 2.5: Scalability of GPU computation

Given the specialized architecture of GPUs it is possible to add more processors to
perform computations, and increasing memory transfer bandwidths and cache sizes keep
bringing great computation power to commodity graphic cards. Making GPUs and GPU
oriented code highly scalable (See Figure 2.5). Recent advances brought double preci-
sion floating point operations on graphic cards, one much expected characteristic to finally
give the status of scientific computing capable to GPUs. Even so, using single precision,
a wide set of applications on scientific computing were already developed (i.e Physically
based problems, linear systems solution and PDE treatment).
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With problems being solved in engineering increasing in size due to modeling even
more characteristics, taking advantage of coming supercomputers using GPUs for a frac-
tion of the cost and with increased FLOPs (Currently on the TFLOPS range) becomes
an appealing solution. But it is not as simple as porting code to a different language, but
where the problem to treat involves several operations over the same or shared data, and
parallelizable parts, then an attempt at developing a solution using GPGPU might prove
worthy. Each of the cores on the card can execute simultaneously an amount of threads
(process/operation) on data. Problems are split into Grids, which contain blocks, which
execute within them the number of threads set by GPU capabilities. All threads within a
block are expected to be within the same core (currently at 1024 threads) then if the prob-
lems demands less threads more blocks can be adjusted to fit in each core, and is this
architecture that takes advantage at maximum of the available resources and of parallel
computing techniques (see Figure 2.6)

Figure 2.6: Thread hierarchy

“Driven by the insatiable market demand for realtime, high-definition 3D graphics, the
programmable Graphic Processor Unit or GPU has evolved into a highly parallel, mul-
tithreaded, many-core processor with tremendous computational horsepower and very
high memory bandwidth ”[12].

Not every problem or code can be ported to the GPU for processing, there are prob-
lems that are inherently serial. In cases where the majority of the problem cannot take
advantage of the GPU raw power, there are portions that can still be though of in parallel
and thus can be solved using the GPU, still achieving speed ups that are well worth the
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Figure 2.7: Programming model and execution

thinking. Portions of code that can be treated in parallel are compiled into kernels which
are to be executed directly onto the cores of the GPU (See Fig. 2.7). Currently there is
still strong coupling within CPU and GPU when solving a given problem, communication
is unavoidable but should be spared to the minimum. There are current efforts by the
major GPU manufacturers to develop more coupled CPU/GPU chips that improve the bus
bandwidth or even remove the barrier currently between GPU and CPU.

2.5 GPU Computing Programming Language

CUDA is a general purpose parallel computing architecture and programming model. A
new programming model and set of instructions allows the user to take advantage of
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the raw power on nVidia GPUs, to solve many complex computational problems more
efficiently than in a CPU.

A software environment and the necessary tools to profit from the GPU are provided
by nVidia, C is used as a high level programming language -on which most of the imple-
mentations and core developing has been done-. As well, other APIs have been made
available to allow more programming flexibility, such as CUDA Fortran, DirectCompute
and OpenCL. Aside from the core components, community interest has played a role
in porting and developing multiple sets of tools and instructions. Widely used routines
and libraries, like BLAS, FFT, Sparse Matrix treatment and RNG are provided within the
framework.

Improvements in GPUs and their architecture brought double precision capacity, which
made possible a new standard of super computing for scientific simulations. With the
advent of CUDA enabled GPUs into personal computing, the capacity to do scientific
computing in personal computers or laptops became feasible. It is of interest to explore
the advantages of such language extension developed by NVidia. The availability of many
cores for data processing on a single machine (way more than typical CPUs) gives the
developer the possibility to create and evaluate the performance and scalability of parts
of the code subject to parallelization.

2.6 Application possibilities of GPU in X-FEM

The numerical integration that takes part in the calculation of the stiffness matrix is an
operations intensive procedure. Depending on how the basic operators are arranged
and coded, treatment of the shape functions, derivatives, determinant calculation and
Jacobian are all recurrent operations. Regardless of how the problem is solved, they all
depend on the geometry of the element, number of nodes and amount of shape functions
and their degree. As well, the complexity of the problem to solve and the approximation
used determines how computational intensive the calculation of the solution becomes.

Degree of the approximation
Number of: 1 2 3 4 5 6 7
Shape Functions: 6 18 40 75 126 196 288
Nb. Ae Entries: 36 324 1600 5625 15876 38416 82944
Gauss Points: 6 18 48 80 150 231 336

Table 2.1: Characteristics of the numerical integration

The case of interest involves using higher order polynomials and special elements
from which the integrals are computed. They must be computed at runtime, and can
demand a significant portion of the process in the FE solution. The parameters that
shape the computational characteristics of the numerical integration are the amount of
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shape functions used per element, which as well determine the amount of entries of the
local element stiffness matrix, and the number of gauss points needed for the integration
depending on the degree of the polynomial are summarized on Table 2.1 for the 3D case.

Treating the computation of shape functions together for each element can increase
the memory needs with the increase of p. With the constraint of limited fast memory
resources shared for each thread within a core in a GPU, a proper strategy is necessary.
Most cases in-house implementations, tailored to the algorithms are developed to harness
the maximum computing power [13].

The typical approach to numerical integration where subsequent loops are used will
render a number of operations that depend on the number of integration points and the
degree of the shape functions. Thinking in parallel architecture as specially in CUDA GPU,
kernels, which are operations that can be performed for several elements -the concept of
the loop- take their place but must be carefully planned to have the proper information
available. Depending on the geometry of the finite elements, the type of problem be-
ing solved and the approximation used, the precise numbers of operations vary. Even
for larger problems, having the option of massive amounts of processors available is a
tempting alternative to speed up the solution.

An interesting approach to the integration procedure is presented in [14]. Suggesting
an algorithm that is planned for the architecture of the GPU computing model. Given
the limited resources available for a single thread, the most used information should be
available in the fast shared memory that is associated to each multiprocessor core. Allow-
ing entries to be calculated concurrently and place the necessary data available on the
shared memory, also make access patterns as optimal as possible. The main character-
istics noted and that come from the nVidia standards are -as shown in section 2.4-:

• A warp is a set of 32 threads that are simultaneously executed by hardware.

• Blocks (or threadblocks) are groups of warps that are synchronized by operations
and access the same shared memory.

• Groups of blocks will form a Grid, which executes the same kernel for all composing
threads.

Limitations on resources are:

• The amount of registers that are allocated by the compiler.

• The size of the shared memory (fast) is 16KB.

• The constant memory as cached device memory filled by the running host code, yet
slow for transfers between main memory and device memory.

To optimize resource utilization some steps must be followed. Have as many possible
threads being filled with data, this improves the performance of the thread scheduling.
Also if multiple blocks are concurrently processed on a MP the computation efficiency is
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increased. Since threadblocks are multiple of 32, there will always be a chance for idle
threads depending on the mesh, or that a threadblock is not enough for the given stiffness
matrix entry.

The results rendered by the model presented on [14] on a simple physical problem are
encouraging. The hardware used dates from 2009-2010, in the past year chip technology,
memory bandwidth and multiprocessor count has seen significant increases. In their
results, speed-ups of up to 20x vs. the CPU are observed. In Table 2.2 are shown
the execution times in milliseconds and speed-up GPU versus CPU for the numerical
integration algorithm with different orders of approximation p using GeForce 8800GTX
GPU and AMD X2 CPU.

Degree of the approximation
p=1 p=2 p=3 p=4 p=5 p=6 p=7

CPU core time per element(s): 0.006 .103 1.164 6.543 33.834 125.039 390.167
GPU multiprocessor time per element(s): 0.006 0.046 0.466 6.596 46.271 257.341 889.719
Speed up (1 core, 1 multiprocessor): 1.07 2.25 2.50 1.0 0.73 0.49 0.44
Speed up (2 core, 16 multiprocessor): 8.56 18.0 19.98 7.97 5.85 3.89 3.51

Table 2.2: Results of numerical integration for FE example
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3. Implementations and Tests

3.1 Cuda functions

Once the functionality of CUDA was ported to the X-Fem suite, proper tests were done
to corroborate correct communication with the device(s), memory copying back and forth
the device, basic operations and overall performance. The routines implemented were
an interface that allows the xfem classes and methods to gain use of CUDA functions.
Issues like memory allocation, memory copying and correct type casting -when absolutely
necessary- were considered in the process.

3.1.1 Checking the Device

Using some CUDA set of functions, checkCuDevices included a query on the device name
and capabilities. It was used to prove the X-Fem suite was properly initializing the CUDA
environment, detecting the device(s) and communicating with it. A small modification to
a class in the file xForm.h was done to call the function and check both the X-Fem library
was accessing CUDA properly and the implemented functions were working correctly.

Using properly the capabilities of CUDA depends highly on the correct planning of the
implementations and proper practices. As any parallel oriented software development,
scalability and compatibility must be considered to create a sustainable computational
tool. Acquiring proper information from the characteristics of the system in place, its capa-
bilities, and making this variables determine how the application will handle the resources
is of great importance.

Using a pre-compiled binary from the CUDA source code examples deviceQuery, the
characteristics of the graphic card and the CUDA environment are displayed for informa-
tion to be considered in the context of the tests and benchmarks.

deviceQuery Output:

CUDA Device Query (Runtime API) version (CUDART static linking)

There is 1 device supporting CUDA
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Device 0: "GeForce 9400M"

CUDA Driver Version: 3.20

CUDA Runtime Version: 3.20

CUDA Capability Major/Minor version number: 1.1

Total amount of global memory: 266010624 bytes

Multiprocessors x Cores/MP = Cores: 2 (MP) x 8 (Cores/MP) = 16 (Cores)

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 16384 bytes

Total number of registers available per block: 8192

Warp size: 32

Maximum number of threads per block: 512

Maximum sizes of each dimension of a block: 512 x 512 x 64

Maximum sizes of each dimension of a grid: 65535 x 65535 x 1

Maximum memory pitch: 2147483647 bytes

Texture alignment: 256 bytes

Clock rate: 1.10 GHz

Concurrent copy and execution: No

Run time limit on kernels: Yes

Integrated: Yes

Support host page-locked memory mapping: Yes

Compute mode: Default

Concurrent kernel execution: No

Device has ECC support enabled: No

Device is using TCC driver mode: No

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 3.20, CUDA Runtime

Version = 3.20, NumDevs = 1, Device = GeForce 9400M

It displays that the latest CUDA driver and runtime are being used (to date 02/2011),
and that the card capabilities regarding architecture are of 1.1, which means doubles are
not supported. Also another interesting aspect is the number of multiprocessors, which in
this card is 2 (with 8 cores per MP). From the Nvidia reference [12], a number of maximum
1024 threads (lightweight processes) are available per multiprocessor on current GPUs,
which on a dedicated card becomes an appealing number of processes available.

The characteristics of the computer used during the development and its hardware are
shown to set the parameters of the test.

3.1.2 Checking Operability

Once the detection and communication to the device had been proven, the following step
was to use a tweaked example of the vector addition provided by the CUDA source code
examples to corroborate the proper use of the X-Fem library of this environment and its
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Machine Apple MacBook Pro
Operating System OS X (10.5.8)

Processor Intel Core 2 Duo
P8400 @ 2.26 GHz

RAM 6 GB DDR3
Bus Speed 1.07 GHz
L2 Memory 3 MB

Graphic Card Nvidia GeForce 9400M
(256 MB VRAM) 64 MB

Table 3.1: Hardware Characteristics

capacities. Given the card used has not Fermi architecture and does not support double
precision operations, float type is used throughout the tests.

Vector Addition

The vectorAddition example allocates memory for an arbitrary vector size in the host and
device, it initializes each vector with a set of random values and copies this set to the
device memory before the kernel is called to perform the operation over it. Once the
operation has been performed, a comparison is made between the computation from the
CPU and the GPU to a tolerance of 1e− 5.

Vector Size (N) 5000000
GFlops to perform 0.005000
Memory allocation time (Device) [s] 0.385615
Memory copying time (To Device) [s] 0.024941
Memory copying time (To Host) [s] 0.043163
Processing Time (GPU) [s] 0.000177
Processing Time (CPU) [s] 0.017934
Total time (GPU) [s] 0.471841
GFlop/s (GPU) 28.225464
GFlop/s (CPU) 0.278802

Table 3.2: Vector addition test (N=5e6)

Given the total time to allocate and copy memory to the device are to be added to
consider overall performance, the total time rendered by the vector addition on the GPU is
over 26 times greater than the time needed by the CPU (see Table 3.2). Considering that
raw processing times are considerably different, the GPU is over 101x faster to perform
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the calculations alone. The main concern is to take advantage of the raw processing
power without having high memory transfer loads.

Vector Size (N) 10000000
GFlops to perform 0.010000
Memory allocation time (Device) [s] 0.383140
Memory copying time (To Device) [s] 0.049882
Memory copying time (To Host) [s] 0.086439
Processing Time (GPU) [s] 0.000181
Processing Time (CPU) [s] 0.036724
Total time (GPU) [s] 0.556377
GFlop/s (GPU) 55.188211
GFlop/s (CPU) 0.272301

Table 3.3: Vector addition test (N=1e7)

Using a set of vectors of one order of magnitude greater, the results are comparable
and as expected, the increased number of elements reflect on higher times for copy to
the device (memory allocation time is preserved). As well, the actual time to perform the
operations increase proportionally. The processing time is above 200x faster in the GPU
than the CPU, which confirms the tendency when using GPU resources in highly parallel
operations.

One of the main concerns when attempting to use the GPU to co-process is the actual
time that is spent in data transfer. The approach is justified only when the amount of
operations done over the data is large enough to compensate for the time spent in transfer.
From this basic example we can obtain key information. It is a simple example and the
level of complexity of the operations performed over the data is quite basic, only one
addition per entry is performed. The time spent allocating memory for the vectors and its
copy to the device has to be taken into account when attempting to improve operations
in the code, it is not just the amount of floating point operations that can be performed by
the device.

3.2 Using CUBLAS Library

CUBLAS is an implementation of the widely used Basic Linear Algebra Subprograms
(BLAS) on top of the CUDA driver, it has no direct interaction with the CUDA driver and it
is handled at the API level. CUBLAS is one of the libraries that has been implemented in
CUDA to take advantage of the GPU computing power.

The basic usage model for applications using CUBLAS is:

1. Create either matrix or vector objects in GPU memory.
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2. Fill the created objects with data.

3. Perform a call to any CUBLAS function.

4. Upload the results from the GPU memory back to the host memory.

In order to do this, CUBLAS provides a set of helper functions that allow to create
and destroy objects in GPU memory space. Also, helper functions to write and retrieve
data are provided. The interface to the CUBLAS library is the header file cublas.h, the
application to be compiled must link to cublas.dylib in OS X (See Appendix C). With the
proper definitions and aware of the workflow, a C/C++ interface of the CUBLAS functions
for the developed application can be done.

3.2.1 Interface to CUBLAS

The workflow for any CUBLAS call follows the same guidelines each time independent
of the routine to be called. The variables to be passed to the CUBLAS function will be
taken from the environment in which the library is linked to. It is important to be able to
maintain the coherence of the variables and structures being used within X-Fem while
implementing the calls to CUBLAS.

Using cublasDgemm

One of the routines that are widely used along the X-Fem suite is the general matrix-
matrix multiplication output or DGEMM by its initials. An interface definition is provided
for the X-Fem suite in the header file xBlasDef.h, this definitions link to the local BLAS
version or system BLAS (given the case that the environment is Linux and system BLAS
is proved compatible). The system BLAS routines are also provided on OS X, including
the proper header files and making the function calls is treated later. This definitions were
written to provide a proper port of the variables and data structures used within X-Fem
and use them in BLAS function calls.

Maintaining the structure of the provided code and its variables, an interface to cublas-
Dgemm was developed to pass correctly the variables and performing the necessary
procedures over the data.

1 void cublasDgemm ( char transa , char transb , int m , int n , int k , ←↩
double alpha , const double *A , int lda , const double *B , int ldb , ←↩
double beta , double *C , int ldc )

This calls are equivalent to the one made on dgemm, where a small difference in the
input is to be observed in reference to the OS X system BLAS call. In the CUDA im-
plementation the column major storage is preserved from BLAS, whereas in OS X the
ordering of the data must be specified.
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1 void cuDgemmInterface ( CUresult &error , char transa , char transb , int ←↩
m , int n , int k , double alpha , const double *h_A , int lda , const ←↩
double *h_B , int ldb , double beta , double *h_C , int ldc )

To maintain a black-box approach to the CUDA environment when profiting from li-
braries such as CUBLAS, a function that performs the required memory allocation and
copying to the device was written. Where the variables that hold the data: const double

*h A, const double *h b and double *C. Represent memory space in the host and have
to be treated to operate on the device. Am overall outline of the operations can be de-
scribed as:

1. Initialize CUBLAS environment (cublasInit()).

2. Initialize device memory space for the matrices to operate (cublasAlloc(...)).

3. Transfer the data of the matrices to the device memory space (cublasSetVector(...)).
Also cublasSetMatrix can be used, it depends on the storage form and indexing
being used. All matrices must be initialized, including matrix C.

4. Call to cublasDgemm(...).

5. Retrieve output matrix from device memory space.

6. Allocated memory clean up.

Using cublasSgemm

Since the hardware available during the development was not able to handle doubles, for
proof of concept purposes the same interface adapted to cublasSgemm was implemented.

1 void cublasSgemm ( char transa , char transb , int m , int n , int k , ←↩
float alpha , const float *A , int lda , const float *B , in float *C ,←↩
int ldc )

As before, an interface to handle the cublas call, memory allocation and copying to
device was made. The outline and operations performed are equivalent to the ones of the
cuDgemmInterface.

1 void cuSgemmInterface ( CUresult &error , char transa , char transb , int ←↩
m , int n , int k , float alpha , const float *h_A , int lda , const ←↩
float *h_B , int ldb , float beta , float *h_C , int ldc )
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Using cublasDaxpy

Another routine that is frequently used across the X-Fem code, and is also defined in
the interface header file xBlasDef.h is DAXPY. This is a double precision vector-scalar
multiplication and addition method. The operation performed is alpha ∗ x + y. The basic
CUBLAS call needs as well of the same outline described previously and an interface to
handle this operations transparently for the X-Fem environment was also implemented.

1 void cublasDaxpy ( int n , double alpha , const double *x , int incx , ←↩
double *y , int incy )

As in the previous implemented methods, the CUBLAS environment must be initial-
ized, the memory space in the device must be allocated and contents must be copied, all
this operations are performed inside a function that provides the interface to X-Fem.

1 void cuDaxpyInterface ( CUresult &error , int n , double alpha , const ←↩
double * x , double * y )

The same basic steps from the outline are taken, both double vectors are initialized in
device memory space, vector y is to be rewritten and retrieved from the device.

Using cublasSaxpy

For the same reasons stated earlier, the hardware available during development was not
able to handle double precision. Hence, for proof of concept purposes and testing results
the same interface done for cublasDaxpy was done for cublasSaxpy.

1 void cublasSaxpy ( int n , float alpha , const float *x , int incx , float←↩
*y , int incy )

The same interface is provided to handle single precision as in the previous examples.

1 void cuSaxpyInterface ( CUresult &error , int n , float alpha , const ←↩
float * x , float * y )

Using CUBLAS in the X-Fem Suite

Bilinear operators are defined in the header file xForm.h, within some of them BLAS
function calls are used to perform operations between vectors and tensors. Within the
methods implemented in the classes that use BLAS functions the CUBLAS interfaces can
be implemented.

As an example, the class xFormBilinearSymetricWithLawTensor2BlasCUDA is a mere
transcript of the class xFormBilinearSymetricWithLawTensor2Blas which implements
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BLAS calls to improve the performance of the integration scheme. Both DGEMM and
DAXPY routines are used in the method xFormBilinearSymetricWithLawTensor2Blas::

accumulate( xGeomElem* geo integ )

1 template <typename OperatorLeft , typename MaterialLaw>
2 class xFormBilinearSymetricWithLawTensor2Blas : public xFormBilinear←↩

{
3 . . .
4 public :
5 . . .
6 void accumulate ( xGeomElem * geo_integ ) {
7 . . .
8
9 double * testpp = new double [ test_size * test_size ] ;

10 double * vals_left = new double [ 9 * test_size ] ;
11 double * vals_right= new double [ 9 * test_size ] ;
12
13 . . .
14 for ( int k = 0; k < nb ; k++){
15 . . .
16 / / Geometric data handl ing
17 for ( int i = 0; i < test_size ; ++i ) {
18 . . .
19 / / Shape f u n c t i o n eva lua t i on i n the domain
20 }
21 int nop = 9;
22 int ts = test_size ;
23 dgemm_ (&TRANSPOSE , &NOTRANSPOSE , &ts , &ts , &nop , &ONE , ←↩

vals_left , &nop , vals_right , &nop , &ONE , testpp , &ts ) ;
24 }
25 axpy ( 1 . , testpp , Matrix ) ;
26 . . .
27 }
28 } ;

The values of the shape functions by left and right at the integration points are stored
for every element in arrays. These arrays are taken as input in the dgemm (...) call.

Where there were local BLAS calls, which used the interface defined in xBlasDef.h,
the CUBLAS interface is replaced. This reads:

1 template <typename OperatorLeft , typename MaterialLaw>
2 class xFormBilinearSymetricWithLawTensor2BlasCUDA

3 : public xFormBilinear

4 {
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5 private :
6 const OperatorLeft Left , Right ;
7 MaterialLaw& Law ;
8 typename MaterialLaw : : result_type phys ;
9 public :

10 xFormBilinearSymetricWithLawTensor2BlasCUDA ( MaterialLaw& law ) : ←↩
Left ( OperatorLeft ( ) ) , Right ( OperatorLeft ( ) ) , Law ( law ) {}

11 xFormBilinearSymetricWithLawTensor2BlasCUDA ( OperatorLeft& l , ←↩
MaterialLaw& law ) : Left ( l ) , Law ( law ) , Right ( l ) {}

12
13 void accumulate ( xGeomElem * geo_integ ) {
14 CUresult error ;
15 . . .
16
17 #pragma omp parallel

18 {
19 . . .
20
21 for ( int i=0; i< test_size * test_size ; ++i ) testpp [ i ] = 0 . ;
22 #pragma omp for

23 for ( int k = 0; k < nb ; k++){
24 . . .
25
26 for ( int i = 0; i < test_size ; ++i ) {
27 . . .
28 }
29
30 char TLeft = 'T' ;
31 char TRight = 'N' ;
32 int nop = 9;
33 double one = 1 . ;
34 int ts = test_size ;
35
36 cuDgemmInterface ( error , TRANSPOSE , NOTRANSPOSE , ts , ts , ←↩

nop , ONE , vals_left , nop , vals_right , nop , ONE , testpp ,←↩
ts ) ;

37 }
38 #pragma omp critical

39 cuDaxpyInterface ( 1 . , testpp , Matrix ) ;
40 . . .
41 }
42 }
43 } ;

The same variables and outline is kept, only an error checking for the CUDA envi-
ronment is set both for DAXPY and DGEMM interfaces. The variables that reflect the
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performance of such changes can be monitored in the integration time. Careful testing of
memory allocation and copying to memory space in the device was done. This provides
a detailed map of the performance of this alternative.

Both versions of SAXPY and SGEMM were implemented in order to prove functionality
in the code. The single precision available for the hardware used during the development
did not allowed the use of the actual code data types. A working example became neces-
sary to benchmark BLAS and CUBLAS as it was done with the vector addition example.

3.3 Using OS X BLAS

The development included porting the X-Fem suite to OS X system. Apple’s SDK com-
prises a set of frameworks that offer commonly used functions and custom compiled li-
braries. It also offers a BLAS implementation compiled under the darwin architecture
included in the vecLib framework or also in the Accelerate framework. The functions
declared in the header files cblas.h and vblas.h, contain the interfaces for Apple’s imple-
mentation of the BLAS API.

Given a system architecture it is recommended to use system specific libraries to
increase performance, with minor editing on the code the adequate function calls can be
made. After including the header file cblas.h and declaring the appropriate variables, calls
to DAXPY and DGEMM can be done quite straightforward. The usual template for using
BLAS routines is cblas <Blas routine name>(...). To call DGEMM from xForm.h, certain
version specific variables must be declared, these variables play the same role as the
flags in BLAS or CUBLAS calls. In OS X the method can be oriented to be row major or
column major, the latter is the one by default used in CUBLAS and BLAS.

1 CBLAS_ORDER Order = CblasColMajor ;
2 CBLAS_TRANSPOSE TransA = CblasTrans ;
3 CBLAS_TRANSPOSE TransB = CblasNoTrans ;
4 cblas_dgemm ( Order , TransA , TransB , ts , ts , nop , ONE , vals_left , nop ,←↩

vals_right , nop , ONE , testpp , ts ) ;

Routine Integration time
cblas dgemm 0.613498
dgemm 0.611556

Table 3.4: Performance for BLAS implementations 1

Other widely used routines like DAXPY had to be adapted in a different way. There
was an interface already programmed that used function overloading depending on the
input data type. axpy is the interface defined in the header xFemMatrix.h which calls the
BLAS interface definition daxpy from xBlasDef.h.
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1 inline void axpy ( const double & a , const xFemMatrix &X , xFemMatrix &Y←↩
) {

2 int one =1;
3 int N = X . nbrow *X . nbcol ;
4 daxpy_ ( &N , const_cast< double *> (&a ) , const_cast<double *> (&X .←↩

vals [ 0 ] ) , &one , &Y . vals [ 0 ] , &one ) ;
5 } ;
6
7 inline void axpy ( const double & a , const double * X , xFemMatrix &Y ) {
8 int one =1;
9 int N = Y . nbrow *Y . nbcol ;

10 daxpy_ ( &N , const_cast< double *> (&a ) , const_cast<double *> ( X ) , &←↩
one , &Y . vals [ 0 ] , &one ) ;

11 } ;

There are 2 definitions that are overloaded depending on the input data type, the dif-
ference lies wether the vector addition is performed between a double * and xFemMatrix

or betweeen two xFemMatrix. Inside the overloaded function the call to daxpy is done
to match the interface data types for BLAS. The same can be done to use cblas daxpy,
adding the header cblas.h and editing these inline methods gives the intended result.

1 inline void axpy ( const double & a , const xFemMatrix &X , xFemMatrix &Y←↩
) {

2 int one =1;
3 int N = X . nbrow *X . nbcol ;
4 cblas_daxpy ( N , a , const_cast<double *> (&X . vals [ 0 ] ) , one , &Y . vals←↩

[ 0 ] , one ) ;
5 } ;
6 inline void axpy ( const double & a , const double * X , xFemMatrix &Y ) {
7 int one =1;
8 int N = Y . nbrow *Y . nbcol ;
9 cblas_daxpy ( N , a , const_cast<double *> ( X ) , one , &Y . vals [ 0 ] , one )←↩

;
10 } ;

Routine Integration time
cblas daxpy 0.616095
daxpy 0.619433

Table 3.5: Performance for BLAS implementations 2
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4. Results

With proper interfaces and wrappers for the necessary functions, the test to some of the
most used routines could be done. Among the routines used from BLAS, corresponding
CUBLAS wrappers were developed to handle the memory passing and operations.

Given the nature of the test, the routines are not deployed in their most optimized form,
but they still yield proportional results. As well, given the asynchronous nature of the
execution of the kernels in the GPU cores, thread synchronization control was extensively
used to maintain timing coherency.

Tests were developed for variable array sizes, in the case of sgemm, and for simplicity
purposes in implementation square matrices were employed. Given the data structures
in the code, a different approach is taken regarding the operations. The linear algebra
operations are batched as much as possible to improve efficiency.

4.1 Testing BLAS routines

Within the provided code, interfaces were already programmed to provide support for a
compiled version of BLAS. Extensive use of such operation along the many classes that
comprise the code were traced down to evaluate possible porting and implementation
into CUDA. Enabling the CUBLAS routines within the core functionality demanded the
creation of interfaces, the process is not as straightforward as it would be expected, and
they also had to allow their use with existing data structures. Some of the most employed
routines are axpy, gemv, gemm, dsyrk and norm.

From expected behavior with scalable computing routines, increasing size of the data
should prove the viability of the usage of the GPU for computations at points were the
CPU is no longer optimal.

When running release code in CUDA, methods like cudaThreadSynchronize are not
implemented. Usually a core runs the same kernel for all data going to it, meaning most of
the times all threads will finish simultaneously. The synchronization of the execution of the
kernel on each thread is not guaranteed, the kernel can still exit the routine and threads
can be executing within the GPU, even long after the serial CPU code has taken over the
execution. A good code design would take advantage of hardware implementations to
guarantee the highest level of synchrony possible, yet sparing the use of time consum-
ing routines. Once again, for testing purposes and in order to be able to time correctly
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the operations being performed, methods to record the events when threads have been
synchronized are used.

Figure 4.1: Array Fill time comparison for data preparation

In Figure 4.1 an example where an array is filled with constants is shown. A square
array of nxn is passed to the routine, when the size of the array is small (n=200, 40000
elements) the difference is not as steep as when the size of the array goes over 1.5 million
elements. Each element is a single precision float -which means 4B, around 5.5 MB-, this
is important since the amount of local fast memory within each GPU core is limited. It
can be seen how out of independent operations the most profit can be made out of the
GPU, the array is scattered in blocks that are sent along each core. In this way we see
differences in average of 6x better times on the GPU when the array size is big enough.
As discussed on Section 3.1.2 in the vector addition evaluations.

Even if the amount of GFLOPs is not as impressive as would be expected, the su-
periority of the GPU is clearly observed (See Figure 4.2). The oscillating pattern on the
GPU could be a matter of data handling, as mentioned, to each core where the kernel is
executed a number of blocks is assigned, each block comprised of an amount of warps,
which contain 32 threads -constants set by nVidia in their architecture-. A kernel that is
executed over data of size multiple of 32, or data that is more likely to fill all of the cores
it is executed in, is more likely to be highly efficient, full blocks and full cores with no idle
threads make a solid base for highly optimal running code.

The timings that could be observed with the BLAS calls of sgemm between the CPU
and the GPU are not far apart (See Figure 4.3). The difference in milliseconds does not
encourage the use of CUBLAS given the overhead cost of pushing the data to the GPU
back and forth on the process.
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Figure 4.2: Array Fill Gflops comparison for data preparation

Figure 4.3: Comparison of times for sgemm BLAS call

One reason encountered that was predominant throughout all of the tested applica-
tions was the overhead comprised by an idle card and the type of memory being used.

A significant difference is noticed when changing from shared to pinned memory, for
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which some implementation to call the proper memory allocation and deleting functions
were made (see cublasHostAlloc() on [15]). The drawback of using pinned memory is its
limited availability -depends on the system- and increased cost of allocation. If the type
of problem allows so, and the amount of data to be processed does not exceed system
limitations, pinned memory offers great advantage in memory transfer. This presented
problems in the current settings given the available GPU is not fully dedicated.

Testing beyond 4 million element arrays was not possible with current hardware capa-
bilities, and as seen on 2.1 the number of entries to the arrays involved in the operations
escalates rapidly when increasing the degree of the approximation. On Figure 4.3 the
execution of both BLAS and CUBLAS routines can be followed, as described in previous
sections the BLAS implementation is hardware oriented and optimized for the apple’s intel
processor. The previous characteristic makes the scheduling tasks more efficient in the
CPU than the GPU, giving the CPU still an advantage unless other implementations are
done over the GPU code.

Figure 4.4: Comparison of Gflops for sgemm BLAS call

The same behavior is observed on the overall comparison on Figure 4.4, GFLOPs are
measured in the following manner:

GFLOPs =
FLOPS/109

Time[s]

Where the time is measured from memory allocation to the copying back to the device,
In the case where the copying time could be avoided the performance in GFLOPS of the
GPU surpasses greatly the CPU. On the used hardware, the theoretical limit of GLOPS
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is calculated as:

Theoretical GFLOPs = ClockSpeed[GHz] ∗ Nb. Cores ∗ (FADD + FMUL)

Where the FADD and FMUL stand for the amount of floating point sums and multiplica-
tions a core can make in a clock cycle (3 in current hardware). This renders a theoretical
ceiling of 54 GFLOPS, a measure way below current market standards on dedicated
cards. Yet still superior to the CPU performance even if bandwidth penalization is made
over this number and have it reduced to 1/10.
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5. Conclusions

Using the GPUs for numerical integration applied to Finite Element problems has been
proven in [14] and [13]. The applicability to the X-FEM suite is justified up to some exten-
sion. Given the nature of the code and data structures, to fully profit from the computing
power of the GPU, an important overhaul of the code must be done.

The numerical integration which carries information from the sub-mesh and the com-
putational mesh has to be tailored to function under the GPU architecture. The implemen-
tation of the CUBLAS library to use routines like gemm, gemv, axpy, dot, norm and syrk
was tested and the results given are not particularly encouraging. From the initial testing
and development some conclusions and solutions were drawn.

1. There was an initial delay that would render any operation surprisingly slow. Search-
ing for the origin of such behavior, it was found that due to hardware power con-
sumption policies, the cores remain idle unless being called to process. Allocating
memory for declared variables and memory transfers were significantly faster once
a single event was created at the beginning of the code. It works like a wake up call
to the GPU and changes radically initial response.

2. With the some of the operators for the integration provided by the X-FEM code that
were modified, initial tests proved that memory transfers were considerably expen-
sive to prove viable. single and small transfers proved to be the slowest, as could be
expected for the amount of communication against the data being actually moved.

3. Batching memory transfer calls as much as possible proved to be a more efficient
strategy when dealing with subsequent operations. Yet, the memory copying stage
and communications took a great portion of the overall computation time by the
GPU.

4. From all of the tests done in the available system, the superior processing power
of the GPU is clear, the amount of GFLOPs performed by the GPU surpass in at
least 50x to a maximum of 202x times more operations than the CPU in examples
as vector additions and axpy.

5. When the use of memory is unavoidable and intensive, the performance is improved
when using pinned memory. This type of memory is page-locked and more expen-
sive to allocate, but this drawback is compensated with higher transfer rates. Some
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modifications to functions must be done since this is not the default method to allo-
cate memory (API default is -shared-).

6. Even though the implementation of BLAS routines in CUDA has great performance,
they lack the tailored aspect that would make the use of the GPU fully viable for the
proposed problem, determining precisely how the problem is split in blocks and that
it corresponds to a single element like proposed in [14] demands further control over
the operations. Keeping data coalescence and use of virtual data to hold the proper
structure becomes necessary to fully revamp the performance of the algorithms.

7. The lack of C++ support in the current driver and API still constraint the use of
current code, forcing the copying and casting of much of the data to move to the
GPU, which is under any point of view inappropriate.

8. The use of lighter parallelization options like OpenMP offers increased efficiency
but not up to expected behavior, and yet it would be constrained to a single Thread
per core available. It would require a massive amount of CPUs to achieve results
comparable to the ones that could be obtained with the GPU. Increasing the number
of CPUs would mean increasing the communication between them, which in the
end will not yield the expected results and will prove as a time/resource consuming
option.

Given the limited amount of resources in local, fast memory to each core of the multi-
processor, the approach must be to reorganize the data structures to keep the necessary
data to perform the calculations in the GPU as much as possible. Transfer rates are still
to low to consider migrating code if overall times are not reduced significantly, even with
the breach of GLOPS performed.

Not all code is subject to use of the GPU, and there will always be serial code, reducing
the amount of data that has to be transfered from the CPU to the GPU is key to maximize
efficiency. It was proven that for recurrent transfers it is not worthy to make use of the
GPU for the computations.

It is but an initial approach that renders questioning but promising results, a change
of culture to promote development in this area would prove very fruitful. Further and
more extensive research would be a mandatory step to profit from all the new capacities
that GPUs have to offer. It is a rapidly growing field that is yielding surprising results in
scientific computing, it is a topic that should be studied further.

It is necessary to prove the implementations in more powerful graphic cards, with
greater dedicated real memory, not the shared type that even dedicated graphics cards
use in laptops.
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6. Perspectives

The challenge with code suites that have been developed over the years is to make them
sustainable over time. Allow new developers to be up to date and get deep knowledge of
the routines in order to contribute efficiently. Most of the times data structures have be-
come overly rigid and do not allow easily new implementations that change substantially
the treatment of the computation.

Some of the implementations necessary to profit from the computing capacity of the
GPU would be to code tailored routines to the x-FEM suite, like it has been done to match
their own applications on [14]. More than just the numerical integration can profit from
parallelization strategies. Mesh creation and processing, equation systems solvers are
just but a few options.

6.1 Future Work

1. Proper versioning of the code, cross-platform and architecture support should be
guaranteed. This means that when a change in the code or any of the linked libraries
or used APIs will not be affected by necessary recompiling when using different
architectures.

2. Implement tailored basic linear algebra operations, designed for the problems dealt
with in X-FEM, considering the mesh handling, operators, data- and matrix struc-
tures used. This spans along the most used routines like axpy, gemm, gemv, norm
and syrk.

3. Testing of the new routines using double precision operations. Perform benchmark-
ing regarding the desired accuracy related to the used level of precision in accor-
dance to processing time.

4. Improve memory handling given the structure of the problem, implement padding on
elements to use fully populated blocks.

5. Hardware beyond a laptop computer is necessary to perform the proper testing, ac-
cess to better graphic cards1 or even the acquisition of a CPU-GPU enabled super-

1Nvidia is quite eager to provide some hardware for development when proven to push the use of GPU
use further.
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computer (which has a cost range of a fraction of the cost of clusters being currently
purchased by universities).

6. A deeper overhaul of the code to orient it more to C for the necessary portions of
code that rely greatly on C++ structures.

7. Porting and evaluation of the newly released, driver, plug-ins and API from Nvidia
last May.
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A. Porting X-Fem Suite to Apple OS X

The process of porting code to other platforms can be time consuming. Although the
original X-Fem suite was developed as multi platform code, this did not include Apple’s
proprietary operating system. Darwin is built on top of the proven solid building blocks of
UNIX, the similarities with BSD makes the porting from Unix/Linux operating systems a
closer task.

The process of finding the information and solutions necessary to set up the de-
veloping environment implies extensive forum browsing and reference documentation
searches.

Any seasoned programmer can understand that even between different Linux flavors
code porting can be a demanding task. The process of correct library compiling and
linking, adapting compiler/architecture dependent flags proves to be a arduous process.

The X-Fem suite was also flavor dependent even on Linux platforms (experienced be-
tween Ubuntu and Suse), this difficulted the porting procedure, given the non-compatibility
of in-house code with minor reference and dependency changes.

Another difficulty that can be encountered when a suite comprehends a massive
amount of in-house and external code, is the lack of control the developers have along
the span of the code dependencies and references. Both minor and substantial changes
had to be done to the sources in order to allow compilation under darwin.

A.1 Basic Requirements

The compilation of the source code and the use of the software will require for certain
libraries and programs that are not usually available out of the box for many Linux distri-
butions or under Darwin.

The OS X version under which the X-Fem suite was compiled is Leopard (10.5.8).
The system compiler is gcc 4.0 and is set as default. In order to have openMP support,
all related system defaults for g++, gcc, cpp (and any remaining) must be redirected to
gcc 4.2 (which is also provided as supported within the system). Do this either exporting
the variables on your .bash profile file or remove and create the symbolic links under
/usr/bin. Fortran compilation has been added to gcc compilers, yet to the provided version
under Darwin, download the packages and patches required to enable this feature (It is
supposed to be supported under OS X 10.6).
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Other software and library requirements can be fulfilled by installing macports and
using the available ports from Linux. By properly setting up the system variables, the
installed ports are available to the system. See (put the macports http). Install macports.

sudo port search <portname> to look for a given port, the <portname> does not have
to be the exact software name, it can be a fragment of the name.

Some useful pieces of software that will be needed for the compilation or can be useful
for developing are:

• ndiff (necessary). File comparison tool used by the code. There is an available
port.

• gmsh (necessary). Pre and Post-processing tool used by the code. There is no
available port, yet there is an OS X version of the binary (gmsh-2.5.0-MacOSX.dmg).
and the provided source code [16], [17] can be compiled using CMake. Download
the source code and place it in a folder, it is recommended the /Users/Shared/dports
folder, it does not require super user permissions and is the folder created typically
to install deprecated or alternative ports.

– CMake. Cross-platform Make. Can be obtained using macports.

– FLTK. Fast Light ToolKit. It is also necessary to compile the graphical interface
of gmsh, there is an available port.

– Configure properly the build version of gmsh using ccmake (create a build di-
rectory inside the source and call cmake from that location).

• Boost. Well adjusted set of libraries in C++ with wide support. There is an available
port, this will also install other dependencies and boost-jam.

• Mtl. High-performance generic component library that provides comprehensive lin-
ear algebra functionality for a wide variety of matrix formats.

• tcl/tk. Language support in case your developing environment requires so. Also
necessary for InsightToolkit compilation.

A.2 Build Process

The general structure needed to obtain a functional version of the X-Fem suite is the
following (See Fig. A.1):

• The Util folder.

• The Solver folder.

• The SolverInterfaces folder.
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• The Trellis darwin folder.

• The Xfem folder.

The folder Trellis darwin has the exact same source code than the folder Trellis. The
structure of Trellis which is divided in Util , model and AOMD to be compiled as separate
module libraries is put together as a whole block of code under darwin, given some cross
referencing of compiled objects to create the module libraries. There is a structure that
has to be respected on each folder, enclosed folders named the same are there for a
reason.

Figure A.1: Necessary source code folder structure

The file hacking process that was made is described:

1. The getarch script located on the $(DEVROOT)/Util/buildUtil/buildUtil folder
was modified to fit another architecture other than Linux based or Windows. Proper
naming of $(ARCH) and $(OS) where made.

2. A configuration file for the current architecture was made, named i386 darwin as
would be the output of the getarch script. This file is located on $(DEVROOT)/Util/

buildUtil/buildUtil/config folder, given the similarities with Linux based sys-
tems a copy of x86 linux file was made and the proper hacks to fit the architecture
requirements were done.

• Proper C/C++ flags were provided to enable compilation of objects under the
given architecture.

• Adequated C++ flags were changed to enable dynamic library creation, even
though -shared flag is accepted by current customized gcc and g++ compil-
ers on darwin the -dynamiclib is the proper flag that will allow better backward
compatibility and the creation of dynamic libraries that form frameworks (ap-
ple’s developing environments).

• The -fPIC flag that corresponds to Position Independent Code, which allows
easier cross-referenced compilation of objects, is complemented on darwin
with -fno-common.
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3. On the general structure of the provided compilation tools, the implementation of two
general files in the build process of all pieces of code are extensively used. Both
make.initial and make.common located on $(DEVROOT)/Util/buildUtil/buildUtil

were edited to provide support for the new architecture. Both make.initial and
make.common use the getarch script and also use variable definitions provided in
the i386 darwin configuration file.

• The use of the getarch script is implemented on the make.initial file to provide
earlier architecture dependent linking options (library extension, paths). Given
that make.initial is invoked at the beginning of every Makefile it is practical to
add those lines.

4. The build process starts with the first building block from bottom to top. The folder
Solver contains basic foundations that are referenced all across the code. Inside
the Solver folder, darwin versions of superlu were compiled inside SuperLU/Su-
perLU 3.0 (see Fig. A.2).

Figure A.2: Solver folder structure

5. The compilation process follows with the SolverInterfaces source code. In the
Makefile used by X-Fem, the libraries called in the linking process are: Lapack
SuperLu and SolverBase (See Fig. A.3).

• The first library to be compiled was SolverBase, since it is used by the other
ones. The flags $(ADDLIBSTATIC) and $(REALAR) include the call to BLAS
under darwin for the object compilation and subsequent linking. This was found
to be under the framework architecture used on darwin. The use of proprietary
implementations of BLAS is encouraged due to their tailoring to the architec-
ture. The proper compilation flag “ -DYA BLAS -lblas -framework vecLib ” has to
be included as command line during the compilation of objects and the linking
process.
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Figure A.3: SolverInterfaces folder structure

• The $(CXXFLAGS) were also updated to enable openMP support for #pragma
directives.

• The library SuperLu references the SolverBase library and proper linking flags
had to be provided for the SuperLu Makefile in order to enable compilation.

• The compilation of libraries SuperLu and Lapack was straightforward from
the known changes and correct referencing to SolverBase, BLAS, LAPACK,
gfortran and SuperLU libraries.

6. The following module of the code to be compiled is the Trellis darwin folder. As de-
scribed before, the change made to the sub-module structure inside this folder in its
original version obeys to the inability to compile the libraries using cross references
to other objects outside the sub-module under darwin (See Fig. A.4).

• The source code from model Util and AOMD folders was placed concurrently
as a large Trellis under the Trellis darwin folder. Namesake folders under
all sub-modules (include, util, src, etc.) were carefully copied and its contents
preserved (See Fig. A.4).

• In the Makefile the variables $(SUBSYSNAME) and $(MODULENAME) were
changed accordingly.

• The expanded list of directories used on the object compilation was edited on
dirs variable.

• Also de $(DEPS) variable was edited to match the changes and for later de-
pendency setup when compiling X-Fem.

7. The last module to be compiled its the Xfem source code itself, the compiled library
will link against all of the previously described and built libraries. The following
changes were made to the Makefile:

• The variable $(DEPS) was changed to be architecture dependent, under Linux
platforms the dependencies point to Trellis modules, while under Darwin they
point to Trellis darwin.
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(a) Original Trellis (b) Trellis darwin

Figure A.4: Trellis darwin folder structure

• Both $(ADDLIB) and $(SUPERLU) variables point correctly to the libraries needed
by X-Fem.

• $(ADDSTATICLIB),$(CXXFLAGS) and $(REALAR) were changed properly de-
pending on the architecture to offer openMP support and correct pointing to
libraries at linking phase.

A.3 Porting The Project To Apple’s XCode

Once the code was compiled, porting it into the Apple’s programming environment XCode
was considered the natural step to be taken. Using a developing environment makes
the building, linking and debugging processes easier for the programmer. Navigating
projects that have acquired a considerable size in source code becomes a difficulty that
can be circumvented by the use of a developer environment such as XCode. Looking for
functions on the linked libraries, navigating classes and definitions becomes easier and
less time consuming.

It was important to have the same source working under Linux and Darwin operating
systems for developing and benchmarking purposes. Also it was of interest to have under
Darwin the same set of code building and running from the command line as well as an
XCode project.
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A.3.1 Setup of the project in XCode:

1. In the Command Line Utility project templates, a new project for a Standard Tool
was created. This builds a command-line tool written in C.

2. Once the project was created (including its folders and dependencies), the target
created by default was deleted (including its dependencies), also the default exe-
cutables created were deleted.

3. Under the group “Target”, a new target was created (right click over the group Target-
Add - New Target...), Go to the category “Other” and select “External Target”. This
will allow to use the current Makefile structure and files.

4. The necessary source code was imported to the project (drag and drop), allowing
for it to copy the files, not just referencing them.

5. Once the file groups were properly imported and created, the settings for the target
were edited. By double clicking on the Target name the settings appear in a new
window (it is not the same as the Target Info). The following settings are available
for editing:

• Under the “Custom Build Command”, the “Build Tool” is invoked, by default
points to /usr/bin/make, but this can be edited to gnumake from macports or
any other build tool.

• Under the “Custom Build Command”, “Arguments” can be passed to the build
tool. These arguments can be defined as environment variables in “Build Set-
tings”. Arguments used under the Xfem framework to compile and run the appli-
cation can be defined here. Environment variables like $(DEVROOT) and com-
mon arguments such as “GCC OPTIMIZATION LEVEL”, “setup”, “VERS=opt”
or “checkone” and “DIR” can be passed to the build tool easily as if it were from
the command line.

6. To enable openMP support for external targets which call an external build system,
the same process done to enable openMP support for the system had to be done on
/Developer/usr/bin. By some reason the symbolic links done on /usr/bin to gcc,
g++ and cc do not apply on XCode projects. When an external build tool is used,
the project template calls the system default compiler, even if the template has been
modified itself to add a $GCC VERSION flag.
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B. Setting Up CUDA In OS X

Greater and more powerful GPUs and architecture improvements that brought double
precision to GPUs made possible a new standard of super computing for scientific sim-
ulations. With the advent of CUDA enabled GPUs into personal computing, the capacity
to do scientific computing in personal computers or laptops became feasible. It is of in-
terest to explore the advantages of such language extension developed by NVidia. The
availability of many cores for data processing on a single machine (way more than typical
CPUs) gives the developer the possibility to create and evaluate the performance and
scalability of parts of the code subject to parallelization.

B.1 Set Up Of CUDA On OS X

Making CUDA development available on OS X comprehends mostly an straightforward
task. The steps taken to do so are described:

1. The latest CUDA Toolkit (includes compiler, tools, libraries, header files and oth-
ers), developer drivers and Software Development Kit (SDK) code samples from the
developer site were downloaded, select http://developer.nvidia.com/object/

cuda_3_2_downloads.html#MacOS.

2. A previous version of the CUDA Toolkit and GPU Computing SDK was uninstalled.
The files from /usr/local/cuda and from /Developer/GPU Computing, the default in-
stallation locations were deleted. (Older versions of the SDK installed into /Developer/

CUDA by default rather than /Developer/GPU Computing.)

3. All installers work out of the box and as long as the recommended paths are kept,
not many hacks must be done on Makefiles and environment variables. The Driver
was installed first, then the Toolkit.

4. The .bash profile file under the home folder was edited and the following environ-
ment variables:

• The PATH variable was appended /usr/local/cuda/bin.

• The DYLD LIBRARY PATH variable was appended /usr/local/cuda/lib.
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5. The last package to be installed was the CUDA SDK.

6. An installation check was done to verify the operability of the installed packages. A
check to determine the tools could communicate properly with the CUDA enabled
hardware, some of the examples were compiled and run for such purpose.

7. It was verified that the kernel extension was being loaded at boot-time.

8. deviceQuery was run from /Developer/GPU Computing/C/bin/darwin/release to
probe the used device (see Fig B.1).

Figure B.1: deviceQuery output

B.2 Adding CUDA Support To XCode

Once the basic operability of the CUDA Toolkit has been proven other interest is to add the
developing environment capabilities of XCode. For this purpose some other configuration
steps must be taken. There is a plugin that enables the creation of project templates
inside XCode. This allows to create basic code templates for CUDA projects, also sets by
default the build options inside the project. Once the NVCuda.pbplugin (which can be
found on: [18] - thread #79) was copied to ~/Library/Application Support/Developer/
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Shared/XCode/Plug-ins, under the File→New Project, User Templates section a CUDA
project option appears. This allows to create the file structure and groups to compile
the C/C++/CUDA tool, using the nvcc compiler and linking to the CUDA framework and
libraries. Some of other configuration steps necessary to have full compatibility to build
CUDA enabled code with some other characteristics are the following:

1. To enable openMP support and add that capability to the CUDA project build options,
the default system compiler under OS X 10.5.x must be redirected to gcc 4.2 (system
specific version offered by Apple as well within the system). See section A.1 for the
changes to be made to the system compiler.

2. Also a simple project template can be found on: CUDA XCode Test Project.zip (also
[18]) with basic necessary file structure to start a project, kernel code template and
main files both for host and device. Also the proper library includes are available, yet
the build options had to be corrected. The build options set by default by the plugin
are more accurate yet the compilation problem with the plugin is not encouraging.
Also the plug-in saves the changes made to the build options template.

3. The most significant changes done to the build options within the code template are
the following:

• The option Enable OpenMP Support under build settings was activated.

• The compiler version was set to GCC 4.2.

• Added -fopenmp on Linker Flags.

• Under linking options also the Runpath Search Paths was defined to: /usr/

local/cuda/lib.

• The Header Search Paths variable was set to: /usr/lib/gcc/i686-apple-darwin9/
4.2.1/include /Developer/GPU Computing/C/common/inc /usr/local/cuda/

include.

• The Library Search Paths was set to: /Developer/GPU Computing/C/lib /usr/
local/cuda/lib.

• Under NVidia CUDA code generation section, the variable Device Emulation
was checked off.

• Any other libraries required for code to compile can be dragged and dropped
into the project window and the correct links are made by the developing envi-
ronment.
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C. Including CUDA in the X-Fem Suite

CUDA is an architecture for parallel computing developed by NVIDIA which includes a
set of instructions that allow the programmer to use the engine of the GPUs to perform
massive amounts of computation [12].

To include the functionality offered by Nvidia’s CUDA into the X-Fem library, certain
preparations had to be done on the existing Makefile structure before recompiling the
library.

CUDA has been designed to support different Application Programming Interfaces,
the C language is one of the high-level languages in which routines have been imple-
mented. The C syntax is maintained and the CUDA routines also resemble greatly the C
programming model, the file extension is different though (<filename>.cu). Any source
that contains this extension (.cu) must be compiled using nvcc, basically nvcc is a com-
piler driver that invokes all the required tools and compilers to successfully produce the
binaries that run using the GPU resources [12]. It can output PTX or object code directly,
as well as C code that has to be subsequently compiled using another tool. Is this latter
output that is to be used the X-Fem code sources and compilation framework.

The provided source code and examples are meant to be compiled using a template
Makefile by Nvidia, which uses a make.common that includes the API driver and the
necessary dependencies. To have the capability to compile the object correctly using
nvcc and linking them to correctly to the CUDA necessary libraries, as well as to the other
X-Fem objects, the proper additions to the own Makefile structure from the X-Fem suite
must be implemented.

The steps taken to do follow:

1. The make.common file was modified and the required lines and inference rules for
compiling .cu source files to objects were added.

• In order to detect the .cu source files and create the inference rule for object
compilation the following variables were added:
tempcu := $(foreach dir,$(dirs2), $(wildcard $(dir)/*.cu))
srcscu := $(notdir $(tempcu)). This variable will hold the names of the .cu files
to use in:
objs := $(srcscpp:.cpp=.o) $(srcscxx:.cc=.o) $(srcsc:.c=.o) $(srcsf:.f=.o) $(srcsf2:.F=.o)
$(srcscu:.cu=.o)
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• Then the compilation rule is stablished for cuda files as:
#For CUDA %: %.cu

@ echo ‘‘--- Compiling’’ $<
ifeq ($(PURIFY),1)
$(PURIFYCMD) $(NVCC) $(NVCCFLAGS) $(DEFS) $(NVINCLUDES) $(INCLUDES) $<
-o $@ $(LDFLAGS)
else

$(NVCC) $(NVCCFLAGS) $(NVINCLUDES) $(INCLUDES) $< -o $@ $(LDFLAGS)
endif

The variable $(NVCC) defines the nvcc compiler -which should already be
present after the driver API and Toolkit installation-. $(NVCCFLAGS) is de-
fined wether for debug or release versions. Both variables are defined in the
configuration file i386 darwin. The $NVINCLUDES and $LDFLAGS variables
are modified respectively in the X-Fem Makefile. The proper header files with
the respective paths and the necessary libraries are declared at this point. Also
a $WCUDA flag is declared to append the $NVINCLUDES and $NVLDFLAGS
to $INCLUDES and $LDFLAGS in order to provide support when compiling
objects from the library that include CUDA routine calls and link them properly.

In the current implementation only one .cu file is used and both device and host code
are implemented there, usually on cuda projects the device code -or kernels- are placed
in different .cu files. Following the Nvidia’s Makefile policy these files are not compiled as
objects but rather treated as dependencies, it is also clear from how they are treated as
header files and included on the main cuda file.

To allow the C/C++ files that comprise the Xfem suite to access the functions imple-
mented in CUDA, external definitions of all functions are provided in a header file. Also
the adequate header files are included here to provide access to definitions and functions
from the CUDA Toolkit. This header file is meant to be included in any of the test tools
developed under the X-Fem suite (See cuda interface.h).

Once the library has been compiled, the implemented functions can be used in the
test tools, given access to the capabilities of the GPU device to use in the computations
performed by the X-Fem library.
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D. Annex of results table
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m= 100 m= 200 m= 300 m= 400

[ms] [ms] [ms] [ms]

Memory allocation time (Device): 0.2135742186 0.195703125 0.244189453 0.3109375002

Memory alloc time (Device - cuEvents): 0.2039615988 0.1938304008 0.2414655986 0.3015168012

Memory init time (Dev C): 0.167138672 0.097998047 0.1436523438 0.2197753908

Memory init time (Dev C - cuEvents): 0.174015999 0.0969599994 0.1429248006 0.2192896008

Memory copying time (To device): 0.9111816408 0.366015625 0.697607422 1.2370605468

Memory copying time (To device - cuEvents): 0.9681280136 0.3641600012 0.6962752104 1.2272448062

Processing Time BLAS call (GPU): 5.3651855466 18.7578125 47.866210937 115.43535156

Processing Time BLAS call (GPU) - cuEvents: 5.362918377 18.76398735 48.331564331 115.47447052

GFlops to perform:  0.002 0.016 0.054 0.128

Memory copying time (To Host): 0.0959960936 0.2060058594 0.6575683594 0.4763671874

Memory copying time (To Host - cuEvents): 0.0956799996 0.2053248048 0.3335871994 0.4756672024

Total time (GPU): 7.0981933594 19.845800781 50.309033203 118.00673828

GFlop/s (GPU):  0.3728 0.853 1.129 1.1088

Memory allocation time (Host): 0.0240046978 0.0126187562 0.0108261584 0.011374593

Memory init time (Host C): 0.0618117334 0.2348300936 0.4612339974 0.8230043174

Processing Time BLAS call (CPU): 4.600557828 14.470757437 38.002832031 84.476017976

GFlop/s (CPU):  0.436 1.121 1.4216 1.5168

Total time (CPU): 4.6863742592 14.718206287 38.474892187 85.310396886

100 200 300 400

*Without WakeGPU

Array Fill GFlop/s (CPU):  0.1617815817 0.1703359198 0.195128721 0.1944096727

Array Fill GFlop/s (GPU):  0.0574659805 0.4125412567 0.6297017706 0.7296287622



m= 500 m= 600 m= 700 m= 800 m= 900 m= 1000

[ms] [ms] [ms] [ms] [ms] [ms]

0.353955078 0.3494140624 0.3678710938 0.3682128906 0.350078125 0.35790624996

0.335507196 0.276691197 0.2947199984 0.346566397 0.31100031792 0.312897021264

0.316796875 0.4075683592 0.5157714846 0.7071777344 0.4334179688 0.4761464844

0.3157184004 0.406086403 0.515027207 0.7068863988 0.432601602 0.47526400224

2.1405761718 3.0313476564 4.0276367186 4.9711914062 3.08156249996 3.450462890592

2.1412799836 3.031775999 4.0296512604 4.9734015464 3.08067071912 3.451355901704

200.55419922 339.72358398 467.5184082032 658.16484375 356.27927734372 404.448062499984

200.8629303 339.8274292 467.7926574708 658.3432373046 356.46014495848 404.657279846176

0.25 0.432 0.686 1.024 0.504 0.5792

0.718359375 0.948876953 1.2563964844 1.633886719 1.00677734376 1.112859375032

0.718368006 0.9499136092 1.2604672194 1.6381376026 1.00851072792 1.115079433024

204.68037109 344.8418457 474.2450683594 666.255029297 361.60581054692 410.325625000064

1.2468 1.2722 1.468 1.5556 1.33028 1.374576

0.0117507936 0.0114453314 0.011414051 0.011414838 0.0114799214 0.01150098708

1.5679960966 2.0996327878 2.8218437672 3.6768859386 2.19787258152 2.472846234344

164.9484129 212.95803945 335.9376074312 495.4425956964 258.7525346898 293.6078380326

1.5268 2.0316 2.0426 2.067 1.83696 1.900992

166.52815979 215.06911757 338.7708652494 499.130896473 260.96188719264 296.092185254048

500 600 700 800 900 1000

0.1594391724 0.1714585532 0.17364533277695 0.17406033548152 0.36853819771473 0.40439230960322

0.7918448836 0.8865108443 0.95140604872938 0.90537885731916 1.87239251138973 2.10409371483392



m= 1100 m= 1200 m= 1300 m= 1400 m= 1500 m= 1600

[ms] [ms] [ms] [ms] [ms] [ms]

0.358696484352 0.4072265624 0.3972167968 0.3742248437024 0.4244628904 0.39236551553088

0.3083749863168 0.3684096036 0.3746815976 0.33507270534016 0.349516803 0.34721113917139

0.50801640628 1.2498046876 1.4857910154 0.830635312496 1.8987792968 1.1946053437152

0.507173122608 1.2485055926 1.4851072074 0.8297303053696 1.898041582 1.19371156199552

3.7124402343504 10.9563476564 12.4996093754 6.74008453134048 16.3958007812 10.0608565157382

3.7133710853248 10.9622652054 12.5058752058 6.74270762346976 16.4027713774 10.0653980994789

445.226835156261 1957.520605469 2500.8203613282 1132.85902835943 3775.3268066408 1962.35072739074

445.416149755851 1958.2426757814 2501.8929687502 1133.33384381842 3777.1339355468 1963.20391473053

0.64504 3.456 4.394 1.915648 6.75 3.4321376

1.1917593750384 3.5654296876 4.0910156248 2.19356828124608 6.8892089846 3.5861963906569

1.1944217184288 3.5730624198 4.0986047744 2.19793581471456 6.6640512466 3.54561519478867

451.454675781277 1974.6135742186 2520.5321777344 1143.70637265625 3803.0518554688 1978.67173117187

1.4001312 1.7662 1.757 1.52563744 1.788 1.647393728

0.011451025776 0.0113742354 0.0111738444 0.0113960028112 0.0142328026 0.01192558219744

2.6538162618928 8.201579714 9.653156638 5.03585428595136 12.984777379 7.70583685576883

319.33972306008 1575.097989869 2017.4050156354 892.840620257376 3141.4348011972 1589.22363000381

1.9758304 2.1962 2.1784 2.01767648 2.1494 2.103501376

322.004990347818 1583.3109438182 2027.069346118 897.887870546141 3154.4338113782 1596.94139244167

1100 1200 1300 1400 1500 1600

0.45594716460777 0.1755759317369 0.17507226530928 0.38920903757439 0.17327982870456 0.33221570193035

2.38577311387856 1.15337889436379 1.13796498433181 2.36221334488551 1.1854324064013 2.14457167166955



m= 1700 m= 1800 m= 1900 m= 2000 m= 2000*

[ms] [ms] [ms] [ms]

0.4330078126 0.4654296876 0.458203125 0.5119628906 0.515319824375

0.3071616022 0.3394751964 0.3386752038 0.4117888004 0.397976

2.4247070312 2.6712402346 3.0166503906 3.359423828 3.362121581875

2.4252287388 2.7942719936 3.4691520212 3.3581120016 3.360344022375

21.678125 23.716455078 28.1324218752 28.5581054686 28.63439941425

21.6848190308 23.7210819244 28.0572288514 28.5642498016 28.658148050125

5454.7731933592 6539.4611328124 7540.2666503906 8851.769970703 8853.9686584474

5456.5692382812 6541.424609375 7542.3635742188 8852.937109375 8855.565185547

9.826 11.664 13.718 16 16

7.8656249998 8.8755371094 10.4126464842 9.9907714844 10.693084716625

7.8698623656 8.8789825438 9.4030591964 9.7258750916 10.368200183

5490.2454589844 6577.6160156248 7584.74453125 8895.076513672 8898.831817627

1.8012 1.7834 1.819 1.8076 0.001807

0.014827347 0.0159582138 0.0151960848 0.015562892 0.017140135375

16.566174984 19.023039055 20.915775013 20.498177719 20.409888193125

4794.478401947 5497.5916125058 6793.6134413958 7224.7155558586 7242.3313930485

2.0544 2.1312 2.034 2.2146 0.00220925

4811.059404278 5516.6306097746 6814.5444124938 7245.2292964696 7262.7584213764

1700 1800 1900 2000

0.17445185764313 0.17031978910585 0.17259699904767 0.19513929749435

1.19164017552834 1.15951489598038 1.04060011724458 1.19114550023768
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