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Introduction  

 

When a network of long polymers is immersed in a suitable solvent, it can swell forming a polymeric 

gel. This interesting property is exploited in diverse technologies such as medical devices, drug 

delivery and actuators. Recent advances have been made to propose new constitutive equations 

devoted to polymeric gels (Hong et al. 2008a). These constitutive equations imply non-linear 

hyperelastic solid behaviours coupled to the migration of small molecules into the network. They are 

founded on the general theory of poroelasticity with liquid transport, the difficulty being due to the 

introduction of large strain. 

The aim of my Master thesis was to first  get familiar with the theory of Hong et al. (2008a) and the 

previous general theories about polymeric gels then, as the main objective, was to implement the 

constitutive model of Hong et al. (2008a) in a finite element code (COMSOL Multiphysics) and solve 

various test cases. 

This report explains the different steps of my Master thesis. The first chapter describes the 

properties and applications of polymeric gels as well as the general theories about them. The model 

of Hong et al. (2008a) is explained in the second chapter which also contains the analytical 

resolution of two simple test cases. The third chapter describes the procedure of the 

implementation of the previous model in COMSOL Multiphysics. The results of two test cases are 

presented in the following chapter. Finally, the results and failures of the implementation are 

analysed and improvements are suggested. 
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Chapter 1 :  Background  

I. DEFINITION OF HYDROGELS AND APPLICATIONS 

A. Definition of hydrogel 

A polymeric gel is an aggregate formed by a swollen elastomer after immersion into a solvent. The 

gel is called a hydrogel when the solvent is water. Figure 1 illustrates the swelling of a piece of 

elastomer. 

The elastomer is a three dimensional network of long cross-linked polymers. The long flexible chains 

of polymer can accept large chain deformations. At the scale of the sample, the elastomeric network 

is capable of large and reversible (elastic) deformations. Moreover, the cross-links prevent the 

polymer molecules from dissolving within the solvent. In the hydrogel case, the polymers are water-

insoluble and hydrophilic. 

The solvent is a species of molecules with low molecular weight. These molecules can migrate into 

the network of long polymers. 

 

Figure 1. (a) Elastomer, (b) Swollen elastomer   

B. Properties of hydrogels 

Polymeric gels can experience reversible abrupt volume changes: hydrogels can contain 99% of 

water. When the small molecules migrate in, the elastomer can swell and hold a large amount of 

solvent while maintaining its structure. Reversibly, it can shrink while releasing the small molecules 

of solvent. This mechanism is shown in figure 2. 

 

Figure 2. Mechanism of swelling/shrinking of the polymeric gel 

reversible
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Polymeric gels are environmentally sensitive. As reviewed in the online discussion of the mechanics 

of gels led by Qi (2007), such gels swell/shrink in response to various environmental stimuli such as 

relatively small changes of temperatures, pH values, electric signals or light. For example, the 

negatively thermoresponsive hydrogels shrinks as the temperature increases because hydrophobic 

interactions become strengthened above a critical temperature. In this report, the mechanism 

studied will be only the chemically induced swelling and the shrinking under a mechanical load (with 

a constant chemical potential).  

Polymeric gels have two interesting properties: the elasticity of the network and the fluidity of the 

solvent. The elasticity comes from the strong bonds cross-linking the long polymers. On the other 

hand, as the polymers and solvent molecules are aggregated by weak bonds, the small molecules 

can easily change neighbours and migrate in the same way as in a liquid. The elasticity and the 

migration are coupled: the accumulation of solvent brings about the network’s swelling whereas the 

solvent migrates in response to the deformation of the network. 

C. Applications 
Polymeric gels have various applications at the microscale:  the actuation times are on the order of 

milliseconds at this scale. As diffusion phenomena exist in the polymeric gels, the actuation times 

will be quite long at the bigger scales.  

Polymeric gels are used in diverse medical devices including microgel drug carriers/ pumps, scaffolds 

in reparation of human tissues, biosensors which respond to specific molecules (glucose or antigens 

for example), contact lenses and medical electrodes. Figure 3 shows an example of drug carrier: this 

gel can shrink wrapping the drug. An overview of state-of-the-art environment-sensitive hydrogels 

for drug delivery is provided in the articles Qiu and Park (2001) and Bromberg and Ron (1998). 

 

Figure 3. . Drug delivery with a bioresponsive hydrogel 

The presentation of Suo (2008) and the gel article on wikipedia review some other applications of 
polymeric gel: autonomous microfluidic actuators, sustained-release delivery systems, disposable 
diapers, dressings for healing of burn, breast implants and granules for holding soil moisture in arid 
areas. Figure 4 illustrates one example of these devices: the micro valves used in fluidics. 

 

Figure 4. Valves in fluidics 
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II. STATE OF THE ART IN THE MECHANICAL MODELLING 
 

A. Driving mechanisms  
As reviewed in the online discussion of the mechanics of gels led by Qi (2007), the mechanism of 

swelling/shrinking of the polymeric gels is explained by the competition between two kinds of 

interactions: polymer-polymer macromolecules and polymer-solution macromolecules. This 

corresponds to two molecular processes involved in the free energy: the stretching/contraction of 

the network and the mixing of the network with the small molecules.  

These processes are mainly driven by entropic forces.  When the network swells, the polymer chains 

are deformed and an elastic retractive force develops. Since the extended configuration is less 

probable for the chains, their deformations yield a decrease in the entropy.  The equilibrium is 

reached when these opposing forces are balanced. The competition between these processes and 

associated forces is controlled through environmental stimuli. 

Thus, polymeric gels are a complex system coupling mass transport (diffusion) and large 

deformation, controlled by multiple thermodynamic forces.  The mechanical mechanisms include 

relaxation effects related to the viscoelastic behaviour of polymers. The relative time scale of 

diffusion is linked with the mutual diffusion process. These two processes imply a complex rate for 

the diffusion in polymers. 

As explained in Hong et al. (2008), polymeric gels allow two modes of large deformation: one local 

and one “global”, as shown on figure 5. First the small molecules can rearrange locally quickly. This 

implies a change of shape but not volume. Then the small molecules can have slow long-range 

migrations. In this case, the polymeric gel changes both shape and volume as shown on the following 

figure. The speed of the device swelling/shrinking is related to the characteristic time of this slow 

diffusion which depends on the size of the sample. 

 

Figure 5. The two modes of deformation for the gel 

 

B. Challenges 
Polymeric gel is a complex system with interesting properties and promising applications. In many of 

hydrogel-based devices using their property of volume change, time should be accurately controlled 

knowing the variations of the environmental conditions. Therefore high fidelity constitutive models 
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are required for the swelling/shrinking process.  Moreover, the models should be suitable for 

numerical methods, such as finite element methods.  

Numerical investigations have been carried out however (though or although are better choices) 

most use simple theoretical cases far removed from some complex devices. For example, better 

models for the hydrogel damage should be developed because it is important to the design many 

hydrogel-based devices such as medical devices. The online discussion of the mechanics of gels led 

by Qi (2007) raises other problems with the modelling of polymeric gels. 

 

C. State of the art of hydrogel modelling 

1. Poroelasticity 

Many studies have been carried out on the mass transport (flow of fluid) in an elastic solid with 

connected pores such as sponge, soil, living tissues, crystal and elastomer network. This subject is 

known as diffusion in elastic solids, or elasticity of fluid-infiltrated porous solids, or poroelasticity.  

First, Gibbs (1878) expressed a thermodynamic theory of large deformation of an elastic solid which 

absorbs a fluid. It assumed that the solid and the fluid have reached the equilibrium. Then, Biot 

(1941) combined a similar thermodynamic theory with Darcy’s law to model the motion of the fluid 

in a fluid-filled porous elastic material. He used the theoretical model of a coherent solid skeleton 

and a freely moving pore fluid. 

Other works on poroelasticity are explained in Detournay and Cheng (1993). For example, 

poroelasticity was used to analyse compaction of soils, deformation of tissues, studies about bones, 

diffusion of atoms and swelling of hydrogels. An example of more advanced poroelasticity is the 

kinetic theory of Tanaka et al. (1979) and Tanaka and Fillmore (1973) which involves the friction 

between the polymers and solvent molecules as a limiting factor for the swelling of a gel. 

2. Flory-Huggins constitutive equations 

Horkay and Mc Kenna (2007) proposed a review on the modelling consideration for equilibrium 

swelling/shrinking behaviours of polymeric gels. It reminds the basic thermodynamic considerations 

of rubber elasticity and swelling using existing network models and a continuum point of view. This 

help to understand the Flory-Huggins constitutive equations which is generally used to describe the 

behaviour of polymeric gels. 

In the survey of the behaviour of a swollen elastomeric network, two features should be considered: 

 The original nature of the polymeric network in the undiluted state: formulation of the 

Helmoltz free energy of the network using the phenomenological theories of rubber 

elasticity and the molecular statistical models which provide the phenomenological 

behaviour of the dry network 

 The specific behaviour of the swollen network using similar ideas: formulation of the mixing 

free energy as a function of the swelling ratio added to the elastic free energy 
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a) Elastic free energy of the dry rubber 

First, the dry elastomer is studied and an expression of elastic Helmoltz free energy will be 

determined.  

(1) Continuum description 

The continuum description of rubber-like materials is based on the Finite Elasticity Theory. This uses 

the stretch ratio in each direction λi defined as λi = lcurrent/linitial. The Valanis-landel Strain Energy 

Density Function W(λ1, λ2, λ3) is used as it describes well the mechanical response of crosslinked 

rubber and several statistical mechanical models are shown in this form. W is the mechanical part of 

the Helmoltz Free Energy. Valanis and Landel made the assumption that W is a separable function of 

the stretches λi: 

 (1)  

  
The term  is zero for the polymeric network in the undilute state with the 

incompressibility assumption but can be important when the network swells. However some 

molecular models also include this term. 

Two common Valanis-Landel forms are the Neo-Hookean and the Mooney-Rivlin forms. Several 

molecular models use the Neo-Hookean form even if dry rubbers do not have a Neo-Hookean 

behaviour. 

(2)  Statistical characteristics of polymer networks 

Several structural parameters are used to characterise the ideal polymer network. The real network 

will be considered by reference to the parameters of the perfect network as they always present 

defects.  Explicit expressions for the relation between the molecular structure and the elastic 

properties are determined using statistical models. 

The most important structural parameters of a network are the concentration of elastic chains or 

that of elastically active junctions connecting the macromolecules. 

(3)  Network models 

Statistical theories and simplified network models allow formulating an equation of state for the 

polymeric network which permits any deformation including swelling. 

Molecular models express the way how the stress influences the conformational distribution of a 

polymeric assembly chains. Then predictive relationships will be derived to relate the molecular 

structure and topology of the polymeric network to the macroscopic behaviour as the swelling. 

Classically, the theories of rubber elasticity are based on the two following assumptions: 

1) The total elastic free energy of the network is derived by summing the elastic free energy of 

the single network chains, thus ignoring the energy contribution and the deformation state 

dependency of the interaction between chains. 

2) The end-to-end distribution of the chains constructing the network follows a Gaussian curve. 

Various models exist to derive the network behaviour from the statistical properties of the individual 

polymer molecules. The more common are the following ones: 
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 The Affine Model 
 The basic assumption of the affine model is the linear transformation (affinity) of the mean 
position of the junctions and the end-to-end vectors in the macroscopic strain.  
The elastic free energy is expressed by: 

 (2)  

where νel is the number of the elastic chains and µel is the number of junctions in the network 

 The Phantom Model 
 The basic assumption of the phantom model is the free movements of a polymer chain 
through another one. Every network junctions oscillates around its mean position.  
The elastic free energy is expressed by: 

 (3)  

where ξ is the cycle rank, i.e., the number of independent circuits in the network considered  

 

 The constrained Junction Fluctuation Model   
The two previous models cannot perfectly describe the real network behaviour because they 
are two limiting cases. Another model is necessary to span the behaviour between the 
phantom and the affine models. The model proposed by Ronca and Allegra (1975) and Flory 
(1977) uses the assumptions of constrained fluctuations and affine deformation of 
fluctuation domains. More details can be found in the Hoknay and Mc Kenna (2007). 

 

b) Mixing contribution to the free energy 

When the polymer network is swollen, there is an additional term in the free energy due to the 

mixing. The thermodynamic of this process is controlled by the interaction between the polymer and 

the small molecules. As there is no explicit molecular model for the crosslinked polymer solution, the 

functional dependence of the free energy of the mixing is generally assumed to be the same in a 

swollen network as in a polymer solution. The thermodynamics of polymer solutions can be 

described with two methods: 

 The classical mean-field theories such as the Flory-Huggins model described below 

 The asymptotic scaling theories which use an analogy between polymer chain 

statistics and critical phenomenon and consider correlations between monomers. 

A description of these theories can be found in the Horkay and McKenna (2007) 

The Flory-Huggins model is build using statistics and a lattice model as described in Kausch et al. 

(2001). First the free energy of molecular mixing  is given by:       

 (4)  

where  is the enthalpy and  is the entropy. The two components of the free energy are 

detailed below. 

(1) Entropy of mixing 

The entropy of mixing can be obtained using a lattice model showing the mixing of two kinds of 

small molecules: N1 molecules of first type and N2 of the second one. The lattice contains N0=N1+N2 



13 
 
 

sites with one molecule per site as sketched on Figure 6 (a). The Boltzmann law (and the Stirling 

approximation) gives the following expression for the change of entropy:  

 (5)  

with ni=Ni/N0 and Φi=ni/(n1+n2) is the volume ratio of molecules of type i 

Then the second species is taken as a polymer: the small molecules are connected together, which 

limits the number of possible “arrangements”. If N2 chains with x segments and N1 small molecules 

of type 1 are considered, there are N0=N1+xN2 sites in total. Figure 6 (b) sketches an example of 

lattice with x=10. The computation of the mixing entropy of such a system is explained in the 

Appendix 2.9 of Kausch et al. (2001).  The final expression is given by:  

 (6)  

 
Figure 6. Lattice model for the mixing of two molecule species  

(a) with two kinds of small molecules (b) with small molecules and chains of 10 segments 

(2) Enthalpy of mixing 

As explained in Kausch et al. (2001), there are different contacts in a binary mixing of a polymer (1) 

in a solvent (2): 

  Contacts (1,1) between segments of polymer 

 Contacts (2,2) between molecules of the solvent 

 Contacts (1,2) between segment of polymer and molecules of solvent 
When the solvent molecules are mixed with the polymer, new pairs (1, 2) are created by dissociation 
of one pair of (1, 1) and one of (2, 2). The enthalpy of mixing is the sum of all the enthalpy of 
formation of these new pairs Δw12. The parameter of interaction of Flory-Huggins is defined by: 

 (7)  

where z is the number of coordination of the lattice. 

The expression of the enthalpy of mixing (per mole of sites) is given by: 

 (8)  

 

The entropy and the enthalpy of mixing are replaced by their expression in the equation. Thus, the 

Flory-Huggins mixing free energy of a polymer solution is given by: 



14 
 
 

 (9)  

An alternative expression of the Flory-Huggins mixing free energy is: 

 (10)  

where  is the volume fraction of the polymer,  is the Flory-Huggins interaction parameter and n1 

and n2  are the numbers of moles of solvent and polymer respectively. 

 

c) Flory-Huggins constitutive equation 

As reviewed in Horkay and McKenna (2007), the swelling of a cross-linked polymer network can be 

described by the Frenkel-Flory-Rehner theory. This theory developed in Flory and Rehner (1946) is 

based on the basic assumption that the elastic ( ) and mixing ( ) contributions in the free 

energy that come with the swelling of the network are separable and additive. The total free energy 

of the network-solvent system  is given by: 

  (11)  

Macroscopic swelling observations can be connected to the molecular network structure using this 

model. The experimental characterisation of swollen polymeric network is explained in Horkay and 

McKenna (2007). 

 

3. Viscoelastic diffusion models  

As explained previously, diffusion is an important phenomenon in the swelling/shrinking behaviour 

of the polymeric gels. The mass transport process which allows small solvent molecules to enter the 

polymeric network is very complex. No theoretical framework or mathematical model can explain 

properly this mechanism so far. 

Three steps can be considered in the mass transport process. First small molecules are absorbed on 

the surface of the polymer network. Secondly, the solvent molecules diffuse through the polymeric 

material. Finally, the small molecules desorb on the downstream surface of the polymer. 

These mass transport mechanisms are affected by various parameters such as the polymer 

structure, temperatures, mechanical deformation and solvent-polymer interaction. Plastificization 

has also a great influence: when the local solvent volume fraction becomes high enough, the 

polymer goes from a glassy state to a rubbery state. As the polymer chains can move in the rubbery 

state, they can readily rearrange to accommodate solvent molecules. Conversely, as polymers are 

hard and brittle in the glassy state, the diffusion becomes rather complex. 

Several diffusion models exist to describe mass transport mechanisms. The simplest model is the 

Fickian or Case I diffusion with a flux J proportional to the gradient of concentration:  

This model is based on the assumption that the surface concentration reachs its equilibrium value 

immediately after a change in conditions and stays constant during the sorption process. 

However solvent-polymer systems do not generally follow this simple law and the modelling of 

transport mass depends on characteristic times of the system. Briefly, the diffusion has Fickian 
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behaviour if the characteristic diffusion time is much longer than the polymer relaxation time.  

Conversely, the diffusion process exhibits a Case-II behaviour while the characteristic diffusion time 

is much shorter than the polymer relaxation time. Finally, the diffusion process in the glassy polymer 

presents anomalous behaviour if the two characteristic times are close. 

As it was first observed in 1946, some polymer-solvent systems exhibit sharp boundaries and this 

separation between swollen and dry polymer moves linearly with time, thus with a constant velocity. 

This was later called “Case II” diffusion.  

All diffusion models have a mass uptake of the form M=k tn with t the time and k and n are 

constants. n is ½ in the Fickian diffusion, 1 in the Case II and between ½ and 1 for the anomalous 

diffusion. 

In conclusion, mass transport in polymer networks has been described with various models whose 

explanations can be found in De Kee et al. (2005). In spite of various trials, no fine unified model 

which can take into account both Fickian and non-Fickian diffusions were generated so far. 

Nevertheless the question of the utility of such a model is still being considered. Maybe a diffusion 

model could be developed with the help of numerical method as suggested in the discussion about 

Mechanics of hydrogels submitted by Qi (2007). 

 

4. Various other works  

Here are presented some other works carried out on the mechanical behaviour of polymeric gels.  

a) Study about the behaviour under tensile test/ compression 

Gao (1999) proposes an explanation about the difference of gel behaviour between tensile test and 

compression.  Indeed the elastic modulus under tension may be up to 1.6times of that under 

compression. Long polymeric chains can only uphold tensile force but not compression along chains, 

even under small deformations. This phenomenon is explained using a simplified 2D micromodel and 

constitutive models for elastic modulus are derived in the small strain case. 

b) Shape of the network interface 

Some papers propose modelling to predict the shape of the swollen networks. For example Dolbow 

et al. (2004, 2005) present two-phase model for chemically induced swelling in hydrogels. This 

continuum model allows sharp interface separating swollen and collapsed phases of the holding 

polymer network which agrees with experimental observations. Hybrid eXtended-Finite-

Element/Level-Set Method are employed to find approximate solutions to the governing equations 

of the model. This is applied to the swelling of a spherical traction-free specimen in contact with a 

reservoir of uniform chemical potential in Dolbow et al. (2004). The new paper in 2005 provides 

improvement in this model and extension to multi-dimensional problems with applications such as 

unstable interfacial evolution in polymeric gels. 

 

5. Conclusion 

There are some other papers developing molecular or constitutive models for polymeric gels that we 

will not expand on in this report (such as Durning and Morman, 1993; Tsai et al., 2004). 
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Furthermore, many studies were also carried out about the experimental characterisations of 

polymeric gels and about various applications and devices making use of hydrogel properties.  

In conclusion, various studies were carried out about coupling between mass transport and 

deformation in polymeric gels evoking different conceptual images. However nowadays these 

theoretical works cannot predict the experimental behaviour of complex devices because some are 

limited to small deformations or do not have numerical development such as finite elements. 

This report will deal with a recent model proposed in Hong et al (2008a). This modelling of polymeric 

gels is explained in the next chapter. 
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Chapter 2 :  Modelling 

I. INTRODUCTION  
As explained in the introduction, the goal of this project is to implement numerically a constitutive 

equation for hydrogels in a finite element code. The model implemented will be explained in this 

part. First, this model is presented in the article A THEORY OF COUPLED DIFFUSION AND LARGE 

DEFORMATION IN POLYMERIC GELS published in 2008 by Wei Hong, Xuanhe Zhao, Jinxiong Zhou and 

Zhigang Suo. This article formulates a monophasic theory of the coupled mass transport and large 

deformation for polymeric gels.  

This field theory of gels uses first the nonequlibrium thermodynamics using a gel system subject to 

mechanical and chemical loads (a “weight” and a “pump”) which gives an equation for the Helmholtz 

free energy. The individual solvent molecule and polymer are assumed incompressible, which is 

enforced using a Lagrangian multiplier. The free energy is expressed using the Flory-Huggins 

constitutive equation.  

Secondly the paper proposes a modelling for kinetics. Two modes of deformation are distinguished: 

the short-range and the long-range motions. The local rearrangements are considered fast enough 

to have a local equilibrium. The long-range migrations are slow and their characteristic time depends 

on the size of the sample: it increases as the size grows. The solvent molecules are assumed to 

diffuse in the polymeric network. Then the time-dependency of these migrations are modelled using 

a kinetic law.  

The model will be illustrated with the test case of the uniaxial creep of a gel layer. 

II. THEORETICAL PART: EXPLANATIONS ABOUT THE MODEL 

A. Thermodynamics equations 

1. Presentation of the system 

The considered system is a gel subject to mechanical and chemical loads modelled respectively by a 

“weight” and a “pump” as sketched on Figure 7. The “weight” imposes a force P, a displacement δl 

and a work Pδl. The “pump” imposes a chemical potential µ of the solvent molecules, a variation of 

the number of small molecules δM (injected) and an associated work µδM. 

The dry network under no mechanical load is chosen as reference state. Every point of this dry 

network is located with a coordinate X in the reference state. 
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Figure 7. Gel subject to mechanical and chemical loads 

The following assumptions are taken on this system: 

 Equilibrium of the external solvent on its own 

 Imaginary network of  vanishing elastic stiffness in the external which allows to integrate on 

the full volume (gel and solvent) and on the interface areas between the gel and the external 

solvent 

dV(x) will be the element of volume and NK(X)dA(X) is an element of an interface with dA(X) the 

area of the element and NK(X) the unit vector normal to the interface as shown on Figure 8. 

 

Figure 8. Direction of the unit normal vector 

 

2. Mechanical equations 

The point with a coordinate X moves to the coordinate x(X,t) in the current state at time t. The 

deformation gradient is given by: 

 (12)  

The gel is subject to mechanical forces: B(X, t) dV in the volume and T(X, t) dV on the interfaces.  

The nominal stress siK(X,t) is ruled by the classical partial differential equation of force balance given 

by the following equations.   

 (13)  

 (14)  
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The classical weak form can deduce using a continuous test function ξi(X): 

 (15)  

The divergence theorem gives: 

 (16)  

Therefore, the substitution of B i and Ti by their expression in the equation 15 gives the equation 17. 

 (17)  

 

3. Chemical equations 

Solvent molecules at a chemical potential µ(X, t) are injected into the gel. The variables involved in 

this process are: 

 r(X,t): the number of molecules injected into the volume per unit time and volume 

 i(X,t): the number of molecules injected into an interface element per unit time and area 

 C(X,t): the nominal concentration of solvent molecules in a volume element (of dry 

polymer) 

 JK(X,t): the flow of small molecules across an element of area 

Assuming that there is no chemical reaction, the conservation equations are:  

 (18)  

 (19)  

The application of divergence theorem on the flux gives: 

 (20)  

Then the equations 19 and 20 are multiplied by an arbitrary test function ζ, integrated over the 

volume of the gel and the equation 13 is used. This gives the equation below. 

 (21)  

4. Nonequilibrium thermodynamics 

The previous field equations will now be employed to write the structure of material laws, using 

nonequilibrium thermodynamics. If the markers move at a velocity δx/δt, the powers associated 

with the mechanical and chemical loads are respectively  and 

. The free-energy density is W in the current state. Hong et al. take the free energy 



20 
 
 

as a function of the deformation gardient F and the nominal concentration C. Then the small 

variation of the free-energy density is given by: 

 (22)  

The system presented above (gel+weight+pump) is considered as a thermodynamic system. Let G be 

the free energy of the system. G is the sum of free energy of the gel and the potential energy 

associated with the mechanical and chemical loads. Therefore, the rate of change of G is given by: 

 (23)  

The use of equations 15, 18 and 22 gives: 

 

 
(24)  

 (25)  

The divergence theorem and the equation 20 are used on the flux: 

 (26)  

Therefore the rate of change of G has the following expression: 

 
(27)  

According to the thermodynamic laws, the free energy of the system cannot increase i.e.: 

 (28)  

This inequality must be verified for any r, i, Jk and . Therefore each individual integral in 

equation 27 must either be negative or zero. Each integral in this equation corresponds to different 

processes of energy dissipation: 

1) Local rearrangement of the solvent molecules 

2 and 3) Injection of small molecules by the pumps 

4) Long-range migration of the solvent molecules 

As explained in the introduction, Hong et al. assume an instantaneous local rearrangement and a 

local equilibrium: the viscosity of the local rearrangement is neglected. Therefore the first integral of 

the equation 27 vanishes. This gives the following expression for the nominal stress: 
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 (29)  

Hong et al. also assume a local equilibrium between the solvent molecules in every pump and those 

in the gel near the pump considered. Thus the second and the third integral of the equation 27 

vanish. This gives the following expression for the chemical potential of the solvent molecules 

injected by the pump: 

 (30)  

Therefore, after the free energy function is fixed, the equations 29 and 30 provide the equations of 

state.  As any constitutive equation in continuum mechanics, W(F,C) should verify the assumption of 

objectivity: it should not change while the system is subject to a rigid-body motion.  It is well known 

that this is equivalent to require that W(F,C)  is function of the deformation gradient only through 

. 

5. Two limiting states 

A mechanical load is suddenly applied to the polymeric gel and keeps constant after. There are two 

limiting states that can be analysed without looking at the diffusion mechanism of the small 

molecules. In the short-time limit, the small molecules have only time to rearrange locally but not to 

migrate. However the mechanical equilibrium ruled by equations 13, 14 and 29 has already been 

established. 

In the long-time limit, both mechanical and chemical equilibrium have been reached. The free 

energy G of the system is minimum i.e. δG/δt =0. Therefore, the fourth integral of the equation 27 

vanishes. Then, as the gel is in equilibrium with the external solvent, the chemical potential µ is 

homogeneous inside the gel and imposed by the external solvent. This boundary value problem is 

ruled by equations 13, 14, 29 and 30. 

 

B. Molecular incompressibility  
As the long polymers and solvent molecules can generally suffer large configurational variation 

without changing their volume, Hong et al. assume that these individual long polymers and solvent 

molecules are incompressible. Moreover, the polymeric gel should not contain void space. The 

condition of molecular incompressibility can be expressed as following: 

 (31)  

 Let ν be the volume per small molecule. As C is the nominal concentration, the previous expression 

becomes: 

 (32)  

This condition of molecular incompressibility can be enforced by a field of Lagrange multiplier 

П(X,t): the term  is added to the free energy G of the system. Thus, 

there is the following new term in the equation 28: 
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 (33)  

Let HiK be the transpose of the inverse of FiK i.e. and   Then the 

following algebraic identity is used: 

 (34)  

Using this identity and the equation 22 with , the second integral β of the equation 34 

becomes: 

 (35)  

Therefore, the equations 30 and 31 become: 

 (36)  

 (37)  

The Lagrangian multiplier П can be interpreted as the osmotic pressure. When the solvent molecules 

move inside the polymeric network, the gel swells because of this pressure which goes against the 

elastic retractive force. 

C. Free energy expression 
An explicit expression of the free energy function W(F,C) is necessary to solve initial and boundary 

value problems. Hong et al. has chosen to express approximate behaviour of gels using the simplest 

form for W. Therefore, they use the Flory-Huggins constitutive equation described in the first 

chapter. As explained previously, the free energy function is composed of one term Ws coming from 

the stretching elasticity of the network and another Wm from the mixing of the polymers and solvent 

molecules: 

 (38)  

Hong et al. use the affine model described in the first chapter for the stretching contribution of the 

free energy function: 

 (39)  

where  and  are the three stretches, k is the Boltzmann’s constant, V0 is the volume of dry 

polymer,  νel is the number of the elastic chains and µel is the number of junctions in the network. Let 

N be the number of elastic chains in the gel divided by the volume of the dry network V0. Hong et al. 

assume the equality of νel and µel. Then the previous equation becomes: 

 (40)  

The elastic free energy can also be expressed using the invariants of the right Cauchy-Green strain 

tensor : 
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 (41)  

where is the first invariant (  and  is the second invariant (  

Let φ be the volume fraction of the polymer. The expression of φ is: 

 (42)  

Hong et al. use for   the Flory-Huggins mixing free energy described in the first chapter. Using 

the expression of  φ, the equation 9 becomes: 

 

 
(43)  

where  is the Flory-Huggins interaction parameter. 

If s1, s2 and s3 are the three principal nominal stresses, the equation 35 becomes: 

 (44)  

 (45)  

 (46)  

The expression 36 of the chemical potential becomes: 

 (47)  

The equations 42 to 45 are the equations of state for the model gel. 

D. Kinetic law 
Hong et al. model the long range migration of solvent molecules like a time-dependent process. In 

the equation 26, the fourth integrand should be negative definite for any flux. Therefore Hong et al. 

model the flow with a kinetic law as common practise: 

 (48)  

where  is the mobility: a symmetric positive-definite tensor. Like the free energy function, the 

mobility tensor depends on the deformation gradient F and the concentration C.  

As well as the free energy function, the mobility tensor should follow the objectivity assumption. 

Therefore,  should depend on the deformation gradient only through . 

Finally, as a mean to develop the kinetic law, Hong et al. assume that the solvent molecules diffuse 

in the gel. As seen in the first chapter, diffusion is a common way to model the migration of small 

molecules into a polymeric network. Hong et al. use the simplest model of diffusion: they assume 

that the coefficient of diffusion D is isotropic and independent of the deformation gradient F and the 

concentration C. This assumption is only acceptable for the swollen gels where the ratio of solvent 

molecules is high. The diffusion is defined using c(X,t) the true concentration of small molecules in 
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the current state, ji(X,t) the true flux of solvent molecules per unit area per unit time and µ(X,t) the 

chemical potential. Hong et al. use the following well-known expression for the true flux described 

for example in Feynman et al. 1963: 

 (49)  

This expression is written in true quantity. Therefore Hong et al. convert it into an expression with 

nominal concentration and flow. The true concentration is defined as: 

 (50)  

The deformation of a material element of area NKdA in the reference state is nida in the current 

state. These two quantities are related by the identity i.e. 

. The number of molecules crossing a unit area per unit time can be written in true or 

nominal quantities: 

 (51)  

Therefore, the true and nominal fluxes are related by: 

 (52)  

Then, the derivative of the chemical potential can be written as following: 

 (53)  

 Combining the equations 50 and 51 and reminding the equation 48 gives: 

 (54)  

Using the definition of HiK and the equation 49, the mobility tensor becomes: 

 (55)  

Using the molecular incompressibility, the coefficient of diffusion can be written as: 

 (56)  

This mobility tensor defined with nominal quantities is anisotropic for large deformations. 

The mobility tensor proposed by Hong et al. uses the assumption of self-diffusion of the solvent 

molecules. Therefore, this model may be wrong in case of prevailing macroscopic flow or convection 

of solvent molecules inside the polymeric gel. 

The equation 47 gives the flux JK as a function of the gradient of the chemical potential . The 

nominal flux can also be expressed as a function of the gradient of nominal concentration C using 

the chain rule of partial derivative:  
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(57)  

The derivative expression 46 for the chemical potential (F,C) is: 

 (58)  

Using the equations 55 and 57 and the molecular incompressibility, the expression of DKL becomes: 

 (59)  

Using the kinetic laws 47 and 56 the equation of conservation 18 can be written in two ways: 

 (60)  

 

 

 
(61)  

E. Boundary conditions 
In case of an initial value problem, the boundary conditions should be imposed at the interface 

between the gel and the external solvent.  The chemical boundary condition can be either a 

prescribed chemical potential µ or an imposed flux i. For the mechanical boundary condition, either 

the position x or the traction T can be imposed. 

Then, the constants of the equations must be estimated to solve numerically a problem using the 

presented model. Hong et al. uses the values of the literature for these constants. For example, for 

small-strain conditions, the dry cross-linked polymers have a shear modulus NkT of the order of 

. Hong et al. remind that representative values of υ and kT are respectively 

 and . Therefore, representative values of  and  are respectively 

 and .  For the numerical applications in the next paragraphs, the value of 

 chosen will be . The Flory-Huggins interaction parameter  is worth between 0 and 1.2.  As 

Hong et al. are interested in gels with large swelling ratios, they choose a low value of : 0.2. 

Then, to estimate the value of the diffusion coefficient D, Hong et al. use the Stokes-Einstein formula 

 which gives the coefficient of diffusion of a particle (much larger than a molecule) 

in a liquid. In the formula, R is the radius of a particle and  is the viscosity. Hong et al. estimate the 

coefficient of self-diffusion D at  considering water at room temperature: 

 and .  If the characteristic size of the sample is L, the time scale will be 

. For , the time scale will be . All the chosen numerical values of the constants 

are summarised in the following table: 

υ kT kT/ υ NkT N υ  D 
     0.2  

Table 1. Summary of the constant values 

Remark: The value of NkT will be calculated according to the parameters of the numerical problem. 
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F. Summary of the equations to implement 
 Mechanical and chemical equations in the volume 

 (62)  

 (63)  

 

 Boundary conditions 

o Chemical problem: chemical potential µ or flux i are imposed on the boundary. 

o Mechanical problem: displacement x  or traction T are imposed on the boundary. 

 

 Constitutive equations: expression of the free energy function 

 (64)  

 

(65)  

 (66)  

 

 Variables derived from the free energy function: stress siK, chemical potential  and 

diffusion coefficients 

 (67)  

 (68)  

 (69)  

III. TWO ANALYTICAL EXAMPLES 

In their paper, Hong et al. implement their model by solving analytically the problem of the uniaxial 

creep of polymeric gel. This numerical example has also been studied by Zhang (2008). I have tried 

to find their results to this problem using Matlab software. 
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A. Free swelling 
First a parallelepiped (cube or layer) of dry polymer of thickness L is immersed in a solvent with a 

chemical potential  as sketched on the Error! Reference source not found.. The polymeric gel will 

well to equilibrate with the external solvent. 

 

 

The gel is located with the coordinates X1, X2 and X3 in the reference state as shown in the Error! 

eference source not found.. xi(X,t) are the coordinate of the marker in the current state. The 

stretches are defined as: 

 (70)  

As the gel swells under no constraint, the three stretches are the same: . Then, the 

chemical potential value is fixed at 0. Fixing s=0 and =0 in the equations 44 and 47 gives two 

expressions for the osmotic pressure П: 

 (71)  

The condition of molecular incompressibility by: 

 (72)  
This expression is inserted in equation 71. The rearrangement of this equation gives: 

 (73)  

The root of this function is found using the Matlab function fzero (with 3 as initial guess): the 

equilibrium swelling ratio is  =3.215. The Matlab program is in the appendix.  

 

B. Uniaxial creep 

1. Description of the uniaxial creep case 

After swelling of a layer of polymer, this gel is fixed on a rigid substrate. As shown on Figure 10, a 

weight is applied on a permeable plate bonded on the top of the gel at time zero. As the solvent 

molecules can diffuse out of the gel through the permeable plate, the gel thins down progressively. 

       X1 

X3           Gel 

Figure 10. Gel 
immersed in a 

solvent 

Solvent 

 Figure 9. Gel immersed in a solvent 
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Figure 10. Uniaxial creep problem 

Let s be the applied force divided by the area of the dry polymer, X1, X2and X3 be the material 

coordinates in the reference coordinate (the dry and undeformed polymer): X1 and X2 in the plane of 

the layer and X3 normal to the layer pointing downward as sketched on Figure 10. As previously, the 

chemical potential of the external solvent is zero. The vapour pressure p0 is neglected because it is 

much smaller than s.  

2. Initial and final states 

The initial state is the swollen gel with  =3.215. When the solvent migrates out, the 

vertical stretch  becomes inhomogeneous and changes with time but the lateral stretches  

remain at 3.215 because of the rigid substrate and the thin layer shape. The thickness of the gel is 

assumed much smaller than the lateral dimensions. Therefore in gel the field is independent of X1 

and X2 and only the vertical stretch  defined below is determined: 

 (74)  

When the weight is applied on the top of the plane at time 0, the solvent molecules do not first have 

time to diffuse and the gel has the behaviour of an incompressible elastic body. As the lateral 

stretches λ1= λ2 are constant, the vertical stretch remains unchanged:  After a 

long time, t ∞ some small molecules have diffused and the gel reaches a new equilibrium with the 

weight and the external solvent.  

To determine the equation ruling , s3 is fixed equal to s in equation 44 and  to 0 in 

equation 47. This gives two expressions for the osmotic pressure П: 

 (75)  

The condition of molecular incompressibility is given by: 

 (76)  

This expression is inserted in equation 75. The rearrangement of this equation gives the expression 

of  as a function of s: 
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 (77)  

The resolution of equation 77 gives  for any given value of s. 

3. Vertical stretch evolution between  and  

When t increases, the vertical stretch  evolves from to 

 and the evolution spreads from the top surface toward the inside of the gel.  The change 

process is controlled by a Partial Differential Equation (PDE) for the function .  This PDE can 

be derived from the model of Hong et al. First, as  and   the 

equation 36 becomes: 

 (78)  

The mechanical equilibrium given by equations 13 and 14 is established when the stress is 

homogeneous and equal to s throughout the gel. On the other hand, the chemical potential  is 

inhomogeneous and changes with time like . Recalling equation 37,  is given by: 

 (79)  

Using equation 76 and , the diffusion coefficient of equation 56 becomes: 

 (80)  

Therefore, the kinetic law 48 becomes: 

 (81)  

As no solvent molecules are injected in this problem, the equation of conservation 18 becomes: 

 (82)  

The condition of molecular incompressibility 76 gives a relation between the evolution of the 

concentration C and : 

 (83)  

Using equations 81 and 82, the variation of  becomes: 

 (84)  

With =0, the condition of incompressibility 76 and the expression 75 for П, equation 47 gives: 

 (85)  

Deriving this expression and inserting it in equation 84 provides the PDE for the function  
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 (86)  

4. Boundary conditions and initial condition 

To solve the PDE for boundary conditions should be determined at X3=0 and X3=L .  

a) Boundary condition at X3=0 

On the surface of the gel at X3=0, the small molecules exchange much faster between the external 

solvent and the gel than they diffuse into the gel inside. Therefore there is always local chemical 

equilibrium at  X3=0, i.e.  Using the same process as for equation 69, can be 

determined with the following equation knowing  =3.215 and s: 

 (87)  

b) Boundary condition at X3=L 

At X3=L, the flux J(L,t) is zero since the rigid substrate is impermable to the solvent.  J is function of 

the concentration gradient and the concentration C is a linear function of  because 

of the molecular incompressibility. Consequently, the flux is proportional to the vertical stretch 

gradient  and the boundary condition at X3=L is: 

 
(88)  

c) Initial condition 

As the initial state is the swollen gel, the initial condition is  

5. Resolution of the PDE for the function  

The partial differential equation for the vertical stretch  can now be solved. The 

coefficients are fixed using the constants defined previously: 

and . 

a) Evolution of the vertical stretch with time 

The nominal stress  is set at -0.05. The root of the function 87 is found using the Matlab 

function fzero: the vertical stretch on the top is . The Matlab program is in the 

appendix.  

The PDE is solved numerically using the function pdepe of Matlab which can solve initial-boundary 

value problems for parabolic-elliptic PDEs in one space variable x and time t. Here x is the 

dimensionless variable X3/L. 

To use pdepe, the system of partial differential equation must be of the form: 

c(x,t,u,Du/Dx) * Du/Dt = x^(-m) * D(x^m * f(x,t,u,Du/Dx))/Dx + s(x,t,u,Du/Dx) (89)  
Therefore, u is the function . m and s are set at 0, c at 1. The function f is:  

 (90)  
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The boundary conditions at x=a and x=b for all t must be of the form:     

p(x,t,u) + q(x,t) * f(x,t,u,Du/Dx) = 0   (91)  

Consequently, at x=a=0, p(x,t,u)=u-0.8183 and q=0. At x=b=1, p=0 and q=(Du/Dx)/f. 

The full Matlab program can be found in the appendix. It provides the evolution of  as a 

function of the dimensionless coordinate X3/L for several times as shown on following chart. 

 

Consequently, this Matlab program provides the same result as Hong et al (2008a). First, the vertical 

stretch   changes only on the top surface and remains unchanged inside the gel. When t 

increases, the stretch inside the gel changes from the short-time limit to the long-time limit the 

modification propagates progressively from the top surface toward the depth of the gel. 

b) Evolution of the thickness according to the stress s 

The thickness of the gel is assessed as a function of time for different weights.  The vertical stretch 

on the top surface  is found as previously for each value of  and given in the table 

below.  

 -0.03 -0.05 -0.1 -0.2 

 1.0358 0.8183 0.5949 0.4358 
Table 2. Values of  according to the weight 

Figure 11. Vertical stretches in the thickness of the gel subject to a nominal stress =-0.05 for different times 

short  short-time limit (t=0+) 

long-time limit (t ∞) 

100 
50

0 

1   2     5              

10              20 
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The PDE for the function  is solved as previously. Then the vertical strecth is integrated to 

obtain the thickness of the gel. The Matlab program provides the following chart of the 

dimensionless thickness l/L as a function of  . 

This chart is the same as the result of Hong et al. (2008a). At time , the dimensionless 

thickness of the gel is equal to that of free swelling: . Then, there are two stages in the 

diffusion process. Initially, when , the solvent molecules diffuse only near the top surface, 

so the diffusion rate does not depend on the thickness of the gel L. Therefore, no length scale exists 

in the problem and the vertical stretch  follows the self-similar profile described in the next 

paragraph. In this part, the decrease of the thickness is linear in . In the second stage 

corresponding to  , the thickness becomes constant reaching the longtime limit. 

c) Self-similar solution 

The self-similar solution is examined for an infinitely thick layer. No length scale exists in the 

problem in the initial value problem. Therefore, the vertical stretch  must take the form: 

 (92)  

The definition of  gives the following identities for the derivatives: 

 (93)  

 
(94)  

Figure 12. Thickness of the gel as a function of time for different values of weights 
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Therefore, equation 86 becomes the following ordinary differential equation (ODE): 

 

 

(95)  

This ODE is transformed into a system of first order ODE: 

 
(96)  

 
(97)  

 
(98)  

This system of ordinary differential equations is integrated numerically on the interval [a, b]= 

[0, using the function bvp4c of Matlab. The two-point boundary value conditions is defined 

by  at  and  at  The initial value is given by . The full 

Matlab program can be found in the appendix. The plot provided by this program is presented in 

Figure 13. The function  is plotted for different levels of the applied weight, which gives the 

same results as Hong et al. (2008a). Two regions separated by a diffusion front can be distinguished 

in the layer. At the rear of the front, the gel is close to the long-time limit  . Ahead of the front, 

the gel is near the short-time limit . 
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Figure 13. Self-similar solution of an infinitely thick gel 
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Chapter 3 : Numerical implementation 

The model described in the second chapter has been implemented using Comsol Multiphysics, finite 

element software. The general equations summarised previously are implemented and the two 

problems previously solved analytically are resolved with Comsol Multiphysics. The main 

characteristics of the software utilized are presented. Then the steps of the implementation are 

explained.  

I. Generalities about the software 

COMSOL Multiphysics (formerly FEMLAB) is software which allows the analysis and resolution of 

problem by the finite element method. It enables to solve various physics and engineering problems, 

in particularly multiphysics or coupled phenomena such as thermal and mechanics.  

COMSOL Multiphysics permits the resolution of general Partial Differential Equations (PDEs) and 

Variational Form. It contains several predefined modules such as the chemical engineering and 

structural mechanics modules. Therefore some common PDEs can be used directly by simply 

defining the corresponding coefficients. However the user can also define his own PDE or Weak 

Form or redefine some variables such as the free energy function. As COMSOL Multiphysics has an 

interface with MATLAB, the user can define constants or functions using the MATLAB programming 

syntax. A similar interface exists in COMSOL Script which enables to write program for COMSOL 

Multiphysics or to modify the program generated using the graphical user interface. 

Initially the model was implemented in COMSOL 3.4 before switching to the COMSOL 3.5. This 

version is interesting because a segregated solver is available for time-dependent problems and not 

limited anymore to stationary ones. This solver enables memory usage cut for solving classical 

multiphysics. 

II. Implementation 

A. Predefined modules 
Two predefined modules were used: structural mechanics and diffusion. Both were transient 

analysis. The structural mechanics models were the solid stress-strain in three dimensions or the 

plane strain in two dimensions. 

B. Constants and functions 
The constants and functions of the model are defined in the options. The constants are the constant 

identified in the previous chapter and some defining the boundary conditions such as concentration, 

chemical potential, pressure and displacement. The functions defined as scalar expressions with 

Matlab syntax are the chemical potential, the elements of the diffusion coefficient matrix, the free 

energy function. The tables of the constants and functions can be found in the appendix. 
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C. Geometry 
A cube is drawn to define the problem of free swelling. The first corner of the cube is at the 

coordinate (0, 0, 0) and the cube side length L is chosen at 0.1m. The creep uniaxial test can be 

either implemented with this cube or a thin layer (of thickness L/10 for example). 

D. Structural mechanics  
 Subdomain settings: The material of the cube is chosen hyperelastic. The mixed U-P formulation 

is used to define the material as nearly incompressible. 

 Boundary settings:  Three faces are blocked to avoid rigid body motion. A pressure is imposed 

on the top face in the implementation of the creep uniaxial problem. 

 Properties: Large deformation option is selected. 

 Model settings: The equation system is chosen as weak form (for the multiphysics problem). 

 Equation system- Subdomain settings:  

o A new free energy function is defined as Ws_smsld_2 in the scalar expressions. This 

function is used in the definition of the Pioley-Kirshoff tensor: Px= diff(Ws_smsld_2,ux) 

o The condition of incompressibility is modified to add the term : 

p_test*(-1+p/kappa_smsld+Jel_smsld-vol*c) 

E. Diffusion 
 Subdomain settings: The classical PDE of diffusion is predefined. The coefficient of diffusion is 

defined by the function dij defined previously in the scalar expression. 

 Boundary settings:  The concentration or the flux can be imposed at the top boundary. 

 Model settings: The equation system is chosen as weak form. 

F. Mesh 
The mesh is created using the free mesh parameters. The mesh is initially chosen extra coarse and 

then refined everywhere or in some areas with the boundary or edge mesh parameters. 

G. Solver 
 Solver parameters:   

o Time-dependent solver: 

Firstly a time dependent solver is used with COMSOL Multiphysics 3.4. Then the time-dependent 

segregated solver is used with the version 3.5: it allows splitting the solution steps into substeps 

solving either mechanical or diffusion problem. Moreover this solver enables to choose different 

linear system solvers for each kind of substep (mechanical or diffusion here).  

o Direct/ iterative solver: 

A direct solver can be used for 2D models and for 3D models with few degrees of freedom 

(approximatively 100,000 to 1,000,000 depending on available memory).These solvers solve the 

linear system by Gaussian elimination. This process is stable and reliable and well suited even for ill-

conditioned system. However the elimination mechanism can require large memory resources and 

long computation times, which is a problem for 3D models. In Comsol, the direct linear solvers that 

can be used to solve symmetric and non symmetric systems are UMFPACK, SPOOLES and PARDISO. 

PARDISO is a highly efficient direct solver for symmetric and nonsymmetric systems. UMFPACK is 
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also highly efficient for nonsymmetric systems but uses more memory than PARDISO. SPOOLES is 

less efficient than UMFPACK but uses also less memory.  

Since the direct solvers require usually too much memory for models with many degrees of freedom, 

an iterative solver which is more memory-efficient will perform better. Nevertheless, iterative 

solvers are less stable than directs ones and do not always converge. The convergence of iterative 

solvers can be improved by using an appropriate preconditioner. In Comsol, the iterative solvers that 

can be used to solve symmetric and non symmetric systems are GMRES and FGMRES which handle 

more general preconditioners but uses more memory than GMRES. These two iterative solvers can 

be used with the Incomplete LU preconditioner. 

o Time stepping: 

The intervals of resolution and time steps are fixed. For example a time stepping 0:1:5 corresponds 

to the resolution of the PDEs on an interval [0, 5] with time steps of 1. 

 

 Solver manager: The model is solved for both mechanical and diffusion physics. The solution 

of the free swelling problem can be stored and used as initial values for the creep uniaxial 

problem. 

III. Basic validations    

The implementation of the model of Hong et al (2008a) is carried out step by step. First the 

mechanical and diffusion model are implemented separately in 2D plain strain models and 3D strain-

stress models. 

A. Mechanics 
Some compression tests are performed on a cube of hyperelastic material: the bottom is fixed and a 

pressure p is applied on the top as sketched on Figure 14.  

 

Figure 14. Compression test on a hyperelastic cube 

First, the hyperelasticity is modelled with Neo-Hookean model. If the imposed pressure is set 

constant at p1=5e2 Pa, Comsol Multiphysics cannot find the solution: the direct linear solver does 

not converge. Secondly, the pressure is applied progressively by using the following function: 

p2= [p1*0.5*(1+tanh(2[s^-1]*(t-2.5[s])))] (99)  
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Comsol can now compute the solution of this simple problem. Therefore the brutal changes in the 

boundary load should be avoided. 

The free energy function Ws_smpn is now redefined with the Flory-Huggins model: 

Ws_smpn_2=0.5*NkT*(-3+I1_smpn-log(I3_smpn)). As explained before, the Pioley-Kirshoff tensor is 

redefined with this new free energy function. The same compression test is carried out with a 

pressure constant p and with the pressure function p2. The first test works on 0:0.5:100 but the 

computation is very slow. The second test works properly. Consequently, the brutal changes in the 

applied pressure should again be avoided. 

Then this compression test case is implemented in 3D with the same procedure. It works properly if 

the pressure is imposed gradually like the 2D model. 

B. Diffusion with problem of boundary conditions 
Some simple diffusion tests are carried out on a square insulated on three sides as sketched on 

Figure 15. Different boundary conditions are imposed on the top: fixed concentration, flux or 

chemical potential. The initial concentration is zero corresponding to a dry polymer. 

 

Figure 15. 2D diffusion test 

The diffusion PDE for the concentration is predefined as equation 63 (b). The implemented diffusion 

coefficient is the chemical part of DKL given previously in equation 69: 

Dij=(D1/(1+vol*c)^2)*(1-2*ksi*vol*c/(1+vol*c)) (100)  
 

1. 2D diffusion model 

a) Imposed concentration 

In the model presented in chapter 2, the chemical boundary condition is either a fixed flux or 

chemical potential. Nevertheless, imposing a concentration on a boundary can enable to reach a 

state of uniform concentration such as a swollen gel in chemical equilibrium. 

In the first test, a constant concentration Ce1=  is imposed on the left. The resolution on 

0:0.5:100 works: the final state of homogeneous concentration is reached. Then the imposed 

concentration is increased to Ce1= . In that case, Comsol Multiphysics cannot find the 

final solution: it cannot find consistent initial condition and the direct linear solver does not 

converge. Subsequently, the boundary concentration is increased progressively from 0 to Ce1 with 

the following function: 

Ce2= [Ce1*0.5*(1+tanh(2[s^-1]*(t-2.5[s])))] (101)  
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The solver converges and the final state of uniform concentration is reached. Therefore the variation 

of concentration on the boundary should not be too fast.  

a) Imposed chemical potential 

I have tried to impose a zero value for the chemical potential  on the left boundary by adding a 

multiphysics weak form on this boundary. The new weak variable is lamb. The chemical potential is 

imposed using the boundary settings of this new weak form:  the weak condition 

test(lamb)*mu+test(c)*lamb is fixed on the left boundary. The chemical potential  was defined in 

the scalar expression by: 

Mu = kT*(log(vol*c/(1+vol*c))+1/(1+vol*c)+ksi/(1+vol*c)^2) (102)  

Unfortunately, COMSOL cannot solve the diffusion problem with this condition. I have tried to 

impose other expressions for the chemical potential. If  Mu = kT*(1- c + ksi*(1-c)^2). Then COMSOL 

can solve the diffusion problem with a chemical potential on the boundary. If  Mu = kT*(log(c+ceps)+ 

1- c + ksi*(1-c)^2) with ceps=1e-3, COMSOL cannot solve the problem. In conclusion, it seems that 

the chemical potential of the model of Hong et al. (2008a) cannot be imposed on a boundary, 

probably because the log function and  goes to  when c vanishes. 

b) Imposed flux 

In the model of Hong et al. (2008a), the flux J is proportional to the gradient of chemical potential . 

The chemical part of J is: 

 

 
(103)  

Therefore a flux proportional to the variation of  can be imposed on the boundary: 

 

 
(104)  

Since the chemical potential goes to  when c vanishes, a small concentration ceps is added in the 

log function of : 

 (105)  

ceps and dx are respectively set to  and . This problem is solved with a 

COMSOL direct solver. After   2.2e9 s, the stationary state is almost reached: J =0.0998 and 

c=3.318e9 in the middle of the cube. The final state is attained after 9e14s. Figure 16 shows 

the concentration in the model after 1e10s. 
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Figure 16. Concentration in the 2D diffusion model at 1e10s 

 

2. 3D diffusion model 

a) Imposed concentration 

First a constant concentration Ce1=  is imposed on the top boundary. COMSOL can solve 

this problem  on 0:0.5:100 with a direct linear solver. Secondly, the concentration is increased to 

Ce1=  and COMSOL cannot solve the problem anymore. Subsequently, the boundary 

concentration is increased progressively from 0 to Ce1 with the following function as previously. 

However even with the very slow function Ce2= Ce1*0.5[1+tanh(0.002(t-2500))] and a very fine 

mesh represented on , COMSOL cannot solve this problem on 0:2000:120000: the direct solver failed  

at time 2423. The final concentration is only Cend= . Nevertheless, this final 

solution is better than the one with coarser meshes: the COMSOL solver fails earlier in these 

cases. 

 

Figure 17. 7595 tetrahedral element mesh used to impose the concentration on one side 

A uniform final concentration of Cend= can nonetheless be obtained using the 

boundary condition: Ce2=Ce1*0.5*(1+tanh(2e-5[s^-1]*(t-2.5e5[s]))) on 0:2e4:1.2e6 with a coarse 

mesh. 

In conclusion, to impose a concentration on one boundary of a 3D cube, the concentration should 

increase very slowly with time. Moreover, since the diffusion is very slow, the molecules are first 
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concentrated in the first layer of elements. Therefore, a finer mesh on the boundary with an 

imposed concentration can help the solver to converge. 

3. Imposed chemical potential 

Imposing the chemical potential on the left boundary raises the same problem as for the 2D model. 

Therefore the chemical potential will not be imposed. 

4.   Imposed flux with different expressions 

The flux is imposed in the same way as the 2D case with no more problems. 
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Chapter 4 : Results 

After the previous basic validations, the full coupled model of Hong et al. (2008a) can be 

implemented in COMSOL Multiphysics. Then the free swelling and creep uniaxial problems are 

solved in 2D and 3D, the goal being to find the same results as previously. 

I. Free swelling of a cube 

A. Free swelling of a cube in 2D  
First a 2D plain-strain model is used. The geometry is a square of length side L=0.1m with a thickness 

L. To avoid rigid body motion, the square is bloked as sketched on Figure 18. For the chemical 

problem, a flux is imposed on one side and the other boundaries are 

insulated.  is zero and  is set at 1e18. Consequently, the chemical potential  should be 

equal to  on the boundary where the flux is imposed.  

 

Figure 18. 2D free swelling model 

As previously, to avoid problem when C vanishes, a ceps is added to the log function of the chemical 

potential:  

 (106)  

To obtain =0 as a final state, ceps should vanish. Therefore ceps is chosen as a function 

ceps=ceps1*(1[s]-t*0.1)*(t<10) with  (as the lowest values raised problems). 

The final state should be  and . The analytical value of is the root of 

the following function obtained like equation 77: 

 (107)  

Then, the analytical value of is 5.765 and . Using the 

incompressibility condition, the final concentration should  be  . At the 
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chemical equilibrium,  is zero everywhere in the gel and the final osmotic pressure can be 

calculated from the expression 68:  Finally, the coefficient  can be computed 

with equation 46 where s=0: 

 (108)  

The problem is solved with the segragated time-dependent solver (with PARDISO direct solver for 

each substep) and a normal mesh on 0 : 5e2 : 3e6. The solver failed before the end of this interval. 

This problem remains when the mesh is refined or the parameters ceps and atte are modified. 

 Consequently, the problem of convergence comes more probably from the fact that the diffusion is 

two slow:  and Dij decreases up to  when the model has almost 

reached the final state. Then I have decided to transform the diffusion PDE into a dimensionless PDE 

using characteristic dimension of length, concentration and time: L0=0.1m, , 

 1e7s. The dimensionless variables are  ,  The diffusion 

PDE becomes: 

 (109)  

The numerical application gives: 

 (110)  

Therefore the diffusion problem can be redefined with a new diffusion coefficient D2= D and a 

concentration D. Then C is replaced by C2 in all the functions ( ,Ws,incompressibility). 

The same solving parameters as previously now enable to solve the free swelling model. The 

resolution takes 153.4s. The expected results are found: F11=F22=5.765,  or 

 and  The evolution of different functions with time are 

drawn with COMSOL Multiphysics (Cf . Figure 19-22). The chemical potential vanishes progressively 

as the flux. The stretch F11 and the concentration C increase gradually: fast at the beginning and 

then more and more slowly.  

These results should not be the experimental one for the small concentration because of the 

hypothesis made about the diffusion coefficient in the model of Hong et al. (2008a). 
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Figure 19. Evolution of the chemical potential with time during swelling 

 

Figure 20. Evolution of the flux with time during swelling 
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Figure 21. Evolution of the concentration with time during swelling 

 

Figure 22. Evolution of the stretch F11 with time during swelling 

 

B. Free swelling of a 3D cube with diffusion on one boundary 
A cube of gel is swollen by diffusion throug one boundary as sketched on Figure 23. The geometry is 

a cube of length side L=0.1m. To avoid rigid body motion, the face 1 (x=0) is bloked in x, the face 2 

(y=0) is bloked in y and the face 1 (z=0) is bloked in z. For the chemical problem, a flux 

is imposed on the top surface.  is zero and  is set at 1e10 (the solver will not 

converge for bigger flux). Consequently, the chemical potential  should be equal to  on 

the boundary where the flux is imposed.  
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Figure 23. 3D free swelling model 

As for the 2D, to avoid problem when C vanishes, a ceps is added to the log function of the chemical 

potential which gives equation 106. ceps is chosen as a function ceps=ceps1*(1[s]-t*0.1)*(t<10) with 

 (as the lowest values raised problems). 

As calculated previously, the analytical value of is 3.215 and 

. Using the incompressibility condition, the final concentration should be  

. At the chemical equilibrium,  is zero everywhere in the gel and the final 

osmotic pressure can be calculated from the expression 68:  Finally, the coefficient 

 can be computed with equation 46 where s=0: 

 (111)  

Some free swelling tests were carried out with various imposed concentrations and flux. 

Nevertheless the segragated time-dependent solver (with PARDISO direct solver for each substep) 

were never able to reach the final swollen state whatever the mesh and the parameters ceps and 

atte. Therefore, the dimensionless PDE presented before will be also used for the 3D swelling. 

This PDE is solved on 0 : 5e10 : 5e14, which takes 42mn. The expected results are found: 

F11=F22=F33=3.215,  or  and  

The evolution of different functions with time can be drawn with COMSOL Multiphysics. The 

resulting plots are similar to the ones in 2D. 

C. Free swelling of a 3D cube with diffusion on all boundary 
Following Zhang (2008), I have tried to swell the cube of polymer on all boundary imposing 

concentration or flux. The cube is fixed at the center point and the center points of the face (x=0) 

and (y=0) can translate only in the x and y-directions repectively. As shown on Figure 24, the same 

results as Zhang (2008) are observed: the corners swell first because they have the largest surface 

contact with the solvent; the swelling of the corners is followed by the swelling of the edge and then 

the other part of the gel. 
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Figure 24. Intermediate free swelling of a cube of polymer immersed in a solvent 

II.  Creep uniaxial in 2D 
Starting from the swollen state, a pressure s is imposed on the cube to achieve the creep uniaxial 

case explained in the chapter 2. The initial swollen state of this test case can either be done by 

starting from the stored free swelling or by imposing the concentration and displacements resulting 

from the free swelling. The imposed pressure s is set to -2e6 Pa which corresponds to -0.05 

imposed in the problem solved analytically in chapter 2. The creep case studied in the second 

chapter was done on a layer of gel.  Blocking and insulating the two lateral sides after swelling is 

equivalent to study the center part of this layer. This displacement of the right boundary can be 

found in the stored free swelling data: Rx= 0.47646365868934 m. The resulting model is sketched on 

Figure 25: all displacements are translation on y and the bottom and lateral sides are insulated such 

that the solvent can only diffuse through the top boundary. 

 

Figure 25. 2D creep uniaxial case 

First the dimensionless PDE and the numerical implementation are unchanged compared to the free 

swelling except for the boundary conditions. Moreover the concentration c will not vanish anymore, 

ceps is set to 0. The problem is solved with the segragated time-dependent solver (with PARDISO 

direct solver for each substep) on the time stepping 0:5e1:3e6. At time 3e6, the resolution gives 
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F11=5.765 and F22=1.115,  or  and  This 

corresponds to the long-time limit value of  computed analytically as the root of the following 

function with  unchanged in the creep uniaxial case: 

 (112)  

The evolution of F22 and  with time in the thickness of the gel are plotted and shown on Figure 26 

and Figure 27. Therefore, F22 and  are uniform in the thickness of the gel at any time. They evolve 

gradually from their short-time limit value to their long-time limit value. 

 

Figure 26. Evolution of F22 with time in the tickness of the gel with D2=8e-1m²/s 

 

Figure 27. Evolution of  with time in the tickness of the gel with D2=8e-1m²/s 
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Consequently, it seems that the diffusion is too fast compared to the mechnical equilibrium: the 

stretch F22 and the chemical potential are “instantaneously” diffused in the layer of the gel. This can 

come from the approximation of the flux which could be bigger than approximated when the 

gradient of  is almost infinite. However if the coefficient atte is increased, the solver has trouble to 

converge. Then I have tried to decrease the diffusion coefficient D2. 

After several trials, D2 is set at 8e-8 m²/s, ceps1 at 2500 and the function ceps is chosen as 

ceps1*(1[s]-t*0.1)*(t<10). The problem is solved on 0:5e3: 12e6.  The results are very close to the 

analytical solution with y pointing upward instead of downward previously (y=-X3):  F22 has the same 

variations as λ3 between the short-time and long-time limit values (different from the 3D ones) in 

the thickness of the gel. The evolution of the thickness is also similar. The self-similar solution is a bit 

different from the analytical solution. The chemical potential variation is close to the solution found 

by Zhang et al (2008). 

 

Figure 28. Evolution of the vertical stretch in the thickness of the gel 
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Figure 29. Evolution of the chemical potential in the thickness of the gel 
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Good results: same as the analytical results 

Test with “adimention”: problem with speed flux/diffusion but with “makeshift job” the results are 

as good as the one in Matlab 

Test without “adimention”: with a very fine mesh the results are quite good  

III. Creep uniaxial in 3D 
Stationary resolution: good final state for any weight 

Problem with the transient part: λ3 is constant in the layer and the same “makeshift job” as in 2D is 

very unstable, Comsol cannot run a too fine mesh… 

 

 

Creep uniaxial in 2D starting from swelled state 

Problem with creep uniaxial 3D 
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(=>see summary Comsol) 

For each example: 

 presentation of the example: geometry, CL, cost, mesh 

 goal of the example 

 discussion: what’s working, what’s not 
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Chapter 5 : Discussion/ conclusion  

What we’ve done 

(1. What’s working 

2. What’s not 

3. Improvements) 

A. Propositions of explanations on the failed case 
Why “adimention” is necessary:  

- too slow diffusion does not enter the first element? 

- … 

Why we cannot get good results in the creep uniaxial test in 2D without “makeshift job”? 

-the modelisation of the flux gives a too slow one compared to the diffusion characteristic time? 

- the adimentionalisation is so good? 

- …. 

Why is it so long to swell? 

- because of the expression of the flux linearly dependent on µ? 

-… 

 Why we cannot get instatbility for the transient part in the creep uniaxial test in 3D? 

- problem of choc with the pressure, µ? 

- a very fine mesh(too many dofs) is necessary because of the thin front 

-… 

B. Feasible improvements 
Change in some hypothesis 

Monophasic theory -> biphasic theory 

Hypothesis of incompressibility 

…. 
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Conclusion  

(to include in the last part ?) 

idée directrice 

what was the purpose 

quick summary of the steps of the project 

what was possible, percepective 
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Appendix 

I. Matlab Programs 

A. Determination of the free swelling stretches 



B. Determination of for the creep uniaxial problem 





 

C. Resolution of the PDE of  for several times 
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D. Determination of the thickness evolution for several weights 
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E. Resolution of self-similar ODE 
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II. Variables in COMSOL Multiphysics 
 

A. Constants 

NkT3D    4e4[N/m^2]  constant1 for Flory-Rehner 3D 

NkT2D    1.1587e4[N/m^2]  constant1 for Flory-Rehner    2D 

kTonv    4e7[Pa]  constant2 for Flory-Rehner                    

ksi 0.2  dimensionless measure of enthalpy of mixing   

vol    6.022e-5[m^3/mol]  volume per mole of molecule                   

D1tt   8e-10[m^2/s]  coefficient of diffusion of particules        

kT     4e-21[J]  constant for mu                               

volm3  1e-28[m^3]  volume per molecule                           

D1     8e-1[m^2/s]  dimensionless diffusion coefficient                

Ce1    5.3522[mol/m^3]  dimensionless external concentration     

ceps1    1[mol/m^3]   

  

B. Scalar expressions for 2D models 

d11 
  (D1/(1+vol*c)^2)*(1-2*ksi*vol*c/(1+vol*c)) 
*(invF11_smpn^2+invF12_smpn^2)  coefficient of diffusion 11   

d12 
 (D1/(1+vol*c)^2)*(1-2*ksi*vol*c/(1+vol*c)) * 
(invF11_smpn*invF21_smpn+invF12_smpn*invF22_smpn)  coefficient of diffusion 12   

d21            d12 coefficient of diffusion 21   

d22 
 (D1/(1+vol*c)^2)*(1-2*ksi*vol*c/(1+vol*c)) 
*(invF22_smpn^2+invF21_smpn^2) coefficient of diffusion 22   

Ws_smpn_diff 

  (0.5*NkT*(-3+I1_smpn-log(I3_smpn))-
kTonv*(vol*c*log(1+1/(vol*c)) 
+ksi/(1+vol*c)) 
 -p*(-1+Jel_smpn-vol*c+0.5*p/kappa_smpn))*thickness_smpn  total strain energy           

Ws_smpn_diff1 
 (-kTonv*(vol*c*log(1+1/(vol*c))+ksi/(1+vol*c)) 
-p*(-1+Jel_smpn-vol*c+0.5*p/kappa_smpn))*thickness_smpn  diffusion strain energy       

mup 
 
kT*(log(vol*c2/(1+vol*c2))+1/(1+vol*c2)+ksi/(1+vol*c2)^2)+p*volm3   

ceps ceps1*(1[s]-t*0.1)*(t<10)        

C2 c*10^5 
dimensionless 
concentration 

 

C. Scalar expressions for 3D models 

d11 
(D1/(1+vol*c)^2)*(1-2*ksi*vol*c/(1+vol*c)) 
*(invF11_smsld^2+invF12_smsld^2+invF13_smsld^2)  coefficient of diffusion 11   

d22 
(D1/(1+vol*c)^2)*(1-2*ksi*vol*c/(1+vol*c)) 
*(invF21_smsld^2+invF22_smsld^2+invF23_smsld^2)  coefficient of diffusion 22   

d33 
(D1/(1+vol*c)^2)*(1-2*ksi*vol*c/(1+vol*c)) 
*(invF31_smsld^2+invF32_smsld^2+invF33_smsld^2)   
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d12 

 (D1/(1+vol*c)^2)*(1-2*ksi*vol*c/(1+vol*c)) 
*(invF11_smsld*invF21_smsld+invF12_smsld*invF22_smsld 
+invF13_smsld*invF23_smsld)  coefficient of diffusion 12   

d13 

(D1/(1+vol*c)^2)*(1-2*ksi*vol*c/(1+vol*c)) 
*(invF11_smsld*invF31_smsld+invF12_smsld*invF32_smsld 
+invF13_smsld*invF33_smsld)  coefficient of diffusion 21   

d23 

 (D1/(1+vol*c)^2)*(1-2*ksi*vol*c/(1+vol*c)) 
*(invF21_smsld*invF31_smsld+invF22_smsld*invF32_smsld 
+invF23_smsld*invF33_smsld)                                

Ws_smsld_2 

  (0.5*NkT*(-3+I1_smsld-log(I3_smsld))-
kTonv*(vol*c2*log(1+1/(vol*c2)) 
+ksi/(1+vol*c2))-p*(-1+Jel_smsld-vol*c2+p/kappa_smsld)) total strain energy           

Ws_smpn_diff1 
 (-kTonv*(vol*c2*log(1+1/(vol*c2))+ksi/(1+vol*c2)) 
-p*(-1+Jel_smsld-vol*c2+0.5*p/kappa_smsld)) diffusion strain energy       

mup  kT*(log(vol*c2/(1+vol*c2))+1/(1+vol*c2)+ksi/(1+vol*c2)^2)+p*volm3 chemical potential 

Ce  Ce1*0.5*(1+tanh(2[s^-1]*(t-2.5[s])))   

c2   c*10^5   

ceps ceps1*(1[s]-t*0.1)*(t<10)    

 


