
Study of the propagation of defects
governed by a brutal damage law
using a coupled boundary element

and level set technique.

Anne-Lise Guilmin

June 25, 2009

Master at : Ecole Centrale de Nantes (ECN)

Conducted at : Institut de Recherche en Génie Civil et Mécanique (GeM)
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Abstract

The team of Institut de Recherche en Génie Civil et Mécanique (GeM) has developed a
brutal damage law to compute the propagation of defects in materials like concrete. In
order to test this law on an infinite medium, they wanted to couple the code of propa-
gation with a code using the boundary element method (BEM) which would update the
propagation criteria. This criteria takes into account a surface energy which requires to
know the gradient of displacement on the boundary. I was in charge to write a BEM
formulation able to compute the gradient of displacement on the boundary and to couple
it with the propagation code. This work has been done in the frame of my master thesis
untitled ”Study of the propagation of defects governed by a brutal damage law using a
coupled boundary element/level set technique.” which was conducted in the GeM labo-
ratory from March 1 2009 to June 26 2009 for the validation of the Master of Sciences in
Computational Mechanics. At the end of this period, a BE formulation able to solve a
potential problem was coded in C++, used to compute the displacement for a mode III
problem in 2D and coupled to the propagation code.
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Introduction

In this thesis, the boundary element method (BEM) is used for crack propagation. A
BEM formulation is written to compute the elastic energy at any point required by the
user, knowing the displacement or the traction on the boundary. Then it is coupled with
a code of crack propagation using a level set technique which will use the former results
to update the propagation criteria and determine new displacements and tractions on the
boundary. Then those data and a mesh of the boundary (build from a level set) are sent
to the BEM formulation (see fig.(1)). This loop stops when the crack does not propagate
anymore.

user input

BEM

σ : ε
crack propagation

~U, ~T

results

Figure 1: Schema of the interaction between BEM code and crack propagation code

In the first chapter, the elastostatic problem is presented and we show how the study
of mode III leads to a potential problem. In the second chapter, the boundary element
method is explicited for this problem with two formulations (use of constant or linear
elements). A comparison of those formulations is illustrated with some test cases. In
the third chapter, the crack propagation using a brittle damage law is detailled and we
illustrate some results produced by the coupling of the two codes.



Chapter 1

Presentation of the problem

1.1 Notations

Quantities

We will write: a for a scalar quantity,
~a for a vector,
a for a second order tensor (or higher order).

Operators

Gradient

In cartesian coordinates, the gradient of a is defined as:

~grad a(x, y, z) = (
∂a

∂x
,
∂a

∂y
,
∂a

∂z
)

The vector ~grad a is also noted ~∇a. The gradient operator creates a quantity one order
higher than the argument.

Divergence

In cartesian coordinates, the gradient of ~a = (ax, ay, az) is defined as:

div ~a =
∂ax

∂x
+
∂ay

∂y
+
∂az

∂z

The scalar quantity div ~a is also noted ~∇ ·~a. The divergence operator creates a quantity
one order lower than the argument. We will use the divergence of a product:

~∇ · (λ~a) = λ~∇ · ~a+ ~∇λ · ~a (1.1)
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We will also need the Green-Ostrogradski theorem (divergence theorem):

∫

S

~∇ · ~adS =

∫

Γ

~a · ~dΓ (1.2)

Laplacian

The Laplacian operator is the composition of the divergence and the gradient. It is noted
∆ = ~∇· ~∇ and creates a quantity of same order as the argument. In cartesian coordinates,
the Laplacian of a is defined as:

∆a =
∂2a

∂x2
+
∂2a

∂y2
+
∂2a

∂z2

Normal derivative

We note
∂a

∂~n
= ~∇a · ~n.

Norm

For a given vector ~a described by its components ax and ay in a two-dimensionnal basis,
we note its norm:

‖~a‖ =
√
a2

x + a2
y

Dirac function

The Dirac function is defined by:

{
δ(y,x) = 0 if y 6= x
δ(y,x) = +∞ if y = x

(1.3)

such that:

∀ε 6= 0,

∫
x+ε

x−ε

δ(y,x)dy = 1 (1.4)

Kronecker index

The Kronecker index is defined by:

{
δij = 0 if i 6= j
δij = 1 if i = j
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Einstein convention

Considering E a vectorial space of dimension n, (e1, e2, . . . , en) a random base of this
space, and V a vector of E , V can be written:

V =
n∑

i=1

V iei

Einstein convention consists in omitting to write the sum on indices. Then the vector V
is written:

V = V iei

A sum index is a dummy index. It appears exactly twice in a monomial. As it is mute,
its name has no meaning and can be replaced by another one:

V = V iei = V jej

A real index (which is not mute) appears only once in a monomial and is the same in
each monomial of an equation or a sum.

1.2 The elastostatic problem

The BEM will be applied to solve the following system:

~div(σ) + ~fv = ~0 (1.5)

with

{
~u = ~U on Γu

~t = σ.~n = ~T on Γt

(1.6)

The behavior of the medium is described by:

σ = 2µε + λtr(ε)I (1.7)

The displacement field is written:

εij =
1

2
(ui,j + uj,i) (1.8)

To ensure deformations to derive from such a displacement field, we use:

∆(ε) + grad( ~grad(tr(ε))) = grad( ~div(ε)) + grad( ~div(ε))t (1.9)

Using eq.(1.8) in eq.(1.7), we get:

~div(σ) = 2µ ~div(ε) + λ ~div(tr(ε)I)

= µ
(
~div(grad~u) + ~div(grad~u)t

)
+ λ
(
tr(ε) ~div(I) + I. ~grad(tr(ε))

)

= µ
(
~∆(~u) + ~div(grad(~u)t)

)
+ λ ~grad(div(~u))

= µ~∆(~u) + (λ+ µ) ~grad(div(~u))
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Putting this expression in the equilibrium equation yields the Lamé-Clapeyron equation:

µ~∆(~u) + (λ+ µ) ~grad(div(~u)) + ~fv = ~0 (1.10)

Mode III problem

In this thesis, we focused on solving the mode III problem. Indeed, the elstostatic problem
can be written as a potential problem, which is simpler to treat (as shown in [2]). The final
objective is to have a boundary element formulation able to solve the general elastostatic
problem, but due to a matter of time, this work could not be achieved. To implement it,
the basis can be found in [3].

For in-plane problems, we can write the Papkovich representation for the displacement
field:

2µ~u = 4(1 − ν)~ψ − grad(φ+ ~r · ~ψ) (1.11)

where in the unit orthogonal basis (~ex, ~ey, ~ez), ~u = ux ~ex + uy ~ey + uz ~ez is the displacement

vector, ~r = rx ~ex + ry ~ey + rz ~ez is the position vector and φ and ~ψ = ψx ~ex + ψy ~ey + ψz ~ez

are scalar and vector potentials which satisfy the equations:

∆φ = 0 ~∆~ψ = ~0 (1.12)

Insertion shows that the Papkovich representation satisfies the equations of equilibrium
after putting the inertia term equal to zero. As shown by Eubanks and Sternberg [7],
one of the four potential function may be put to zero under rather general conditions.
Specialization to plane strain, ux = ux(x, y), uy = uy(x, y), uz = 0, implies that the
potentials are function of x and y, only, and then, according to 1.11:

ψz = 0 (1.13)

It remains only the scalar variables φ, ψx and ψy. As they are independant, we search
only the solution of ∆u = 0 where the unknown u is a scalar (see chapter 2).

An analytical solution has been given for the steady-state problem of the dynamic
propagation of a damaged zone in elastic body, in permanent mode III [4]. The shape of
the propagation front was computed to be a cycloid with a cusp.

Other assumptions leading to a potential problem

Note that this potential problem could also be considered as the elastostatic problem
under simplifying assumptions. Indeed we get a potential problem in a case of pure
deformation (no rotation of solid body) without any body forces. Thanks to the pure

deformation assumption, the displacement field derives from a potential φ: ~u = ~grad(φ).
Then Lamé-Clapeyron equations (1.10) become:

(λ+ 2µ)~∆(~u) + ~fv = ~0 (1.14)
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And without body forces, we get the harmonic function:

~∆(~u) = ~0 (1.15)

Let us remark that we also come to the same result assuming that the medium is
incompressible. Indeed, then we have tr(ε) = div(~u) = 0 so eq.(1.10) become:

µ~∆(~u) + ~fv = ~0 (1.16)

And without body forces, we find back eq.(1.15).
As this equation can be written independantly for each component of ~u, we study the

following problem on the scalar unknown u.

Boundary conditions

We note ~v the flux related to u computed anywhere on the domain S:

~v(~x) = ~∇u(~x) (1.17)

and v the scalar normal flux computed anywhere on the boundary Γ:

v(~x) =
∂u(~x)

∂ ~ne(~x)
(1.18)

where ~ne(~x) is the outside unit normal vector to the boundary at point ~x.
The potential problem for the scalar unknown u is written for the following boundary

conditions: 



∆u(~x) = 0 ∀~x ∈ S
u(~x) = ū(~x) ∀~x ∈ Γu

v(~x) = v̄(~x) ∀~x ∈ Γv

(1.19)

Γu : part of the boundary with prescribed Dirichlet conditions
ū : prescribed Dirichlet conditions
Γv : part of the boundary with prescribed Newman conditions
v̄ : prescribed Newman conditions

where {Γu,Γv} constitutes a partition of Γ, that is:

Γu ∪ Γv = Γ

Γu ∩ Γv = ∅



Chapter 2

Potential problem

In this chapter, we expose how the BEM can solve the problem (1.19).
The BEM is a numerical technique developed since the early sixties and founded

on the older theory of Boundary Integral Equation (BIE). This theory appeared in the
nineteenth century throught the work of Poisson (1820), Betty (1872), Kirchhoff (1882),
Fredholm (1896), Kellog (1929), Kupradze (1935). Then in the sixties, Jaswon [12], Hess
[11], Symm, Shaw, Rizzo, Cruse and others worked on the BEM (the name BEM appeared
only in 1977). In particular, Frank J Rizzo [18] was one of the pionner of a novel direct
boundary integral method for the numerical solution of elasticity problems. Since then,
many papers have been written on this method and it is still an active theme of research
in various fields such as cracks and heat diffusion [1], acoustic [6], meteorology [17] or
reflection seismology [5] [15].

This method represents an alternative to another numerical method: the finite element
method (FEM). The main advantage of BEM is to deal very well with infinite media, and
also to require only a mesh on the boundary, not inside the domain. However, the details
of the computation with FEM are easier to interpret and once the formulation is written,
it produces sparse matrices (instead of dense ones for BEM).

Most of the following work has been done thanks to [3] and [13].

2.1 BEM formulation

2.1.1 Transformation of the problem

As in many methods, we cancel the average error on the main equation using a weighing
function w. That is we ensure: ∫

S

∆uωdS = 0 (2.1)

We note:

ω = u∗ and
∂ω

∂ ~ne
= v∗ (2.2)
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Now we apply some mathematical transformations to eq.(2.1) in order to introduce the
boundary fields. The formula of the divergence of a product eq.(1.1) yields:

~∇ · (u∗~∇u) = u∗~∇ · ~∇u+ ~∇u∗ · ~∇u

Then taking the integral over the domain S, we can write:

∫

S

u∗∆udS =

∫

S

~∇ · (u∗~∇u)dS −
∫

S

~∇u∗ · ~∇udS (2.3)

And the Green-Ostrogradski theorem eq.(1.2) gives:

∫

S

~∇ · (u∗~∇u)dS =

∫

Γ

u∗~∇u · ~dΓ (2.4)

We introduce ~ne the normal vector to Γ pointing outward. As v = ~∇u · ~ne, we can write:

∫

Γ

u∗~∇u · ~dΓ =

∫

Γ

u∗~∇u · ~nedΓ =

∫

Γ

u∗vdΓ (2.5)

So we get from equations (2.3), (2.4) and (2.5):

∫

S

u∗∆udS =

∫

Γ

u∗vdΓ −
∫

S

~∇u∗ · ~∇udS (2.6)

Then we repeat the same computation steps on the last integral and obtain:

∫

S

~∇u∗ · ~∇udS =

∫

Γ

uv∗dΓ −
∫

S

u∆u∗dS

So we can write:
∫

S

u∗∆udS =

∫

Γ

u∗vdΓ −
∫

Γ

uv∗dΓ +

∫

S

u∆u∗dS (2.7)

And the main equation (2.1) becomes:

∫

Γ

u∗vdΓ −
∫

Γ

uv∗dΓ +

∫

S

u∆u∗dS = 0 (2.8)

2.1.2 Fundamental solution

Let us remind that eq.(2.8) has been written for any weighing function u∗. Now we choose
for u∗ the solution corresponding to a source located at ~y inside the domain Ω:

∀~x ∈ Ω, ∀~y ∈ Ω\Γ, ∆u∗(~x, ~y) = −δ(~x, ~y) (2.9)
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u∗ is called the fundamental solution, ~y, the source point and ~x, the potented point.
This particular choice of u∗ will allow us to compute easily the integral on Ω in eq.(2.8).

Noting r = ‖~x−~y‖, we explicit the fundamental solution of eq.(2.9) u∗ and its normal
derivative v∗ for an isotropic two or three dimensionnal medium:

2D 3D
(cylindrical coordinates) (spherical coordinates)

u∗(r) = 1
2π
ln(1

r
) u∗(r) = 1

4πr

v∗(~y, ~x) = (∂u∗

∂r
~er + 1

r
∂u∗

∂θ
~eθ + ∂u∗

∂z
~ez). ~ne v∗(~y, ~x) = (∂u∗

∂r
~er + 1

r
∂u∗

∂θ
~eθ + 1

rsin(θ)
∂u∗

∂φ
~eφ). ~ne

= (∂u∗

∂r
~er). ~ne = (∂u∗

∂r
~er). ~ne

= − 1
2πr

~er. ~ne = − 1
4πr2 ~er. ~ne

where ~er = ~y−~x
‖~y−~x‖ and ~ne = ~ne(~x).

2.1.3 Computation of the fields and fluxes

When we put the fundamental solution u∗ into eq.(2.8), the Dirac property eq.(1.4) yields:

∀~y ∈ Ω\Γ, u(~y) =

∫

Γ

v(~x)u∗(~y, ~x)dΓ(~x) −
∫

Γ

u(~x)v∗(~y, ~x)dΓ(~x) (2.10)

Using this equation in the definition of the flux ~v (see eq.(1.17)), we get:

∀~y ∈ Ω\Γ, ~v(~y) =

∫

Γ

v(~x)~∇~y(u
∗(~y, ~x))dΓ(~x) −

∫

Γ

u(~x)~∇~y(v
∗(~y, ~x))dΓ(~x) (2.11)

where ~∇~y indicates that the gradient is taken relatively to ~y.
For a source point ~x′ located on the boundary Γ, eq.(2.10) is slightly different. Indeed,

as the distance r between ~x′ and the point ~x describing Γ can cancel, singularities appear
in the integrals. Let Γε be a circular boundary curve of center ~x′ and radius ε as illustrated
in fig.(2.1) for ε = 1. Since we have:

Γ = lim
ε→0

(Γ\Γε) ∪ Γε

we can write from eq.(2.10):

u(~x′) = lim
ε→0

[ ∫

Γε

v(~x)u∗(~x′, ~x)dΓ(~x) −
∫

Γε

u(~x)v∗(~x′, ~x)dΓ(~x) (2.12)

+

∫

Γ\Γε

v(~x)u∗(~x′, ~x)dΓ(~x) −
∫

Γ\Γε

u(~x)v∗(~x′, ~x)dΓ(~x)
]

(2.13)



2.1. BEM formulation 16

Γε
b

x′
Ω

(a)

x′ b Γε

Ω

(b)

Figure 2.1: Γε for a given x′ on the outer (a) or inner (b) boundary (2D problem)

Now the singularities are isolated in integrals on Γε. Assuming that the boundary is
smooth at ~x′ (i.e. ~x′ is a regular point), Γε tends to be a half-circle when ε tends to zero.
So we compute:

lim
ε→0

∫

Γε

v(~x)u∗(~x′, ~x)dΓ(~x) = lim
ε→0

∫

Γε

v(~x)
1

2π
ln(

1

ε
)dΓ(~x)

= lim
ε→0

v(~x′)
πε

2π
ln(

1

ε
)

= 0

lim
ε→0

−
∫

Γε

u(~x)v∗(~x′, ~x)dΓ(~x) = lim
ε→0

∫

Γε

u(~x)
1

2πε
~er. ~nedΓ(~x)

We define the function σ for each point ~x′ of the boundary Γ such that:

σ(~x′) =

{
+1 if ~x′ is on an outer boundary
−1 if ~x′ is on an inner boundary

(2.14)

Then we have σ(~x′) = ~er(~x, ~x
′). ~ne(~x) as illustrated in fig.(2.2).

lim
ε→0

−
∫

Γε

u(~x)v∗(~x′, ~x)dΓ(~x) = lim
ε→0

u(~x′)
πε

2πε
σ(~x′)

=
1

2
u(~x′)σ(~x′)

so they produce a free term.
Now, let us assume that the boundary is not smooth at ~x′ but describes a corner (i.e.

~x′ is a singular point). Then Γε tends to be an arc of circle of angle θ(~x′) when ε tends to
zero, as illustrated in fig.(2.3).
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Γε

b

b

~x′

~x~er

~ne

Ω

σ(~x) = 1

(a)

Γε

b

b

~x′

~x
~er

~ne

Ω

σ(~x) = −1

(b)

Figure 2.2: Different values of σ(~x) for ~x on the outer (a) or inner (b) boundary

Γε
θ
b

~x′

Ω

Figure 2.3: Γε at a convexe corner x′ on a outer boundary (θ(x′) > π)

So we get:

lim
ε→0

∫

Γε

v(~x)u∗(~x′, ~x)dΓ(~x) = lim
ε→0

∫

Γε

v(~x)
1

2π
ln(

1

ε
)dΓ(~x)

= lim
ε→0

v(~x′)
θ(~x′)

2π
ln(

1

ε
)

= 0

lim
ε→0

−
∫

Γε

u(~x)v∗(~x′, ~x)dΓ(~x) = lim
ε→0

∫

Γε

u(~x)
1

2πε
~er. ~nedΓ(~x)

= lim
ε→0

u(~x′)
θ(~x′)

2πε
σ(~x′)

=
θ(~x′)

2π
u(~x′)σ(~x′)

Of course, we find back the case of a smooth boundary when θ(~x′) = π.
The two other integrals of eq.(2.12) are not affected when ε tends to 0 because singu-

larities are located on Γε only. So we get:

(1 − θ(~x′)

2π
σ(~x′))u(~x′) =

∫

Γ

v(~x)u∗(~x′, ~x)dΓ(~x) −
∫

Γ

u(~x)v∗(~x′, ~x)dΓ(~x) (2.15)
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With eq.(2.15), we can compute the field u and its derivative v anywhere on the
boundary. Once this is done, we will use eq.(2.10) and eq.(2.11) to compute respectively
the field u and the flux ~v anywhere inside the domain. To evaluate those integrals, we
discretize the boundary and ensure the boundary conditions only at nodes, which allows
to transform integrals into finite sums. In the following sections, we will present two
different discretizations of the boundary: the first one using constant elements (section
2.2) and the second one using linear elements (section 2.3).

2.2 Computation using constant elements

2.2.1 Discretization of the boundary

We approximate the boundary Γ with N segments Γj (where j = 1, . . . , N) carrying
constant fields uj and vj . The nodes are located at their middle point ~xj (see fig.(2.4)).
Due to this choice, we always are in the case of a smooth boundary: θi

2π
= 1

2
.

Now the constant values uj and vj can be taken out of the integrals of eq.(2.15) so
that we obtain for any ~x′ on Γ:

(1 − 1

2
σ(~x′))u(~x′) =

N∑

j=1

(∫

Γj

u∗(~x′, ~x)dΓ(~x)
)
vj −

N∑

j=1

(∫

Γj

v∗(~x′, ~x)dΓ(~x)
)
uj (2.16)

Ω

(a)

×

×

× ×
×

×

×

×

×

×

×
×

×

×

×

×

b

b

b b

b

b

b

b

b

b

bb

b

b

b

b

×

×

×

×

×
×

b

b
b

b

bb

Ω
Γj

~xj

(b)

Figure 2.4: Discretization of a geometry (a) with constant elements (b).

Let us work at a given i in (1, . . . , N). Noting θi = θ(~xi) and σi = σ(~xi), we get :

(1 − σi

2
)ui =

N∑

j=1

(∫

Γj

u∗(~xi, ~x)dΓ(~x)
)
vj −

N∑

j=1

(∫

Γj

v∗(~xi, ~x)dΓ(~x)
)
uj (2.17)
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We define Gij =

∫

Γj

u∗(~xi, ~x)dΓ(~x) and Hij =

∫

Γj

v∗(~xi, ~x)dΓ(~x)

Gij and Hij are explicited in appendix (A).

Then, (1 − θi

2π
σi)ui =

N∑

j=1

Gijvj −
N∑

j=1

Hijuj

=
∑

j/(Γj⊂Γ1)

(
Gijvj −Hijūj

)
+

∑

j/(Γj⊂Γ2)

(
Gij v̄j −Hijuj

)

Let us note H̃ij = Hij + (1 − σi

2
)δij

If Γi ⊂ Γ1,
∑

j/(Γj⊂Γ1)

Gijvj −
∑

j/(Γj⊂Γ2)

Hijuj =
∑

j/(Γj⊂Γ1)

H̃ij ūj −
∑

j/(Γj⊂Γ2)

Gij v̄j

If Γi ⊂ Γ2,
∑

j/(Γj⊂Γ1)

Gijvj −
∑

j/(Γj⊂Γ2)

H̃ijuj =
∑

j/(Γj⊂Γ1)

Hij ūj −
∑

j/(Γj⊂Γ2)

Gij v̄j

So we can write the following system:
( −Gik Hil

−Gik H̃il

)(
vk

ul

)
=

(
−H̃ik Gil

−Hik Gil

)(
ūk

v̄l

)
where

{
k such that Γk ⊂ Γ1

l such that Γl ⊂ Γ2

(2.18)
This can be seen as a system of the form:

Ax = b

where x is the vector of unknowns at the nodes while A and b gather information on the
geometry and the boundary conditions. So once the system (2.18) is solved, the field u
and the flux v are known at any point of the boundary.

2.2.2 Computation of the fields anywhere

Knowing the fields u and v anywhere on the boundary, we can compute the field u
anywhere inside the domain thanks to eq.(2.10). After discretization, the constant values
uj and vj on Γj can be taken out the integrals again:

∀~y ∈ Ω, u(~y) =

N∑

j=1

(∫

Γj

u∗(~y, ~x)dΓ(~x)
)
vj −

N∑

j=1

(∫

Γj

v∗(~y, ~x)dΓ(~x)
)
uj (2.19)

We note Gj(~y) =

∫

Γj

u∗(~y, ~x)dΓ(~x) and Hj(~y) =

∫

Γj

v∗(~y, ~x)dΓ(~x) (2.20)

Since Gij = Gj(~xi) and Hij = Hj(~xi), we will compute them with the formulae given in
appendix (A).
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2.2.3 Computation of the fluxes anywhere

Knowing the fields u and v anywhere on the boundary, we can compute the flux ~v anywhere
inside the domain thanks to eq.(2.11). After discretization, the constant values uj and vj

on Γj can be taken out the integrals again:

∀~y ∈ Ω, ~v(~y) =
N∑

j=1

(∫

Γj

~∇~y(u
∗(~y, ~x))dΓ(~x)

)
vj −

N∑

j=1

(∫

Γj

~∇~y(v
∗(~y, ~x))dΓ(~x)

)
uj

(2.21)

We define Gv
j (~y) =

∫

Γj

~∇~y(u
∗(~y, ~x))dΓ(~x) and Hv

j (~y) =

∫

Γj

~∇~y(v
∗(~y, ~x))dΓ(~x)

(2.22)
so that we can write:

∀~y ∈ Ω, ~v(~y) =

N∑

j=1

Gv
j (~y)vj −

N∑

j=1

Hv
j (~y)uj (2.23)

Due to a lack of time, the correct analytic formulae of Gv
ij and Hv

ij have not been written.
Consequently, in the code the fluxes are computed using a finite difference. For dx and
dy small enough, we compute:

∀~y ∈ Ω, vx(~y) ≈
u(~y + dx~ex) − u(~y)

dx
and vy(~y) ≈

u(~y + dy~ey) − u(~y)

dy
(2.24)

A special care is taken to choose the size and the sign of dx and dy in order that ~y+ dx~ex

and ~y + dy~ey stay inside the domain.

2.2.4 Computation of matrices for BEM

Gij =

∫

Γj

1

2π
ln(

1

r
)dΓ(~x) and Hij =

∫

Γj

− 1

2πr
~er.~ndΓ(~x) (2.25)

where r = ‖~x− ~xi‖ (2.26)

Let us remind that ~x is the point which describes the boundary element Γj and ~xi

is the middle point of the boundary element Γi. We note ~p1
i and ~p2

i the points of the
extremity of element Γi, and xi

1, y
i
1, x

i
2, y

i
2 their respective components in an orthonormal

two-dimensionnal basis (see fig.(2.5)). Since boundary elements are linear geometries (i.e.
segments), we have:

~x ∈ Γj ⇔ ∃s ∈ [0, 1], ~x = ~p1
j + s(~p2

j − ~p1
j) (2.27)

The middle point is the average of the two extremities of the related segment, so we get:

~xi = ~p1
i+ ~p2

i

2
.
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b
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×
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~p1
j

~p2
j

Γj
~x

~xi

rij

(
1
3

)

Figure 2.5: The distance r for s=1/3

This yields:

rij = ‖~p1
j + s(~p2

j − ~p1
j) − ~p1

i + ~p2
i

2
‖

=

√(
xj

1 + s(xj
2 − xj

1) −
xi

1 + xi
2

2
)
)2

+
(
yj

1 + s(yj
2 − yj

1) −
yi

1 + yi
2

2

)2

=
√
αij + βijs+ γijs2

where






αij =
(
xj

1 − xi
1+xi

2

2

)2

+
(
yj

1 − yi
1+yi

2

2

)2

= ‖
−−→
pj

1pi‖2

βij = 2
(
(xj

1 − xi
1+xi

2

2
)(xj

2 − xj
1) + (yj

1 − yi
1+yi

2

2
)(yj

2 − yj
1)
)

= 2
−−→
pip

j
1 ·

−−→
pj

1p
j
2

γij = (xj
2 − xj

1)
2 + (yj

2 − yj
1)

2 = ‖
−−→
pj

1p
j
2‖2 = |Γj|2

Since dΓj =
√
γijds we can write:

Gij =

∫ 1

0

− ln(αij + βijs+ γijs
2)

4π

√
γijds and Hij =

∫ 1

0

−
√
γij

2π
√
αij + βijs+ γijs2

ds

In the following, we will allow us to forget the indices i and j. Now that all quantities
of eq.(2.25) are expressed with respect to the coordinates of ~xi and ~xj , we can compute
explicitly1 Gij andHij. They are continuously defined but their litteral expression depends
on the sign of the determinant D = β2 − 4αγ of the second order polynom r2

ij(s):

1The full computation of Gij and Hij is detailled in sections A.2 and A.3 respectively.
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If D < 0, then we have:

Gij = −
√
γ

4π

[(
1 +

β

2γ

)
ln(|α + β + γ|) − β

2γ
ln(α) − 2

+

√
−D
γ

(
arctan

(β + 2γ√
−D

)
− arctan

( β√
−D

))]

Hij = −σj
√
γ

2π

(
arctan

(β + 2γ√
−D

)
− arctan

( β√
−D

))

If D = 0, then we have:

Gij = −
√
γ

4π

[
ln(|α + β + γ|) − 2 +

β

γ
ln
(∣∣∣

2γ

β
+ 1
∣∣∣
)]

Hij = 0

Let us remark that in the case where D = 0, as β2 = 4αγ and α and γ are strictly
positive, β cannot cancel. So the logarithm used in G and H is well-defined.

2.2.5 Test cases

In order to evaluate the accuracy of the solution computed with the BEM, we only work
with simple cases for which we know the analytical solution in this section. So we work on
only two kinds of two-dimensionnal problems: cases equivalent to one-dimensionnal prob-
lems (with revolution symmetry or invariance in one direction) and cases with decouplable
variables (as a rectangle space).

Each test is illustrated with a couple of figures showing respectively the displacement
and the flux vector. The size is sized from the miniumum to the maximum of the values
(or norm of vectors) which are reached.

Crown problem

We run the case of a crown for which we impose Dirichlet boundary conditions: u = 0
everywhere on the inner circle and u = 1 everywhere on the outer circle. The analytical
field is linear towards the distance to the center of the crown (see appendix D).

The formulation requires that all the nodes of the domain mesh are inside the area de-
limited by the boundary mesh. As the elements are described by segments, the boundary
mesh cannot describe exactly a circle, but approximates it by a polygon. So when treating
with a curvature, the domain mesh should be confounded with the boundary mesh on the
boundaries, or always remain slightly inside the area delimited by the boundary mesh.
For the study of the crown, we choosed to change the geometry used for the domain mesh
to avoid this problem. That is why on fig.(2.6), u never reachs the boundary conditions
(look at the scale) although they are exactly satisfied.
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Figure 2.6: Field and flux on a crown computed with constant elements

We have launched the computation on the crown problem with four different meshes:
caracteristic number time precision

length of dof fill solve evaluate total of the
matrices the system inside results

0.05 308 0.11s 0.04s 0.04s 0.21s [-7;-10]
0.02 784 1.09s 1.47s 0.10s 2.72s [-8.5;-12]
0.015 1044 2.18s 5.38s 0.13s 7.78s [-9;-13]
0.01 1568 5.37s 21.93s 0.29s 27.75s [-10;-15]
0.005 3140 25.77s 185.44s 0.74s 213.31s [-6.5;-10]

With BEM, the number of degrees of freedom (dof) handled in the system is the
number of nodes of the boundary mesh, whereas FEM requires the use of dof distributed
everwhere in the domain. So the BEM deals with one dimension less unknowns than the
FEM. That is why those computational times are much lower than what could do the
FEM for an equivalent problem (same boundary conditions and caracteristic length).

We can see on figure (2.9) that the time needed to evaluate the field in a point inside
the domain is linearly proportionnal to the number of nodes on the boundary.
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Figure 2.7: Relation between time needed to fill the matrices and dof.

94864
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614656

1.47 b bb

1089936

5.38 b b
b

2458624

21.93 b b

b

9859600

185.44 b b

b dof2

time

Figure 2.8: Relation between time needed to solve the system and dof.

Square problem

Here we have run the code written for smooth boundaries on a boundary mesh of a square
of side a = 5 to which we prescribe u = 0 on the left side, v = 1 towards the outside



2.2. Computation using constant elements 25

308

0.04 b b

b

784

0.1 b b

b

1044

0.13 b b

b

1568

0.29 b b

b

3140

0.74 b b

b dof

time

Figure 2.9: Relation between time needed to evaluate all points and dof.

normal vector of the right side, and v = 0 towards the outside normal vector of others
sides. The analytical solution gives a field u(x) = ax (see appendix D).

As can be seen in fig.(2.10), the error made on the points in the center of the domain
is quite acceptable but the error becomes higher as we get closer to the corners. The flux
is turning around the corners and the scale has been resized due to very high values :
the highest values reach a norm of 4.83 103 near the corners (high fluxes are saturated in
fig.(2.10)).

The unaccuracy of those results is due to the fact that with constant elements, we
cannot take into account the angles of the geometry as the nodes are located in the
middle of the segments. Even if we had given a value to θ (see 2.1.3) and adapted the
computation of G and H to an element bearing a geometrical singularity at the node, we
would still need to give the same boundary condition at the right side and left side of
the node. However, by refining the mesh around the corners, we slowly get closer to the
analytical solution.

2.2.6 Conclusion on constant elements

To conclude, the BEM method using constant elements gives very good results for geome-
tries with smooth boundaries (and requires much less time than FEM) but is unable to
treat as well geometries with corners associated to different boundary conditions. As this
drawback is due to the location of nodes at the middle of segments, we present in section
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Figure 2.10: Field and flux on a simple square computed with constant elements

2.3 another discretization with nodes at the extremities of the elements.
Moreover, the precision on fluxes could be improved if the formulae given in section

(2.2.3) were implemented instead of using finite differences.
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2.3 Computation using linear elements

2.3.1 Discretization of the boundary

We approximate the boundary Γ with N segments Γj (where j = 1, . . . , N) and locate
the nodes at the extremities of those segments (see fig.(2.11)). Now the values u and v
along a segment Γj are linearly interpolated from the values at its extremities using linear
shape functions φ1(s) and φ2(s) (see fig.(2.12)) where s is the parameter used to describe
an element (see 2.2.4).

Ω

(a)

b

b

b b
b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

Ω
Γe1(j)

Γe2(j)

~xj

(b)

Figure 2.11: Discretization of a geometry (a) with linear elements (b).

b b

Γj~xn1(j) ~xn2(j)

Nodal values

of u (or v)

(a)

b b

Γjs = 0 s = 1

φ1(s) = 1 − s φ2(s) = s

(b)

Figure 2.12: Interpolation with shape functions on a segment Γj.

For sake of clarity, we define the following mappings of indices:

∀j ∈ [1, N ],

e1(j) = index of a segment connected to ~xj

e2(j) = index of the other segment connected to ~xj

n1(j) = index of a node at the end of Γj

n2(j) = index of the other node at the end of Γj

As we work only with close geometries, the nodes are as numerous as the segments.
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2.3.2 Types of boundary conditions

For a given j in [1, N ], three scalar values can be stored at a given node ~xj : the field at
the node, noted uj, and the two fluxes through the node respectively along the outward
normal vectors to Γe1(j) and Γe2(j), noted vj

1 and vj
2.

Let us list the different kinds of boundary conditions that can be given to a node ~xj :
known value(s) unknown(s)

a vj
1 and vj

2 uj

b vj
1 and uj vj

2

c uj and vj
2 vj

1

d uj vj
1 and vj

2

We note {a} the set of indices j such that node ~xj has boundary conditions of type a
(and similarly for {b},{c} and {d}).

In case d, there are two unknowns at one node so one extra equation is needed. This
can be solved with techniques like discoutinuous elements (cf. Brebbia and Dominguez).
In this thesis, we don’t treat this case and run carefully the code on problems requiring
only cases a, b and c. So in the following, ]{d} = 0.

2.3.3 Computation of the fields on the boundary

Equation (2.15) written for a node ~xi becomes:

(1 − θi

2π
σi)ui =

N∑

j=1

(∫

Γj

u∗(~xi, ~x)v(~x)dΓ(~x)
)
−

N∑

j=1

(∫

Γj

v∗(~xi, ~x)u(~x)dΓ(~x)
)

=

N∑

j=1

(∫

Γj

u∗(~xi, ~x)
[
φ1(~x)vn1(j) + φ2(~x)vn2(j)

]
dΓ(~x)

)

−
N∑

j=1

(∫

Γj

v∗(~xi, ~x)
[
φ1(~x)un1(j) + φ2(~x)un2(j)

]
dΓ(~x)

)

=
N∑

j=1

(∫

Γe1(j)

u∗(~xi, ~x)φ1(~x)dΓ(~x)
)
v1

j +
N∑

j=1

(∫

Γe2(j)

u∗(~xi, ~x)φ2(~x)dΓ(~x)
)
v2

j

−
N∑

j=1

(∫

Γe1(j)

v∗(~xi, ~x)φ1(~x)dΓ(~x)
)
uj −

N∑

j=1

(∫

Γe2(j)

v∗(~xi, ~x)φ2(~x)dΓ(~x)
)
uj

We define:

G1
ij =

∫

Γe1(j)

u∗(~xi, ~x)φ1(~x)dΓ(~x) G2
ij =

∫

Γe2(j)

u∗(~xi, ~x)φ2(~x)dΓ(~x) (2.28)
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H1
ij =

∫

Γe1(j)

v∗(~xi, ~x)φ1(~x)dΓ(~x) H2
ij =

∫

Γe2(j)

v∗(~xi, ~x)φ2(~x)dΓ(~x) (2.29)

Noting Hij = H1
ij +H2

ij , we get:

(1 − θi

2π
σi)ui =

N∑

j=1

G1
ijv

1
j +

N∑

j=1

G2
ijv

2
j −

N∑

j=1

Hijuj

=
∑

j∈{a}

(
G1

ij v̄
1
j +G2

ij v̄
2
j −Hijuj

)

+
∑

j∈{b}

(
G1

ij v̄
1
j +G2

ijv
2
j −Hij ūj

)

+
∑

j∈{c}

(
G1

ijv
1
j +G2

ij v̄
2
j −Hijūj

)

Then we can write the system:

(
Hik −G2

il −G1
im

)



uk

v2
l

v1
m


 =

(
G1

ik −Hil G2
im G2

ik G1
il −Him

)




v̄1
k

ūl

v̄2
m

v̄2
k

v̄1
l

ūm




(2.30)
where k, l and m describe respectively {a},{b} and {c}. This is again a system of the
form Ax = b. Once solved, we know the field and the flux everywhere on the boundary.

2.3.4 Computation of the fields anywhere inside the domain

Knowing the fields u and v anywhere on the boundary, we can compute the field u
anywhere inside the domain thanks to eq.(2.10). The linear elements formulation of this
equation is similar to eq.(2.28): ∀~y ∈ Ω\Γ,

u(~y) =
N∑

j=1

(∫

Γe1(j)

u∗(~y, ~x)φ1(~x)dΓ(~x)
)
v1

j +
N∑

j=1

(∫

Γe2(j)

u∗(~y, ~x)φ2(~x)dΓ(~x)
)
v2

j

−
N∑

j=1

(∫

Γe1(j)

v∗(~y, ~x)φ1(~x)dΓ(~x)
)
uj −

N∑

j=1

( ∫

Γe2(j)

v∗(~y, ~x)φ2(~x)dΓ(~x)
)
uj
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2.3.5 Computation of the fluxes anywhere

Knowing u and v anywhere on the boundary, we can compute the flux ~v anywhere inside
the domain by discretizing eq.(2.11): ∀~y ∈ Ω,

~v(~y) =
N∑

j=1

(∫

Γe1(j)

~∇~y(u
∗(~xi, ~x))φ1(~x)dΓ(~x)

)
v1

j +
N∑

j=1

(∫

Γe2(j)

~∇~y(u
∗(~xi, ~x))φ2(~x)dΓ(~x)

)
v2

j

−
N∑

j=1

(∫

Γe1(j)

~∇~y(v
∗(~xi, ~x))φ1(~x)dΓ(~x)

)
uj −

N∑

j=1

(∫

Γe2(j)

~∇~y(v
∗(~xi, ~x))φ2(~x)dΓ(~x)

)
uj

We define:

G1v
ij =

∫

Γe1(j)

~∇~y(u
∗(~xi, ~x))φ1(~x)dΓ(~x) G2v

ij =

∫

Γe2(j)

~∇~y(u
∗(~xi, ~x))φ2(~x)dΓ(~x) (2.31)

H1v
ij =

∫

Γe1(j)

~∇~y(v
∗(~xi, ~x))φ1(~x)dΓ(~x) H2v

ij =

∫

Γe2(j)

~∇~y(v
∗(~xi, ~x))φ2(~x)dΓ(~x) (2.32)

Due to a lack of time, the correct analytic formulae of G1v
ij , G2v

ij , H1v
ij and H2v

ij have not
been written. So in the code, like for constant elements, the fluxes are computed using a
finite difference. For dx and dy small enough, we compute:

∀~y ∈ Ω, vx(~y) ≈
u(~y + dx~ex) − u(~y)

dx
and vy(~y) ≈

u(~y + dy~ey) − u(~y)

dy
(2.33)

Again, a special care is taken to choose the size and the sign of dx and dy in order that
~y + dx~ex and ~y + dy~ey stay inside the domain.

2.3.6 Test cases

In order to justify the use of linear elements instead of constant elements, we first work
on the case of the square leading to unaccurate results with constant elements. Then we
add a centered hole (various shape) to this problem. Finally, the formulation is tested on
a more complex problem (for which the analytic solution is not known) in order to check
that the accuracy of the computation is not due to the simplicity of the test cases.

Square problem

As the analytical solution is linear, the linear elements are theoritically able to describe the
exact solution. We run exactly the same test as done previously with constant elements
described in (2.2.5). Numerically, we get a precision of 10−12 (the machine precision) using
a boundary mesh of only 4 nodes (the corners of the square) as can be seen in fig.(2.13).
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Figure 2.13: Solution on a simple square with linear elements
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Figure 2.14: Square with a square hole

Square problem with a hole

Now we add a square hole in the center of the domain. As we impose the same boundary
conditions on the small square as on the external square, the hole should not disturb the
solution. It is a way to check that the formulation is able to treat an internal boundary
correctly. Again, we obtain the analytic solution to the machine precision as can be seen
in fig.(2.14).

Then we do the same test with an octogonal hole in order to check that the angle is
taken into account at corners correctly. The boundary conditions are also such that the
inclusion should not disturb the solution. Again, we obtain the analytic solution to the
machine precision as can be seen in fig.(2.15).

Then we do the same test on a rectangle with a circular hole. To get a nice repre-
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Figure 2.15: Square with an octogonal hole
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Figure 2.16: Rectangle with a circular hole

sentation of the curvature of the circle and avoid boundary conditions of type (d) (see
2.3.2), we impose the normal flux to be zero on the boundary of the hole. This time,
the inclusion should disturb the field such that the solution is not linear anymore (the
analytic solution is not known).

In this example, due to the choice of boundary conditions, we can refine the mesh
of the boundary of the hole whereas the previous test cases run with 4, 8 and 12 nodes
respectively on the boundary (located at corners). The computational time has been
evaluated on three different refinements:
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number number time
of dof on of dof in fill solve evaluate total

the boundary the domain matrices the system inside
40 951 0.01s <0.01s 0.51s 0.52s
380 951 0.82s 0.12s 5.11s 6.05s
1888 951 28.28s 42.45s 28.31s 99.04s

For a comparable number of nodes on the boundary, the BEM formulation using linear
elements requires more time than the one using constant elements (see section (2.2.5)),
but it stays satisfactory.

Complex problem

Finally, we work on a more complex case with several inclusions. The analytic solution is
not known for this kind of geometry. Here again, we impose the normal flux to be zero
on all internal boundaries to avoid boundary conditions of type (d) (see section 2.3.2).

The localization of the flux on the two nodes on the right (see fig.(2.3.2)) can be
explained by the boundary conditions. Indeed, we imposed the normal flux to be zero
on the upper and lower boundaries whereas it is imposed to be 1 on the arc of circle
on the right. As the geometry is smooth2 at the junction of the different conditions, we
introduced a discontinuity on the flux in the ~ey direction.

2.3.7 Conclusion on linear elements

To conclude, the BEM method using linear elements is as satisfactory as constant elements
in terms of time performance and is able to treat well geometries with corners.

However, the computation of the fluxes should be even more precise if the formulae
given in section (2.2.3) were implemented instead of using finite differences3.

A big weakness of the code is the fact that boundary conditions of type (d) are not
treated. Consequently, the user should take care to never impose Dirichlet boundary
conditions on two joined segments. This reduces drastically the cases which can be treated.
When coupling with the crack propagation code, as the boundary of the crack front is a
free curve (surface in 3D), we will impose a Newman boundary condition (v = 0) all over
the inner boundary so the linear elements will be used safely.

2Once discretized, the geometry is not exactly smooth, but the finer is the mesh, the closer are the
outside unit normal vectors of the segments connected to the nodes of interest.

3The analytical evaluation of the integrals required for this computation is possible, but have not been
achieved correctly during this master thesis (see section (2.3.5))
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Figure 2.17: Complex geometry problem



Chapter 3

Crack propagation

3.1 Brittle damage

The damage is called brittle because a virgin zone (in which the damage is d = 0) is
separated by a front from a totally damaged zone in which d = 1. The boundary of the
damaged zone is a curve (or a surface in three-dimensionnal problems) with a discontinuity
of stress. It is also a free curve for the virgin zone because the normal stress is zero there1.

An alternative representation is for instance a continuous description of the damage
using a multiphase level set [21].

3.2 Propagation criteria

The model of propagation used here is a Griffith type criteria. The front is growing
provided the energy released is equal to a critical energy plus a term involving the front
curvature as explained by N.Moës in [14]. The presence of the curvature is essential for
the model to avoid spurious localization.

The model considered is the one introduced by Q.S.Nguyen in [16]. We consider an

elastic domain Ω submitted to imposed loads ~T (~x, λ) and displacements ~u(~x, λ) on the
part of the boundary ΓT and ΓU , respectively. The parameter λ is the loading parameter
(carrying information about the history of loading) and we assume that the imposed loads

and displacements depend linearly on λ, i.e. ~T (~x, λ) = λ~t0(~x) and ~U(~x, λ) = λ~u0(~x).
The space of admissible displacement field is denoted as U and the space of admissible

displacement field to zero is denoted as U0.
The complementary part of the boundary delimiting the completely damaged and

1This allows us to impose the normal ”flux” to be zero on the crack propagation front. This way, we
ensure to avoid the type d of boundary conditions and we can use the linear elements safely.
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virgin material is denoted Γ. The potential energy in the system is given by:

E(Γ, ~u, λ) =

∫

Ω

edΩ −
∫

ST

λ~t0 · ~udS (3.1)

with e =
1

2
ε(~u) : E : ε(~u) and ~u = λ~u0 on Su (3.2)

where E is Hooke’s tensor. The displacement field ~u ∈ U is obtained through the sta-
tionarity of the functional:

∫

Ω

ε(~u) : E : ε(~u∗)dΩ =

∫

ST

λ~t0 · ~udS ∀~u∗ ∈ U0 (3.3)

Its solution depends on the current degradation front location and load factor:

~u = ~u(Γ, λ) (3.4)

The free energy of the system at equilibrium is denoted W :

W (Γ, λ) = E(Γ, ~u(Γ, λ), λ) (3.5)

Assuming a normal velocity qn modifying the location of the front, the free energy will be
altered. Assuming the front is regular, the directional derivative of the free energy with
respect to the velocity qn is written:

DW [qn] = −
∫

Γ

eqndS (3.6)

The dual quantity to qn on the front is the energy release rate e. The brittle propagation
law is given by:

• If e < YC + γc

ρ
, the propagation is impossible

• If e = YC + γc

ρ
, the propagation is possible

The degradation front will move forward if the elastic energy on the front is superior
to a critical energy YC plus a critical surface energy times the front curvature.

3.3 Evaluation of the elastic energy on the front

Until now, an Xfem code was used to compute the elastic energy on the front. This level
set approach is also used by [19] with an iterative Fourier spectral method.

For the mode III problem studied here, the elastic energy is computed as:

E(~x) =
1

2
µ~v(~x) · ~v(~x) (3.7)

where ~v(~x) is the flux computed by the BEM formulation at point ~x and µ is a parameter
set to one in the following.
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3.4 Construction of the boundary mesh

The boundary mesh sent to the BEM formulation is constructed with the nodes at the
intersection of the domain mesh and the level set. It is updated at each iteration. Once
out of ten iterations, the domain mesh is updated: the areas of interest are refined and
some becomes coarser. The refinement of the mesh is limited by a parameter p such that
a cell cannot be refine more than p times.

3.5 Test cases

We have been confronted to some round-off problems, which are still not solved. To
circumvent them, we have multiplied the dimension of the problem by a factor 1000.

We have run the test of a square plane of side 1000 with one or several circular hole(s).
p is set to 7 for the run of all test cases, meaning that the smallest cell of the domain
mesh has a side of 1000/27 = 7, 8125.

As illustrated by fig.(3.1), the boundary conditions applied are:

• on the right side: u = 0

• on the left side: u = 100

• on the upper and lower sides and inner boundaries: v = 0 towards the outside of
the domain

Ω

u = 100 u = 0

v = 0

v = 0

Figure 3.1: Boundary conditions of the test case

3.5.1 One circular hole

In fig.(3.2), you can see the field of displacement computed by the FEM formulation at the
beginning of the run and then every ten iterations. You can see on the two last pictures
the beginning of a spurious localization, proof that this phenomenon is not prevented
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Figure 3.2: Evolution of the displacement and propagation of the front.
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Figure 3.3: Detail of the front before localization.

by the use of a BEM. Let us note that we study a highly unstable case. According to
E.Taroco [20], the crack advance stability is influenced by the first- and higher- order
potential energy release rates.

Let us remark that the loss of symmetry happens before the localization. Indeed,
you can see on the second picture of fig.(3.2) that the isolines of displacements behave
differently on the left or right side. At this step, there is no localization though, as
illustrated in fig.(3.3).

If we let the computation goes on, we can get the extreme configuration of fig.(3.4)
(obtained after 669 iterations). B.Fedelich and A.Ehrlacher have written necessary con-
dition for stability in [8] and [9]. We could use their work to know if a path is acceptable
crack propagation.

You can also remark that the crack has a caracteristic width when it propagates. This
width could be related to the size of the smallest element of the mesh. This shows that
this computation is not absolutly independant of the mesh.

In fig.(3.5), the localization has been observed closely on two consecutive iterations.
On the first picture, the tip of the crack is very close to a node of the mesh and the
intersection of the level set and the mesh produces very small segments near the tip.
After another iteration, the propagation front has moved a lot whereas the gradient of
displacement did not seem to justify such a move. We can interpret this behaviour by the
fact that the flux is computed by finite differences. In particular, the flux at a point of the
boundary is computed as the difference of the fields at the two nodes of the segment to
which the point belongs, divided by the length of the segment. Consequently, the smaller
is the length of the segment, the less precise is the computation of the flux. This could
explain also why the directions of the mesh are priviledged directions for the propagation
of the crack (see fig.(3.4)).
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Figure 3.4: Last iteration computed before stoping the run.
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Figure 3.5: Localized propagation of the front.
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3.5.2 Two circular holes

Now we study the same square but with two holes near the center such that the two
propagation fronts can merge. In fig.(3.6), you can see the field of displacement computed
by the FEM formulation at the beginning of the run and then every four iterations. The
propagation front stays very smooth and the merging of the two fronts works.

Once the two holes have merged, the propagation of the fronts goes on in the y
direction, then the symmetry is lost (one front is more advanced than the other) and
localization happens as can be seen in fig.(3.7) (obtained after 43 iterations). Here again,
you can remark that the top localized crack propagates in a direction of the mesh (y),
with a width comparable to the size of the smallest segment of the domain mesh.
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Figure 3.6: Evolution of the displacement and propagation of the front.
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Figure 3.7: Last iteration computed before stoping the run.



Conclusion and prospects

To conclude this master thesis, I have implemented a BE formulation which is able to
compute the elastic energy on the boundary for a mode III problem in 2D. Then this
formulation has been coupled to a propagation code which uses this energy to evaluate a
propagation criteria. We have observed by running test cases that the BEM formulation is
able to compute the propagation of the front without localization for a few iterations. This
was not achieved by the FEM. It can also merge successfully two propagation fronts. We
can assume that those results would be still improved if the BEM formulation computed
the flux (which is required to evaluate the elastic energy) more precisely by using an
integral formulation instead of a finite difference.

I would like to notice that the BEM yields to matrices which are more difficult to
interpret than the FEM ones and the debugging part of my work took a lot of time. To
finish in the imparted time, I had to choose to skip interesting developments but I am
satisfied to have run the BE code coupled with the crack propagation and note that the
BEM brings new results.

To continue the started work, it would be useful to change the implementation of the
BEM such that the Dirichlet boundary conditions are imposed on nodes instead of ele-
ments, to allow boundary conditions of type (d) with linear elements (using discontinuous
elements like C.A.Brebbia [3] for instance), to code the computation of fluxes using the
integral formulation instead of a finite difference, to clean the code to avoid round-off
problems, to optimize the implementation in order to save more time, and to identify if
the localization is intrinsically related to the method.



Appendix A

Matrices computed for constant
elements

The integrated functions in Gij and Hij are always bounded, excepted when ~pi belongs
to Γj , which happens if and only if1 i = j. In the following, we will treat the general case
first, then the diagonal terms.

A.1 Preliminar statements

The litteral expression of G and H depends on the sign of the determinant D = β2 − 4αγ
of the second order polynom r2

ij(s).

Dij = β2
ij − 4αijγij

= 4
(
(xj

1 −
xi

1 + xi
2

2
)(xj

2 − xj
1) + (yj

1 −
yi

1 + yi
2

2
)(yj

2 − yj
1)
)2

−4
((
xj

1 −
xi

1 + xi
2

2

)2

+
(
yj

1 −
yi

1 + yi
2

2

)2)(
(xj

2 − xj
1)

2 + (yj
2 − yj

1)
2
)

= 4
[
2(xj

1 −
xi

1 + xi
2

2
)(xj

2 − xj
1)(y

j
1 −

yi
1 + yi

2

2
)(yj

2 − yj
1)

−
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1 −
xi

1 + xi
2

2
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1)
2 −

(
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1 −
yi

1 + yi
2

2

)2

(xj
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1)
2
]

= −4
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xj

1 −
xi

1 + xi
2

2

)
(yj

2 − yj
1) −

(
yj

1 −
yi

1 + yi
2

2

)
(xj

2 − xj
1)
]2

Noting ~n(~p1
j , ~p2

j) =

(
yj

2 − yj
1

xj
1 − xj

2

)
we have D = −4

(
~n(~p1

j, ~p2
j)·

−−→
pipj

1

)2

(A.1)

1We assume that the mesh doesn’t cross itself.
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~n(~p1
j, ~p2

j) is a normal vector to
−−→
pj

1p
j
2. So D is negative and reachs zero if and only if

~p1
j , ~p2

j and ~p i are colinear. This happens in particular when i = j:

αii =
(xi

1 − xi
2

2

)2

+
(yi

1 − yi
2

2

)2

=
γii

4

βii = 2
(
(
xi

1 − xi
2

2
)(xi

2 − xi
1) + (

yi
1 − yi

2

2
)(yi

2 − yi
1)
)

= −
(
(xi

1 − xi
2)

2 + (yi
1 − yi

2)
2
)

= −γii

Dii = β2
ii − 4αiiγii = (−γii)

2 − 4
γii

4
γii ≡ 0

As ~n(~p1
j , ~p2

j) is easy to compute, we use it to express ~nj , the unit normal vector to Γj

pointing outward2. We define the function s such that s(~p1
j , ~p2

j) describes if ~n(~p1
j , ~p2

j)
is pointing inward or outward the boundary to which Γj belongs (see fig.(A.1)):

s(~p1
j, ~p2

j) =

{
+1 if ~p1

j and ~p2
jare numbered clockwise

−1 if ~p1
j and ~p2

jare numbered anticlockwise
(A.2)

Noting sj = s(~p1
j , ~p2

j) and ~nj = ~n(~p1
j , ~p2

j), we have:

~ne =
σjsj

‖
−−→
pj

1p
j
2‖
~n(~p1

j , ~p2
j) =

σjsj√
γ
~n(~p1

j , ~p2
j) (A.3)

A.2 Computation of Gij

Gij =

∫ 1

0

− ln(α + βs+ γs2)

4π

√
γds

Integration by part:

f ′ = 1 f = s

g = ln(α + βs+ γs2) g′ = β+2γs
α+βs+γs2

Gij = −
√
γ

4π

([
sln(|α + βs+ γs2|)

]1
0
−
∫ 1

0

βs+ 2γs2

α + βs+ γs2
ds
)

2The orientation of the unit outside normal vector is complex because we work only with a mesh of
a boundary. Once the BEM formulation is coupled with the propagation code, the orientation of those
vectors are easily computed thanks to the level set.
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Figure A.1: ~nj and ~nj
e for different values of sj and σj .

Decomposition of the rationnal function:

βs+ 2γs2

α + βs+ γs2
= 2 − βs+ 2α

α + βs+ γs2

= 2 −
( β

2γ

) β + 2γs

α + βs+ γs2
−
(
2α− β2

2γ

) 1

α+ βs+ γs2

= 2 −
( β

2γ

) β + 2γs

α + βs+ γs2
−
(−D

2γ

) 1

α + βs+ γs2
(A.4)

We define:

I0 =

∫ 1

0

1

α+ βs+ γs2
ds and I1 =

∫ 1

0

β + 2γs

α + βs+ γs2
ds

Gij = −
√
γ

4π

([
sln(|α + βs+ γs2|) − 2s

]1
0
+

β

2γ
I1 +

−D
2γ

I0

)
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After computation of integrals I0 and I1 (detailled in section (C)), we get:

if D < 0 Gij = −
√
γ

4π

[(
s+

β

2γ

)
ln(|α + βs+ γs2|) − 2s+

√
−D
γ

arctan
(β + 2γs√

−D
)]1

0

= −
√
γ

4π

[(
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β
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)
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2γ
ln(α) − 2

+

√
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γ

(
arctan
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−D

)
− arctan

( β√
−D

))]

if D = 0 Gij = −
√
γ

4π

[
ln(|α + β + γ|) − 2 +

β

γ
ln
(∣∣∣

2γ

β
+ 1
∣∣∣
)]

For diagonal terms, we deal with the case D = 0, and as β = −γ in particular, we have:

Gij = −
√
γ

4π

(
ln(α) − 2

)
=

√
γ

2π

(
ln(

1√
α

) + 1
)

=

√
γ

2π

(
ln(

2√
γ

) + 1
)

A.3 Computation of Hij

Hij =

∫ 1

0

−
√
γ

2πr(s)
~er(s).~n

e
jds

~er(s).~n
e
j =

(~pi − ~pj(s))

r(s)
.~nj

=
1

r(s)

((
xi − (xj

1 + s(xj
2 − xj

1))
)
nx

j +
(
yi − (yj

1 + s(yj
2 − yj

1))
)
ny

j

)

=
1

r(s)

(
(xi − xj

1)n
x
j + (yi − yj

1)n
y
j − s((xj

2 − xj
1)n

x
j + (yj

2 − yj
1)n

y
j )
)

As ~nj is normal to ~p2 − ~p1, we get (xj
2 − xj

1)n
x
j + (yj

2 − yj
1)n

y
j = 0. It stays:

Hij =

∫ 1

0

−
√
γ

2πr2(s)

(
(xi − xj

1)n
x
j + (yi − yj

1)n
y
j

)
ds

= −
√
γ

2π

(
(xi − xj

1)n
x
j + (yi − yj

1)n
y
j

)∫ 1

0

1

r2(s)
ds

= −
√
γ

2π

(
(~p i − ~p1

j).~nj

)
I0

As written in section (2.2.4), D reachs zero if and only if ~p1
j , ~p2

j and ~p i are colinear,
that is:

D = 0 ⇐⇒ (~p i − ~p1
j).~nj = 0
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As I0 is bounded (see section (C.1)), when D = 0, Hij = 0.
To summarize, using the computation of I0 detailled in section (C.1), we get:

if D < 0 Hij = −
√
γ

π
√
−D

(
(~p i − ~p1

j).~nj

)(
arctan

(β + 2γ√
−D

)
− arctan

( β√
−D

))

if D = 0 Hij = 0



Appendix B

Matrices computed for linear
elements

The presented results are equivalent to those written in [10]. The notations used here are
more adapted to an implementation with a loop on nodes instead of elements.

The integrated functions in Gij and Hij are always bounded, excepted when ~pi is one
of the ends of Γj. In the following, we will treat the general case first, then the specific
terms.

B.1 Implementation to fill the matrices

We want to evaluate the values defined by eq.(2.28) and eq.(2.29):

G1
ij =

∫

Γe1(j)

u∗(~xi, ~x)φ1(~x)dΓ(~x) G2
ij =

∫

Γe2(j)

u∗(~xi, ~x)φ2(~x)dΓ(~x)

H1
ij =

∫

Γe1(j)

v∗(~xi, ~x)φ1(~x)dΓ(~x) H2
ij =

∫

Γe2(j)

v∗(~xi, ~x)φ2(~x)dΓ(~x)

Noting G1
ij = G1(Pi,Γe1(j)) and G2

ij = G2(Pi,Γe2(j))

we can write G1
in1(j) = G1(Pi,Γj) and G2

in2(j) = G2(Pi,Γj) = G1(Pi,−Γj).

As a segment Γj is defined by his nodes n1(j) and n2(j), we can also note:

G1
in1(j)

= G1(Pi, n1(j), n2(j)) and G2
in2(j)

= G2(Pi, n1(j), n2(j)).

Then as illustrated in fig.(B.1), we get:

G1
in1(j) = G1(Pi, n1(j), n2(j)) = G2(Pi, n2(j), n1(j)).

So, by implementing carefully the filling of matrices G and H, we do not need to
compute to explicit G1 if we know G2. Consequently, in the following of this appendix,
we will only talk about Gij which will stand for G2

ij . Similarly for H .
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b b

Γjn1(j) n2(j)

φ2

(a)

b b

Γj n1(j)n2(j)

φ1

(b)

Figure B.1: Two equivalent configurations with different shape functions.

B.2 Computation of Gij

Gij =

∫ 1

0

− ln(α + βs+ γs2)

4π
s
√
γds

Integration by part:

f ′ = s f = s2

2

g = ln(α + βs+ γs2) g′ = β+2γs
α+βs+γs2

Gij = −
√
γ

4π

([s2

2
ln(|α + βs+ γs2|)

]1
0
−
∫ 1

0

s2

2

β + 2γs

α+ βs+ γs2
ds
)

= −
√
γ

8π

(
ln(|α + β + γ|) −

∫ 1

0

βs2 + 2γs3

α + βs+ γs2
ds
)

Let us define:

I2 =

∫ 1

0

βs2 + 2γs3

α+ βs+ γs2
ds

then we can write:

Gij = −
√
γ

4π

([s2

2
ln(|α + βs+ γs2|)

]1
0
−
∫ 1

0

s2

2

β + 2γs

α+ βs+ γs2
ds
)

= −
√
γ

8π

(
ln(|α + β + γ|) − I2

)

Using the computation of I2 detailled in section (C.3), we have:
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• If D < 0:

Gij = −
√
γ

8π

(
ln(|α + β + γ|) − 1 +

β

γ
− β2 − 2αγ

2γ2

(
ln(|α+ β + γ|) − ln(|α|)

)

−β
√
−D
γ2

(
arctan

(β + 2γ√
−D

)
− arctan

( β√
−D

)))

• If D = 0:

Gij = −
√
γ

8π

(
ln(|α + β + γ|) − 1 +

β

γ
− 2α

γ
ln
(∣∣∣

2γ

β
+ 1
∣∣∣
))

• If ~pi = ~p1:

Gij = −
√
γ

8π
(ln(γ) − 1)

• If ~pi = ~p2:

Gij = −
√
γ

8π
(ln(γ) − 3)

B.3 Computation of Hij

Hij =

∫ 1

0

−
√
γs

2πr(s)
~er(s).~n

e
jds

As computed in section (A.3), we have:

~er(s).~n
e
j =

1

r(s)

(
(xi − xj

1)n
x
j + (yi − yj

1)n
y
j

)

So we can write:

Hij =

∫ 1

0

−
√
γs

2πr2(s)

(
(xi − xj

1)n
x
j + (yi − yj

1)n
y
j

)
ds

= −
√
γ

2π

(
(~p i − ~p1

j).~nj

)∫ 1

0

s

r2(s)
ds
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∫ 1

0

s

r2(s)
ds =

∫ 1

0

1

2γ

2γs+ β

α + βs+ γs2
ds−

∫ 1

0

β

2γ

1

α + βs+ γs2
ds

=
1

2γ
I1 −

β

2γ
I0

• If D < 0: I0 and I1 are well defined and we get:

Hij = −
√
γ

2π

(
(~p i − ~p1

j).~nj

)( 1

2γ
I1 −

β

2γ
I0

)

= −
√
γ

2π

(
(~p i − ~p1

j).~nj

)

( 1

2γ

(
ln(|α + β + γ|) − ln(α)

)

− β

γ
√
−D

(
arctan

(β + 2γ√
−D

)
− arctan

( β√
−D

)))

• If D = 0:
D = 0 ⇐⇒ (~p i − ~p1

j).~nj = 0

So for any ~pi different from ~p1 and ~p2, we have:

Hij = 0

When ~pi is ~p1 or ~p2, I1 is undetermined but we assume that Hij = 0.



Appendix C

Computation of integrals

I0 =

∫ 1

0

1

α + βs+ γs2
ds I1 =

∫ 1

0

β + 2γs

α+ βs+ γs2
ds I2 =

∫ 1

0

βs2 + 2γs3

α+ βs+ γs2
ds

D < 0

b b

~p1
j ~p2

j

Γj

D = 0

β = 0 1 + 2γ
β

= 0

Figure C.1: Map of cases depending on the position of ~pi

C.1 Computation of I0

As we have shown, D ≤ 0 so we distinguish two cases.

When D < 0

I0 =
4γ

−D

∫ 1

0

1

1 +
(

β+2γs√
−D

)2ds

Change of variables:

t =
β + 2γs√

−D
dt =

2γ√
−D

ds
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I0 =
4γ

−D

∫ β
√

−D

β+2γ
√

−D

√
−D
2γ

1

1 + t2
dt

=
2√
−D

[
arctan(t)

] β
√

−D

β+2γs
√

−D

=
2√
−D

[
arctan

(β + 2γs√
−D

)]1
0

=
2√
−D

(
arctan

(β + 2γ√
−D

)
− arctan

( β√
−D

))

This can be computed without any problem while D 6= 0. This case is treated in the next
section.

When D = 0

Then we can write:

α+ βs+ γs2 = γ(s+
β

2γ
)2

I0 =

∫ 1

0

1

γ(s+ β
2γ

)2
ds

=
1

γ

[ −1

s+ β
2γ

]1
0

=
1

γ

( 1
β
2γ

− 1

1 + β
2γ

)

=
1

γ
(
1 + β

2γ

)

I0 is well defined only if β 6= 0 and 2γ
β

+ 1 6= 0. And assuming D = 0, we have:

{
β = 0 ⇔ 4αγ = 0 ⇔ α = 0 ⇔ ‖~p1 − ~pi‖ = 0 ⇔ ~pi = ~p1

2γ
β

+ 1 = 0 ⇔ β = −2γ ⇔
−−→
pj

1pi ·
−−→
pj

1p
j
2 = ‖

−−→
pj

1p
j
2‖2 ⇔ ~pi = ~p2

(C.1)

We will take to treat those specific cases differently.

Limited development of I0

Numerically, if D is very close to 0, then we handle huge quantities in I0 due to the factor
1√
−D

. To avoid a deterioration of precision, we choose to write a limited development of
the formula of I0 for D < 0 which is used only for values of D close to 0.
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Using the Taylor series expansion of arctan (valid for any real x such that |x| < 1):

arctan(x) = x− x3

3
+
x5

5
+ · · · =

∞∑

i=0

(−1)ix2i+1

2i+ 1
(C.2)

and the trigonometric law:

∀x > 0, arctan(
1

x
) + arctan(x) =

π

2
(C.3)

we get:

∀x > 1, arctan(x) =
π

2
−

∞∑

i=0

(−1)i

(2i+ 1)x2i+1
(C.4)

So for D close to 0 enough, we have β+2γ√
−D

> 1 and β√
−D

> 1 then we can write:

I0 =
2√
−D

(
arctan

(β + 2γ√
−D

)
− arctan

( β√
−D

))
(C.5)

=
2√
−D

(π
2
−

∞∑

i=0

(−1)i(
√
−D)2i+1

(2i+ 1)(β + 2γ)2i+1
− π

2
+

∞∑

i=0

(−1)i(
√
−D)2i+1

(2i+ 1)(β)2i+1

)
(C.6)

= 2
(
−

∞∑

i=0

(−1)i(
√
−D)2i

(2i+ 1)(β + 2γ)2i+1
+

∞∑

i=0

(−1)i(
√
−D)2i

(2i+ 1)(β)2i+1

)
(C.7)

As
√
−D is taken at the power 2i and 2i ≥ 0 for each i ≥ 0, the computation is safe. In

the implementation, the summation is done until the 20th order.

C.2 Computation of I1

Again, as D ≤ 0 we distinguish two cases.

When D < 0

I1 =

∫ 1

0

β + 2γs

α+ βs+ γs2
ds

=
[
ln(|α + βs+ γs2|)

]1
0

= ln(|α + β + γ|) − ln(α)

The computation is safe while α 6= 0 and |α + β + γ| 6= 0.
{

|α+ β + γ| = r2(1) = ‖~p2 − ~pi‖2 so |α+ β + γ| = 0 ⇔ ~pi = ~p2

α = r2(0) = ‖~p1 − ~pi‖2 so α = 0 ⇔ ~pi = ~p1
(C.8)

In these two cases, the points ~pi,~p1 and ~p2 are on line so D = 0. The case D = 0 is treated
in the next section.
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When D = 0

Then we can write:

α+ βs+ γs2 = γ(s+
β

2γ
)2

I1 =

∫ 1

0

β + 2γs

γ(s+ β
2γ

)2
ds

=

∫ 1

0

2

γ(s+ β
2γ

)
ds

=
[
2ln
(∣∣∣s+

β

2γ

∣∣∣
)]1

0

=
(
ln
(∣∣∣1 +

β

2γ

∣∣∣
)
− ln

(∣∣∣
β

2γ

∣∣∣
))

= ln
(∣∣∣

2γ

β
+ 1
∣∣∣
)

I1 is well defined only if β 6= 0 and 2γ
β

+ 1 6= 0. And assuming D = 0, we have:

{
β = 0 ⇔ 4αγ = 0 ⇔ α = 0 ⇔ ‖~p1 − ~pi‖ = 0 ⇔ ~pi = ~p1

2γ
β

+ 1 = 0 ⇔ β = −2γ ⇔
−−→
pj

1pi ·
−−→
pj

1p
j
2 = ‖

−−→
pj

1p
j
2‖2 ⇔ ~pi = ~p2

(C.9)

We will take to treat those specific cases differently.

C.3 Computation of I2

I2 =

∫ 1

0

βs2 + 2γs3

α+ βs+ γs2
ds
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Decomposition of the rationnal function:

βs2 + 2γs3

α + βs+ γs2
= 2s− 2βs2 + 2αs

α + βs+ γs2
+

βs2

α + βs+ γs2

= 2s− βs2

α + βs+ γs2
− 2αs

α + βs+ γs2

= 2s− β

γ
+
β

γ

βs+ α

α + βs+ γs2
− 2αs

α + βs+ γs2

= 2s− β

γ
+
(β2

γ
− 2α

) 1

2γ

2γs+ β

α + βs+ γs2

− β

2γ

(β2

γ
− 2α

) 1

α + βs+ γs2
+
αβ

γ

1

α + βs+ γs2

= 2s− β

γ
+
β2 − 2αγ

2γ2

2γs+ β

α + βs+ γs2
+
β

γ

(
2α− β2

γ

) 1

α + βs+ γs2

= 2s− β

γ
+
β2 − 2αγ

2γ2

β + 2γs

α + βs+ γs2
− βD

2γ2

1

α + βs+ γs2
(C.10)

So we have:

I2 =
[
s2 − β

γ
s
]1
0
+
β2 − 2αγ

2γ2
I1 −

βD

2γ2
I0

= 1 − β

γ
+
β2 − 2αγ

2γ2
I1 −

βD

2γ2
I0

I1 and I0 are well defined when D < 0. When D = 0, they are well defined only if
β 6= 0 and 2γ

β
+ 1 6= 0. Those cases are treated in the next two sections.

When ~pi = ~p1 (special case of D = 0)

In this case, α = 0 and β = 0 so we have:

I2 =

∫ 1

0

2γs3

γs2
ds =

∫ 1

0

2sds =
[
s2
]1

0
= 1

When ~pi = ~p2 (special case of D = 0)

In this case, β = −2γ so we have:

I2 =

∫ 1

0

−2γs2 + 2γs3

α + βs+ γs2
ds

= 2γ

∫ 1

0

s2 s− 1

α + βs+ γs2
ds
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Since D = 0 we can write :

α + βs+ γs2 = γ(s+
β

2γ
)2 = γ(s− 1)2

so we get:

I2 = 2γ

∫ 1

0

s2 s− 1

γ(s− 1)2
ds

= 2

∫ 1

0

s2

s− 1
ds

Decomposition of the rationnal function:

s2

s− 1
= s

(s− 1

s− 1
+

1

s− 1

)

= s+
s

s− 1

= s+ 1 +
1

s− 1

Then we have:

I2 = 2

∫ 1

0

s+ 1 +
1

s− 1
ds

= 2
[s2

2
+ s+ ln(s− 1)

]1
0

= 2
(1

2
+ 1
)

= 3
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Analytical solutions

D.1 Cases with rotational symmetry

Working with cylindrical coordinates of center ~O (the center of the disc), the initial
equation ∆u = 0 applied to a disc of radius R becomes:

∀r ∈]0, R], ∀θ ∈ [0, 2π],
∂2u(r, θ)

∂r2
+

1

r

∂u(r, θ)

∂r
+

1

r2

∂2u(r, θ)

∂θ2
= 0

Here, the symmetry of the problem brings u(r, θ) = u(r). So we get:

∀r ∈]0, R],
∂2u(r)

∂r2
+

1

r

∂u(r)

∂r
= 0

Writing v(r) = ∂u(r)
∂r

and v′(r) = ∂2u(r)
∂r2 , we have to solve:

∀r ∈]0, R], v′(r) +
1

r
v(r) = 0 (D.1)

Let us remark that v1(r) = α
r

with α constant, is a particular solution of eq.(D.1). Now,
let suppose that there exists another solution v2. We introduce f such that v2(r) = f(r)α

r
.

We compute its derivative:

∀r ∈]0, R], v′2(r) = − α

r2
f(r) +

α

r
f ′(r) (D.2)

and then we get:

∀r ∈]0, R], v′2(r) +
1

r
v2(r) = 0 (D.3)

− α

r2
f(r) +

α

r
f ′(r) +

α

r2
f(r) = 0 (D.4)

α

r
f ′(r) = 0 (D.5)

f ′(r) = 0 (D.6)

(D.7)
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So f needs to be constant. So when α describes R, v(r) = α
r

describes all the solutions
of eq.(D.1). By integrating, we obtain all the solutions u:

∀r ∈]0, R], u(r) = αln(r) + β (D.8)

D.1.1 Analytical solution for a disc

u0×~O

R

Ω

Figure D.1: Boundary conditions on a disc

As u is continuous on the domain Ω and r 7→ ln(r) is not bounded in the neighboorhood
of r = 0, we necessarily get α = 0. So u has to be constant on the whole domain. Then,
given the boundary condition u(R) = u0, we deduce:

∀x ∈ Ω, u(x) = u0 (D.9)

D.1.2 Analytical solution for a crown

ra

rb

Ω

Figure D.2: Boundary conditions on a crown

As there is the same symmetry, we get eq.(D.8) again. This time, the center point
does not belong to the domain so α is not necessarily zero. The two constants α and β
are fixed by the boundary conditions.

Dirichlet boundary conditions only

Considering that we have to satisfy:

u(ra) = a and u(rb) = b (D.10)
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we can compute α and β:

α =
b− a

ln(rb) − ln(ra)
and β =

aln(rb) − bln(ra)

ln(rb) − ln(ra)
(D.11)

Mixed boundary conditions

Considering that we have to satisfy:

u(ra) = a and v(rb) = b (D.12)

we can compute α and β:

α = brb and β = a− αln(ra) = a− brbln(ra) (D.13)

So we get:

u(r) = brbln
( a
ra

)
+ a (D.14)

D.2 Cases equivalent to a 1D problem

In this section, we study the case of a rectangle to which we impose boundary conditions
such that on two opposite sides, the normal flux is zero and on the two other sides, the
field is given. This way, the field is invariant in one direction (let say ~ey like in fig.(D.3))
and the problem is equivalent to a 1D case meaning u = u(x). This yields:

∆u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
=
∂2u

∂x2

Ωu(0) = a u(l) = b

+ x

0 l

Figure D.3: Boundary conditions on a rectangle

Then the initial equation ∆u = 0 applied to this rectangle becomes:

∀x ∈ [0, l],
∂2u

∂x2
= 0
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So the solution field is written:

u(x) = αx+ β and v(x) = α where

{
β = a

α = 1
l
(b− a)

(D.15)
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finis de frontière. Phd. thesis, Ecole Nationale des Travaux Publics de l’Etat, 2000.

[18] F.J. Rizzo. An integral equation approach to boundary value problems of classical
elastostatics. Quaterly of Applied Mathematics, 25:83, 1967.

[19] D. Salac and W. Lu. A level set approach to model directed nanocrack patterns.
Computational Materials Science, 39:849–856, 2007.

[20] E. Taroco. Shape sensitivity analysisi in linear elastic fracture mechanics. Comput.
Methods Appl. Mech. Engrg., 188:697–712, 2000.

[21] L.A. Vese and T.F. Chan. A multiphase level set framework for image segmentation
using the mumford and shah model. International Journal of Computer Vision,
50(3):271–293, 2002.


