
                                                       
 

LLaabboorraattooiirree  ddee  MMééccaanniiqquuee  ddeess  fflluuiiddeess                                                                                                              EEqquuiippee    MMooddéélliissaattiioonn  NNuumméérriiqquuee  

 

 

 

 

 

 

 

 

 

 

 

 

IImmpplleemmeennttaattiioonn  ooff  eerrrroorr  

iinnddiiccaattoorrss  ffoorr  aauuttoommaattiicc  ggrriidd  

rreeffiinneemmeenntt  iinn  33DD  
 

EErraassmmuuss  MMuunndduuss  MMaasstteerr  ooff  SScciieennccee  iinn  CCoommppuuttaattiioonnaall  MMeecchhaanniiccss 
MMaasstteerr  TThheessiiss  rreeppoorrtt 

 

 

 

 

SSttuuddeenntt::                    KKhhaalliidd  AAiitt  SSaaiidd  

SSuuppeerrvviissoorr::          DDrr..  JJeerrooeenn  WWaacckkeerrss  

AAddvviissoorr::                  DDrr..  MMiicchheell  VViissoonnnneeaauu  

 

 

 

 

 



KKhhaalliidd  AAiitt  SSaaiidd                          MMSScc  CCoommppuuttaattiioonnaall  MMeecchhaanniiccss 

MMaasstteerr  TThheessiiss  

LLaabboorraattooiirree  ddee  MMééccaanniiqquuee  ddeess  fflluuiiddeess                                                                                            EEqquuiippee  MMooddéélliissaattiioonn  NNuumméérriiqquuee  2 

  

 

 

 

 

Abstract 

 

This work deals with the numerical treatment of solutions of the Reynolds-averaged Navier-

Stokes equations computed by the ISIS-CFD flow solver. The objective is to analyze a local 

adaptive mesh refinement strategy to reach acceptable accuracy with the lowest human and 

computational costs. 

To achieve this, the behavior of three a-posteriori error indicators is examined in order to 

derive effective criteria for controlling both accuracy and computational effort at once. The ability 

of the methods to predict the error correctly is analyzed and evaluated. 

 The three estimates are based on the Hessian matrix of field variables. Two of them are based 

on a scalar approach, while the last one is based on a tensor approach. The whole procedure is 

applied to steady turbulent flows over relatively complex geometries. The efficiency of these 

methods is evaluated by the features flow visualization, distribution and number of cells. 

In the case of scalar criteria, the norm of the Hessian matrix was found to be better than the 

square root of the Hessian matrix norm. The tensorial criterion that has been tested performed even 

better than the two scalar ones. 
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CHAPTER 1                                                             DTSEE method 

In this chapter, a simple introduction to the adaptive mesh refinement method is presented, 

along with the error indicators that are used to control this method. Then the DTSEE error estimate 

presented by Jasak [1] is discussed, an error in his work is highlighted. 

 

1.1. Introduction 

 

The method of adaptive mesh refinement employs successively the use of a flow solver and 

mesh generation tools. After a first run of the solver on an original grid, it determines the size of 

local mesh necessary anywhere in the field of calculation to ensure the desired accuracy. This 

information is exploited by the mesh to generate an adapted grid to be used for another simulation. 

Both steps are repeated until the final solution is reached. 

In general, an adaptive mesh refinement strategy identifies the regions in the computation 

domain in which certain criteria are satisfied and then, increases the nodal density in those regions. 

Broadly speaking, most of these techniques can be described as feature based [7]. This is a standard 

approach that is employed in adaptive mesh refinement and is not discriminating in the sense that 

this strategy equally distributes the error across the mesh. Therefore the need of a measure of error 

is essential to the efficiency and success of such methods. 

A numerical solution is obtained following a set of rules that provide a discrete description of 

the governing equations and the solution domain. Its accuracy is determined from the 

correspondence between the exact solution and its numerical approximation.  

The judgement on the solution accuracy should therefore be done by comparing it with the 

exact solution, which is usually unavailable. Error estimation is therefore an important integral part 

of numerical solution procedures. Determining a reliable error measure, on the other hand is a 

separate and difficult issue. Finite elements techniques provide a direct mechanism for error 

estimation such residual type methods; Finite volume techniques do not.  

Early efforts in the field of error detection have been directed towards problems with complex 

flows. The solution has some distinct features that need to be resolved accurately. It is known in 

advance that those features can be recognized by large gradients in flow variables [7]. Adaptive 

refinement is therefore directed towards the regions in which gradients are high. In the exact 

solution, discontinuities are infinitely thin, refinement is therefore stopped when the thickness of 

discontinuities in the numerical solution is considered to be small enough, or when the maximum 

number of computational points is reached. 

Combinations of gradients of flow variables used to control the adaptive refinement procedure 

are called error indicators. An error indicator highlights the regions of the domain where a better 

resolution is needed. In general, it does not provide information about the absolute error level. Error 

indicators are cheap to compute and in many situations, can give reliable information about the 

solution. 
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The error indicator will be used to control an adaptive refinement procedure. It should 

therefore provide reliable information about the distribution of the error through the computational 

domain. Accurate error distribution is critical in calculations with highly localized refinement, 

where the successive levels of refinement are embedded into each other. First levels of refinement 

should be located accurately in order to reduce unnecessary overheads. Even if the error level is not 

estimated accurately, a correct error distribution guarantees that refinement regions are properly 

selected. 

 

The study of Jasak [1] concerns the error estimation in the field of Computational Fluid Dynamics. 

The issue of a-posteriori error estimation is analyzed in general terms, and three approaches to error 

estimation are presented. Following each of these approaches, he proposed three new error 

estimates: 

• The Direct Taylor Series Error estimate is based on the Taylor series truncation error 

analysis. Unlike the widely accepted Richardson extrapolation, this new error estimate can 

be used on a single-mesh solution. In spite of its asymptotic exactness, the accuracy of this 

error estimate is not considered satisfactory. 

• The Moment Error estimate derives the solution error from the imbalance in higher 

moments of the variable. In order to provide the error magnitude, the imbalance is 

normalized in an appropriate way. 

• The Residual Error estimate measures the error from the inconsistency between the 

prescribed variation of the function over the control volume and the face interpolation 

practice, enabling the estimation of the error in the convection-diffusion part of the 

discretization. 

 

In the work of Hay [3], different a posteriori error estimation are examined in order to derive 

effective criteria for controlling both accuracy and computational effort at once for a wide range of 

problems. 

The work carried by Ali [5] presents a simple and efficient way of implementing an error 

criterion. Based on the gradient of flow variables, it has been shown that the gradient of pressure 

performs better than velocity or vorticity gradient as error indicator, especially in problems with 

boundary layer computation. 

 

The aim of this study is to consider the Hessian matrix and implement refinement criteria based on 

the second derivatives of field variables. Two types of criteria will be tested, a scalar and a tensorial 

refinement criterion. 

In the first part of this work, we analyze the theoretical issues behind the DTSEE method 

which was presented by Jasak and further developed by Hay, and discuss about its implementation. 

The second part deals with the implementation of three refinement criteria (chapter 2), the tests are 

performed for the KVLCC2 case and the results are discussed (chapter 3). 
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1.2. Error Estimation by DTSEE 

 

In order to simplify matters, we examine the problem of error estimation in steady-state 

calculations, where the whole error comes from the discretization of spatial terms. 

The DTSEE method or the Direct Taylor Series Error estimate derives the error from the 

known order of accuracy and the local variation of the solution. It is based on the Taylor series 

truncation error analysis. As developed in the work of Jasak [1, 2], it is possible to obtain the Taylor 

series error estimate from a single-mesh result. 

This error estimation method is based on the analysis of the numerical solution in terms of the 

Taylor series expansion. Every smooth function can be written as an expansion in its derivatives 

around a given point in space. 

The discretization process can be considered as a truncation of the infinite series. The 

truncated form of the expansion at the computational point is used to describe the variation of the 

solution over the control volume surrounding it. 

A p-th order accurate discretization method describes the local variation of a given function Φ 

with, � the first p terms of the Taylor series: 

 

The discretization error  �  can also be expressed as an (infinite) series in higher derivatives of Φ: 

 

If the mesh is too coarse, the contribution of higher-order terms can be significant, 

particularly if higher derivatives are large. In the case of second order accurate Finite Volume 

discretization, the prescribed spatial variation of � over the control volume is linear: 

 

The leading term of the error is: 

 

The Taylor series error estimate in the control volume surrounding the point P is then calculated as: 

 

Where M is the second geometric moment of the control volume: 

 

 

 

(1) 

(2) 

(3) 

(4) 
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The terms will be approximated from the available solution and mesh geometry. The error 

estimate obtained in such a way is called the Direct Taylor Series Error estimate. The task of 

creating a single-mesh Taylor series error estimate can be divided into two parts: estimating the 

second gradient of � in P and evaluating the geometric moment tensor M for the control volume. 

 

1.3. Discussion about DTSEE 

Two errors in the DTSEE method are discussed; one is found earlier, the other one in this work. 

  

Error equation 

As pointed out by Dr. Wackers, the equation of the error is not exactly as presented in the 

work of Jasak [1] and Hay [3]. The fact is, even with a second order accurate discretization, the 

term �� , which represents the approximated value of Φ at cell center, has no reason to be the exact 

solution, and therefore, this term will not disappear in the equation (2) stated above. 

The equation becomes: ���� = 
������ −   �� � + �� �� − ����: �∇∇��� .  

 

Hence, we have an additional term that cannot be evaluated directly, more discussion need to 

be considered for such a method. However, considering only the term containing the Hessian 

operator, it could be used as an indicator of the error, which is widely used in the computational 

field. 

 

Geometric moment M 

As defined previously in equation (4), the geometric moment over the control volume is 

written as 

� =  � �� − ��� ⊗ �� − �����
 � . 

Calculation of M on an arbitrary unstructured mesh is more complex. The approach to be used 

here follows the work of Helf and Küster [9]. Using Gauss' theorem, the volume integral is reduced 

to a set of geometric moment integrals over the faces. 

The origin considered here is in the centre of the control volume. We consider then the 

variable   " = � − �� . 
As developed in the work of Jasak [1], equation (6) can be written as follows: � =  # " ⊗ "���  �  

                                  =     13   � &. [" ⊗ �" ⊗ "�]��
 �  

                   =  13 � ��). *��" ⊗ "�+��
  

                       =  13 , � ��). *��" ⊗ "�-./  

(5) 

(6) 
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The surface integrals can be further simplified if we consider that all faces are flat; for every 

point on the face, the dot-product <dS.x> then reduces to a constant. It follows that: 

� ��). *��" ⊗ "�-.
=  01. "/ � �" ⊗ "� �2-.

 . 
The volume integral is reduced to a sum of surface integrals over flat faces. Point  �/  has 

been selected as a sample point; any other point from the face plane will give the same product. 

� =  13 , 01. "/ � �" ⊗ "� �2-./  . 
However, a simple test of this result will show that the development is not done rigorously, 

and the coefficient (marked in red above) is false, the first step needs more development and 

precision. 

 

Example: 

 

We consider the simplest geometric form possible: a hexahedral control volume aligned with 

the coordinate system (figure 1). 

 

In this case, the analytical geometric moment is obtained in a straightforward manner: 

� =  � � ⊗ � �3 

                         =   �12  5∆�² 0 00 ∆9² 00 0 ∆:²; . 
 

 

 
Figure 1: A hexahedral control volume; the coordinate system is at the centre of the control volume. 

 

 

 

(7) 
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Now, let us use equation (7), we compute each term separately.

The numbering of the faces is as given in figure

Let us start with  ��� for example; the origin is the center of the control volume

���
In fact, for all the integrals over faces, we end up with

#   9∆<=>∆<= �9 ] , or [ #   �∆�=>∆�= �� ? #∆<=>∆=
The same result is obtained for    

 

Now, let us focus on ��� : 
�

��� = 13 [�
�

� �� �9
�
� ��
@
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Figure 2: The numbering of faces for a control volume. 

we compute each term separately. 

The numbering of the faces is as given in figure 2. 

example; the origin is the center of the control volume

�� =  13 [ ,�� �9A
�  �0 �B. ���  ]  =  0 . 

for all the integrals over faces, we end up with either [ CDE1 ? #∆
>

#   9<=∆<= �9 ]  , which all give zero. 

                         �FG = 0          [ H�I, K�   I L K ] 

��� =  13 [ ,�� �²A
�  �0 �B. ���  ]  

� ��
�

��. �: 
MN. �� + � ��
A

���: 
−MN. �� +
� �9. �: �−M�. �� + � ��

O
�9. �:�M�. �� + 

� ��. �9�−MP. �� + � ��
Q

��. �9�MP. ��  ] 

X 

Y 

Z 

oonn  NNuumméérriiqquuee  10 

 

example; the origin is the center of the control volume: 

#   �∆�=>∆�= �� ] , or [ CDE2 ?

� + 

(8) 
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��� = 13 [� ��
�

��. �: R∆92 S + � ��
A

��. �: R∆92 S + 

� �� �9. �:
�

R∆�2 S + � ��
O

�9. �: R∆�2 S + 

� ��
@

��. �9 R∆:2 S + � ��
Q

��. �9 R∆:2 S  ] 
 

 

��� = 13 [ � ��
∆T�

U∆T�
�� �∆: ∆9� + V �� �9. �:

∆W�  ∆X�
U∆W�  U∆X�

�∆�� + � ��
∆T�

U∆T�
�� �∆9 ∆:�  ] 

��� = 13 [2 ∆�3 ? 8
@  �∆: ∆9� + ∆��4 �∆9 ∆: ∆�� + 2 ∆�3 ? 8

@  �∆9 ∆:�  ] 
��� = 13 ∆  ∆��[2 13 ? 8 +  14  +  2 13 ? 8  ] 

 

��� = [\ ∆  ∆��[ 512  ] 
 

To recover the analytical solution, the coefficient in red in equation (9) should be   �O   and not as 

given  � @  . 
The problem is in fact coming from the following step:  � ⊗ � =  �@  ∇. �� ⊗ � ⊗ � �  ? 

Let us develop in an indicial form the previous expression: ∇. �� ⊗ � ⊗ �� =  � �F ?  �G ? �^  �,^ ∇. �� ⊗ � ⊗ �� =   
 �F ?  �G  � ? �^,^ +  � �F ?  �^ � ? �G,^ +  
 �G ?  �^ � ? �F,^  ∇. �� ⊗ � ⊗ � � =   
 �F ?  �G  � ? 3 +  
 �F ?  �G  � + 
 �G ?  �F � ∇. �� ⊗ � ⊗ � � =    5 
 �F ?  �G  � 

Though, the right coefficient is: 

   � ⊗ � =  15 ∇. �� ⊗ � ⊗ � � 

Injecting equation (10) into equation (7), the correct expression should be: 

 

� =  15 , 01. "/ � �" ⊗ "� �2-./  

 

 

 

(9) 

(10) 

(11) 
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1.4 Hessian Matrix 

 

Considering a field quantity � , the aim is to compute the following matrix:  

 

_ =   `�,TT �,TW �,TX�,TW �,WW �,WX�,TX �,WX �,XX
a 

 

Here the matrix H is considered symmetric, the assumption that   ∅,FG =  ∅,GF  is made. This 

condition requires a certain degree of the smoothness of the field variable considered, otherwise, the 

assumption is not valid anymore. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(12) 
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CHAPTER 2                        Implementation of the Hessian matrix 

In this chapter, the way ISIS-CFD deals with adaptive refinement is presented; the method of 

implementing the geometric moment is developed, and two ways of implementing the Hessian 

matrix are discussed. 

 

2.1.  Adaptive grid refinement in ISIS-CFD 

 

The ISIS-CFD flow solver, available as a part of the FINE
TM

/Marine computing suite, uses 

the incompressible unsteady Reynolds-averaged Navier Stokes equations (RANS). 

The solver is based on the finite volume method to build the spatial discretization of the 

transport equations. The face-based method is generalized to two-dimensional, rotationally-

symmetric, or three-dimensional unstructured meshes for which non overlapping control volumes 

are bounded by an arbitrary number of constitutive faces. 

The velocity field is obtained from the momentum conservation equations and the pressure 

field is extracted from the mass conservation constraint, or continuity equation, transformed into a 

pressure-equation. In the case of turbulent flows, additional transport equations for modeled 

variables are solved in a form similar to the momentum equations and they can be discretized and 

solved using the same principles. Incompressible and non-miscible flow phases are modeled 

through the use of conservation equations for each volume fraction of phase. The whole 

discretization is fully implicit in space and time and is formally second order accurate. Several near-

wall low-Reynolds number turbulence models, ranging from one-equation Spalart–Allmaras model, 

two-equation k–ω closures, to a full Reynolds stress transport Rij –ω model are implemented in the 

code. 

With adaptive grid refinement, the solver works as follows: the flow solver is run on the 

initial grid for a limited number of time steps. Then the refinement process is called to adapt the 

grid. The refinement procedure has a specific refinement criterion; if the criterion, based on the 

current solution indicates that certain parts of the grids are not fine enough and need to be refined, 

the grid is refined and the solution of on the initial grid is copied to the new refined grid. The flow 

solver is run again and the refinement procedure is called and the refinement criteria decide what 

changes are to be made to the grid i.e. to refine or derefine the grid. The process is repeated until 

convergence is obtained (for steady flows). 

 

In order to make the process more flexible the refinement procedure is divided into three 

distinct parts. Each part can be dealt with separately as these parts exchange minimal information 

between them. The parts are: 

 

1) Refinement criterion: the refinement criterion or error indicator is an essential part of the 

adaptive process. The refinement criterion decides which parts of the grids are to be refined or de-

refined based on a certain threshold value. The important point is that an error indicator can be 
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developed which may not depend on the type and orientation of the cells and thus avoiding the need 

for developing separate refinement criterion for different cell types. 

 

2) Refinement decision: next step is the refinement decision based upon the refinement 

criterion in which a list of flags is created indicating which cell will be refined and in case of 

directional refinement, the direction is also specified. This decision depends upon the cell type but 

not on the way the refinement criterion was computed. It is simply an evaluation of the criterion 

field. The refinement decision has two steps. First, the refinement criterion is evaluated in each cell, 

based on a certain threshold value the refinement decision is taken. If the value of the refinement 

criteria exceeds the threshold value, the cell is refined; and if it is below (the threshold ÷ 2.5), the 

cell will be de-refined. Similar methodology applies to the directional refinement, if the refinement 

criterion exceeds the threshold in a certain direction, the cell will be refined in that direction and 

vice versa.  

In the second step the decision in each cell is adapted to its neighbor cell.As a result, in an 

iterative procedure, refinement decisions are added and de-refinement decisions are removed. 

Completion of the refinement decisions is a great advantage before the start of the refinement. 

 

3) Refinement: The final step is the actual refinement of the grid. First, all cells selected for 

de-refinement are de-refined, and then refinement of all cells to be refined is performed. During 

refinement, new small size cells are created, faces and nodes are added between them, and the cell 

family ties are adjusted; for de-refinement, small size cells are merged into their original large cells, 

unnecessary faces are removed, and the original family ties are restored. In parallel, once the 

refinement decisions are taken, the grid in each block can be refined without any communication 

with the other blocks. Both refinement and de-refinement are done cell by cell to ensure maximum 

generality and robustness of the code. After the treatment of each single cell, a correct grid with all 

its pointers is left, even if some pointers have to be changed again later when a neighbor cell is 

refined. In this way, a cell to be refined can treat all its faces and neighbors the same manner; no 

distinction is needed between cells that are already refined, cells that still have to be refined, and 

cells that are not refined at all. To further increase the generality of the code, the parts that refine 

cells and faces are completely decoupled. 

 

For more details about mesh adaptation procedure in ISIS-CFD, as it is based strongly on the 

work of Hay, Wackers and Visonneau, [3, 4, 8], one can refer directly to their work. 
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2.2.  Method of implementation 

 

Geometric moment 

As discussed in the previous chapter, the integration over the control volume will be 

transformed to an integration over the faces of the same control volume. First, the control volume is 

split to a sum of small control volumes, that are the cells; then for each cell, the divergence theorem 

is applied. 

In ISIS-CFD, the unstructured mesh used is generated by HEXPRESS and is hexahedral. An 

analytical integration over an arbitrary domain, delimited by four points at least, which are not a 

priori in the same plane, is though impossible. Therefore, an approximation is needed. 

Another subdivision of the domain is considered. Every face is cut to a set of triangles based 

on the centre of the face, and the integration is performed over each triangle (figure 3). 

The integration over a triangle is widely used in the computational community; many 

methods are available in the literature [6]. For simplicity, this integration is performed by means of 

a mapping to the unit triangle (figure 4), then using Gauss Quadrature formulas to get the result. 

The Gauss Quadrature method used is based on 3 points, which means that the method is 

exact for 2
nd

 order polynomials, ie the geometric moment is integrated exactly on each triangle. 

 
Figure 3: The general method followed to divide each set of faces into triangles. 

 

 
Figure 4: Mapping of a given triangle to the unit triangle used for the Gauss Quadrature rule. 
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Hessian matrix 

The computation of an approximation to the Hessian matrix H (equation (12)) is based on the 

least squares method. It is computed in the centre of the cell, and the computation involves not only 

the neighboring cells, but also the neighbors of the neighbors. 

The field chosen for this computation is the pressure, because of the performance observed of 

the gradient of pressure as error indicator, especially with boundary layer computations [5]. As the 

velocity and vorticity gradients are high in the boundary layer region, boundary layer refinement 

results in an unnecessary and costly refinement there and little refinement in the other regions. The 

pressure gradient criterion avoids such refinement in the boundary layer because the pressure varies 

little in that zone in the normal direction. 

With the assumptions already made on the Hessian matrix, we have only 6 unknowns to be 

determined, while the standard number of neighbor cells and neighbor of neighbors are 24 at least.  

Taylor series development of the pressure at the centre of the cell c up to the second order 

gives: 

 d��� =  e� + e��� − �f� + e@�9 − 9f� + eQ�: − :f� + eO�� − �f�² + eA�9 − 9f�² + eg�: − :f�²+ eh�� − �f��9 − 9f� + ei�� − �f��: − :f� + e�j�9 − 9f��: − :f� . 
 

Then, for each neighbor  I,   I ∈ '1, l(, where m is the number of neighbors, we have the 

following equation: 

 

e� + e���F − �f� + e@�9F − 9f� + eQ�:F − :f� + eO��F − �f�² + eA�9F − 9f�² + eg�:F − :f�²

+ eh��F − �f��9F − 9f� + ei��F − �f��:F − :f� + e�j�9F − 9f��:F − :f� =  dF . 

We end up with an over-determined system of m linear equations in n unknown coefficients, n 

being 10 here, β1,β2,…,βn, with m > n, written in matrix form as 

 

where 

 

The coefficients of the Hessian matrix are extracted from  eF , I ∈ '5,10(, while the other 

coefficients represent the gradient of pressure and are not used. 

 

(13) 

(14) 
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The goal is then to find the coefficients β which fit the equations "best", in the sense of 

solving the quadratic minimization problem [11] of the form: 

 

This minimization problem has a unique solution em (provided that the n columns of the matrix 

X are linearly independent), given by solving the normal equations 

 

The equations may also be weighted, based on the distance of the neighbors to the cell. In this 

case, one can minimize the weighted sum of squares: 

 

where wi > 0 is the weight of the ith equation, and W is the diagonal matrix of such weights. 

The normal equations are then: 

 

The weights used to solve the system are chosen to be the inverse of the distance between the 

considered cell (c) and the neighbors (i), such that: nF =  1
����opppq − �fpppq��²r  ; considering such 

weights, it is reasonable to exclude the equation of the cell itself from the system of equations, and 

consider only its neighbors.  

The Hessian matrix obtained will be represented by  _�s��j , where P is for pressure, and 10 

for the number of variables used in the computation. 

 

In order to gain in efficiency and computational cost, we can reduce the number of unknowns 

by using the gradient of pressure already computed by the solver at that particular iteration when the 

refinement is taking place. So rather than having 10 unknowns, we will be seeking only 6 

unknowns. 

 

Equation (14) becomes: 

eO��F − �f�� + eA�9F − 9f�� + eg�:F − :f�� + 

eh��F − �f��9F − 9f� + ei��F − �f��:F − :f� + e�j�9F − 9f��:F − :f� 

=  dF − df − �
�d

��
�f��F − �f� − �

�d

�9
�f�9F − 9f� − �

�d

�:
�f�:F − :f� . 

(15) 

(16) 

(17) 
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This method has the advantage of reducing the computational cost, as solving the system 

occurs for each cell; it is known that the method of Gauss elimination has the asymptotic 

complexity of order �D9DE�l �Il�tDIut�@, which means that we reduce the complexity, even 

though the reduction is not significant for a problem with coarse mesh, this may be important for 

more complex problem with large numbers of cells, as this is repeated for each cell for dozens of 

iterations. 

When it comes to the cells on the boundary, we have less equations because of the neighbors, 

and the number of neighbors may happen to be less than 10; therefore, we do not have an over 

determined system, and the first method used gives a wrong result. This problem may occur also 

while dividing the domain into sub domains for parallel computation. 

The Hessian matrix obtained, as in the previous case, will be represented by  _�s�A , where 6 

stands for the number of variables used in the computation. 

 

2.3.  Comparison 

 

The two methods were compared, and the results are displayed below. First we check the 

convergence of   _�s��j  and   _�s�A  to the same result, using real case computation. After that, 

each method will be used to compute analytical pressure fields where the solution is known.  

 

In the following, the KVLCC2 problem is considered; more details about this study case are 

given in the introduction of chapter 3. First, we compare the convergence of the methods versus the 

grid size. 

 

Original Mesh Refined Mesh Re-refined Mesh 

Figure 5: The distribution of the difference between H�P��j and H�P�A, for the position x=0, on the coarse grid 

(left); then for refined grid (centre); then for a twice refined grid (right). 
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Original Mesh Refined Mesh Re-refined Mesh 

Figure 6: The distribution of the difference between H�P��j and H�P�A, for the position x=0.2, on the coarse grid 

(left); then for refined grid (centre); then for a twice refined grid (right). 

 

The mesh refinement in figure 5 and figure 6 was generated by the mesh generator Hexpress; 

after each refinement, the grid size is divided by two. The solution is converging with the grid. The 

field displayed in these images represents the difference between   _�s��j and  _�s�A , or more 

precisely, the norm of the difference between the two operators. The Frobenius norm is used:  

 

One can observe that, as the mesh grows finer, the difference is becoming smaller, which 

means that both of the operators converge to the same result. 

Now, having in mind the difference between these operators, we will examine the 

performance of such methods, for some analytical fields, where the analytical solution is available. 

The gradients of pressure used to compute the second operator are those given by the solver, and 

not the exact analytical gradient. 

 

Polynomial field 

The pressure field is set to be a polynomial in x, y and z. The equation used for pressure field 

is: 

 d��, 9, :� = �² + 9² . 

The two computational ways were tested. Such a field is very easy to compute; both   _�s��j  

and   _�s�A are very close, and are almost equal to the analytical solution up to machine precision. 

The results obtained are not displayed in any figure, as the plots do not show significant difference. 

 

Sinusoidal field 

The pressure field used here is sinusoidal. The equation is: 

d��, 9, :� = sin�9�. 

The results are given in figure 7 and figure 8. 
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Norm (_�s�A −  _�s�{T|f}) Norm (_�s��j −  _�s�{T|f}) 

 

Figure 7: In the position x= 0.2, the norm of error between _�s�A and the analytical solution of the sinusoidal 

field (left), and error between _�s��j and the analytical solution (right). 

Norm (_�s�A −  _�s�{T|f}) Norm (_�s��j −  _�s�{T|f}) 

  
Figure 8: In the position x=1.7, the norm of error between _�s�A and the analytical solution of the sinusoidal 

field for different contours limit (left, top and bottom), and error between _�s��j and the analytical solution (right, top 

and bottom). 
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Fractional field 

The pressure field used here is fractional. The equation is: 

d��, 9, :� = 1 /�� + 9�. 

 

The results are given in figure 9. 

 

Norm (_�s�A −  _�s�{T|f}) Norm (_�s��j −  _�s�{T|f}) 

Figure 9: In the position x=0.2, the norm of error between _�s�A and the analytical solution of the fractional 

field for different contours limit (left, top and bottom), and error between _�s��j and the analytical solution (right, top 

and bottom). 

 

The pictures show the performance of the two methods on some simple flow fields. The 

  _�s��j  method performs better than the  _�s�A  method in the fraction case (figure 9); and both 

give approximately the same result for a sinusoidal field (figure 7 and figure 8). 
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Both the methods give poor results in the boundary. Such problem is due to the lack of 

information around the boundary cells, which leads to a loss of accuracy in the computation of the 

gradients and the Hessian matrix terms. A problem of visualization increases the magnitude of the 

error observed, as the values at the domain frontier nodes are interpolated from the neighboring 

cells. 

The   _�s�A  in theory, gives better result in the boundary, because it needs less equations to 

be computed; but as in general case we have sufficient number of equations,  _�s��j performs well 

too. 

For the rest of the work, the method adopted is  _�s��j ; it will be used to check the 

efficiency of the refinement criteria. 
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Chapter 3                                            Test of refinement criteria 

 

In ISIS-CFD, the refinement procedure is actually performed in a way that the refinement 

criterion doesn’t depend on the cell size, which is not the case of the DTSEE criteria. In fact, the 

refinement is done in such a way that the quantity: [(Criterion Value) x (Cell Size)] is 

homogeneous, constant all over the domain and equal to the threshold value. To be able to use the 

refinement procedure, we shall only consider a criterion based on the norm of the Hessian matrix 

over each cell. In this case, a suitable threshold value is to be sought, in order to have a good quality 

of the grid and then of the fields computed. 

As the focus in marine applications is on the capturing of vortices, we analyze the bilge 

vortices behind a ship and check the ability of the criteria to predict such vortices accurately. 

Traditionally, the interest in the wake flows has been focused on the so-called “hooks” in the 

propeller plane which are zones of low axial velocity. The flow in this area affects directly the 

propeller and its efficiency, that is why it is always preferable to have a uniform flow in this zone. 

However, the presence of strong vorticity is responsible for the creation of such hooks. 

For this purpose the KVLCC2 (figure 10) test case will be used. This test case has been 

extensively analyzed in the past and very detailed data are now available, and secondly, this case 

was also used to test the refinement for the gradient criteria [5].  

The hooks discussed above are particularly present as shown by the experimental data. So 

predicting such hooks along with the other flow features with the refinement criteria is of particular 

importance. 

 
Figure 10: KVLCC2 at model scale. 

 

The KVLCC2 was conceived by the Korean Institute of Ships and Ocean Engineering 

(KRISO) to provide data for both explication of flow physics and CFD validation for a modern 

tanker ship with bulbous bow [12]. The characteristics for the double body model are presented: 

 

X= 0 at aft perpendicular 

Length between perpendiculars, LPP=5.517m 

Draft, d=0.3586m 

Wetted surface area, S0=8.0838m² 

Speed, U=1.047m/s 

Reynolds number, Re=4.6 E06  

Drag coefficient, with D the effort on the ship �� =  ��=�-�=   
 

(18) 
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After computing the field variables, we display the results as non-dimensional variables; in 

this particular situation, the propeller position is obtained by the mean of the operation  �����{��{� ���� = 0.0175  
Beside the validation of the refinement criterion by the capturing of the hooks, we will 

consider the drag coefficient computed after refinement, and it will be compared to the 

experimental one. 

 

3.1.  Scalar criterion 

In this part, many parameters of the refinement procedure are to be changed. The number of 

generations, basically speaking, refers to how many refinements a given cell can be subject to. In 

ISIS-CFD, there is the possibility to prevent the refinement in the boundary layer, so, this option 

will be used to check the effect on the performance of the criterion and the generation of cells. 

These computations are performed with 5000 non-linear iterations. The refinement procedure 

is started after 500 iterations, in order to allow the field variables to be established and start to 

converge; then it will be called every 50 iterations. 

 

First criterion: ∥ _�s��j ∥ 

 

 
Threshold 

value 

Boundary layer 

refinement 

Turbulence 

model 

Number of 

generations 
Number of cells 

CASE 1.1 50 Yes k-ω SST 2 931 10³ 

CASE 1.2 200 Yes k-ω SST 2 585 10³ 

CASE 1.3 300 Yes k-ω SST 2 501 10³ 

CASE 1.4 50 No k-ω SST 2 705 10³ 

CASE 1.5 200 Yes EASM 2 610 10³ 

CASE 1.6 300 Yes EASM 3 2 205 10³ 

Table 1: The tests carried out with the refinement criterion based on the norm of the Hessian matrix, to check the 

effect of many parameters. 
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 Propeller Section 

CASE 1.1 

CASE 1.2 

CASE 1.3 

Figure 11: Axial velocity in the propeller plane for different threshold values, the number of generations is set to 

2 and the boundary layer refinement is allowed. 
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 Propeller Section 

CASE 1.4 

Figure 12: Axial velocity in the propeller plane for threshold value=50, the number of generations is set to 2 and 

the boundary layer refinement is not allowed. 

 

In case 1.1 (figure 11 on the top) and case 1.4 (figure 12), the threshold value is too small, 

which means that many cells will be refined. The hook shape is well captured, but the cost is high, 

even without a boundary layer refinement; the distribution of the cells is uniform and dense in the 

whole area around the propeller, which is costly and not necessary to capture the hook shape. 

In case 1.2 and case 1.3, the number of cells generated is within the range of 500E3, the hook 

shape is captured; the distribution of the cells is less dense in the propeller area. 

If we increase the threshold value, less than 500E3 cells are generated and the hook shape 

fades, we do not capture anymore the interesting phenomena in that zone. 

 

To check the efficiency of this criterion, we observe its behavior in zones with uniform flow, 

for example in the middle of the tanker (figure 13). We observe that the flow is well established, 

there is no variation in the way refinement is taking place in that zone. 

The tests carried in the previous studies about the gradient criterion [5] show no variation of 

pressure in the boundary layer, while unexpectedly, we observe here a slight gradient which causes 

refinement in the boundary layer. This may be due to changes in the ISIS-CFD computation 

parameters, since it has been updated many times (figure 14). 
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 Position 0.45 Position 0.70 

CASE 1.1 

Figure 13: Axial velocity in different sections in the middle of the tanker, x=0.45 and x=0.70, for a threshold 

value=50, the number of generations is set to 2 and the boundary layer refinement is allowed. 

 

 

CASE 1.3 

 
Figure 14: Zoom into a boundary layer region, x=0.35, for a threshold value=300, the number of generations is 

set to 2 and the boundary layer refinement is allowed. 
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 CASE 1.2 CASE 1.5 

Propeller 

plane 

Figure 15: Axial velocity in the propeller plane for threshold value=200, the number of generations is set to 2 

and the boundary layer refinement is allowed, k-ω turbulence model (left) and EASM model (right). 

 

 CASE 1.3 CASE 1.6 

N° of Cells  572 E03 2 205 E03 

generation 2 3 

Propeller 

plane 

Figure 16: Axial velocity in the propeller plane for threshold value=300, the boundary layer refinement is 

allowed, EASM model is used, 2 generations (left) and 3 generations (right). 

 

We can observe (figure 15) that the hook shape is better captured using the EASM model than 

with the k-ω model; this confirms the superiority of the EASM model for the capturing of the flow 

features, this result has already been stated in the previous studies [5]. 
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By increasing the number of generations (figure 16), the number of cells is multiplied by 4, 

but still the hook shape is not well captured. Increasing the number of generations results in a costly 

and inefficient mesh distribution over the domain, since the refinement is taking place mostly in the 

boundary layer. To gain accuracy, we better decrease the threshold value, rather than increasing the 

number of generations. 

 

 CASE 1.1 CASE 1.2 CASE 1.4 

Drag Coefficient �� 
4.046 E-03 4.065 E-03 4.085 E-03 

Experimental 4.110 E-03 

Error % 1.56 1.09 0.61 

Table 2: The result obtained for the drag coefficient for a refinement criterion based on the norm of the Hessian 

matrix, compared to the experimental one [12]. 

 

Another way of checking the efficiency of the method is to consider the drag coefficient. The 

output of ISIS-CFD gives the effort D, which is transformed to the drag coefficient �� (equation 

(18)). 

We observe that the drag coefficient is converging; it is close to the experimental result, the 

error is probably coming from the fact that the turbulence model does not capture the entire 

phenomenon that occurs on the flow, adding to this the error coming from the integration performed 

to compute the drag coefficient; besides, the experimental value is subject to measurement error too. 

Second criterion:   �∥ _�s��j ∥  
 

Since [(Criterion Value) x (Cell Size)] = constant is the way refinement is implemented, and 

because the second derivatives in the Taylor expansion are related to the square of the cell size, we 

consider here the square root of the Hessian norm matrix. 

 

 
Threshold 

value 

Number of 

generations 

Boundary layer 

refinement 

Turbulence 

model 

Number of 

cells 

CASE 2.1 25 2 Yes EASM 141 10³ 

CASE 2.2 5 2 Yes EASM 487 10³ 

CASE 2.3 3 2 Yes EASM 531 10³ 

CASE 2.4 1.5 2 Yes EASM 717 10³ 

CASE 2.5 1 2 Yes EASM 973 10³ 

CASE 2.6 3 3 Yes EASM 1 816 10³ 

Table 3: The tests carried with the refinement criterion based on the square root norm of the Hessian matrix, to 

check the effect of many parameters. 
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 Propeller Section 

CASE 2.1 

CASE 2.4 

CASE 2.5 

Figure 17: Axial velocity in the propeller plane for different threshold values, the number of generations is set to 

2 and the boundary layer refinement is allowed. 
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These computations are performed with the Explicit Algebraic Stress Model for turbulence, 

with 5000 non linear iterations. The refinement procedure is started after 500 iterations, in order to 

allow the field variables to be established and start to converge. 

We can observe that in case 2.1, 2. 2 and 2.3, refinement took place in the propeller zone, but 

this was not enough to capture the features in that area. For a smaller threshold, the hook is 

captured. For a threshold value of 1.5, the shape of the hook is clear and the mesh is refined almost 

everywhere; but for a threshold value of 1, the hook is well captured because all the cells are refined 

around the propeller. 

Even though this criterion is highlighting the zones where refinement should take place, it is 

very expensive. The fact is that this criterion does not give the same distribution of the error as the 

norm of the Hessian matrix, which causes lot of refinement in the boundary layer.  

 

CASE 2.5 

 
Figure 18: Axial velocity in the middle of the tanker for threshold values equal to 1, the number of generations is 

set to 2 and the boundary layer refinement is allowed. 

 

This picture shows that refinement takes place even in areas where the flow is changing 

insignificantly, especially in the boundary layer, right in the middle of the ship. Hence, we do not 

start to observe the hook shape until 700E3 cells are generated, while with the first criterion, only 

600E3 cells is enough. 

The increasing of the generation number improves slightly the hook shape, but with a very 

high number of cells; again, as for the previous criterion, this is an inefficient way of gaining 

accuracy (figure 19). 
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 CASE 2.3 CASE 2.6 

Cell 

number 
531 E03 1 816 E03 

Number of 

generation 
2 3 

result 

Figure 19: Axial velocity in the propeller plane for threshold values equal to 3, the number of generations is 2 

(left) and 3 (right), and the boundary layer refinement is allowed. 

 

 

 CASE 2.1 CASE 2.3 CASE 2.4 CASE 2.5 

Drag Coefficient �� 
4.188 E-03 4.167 E-03 4.126 E-03 4.088 E-03 

Experimental 4.110 E-03 

Error % 1.90 1.39 0.39 0.53 

Table 4: The result obtained for the drag coefficient for a refinement criterion based on the square root norm of 

the Hessian matrix, compared to the experimental one. 

 

As the mesh is becoming finer, the drag coefficient is getting smaller, and it oscillates around 

the experimental value, with a small relative error. 
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3.2.  Tensorial criterion 

 

The tensorial approach deals with the anisotropic adaptation, which depends on the specific 

definition of the cell spacing [10]. The idea behind this approach is to make the refinement decision 

in another vectorial space, this transformation consists on obtaining the image of actual cells by the 

mean of a linear transformation; when the image of the space is obtained, the refinement decisions 

will be taken to have a uniform mesh in that space. For instance, the linear transformation used here 

is obtained from the Hessian matrix of a field variable. 

Every linear transformation could be represented by a matrix in a given space, and as the 

matrix chosen for the transformation should be definite positive [10], the Hessian matrix H 

(equation (12)) is transformed using the absolute value of its eigenvalues, the existence of real 

eigenvalues is ensured since H is a symmetric matrix. The results that are presented below are 

obtained using the Hessian of the pressure field. 

 

 
Threshold 

value 

Number of 

generations 

Boundary layer 

refinement 

Turbulence 

model 

Number of 

cells 

CASE 3.1 300 2 Yes EASM 268 10³ 

CASE 3.2 200 2 Yes EASM 319 10³ 

CASE 3.3 100 2 Yes EASM 431 10³ 

CASE 3.4 75 2 Yes EASM 491 10³ 

CASE 3.5 50 2 Yes EASM 596 10³ 

CASE 3.6 300 3 Yes EASM 752 10³ 

Table 5: The tests carried with the refinement criterion based on the tensorial transformation using the Hessian 

matrix, to check the effect of two parameters. 

 

 

The results obtained (figure 20) show that the hook shape is well captured with a good 

precision using less than 500 10³ cells, while it requires at least 600 10³ for the scalar criteria. This 

method is efficient since for an adequate threshold value, there is no refinement in the boundary 

layer even though it is allowed (figure 21), and the variation of pressure in the boundary layer is not 

observed everywhere any more. 
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 Propeller Section 

CASE 3.1 

 

CASE 3.2 

CASE 3.3 

Figure 20: Axial velocity in the propeller plane for different threshold values, the tensorial criterion based on pressure is 

used, the number of generations is set to 2 and the boundary layer refinement is allowed. 

 

 



KKhhaalliidd  AAiitt  SSaaiidd                          MMSScc  CCoommppuuttaattiioonnaall  MMeecchhaanniiccss 

MMaasstteerr  TThheessiiss  

LLaabboorraattooiirree  ddee  MMééccaanniiqquuee  ddeess  fflluuiiddeess                                                                                            EEqquuiippee  MMooddéélliissaattiioonn  NNuumméérriiqquuee  35 

  

 

 

 Propeller Section 

CASE 3.4 

 

CASE 3.5 

Figure 20: (Continued). 
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CASE 3.4 

 
Figure 21: Axial velocity in the middle of the tanker for threshold values equal to 75, the number of generations 

is set to 2 and the boundary layer refinement is allowed. 

 

CASE 3.4 

 
Figure 22: General view of the mesh around the KVLCC2, for a threshold value equal to 75, the number of 

generations is set to 2 and the boundary layer refinement is allowed. 
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CASE 3.4 

Figure 23: View of the mesh in the front of the KVLCC2, for a threshold value equal to 75, the number of 

generations is set to 2 and the boundary layer refinement is allowed. 

 

The general view (figure 22) highlights that the refinement takes place in the zones where 

there is a variation of the flow, as the mesh density is higher in the bow and the stern of the ship. 

However, it was observed that in some of the areas where the refinement takes place, there is an 

arbitrary distribution of the mesh (figure 23), since some cells are refined and others not, some are 

refined in one direction while the surrounding cells are refined in both directions. 
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 CASE 3.1 CASE 3.6 

Cell 

number 
268 E03 752 E03 

Number of 

generation 
2 3 

result 

 

 

Figure 24: Axial velocity (top) and mesh distribution (bottom) in the propeller plane for threshold values equal to 

300, the number of generations is 2 (left) and 3 (right), and the boundary layer refinement is allowed. 
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Concerning the number of generations, the tensorial criterion behaves as the scalar one, the 

increasing of the number of generations leads to an unnecessary increase of the number of cells 

(figure 24) ; while the same accuracy could be retrieved by simply decreasing the threshold value. 

The drag coefficient (table 6) is converging to a constant value as the threshold number is 

increasing. As mentioned before, many sources of the error can be identified, for example the 

turbulence model, the integration scheme and the uncertainty lying in the experimental result. 

 

 CASE 3.1 CASE 3.2 CASE 3.3 CASE 3.4 CASE 3.5 

Drag Coefficient �� 
4.220 E-03 4.217 E-03 4.198 E-03 4.195 E-03 4.194 E-03 

Experimental 4.110 E-03 

Error % 2.68 2.60 2.14 2.07 2.04 

Table 6: The result obtained for the drag coefficient for a refinement criterion based on the tensorial approach 

with the Hessian matrix of pressure, compared to the experimental result. 

 

3.3.  Cell generation behavior 

 

In ISIS-CFD, the procedure of refinement should be called after a certain number of 

iterations, in order to have a relatively established flow before using the flow variables to compute a 

refinement criterion; after that, the refinement procedure may be called repeatedly by setting a step 

based on the number of iterations desired between two refinements. 

One can observe that after many calls of refinement procedure, the number of cells generated 

is not changing significantly; an example is given in figure 25. 

 
Figure 25: The evolution of the number of cells with iterations; in the case 1.1 where refinement is allowed in the 

boundary layer (top), and case 1.4 without refinement in the boundary layer (bottom). 
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After a few refinement steps only, the number of cells generated is converging to a constant 

value, but the refinement is still called after each 50 iterations, which results in an unnecessary and 

costly treatment coming from the use of a complex criterion such as tensorial approach. 

 
Figure 26: A zoom in the curve representing the evolution of the number of cells with iterations; in the case 1.1 where 

refinement is allowed in the boundary layer (top), and case 1.4 without refinement in the boundary layer (bottom). 

 

A zoom in the graphics shows that the cells number is stabilized within a range (figure 26); 

for a computation with boundary layer, this range is of the order of 2000 cells for 900E3 cells, ie 

0.22 %; while without boundary condition, this range is of the order of 200 only, for 700E3 cells 

approximately, ie 0.03 %. 
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Chapitre 4                                                               Conclusion 

 

This study helped to compare two approaches for adaptive grid refinement using the pressure 

as the field of reference. The first approach used classically scalar criteria; two scalar criteria were 

implemented and tested on a real field computation of flow around the KVLCC2 tanker. The first 

criterion is based on the Frobenuis norm of the Hessian matrix of the pressure field, while the 

second one is based on the square root of the same norm. Among the two scalar criteria used, the 

one based on the Frobenius norm of the Hessian matrix performs better, considering the number of 

cell needed to reach certain accuracy and the distribution of the cells in the domain. The square root 

of the norm of the Hessian matrix tends to be very expensive compared to the accuracy achieved. 

The second approach based on second order tensors was used. The Hessian matrix of the 

pressure field is computed, then, used to map the actual mesh to another space where the decision of 

refinement or not is taken, based on the threshold value adopted. The tensorial approach gives even 

better results; the number and distribution of cells are far more interesting. For the entire criteria, 

the drag coefficient computed is within an acceptable range around the experimental coefficient. 

This work helped to develop a numerical implementation of the DTSEE method, and 

highlighted an error developed in the previous studies [1, 3]. It was also found that using 10 degrees 

of freedom to compute the Hessian matrix gives reasonably better results than using only 6 degrees 

of freedom; and also, these two methods converge to the same result with the grid. 

 

In the following, some suggestions for further development are presented. The idea, for now, 

is to focus in the tensorial criteria, and in order to validate this approach, it will be interesting to 

check the efficiency of the method using other field variables than pressure. All the computations 

are done based on the KVLCC2 test case, it is also necessary to try this method using other test 

cases to check the behavior of the adaptive grid refinement. 

It is important to mention that, to be able to present significant results, many other 

computations than those presented were performed, which is a time consuming task. As mentioned 

in the last chapter, there are many possibilities to optimize the adaptive grid refinement and mesh 

generation process; for example, a tool that can be useful is to set a parameter that detect the change 

in cells number after each refinement performed, and if this change is less than 0.1 % for 5 

consecutive refinements, it means that the refinement is no more useful, therefore we can stop the 

refinement and carry on with the non linear iterations to compute the field variables without any 

mesh adaptation. This tool will be very useful, especially if the computation of the refinement 

criteria is performed using tensorial approach or even adjoints methods. 

Also, for sake of homogeneity, the whole study was conducted using the least squares method 

to compute the Hessian matrix; however, the weighted least squares method has been implemented 

and tested for simple analytical fields. The first numerical results show the supremacy of the  
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weighted least squares method as expected, since the error on the Hessian matrix is reduced 

considerably; but it is still necessary to test this method for real flow fields. 

Another approach for the adaptive grid refinement is to be used, rather than using a threshold 

value to have a homogeneous distribution of the cells in the domain, a new approach is based on the 

maximum number of cells desired; for that, the threshold value will be adjusted to reach the number 

of cells desired at the end of the computation. 
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