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Summary 

With new petroleum reservoirs becoming rarer in the past few decades, the necessity to 

extract oil from the existing ones more efficiently has never before been more important. This 

work introduces the reader to the basic concepts of reservoirs and summarises the currently 

existing numerical techniques in reservoir modelling process that were researched during the 

project. The existing discretization techniques for modelling Darcy flow in porous media 

were researched extensively leading up to the most recent advancements and suggested 

techniques in this field. The topic in interest, that is, utilising cell centred finite volume 

discretization of the reservoir, is then taken up and explained in depth. The advantages and 

disadvantages of this scheme are critically evaluated in this thesis.  

This work concentrates on development of a MATLAB application code for the physical 

space formulation of flux-continuous, full tensor finite volume schemes on unstructured cell-

centered triangular grids. The results, typically convergence rates, show a close conformance 

with the expected values. The examples highlighted in this report have been chosen so for 

their specific types and actual application similarity. The results obtained show that the 

scheme works best when the symmetric approximation with the flux continuity parameter 

q=2/3 is used as opposed to other non-symmetric approximations (q≠2/3, for e.g. q=1). 

Comparing the L2 norms of pressure obtained for grids completely aligned with L2 norms for 

pressure obtained for grids non-aligned to the permeability discontinuities in the domain, it is 

seen that the aligned grids give a more accurate representation of the reservoir, hence 

confirming the need for boundary aligned grids. Evaluation of a strongly discontinuous full 

tensor field with the presence of a source or a sink in the domain is shown to be most 

accurate when q=2/3 for the scheme as opposed to other non-symmetric approximations.   

Scope of this project is limited to the triangular pressure support scheme (TPS). Further work 

can be done by developing the MATLAB application code for full pressure support scheme 

(FPS) using the currently developed TPS code. The developed code can also be combined 

with the existing cell-vertex based application code developed in FORTRAN [67] to create a 

simple application code for a hybrid gridding method which is currently showing promise in 

the field of reservoir simulation. 
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Chapter 1 Introduction  

In nature some of the common porous media one encounters are the rocks, biological tissues 

etc. Porous media can be simply defined as a solid media with an interconnected network of 

pores which are filled with fluid (gaseous or liquid). The ability of porous media to contain 

fluid is often exploited in nature, for example, the living creature Sponge, which mainly 

depends on efficient cross flow of water through its body, maximises the efficiency of water 

flow using porous body structure. Also, fossil fuels are found in porous rocks buried deep 

within the earth. It is of economic importance to understand the flow of fluid through the 

pores of a solid material for a variety of reasons such as for developing oil recovery 

strategies, assessment of aquifer remediation strategies and carbon sequestration strategies. 

This research work concentrates on the science of flow in porous media with specific 

application to petroleum reservoirs. This chapter introduces the reader to the physical aspects 

of petroleum reservoirs and also gives a brief introduction to reservoir modelling and its 

objectives. 

1.1 Petroleum Reservoirs 

Formation 

Petroleum reservoirs are hydrocarbon pools, located about 1,000 to 30,000 feet beneath the 

earth’s surface, in porous rock structures. They may extend over hundreds of kilometres and 

vary in its composition of the rock, type of fuel content etc. The formation of these reservoirs 

can be succinctly told to be as a result of deep burial of plankton and algae matter under sand 

and mud followed by pressure cooking and hydrocarbon migration from the source to the 

reservoir rock and finally being trapped by impermeable rock. Figure 1.1 shows the typical 

structure of a reservoir. 

The structure shown clearly depicts the reservoir abutting a salt dome, which has trapped a 

layer of oil and natural gas between itself and nonporous rock. A simplified outlook of the 

same is depicted in figure 1.2. The lower layer is usually the source rock rich in 

hydrocarbons. The oil which has migrated and filled the porous rock over this layer forms the 

oil reservoir. The uppermost part of this layer contains the lesser dense natural gas. This layer 

is topped by an impervious rock which traps the oil in its porous reservoir. 
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Enhanced Oil Recovery 

Once the pressure differential in the reservoir ceases to support the flow of the oil through the 

well bore to the surface, water or steam is injected into the reservoir to simultaneously, 

maintain the pressure differential by increasing the reservoir pressure and also to displace the 

oil and in case of steam, it further reduces the viscosity of oil favourably. 

1.2 Reservoir Modelling 

“Reservoir modelling involves the construction of a computer model of a petroleum 

reservoir, for the purposes of improving estimation of reserves and making decisions 

regarding the development of the field. A reservoir model represents the physical space of the 

reservoir by an array of discrete cells, delineated by a grid which may be regular or 

irregular.” [60] 

Reservoir modelling maybe done during the exploration for providing geological description 

of the reservoir prior to the production start and again during the production to evaluate flow 

properties of the oil within the reservoir. The process of reservoir modelling to determine the 

fuel flow properties within the porous media of the reservoir using numerical methods is 

specifically termed as reservoir simulation. 

Advantages and Disadvantages of Reservoir Simulation 

Reservoir simulation possesses the following apparent advantages; 

• Simple and complex problems that otherwise cannot be solved can be easily solved. 

• Reduces the overall exploration and reservoir management costs. 

• Helps in deciding the optimum positioning of wells. 

• Helps in analysing the effect of changed variables over the production period. 

• Ease of updating the input variables when changes are found during actual production 

process helps in real-time production scheduling [13]. 

Cost of study, time required to do the study and the amount of input data required are the 

main disadvantages of reservoir simulation.  

A typical reservoir simulation study consists of the following major steps [43]: 

• Problem definition – reservoir performance problem and associated operating 

problem are to be defined clearly. 
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• Data review – data needed to construct the model must be reviewed and reorganised 

once they are collected. 

• Data acquisition – continuous collection and updating of required data. 

• Selection of approach – selecting the appropriate simulator for the defined problem. 

• Reservoir description and model design – describing the region of reservoir to be 

modelled based on the study objective and designing the model. 

• Programming support – editing the simulator program as per specific requirements 

and analysis of the obtained results. 

• History matching – validating the obtained results by comparing it with historical 

production, injection data and actual reservoir performance. 

• Prediction – predicting the future performance of the field. 

• Reporting – assembling results and conclusion in a report. 

Reservoir simulation can be tailored to each need, budget time frame etc. It is an important 

tool in efficient oil recovery and reservoir management now.   

1.3 MATLAB 

MATLAB is a high-level computer language for scientific computing and data visualization 

built around an interactive programming environment [37]. MATLAB was created in the late 

1970s by Cleve Moler and is currently developed and sold by The MathWorks which was 

founded in 1984. In academia, MATLAB has gradually taken over most of the scientific 

programming work with its interactive easy to use features. It allows both "programming in 

the small" to rapidly create quick and dirty throw-away programs, and "programming in the 

large" to create large and complex application programs [42]. 

 MATLAB, being an interactive tool, allows users to debug the codes faster and lets the user 

concentrate on the principles being coded rather than the code programming. MATLAB 

allows users to call predefined functions to carry out a number of tasks, for e.g., MATLAB 

allows users to access the software libraries LINPACK and EISPACK that are written in 

FORTRAN for numerical computation. Another distinctive advantage of MATLAB is that 

since all numerical objects are treated as double-precision arrays, there is no need to declare 

data types and carry out type conversions [32]. MATLAB not only provides the user with a 

number of solvers, for e.g. fixed-step, variable-step, continuous, discrete etc, it also provides 

users with a number of graphical output options.  
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Syntax of MATLAB is quite similar to FORTRAN. In fact, MATLAB allows users to run the 

codes written C and FORTRAN within its environment. This feature is often useful in 

developing on already written codes in FORTRAN or C using MATLAB.MATLAB also 

possesses the ability to carry out symbolic computation using the kernel of Maple.  

The user stories in the MATLAB official product site shows an indication of how MATLAB 

is being gradually accepted in and used in various industries as well. It is being widely 

recognised for its easy interface and time saving features. Reservoir Modelling is also being 

carried out using MATLAB now [57].  

 
1.4 Scope of Work  

The objective of this research work is to understand the current discretization techniques for 

modelling Darcy flow in porous media and to develop a code to investigate the boundary 

aligned grid generation. The aim is to investigate and extend the current range of existing 

methods to more general subsurface reservoir features such as faults and fractures using cell-

centered finite volume formulation.  

The programming language used to code the boundary aligned scheme is MATLAB. The 

scheme coded for is triangular pressure support (TPS), physical space formulation of flux 

continuous full-tensor finite volume scheme on unstructured cell-centered triangular grids. A 

number of application examples have been solved. The results obtained have been compared 

with the sub-cell tensor formulation for cell centered finite volume scheme as well as cell 

vertex based TPS schemes found in [16], [19], [67]. 

1.5 Organisation of the Report  

Chapter 2 gives an overview of the existing research work on numerical reservoir simulation, 

tracing it through its history to the most recent developments. The different numerical 

methods employed in Reservoir simulation are also briefly discussed in Chapter 2. Chapter 3 

gives a brief mathematical description of the problem as well the fundamentals of grid 

definition. Chapter 4 focuses on the Physical Space formulation of TPS cell centered scheme 

on unstructured triangular grids. Description of the scheme, simple application code 

algorithm and computational examples with results are presented in this chapter. Chapter 5 

summarises the work done in this research giving concluding remarks and also outlines the 

future scope of work. The application codes created are presented in the Appendix. 
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Chapter 2 Literature Review and Overview of Current 

Discretization Methods 
2.1 Literature review of reservoir modelling methods 

The potential of numerical reservoir simulation was recognised in the late 1940’s and early 

1950’s by a number of companies. After the early research and development, crude, but 

useful simulators were available by 1950’s [43]. Reliability of the reservoir simulation is an 

important aspect in its continued and developing use within the petroleum industry. The focus 

has forever been on developing more accurate and efficient forms of numerical simulation. 

When it comes to large-scale real life reservoir modelling it is necessary to ensure that the 

simulator used is cost effective for its objective as well as produce highly accurate results.  

The partial differential equations that describe fluid flow in a reservoir cannot be solved 

analytically hence we use the reservoir simulator to solve these equations numerically. In 

order to carry out numerical evaluation of these partial differential equations, it is necessary 

to consider the reservoir region as a composition of discrete volume elements. The precision 

with which the reservoir can be described in a model and the accuracy with which the flow of 

reservoirs can be calculated will depend on the number and type of these discrete volume 

elements. [43], [24]. 

The faults and fractures often present in a reservoir are difficult to model using the uniform 

structured grids. Discretization of a region containing internal fractures (constraints) or 

sudden large variations in permeability etc, using uniform structured grids might lead to 

variation of rock properties within each element, which will lead to poorer accuracy. It is 

recognised that the discretization of the field requires some organisation for the numerical 

solution thereon to be efficient, i.e., it must be possible to readily identify the cells 

neighbouring the computation sites, also it must conform to the boundaries of the region such 

that the boundary conditions are accurately represented.[59] 

Research over the years [1], [2], [14], [28], [30], [31] has shown it beneficial to use 

unstructured grids for treating discontinuous and anisotropic permeability fields. Finite 

volume schemes such as control volume distributed (CVD) and multi-point flux 

approximation (MPFA) [16], [15] have gained popularity in recent years. The main focus of 

this study, i.e., symmetric positive definite (SPD) flux continuous, full tensor, finite volume 
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schemes on unstructured cell-centered triangular girds is explained in detail in [19]. The 

paper details the triangular pressure support scheme for general unstructured grids in 2D for 

both physical space and sub-cell transform space formulation. The cell centered TPS scheme 

on 2D quadrilateral grids for full tensor pressure equation is discussed in [17]. The sample 

application runs to obtain convergence rates have been based on the examples from [17], 

[16], [19] and [67].   

Whereas the TPS schemes are only point-wise continuous in pressure and flux, the need for 

pressure and flux continuity over full control volume sub-faces is realised using the Full 

Pressure Support (FPS) scheme. The family of full pressure support scheme was first 

explained in detail in [17]. These schemes have full pressure continuity imposed across 

control-volume faces, in contrast to the earlier families of flux-continuous schemes with 

point-wise continuity in pressure and flux.  

This study focuses on the physical space formulation of the triangular pressure support finite 

volume scheme on cell-centered, unstructured triangular grids. The physical space 

formulation was developed by Edwards et al. [19] as a member of the sub-cell transform 

space family of schemes.  

2.2 Numerical Discretization Methods  

Numerical discretization methods refer to the methods adopted to solve complex continuous 

mathematical problems by creating discrete models of the problem and generating a system 

of algebraic equations which are solved to obtain the solution for the initially considered 

complex problem. There are a number of ways in which the discretization of the continuous 

model can be. Based on the differences in the discretization the different types of numerical 

analysis are:  

2.2.1 Finite Difference Method 

The finite difference method (FDM) was first developed by A. Thom in the 1920s under the 

title “the method of square” to solve nonlinear hydrodynamic equations [58]. FDM involves, 

dividing the problem domain into grids containing nodes and approximating the given 

differential equation by its finite difference equivalence at grid points. The difference 

equations so obtained over the domain is then subjected to the prescribed boundary 

conditions and/or initial conditions and solved to obtain the approximate solution over the 
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domain. Taylor series expansions are used to derive the finite difference equations for 

approximating the derivatives [25]. Whereas FDM is simple and effective as well as easy to 

derive, it is also limited to structured meshes.  

Though FDM has been used widely in conventional reservoir simulation [51], [23], [53] its 

inability to accurately solve for irregular boundaries and internal constraints [39] is a major 

drawback since reservoir simulation usually consists of such complexities. 

2.2.2 Finite Element Method (FEM) 

Finite Element Method involves dividing the problem domain into a number of small, simple 

elements containing nodes at the connecting points between these defined elements. A field 

quantity is then interpolated over each element, i.e. piecewise polynomial interpolation is 

carried out. At the nodes, the adjacent elements share the degree of freedom and the field 

quantity thus becomes interpolated over the entire structure in piecewise fashion. This results 

in a set of simultaneous algebraic equations at the nodes which can be solved to obtain the 

unknown variables. Since the early 1960s, engineers used the method for approximate 

solutions of problems in stress analysis, fluid flow, heat transfer, and other areas.  The most 

widely used weighted residual for the finite element method is the Galerkin Method.  

FEM possesses a number of advantages over the FDM. It can readily handle the complex 

geometries and restraints as well as complex loading. FEM, for these reasons began to be 

widely used in reservoir simulation [41], [9], [26], [68]. Unfortunately, standard FEM lacks 

local flux continuity which is essential in reservoir simulation due to sudden changes in rock 

properties [67], [40]. Though still widely used in reservoir simulation, research focus is 

gradually being shifted to mixed finite element method and finite volume methods due to 

their ability to describe the reservoir model more accurately.  

 

2.2.3 Mixed Finite Element Method (MFEM) 

Finite Element Methods in which two spaces are used to approximate two different variables 

are called the mixed finite element methods [4]. In case of flow in porous media, the two 

variables will be pressure and velocity. In the classical Finite element method only potential 

is taken as the primary variable and velocity is obtained via a post-processing procedure 

using an approximation of Darcy's Law. This direct approach leads to lower-order 

approximations for velocity compared to potential and, additionally, the corresponding 

balance equation is satisfied in an extremely weak sense [12].  
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Mixed finite element methods while having the property to simultaneously evaluate both 

pressure and velocity, also possesses the advantages of the classical finite element methods in 

complex geometry description. Mixed finite element methods have found use in solving 

Darcy flow, i.e., use in reservoir simulation in the recent years [9], [10]. Extensive research 

work, [15], [26], [41], [45], has been carried out to adapt the favourable properties of this 

method to provide better simulation models.  

2.2.4 Finite Volume Method (FVM) 

The finite volume method is a numerical method for solving partial differential equations that 

calculates the values of the conserved variables averaged across a volume. The finite volume 

method is a discretization method which is well suited for the numerical simulation of various 

types (elliptic, parabolic or hyperbolic, for instance) of conservation laws; it has been 

extensively used in several engineering fields, such as fluid mechanics, heat and mass 

transfer or petroleum engineering [54].FVM can easily be used for unstructured meshes and 

hence description of geometry even in complex cases does not pose a difficulty. FVM is a 

locally conservative method. The numerical flux is conserved from one discretization cell to 

its neighbour. The finite volume method is locally conservative because it is based on a 

“balance” approach: a local balance is written on each discretization cell which is often called 

“control volume”; by the divergence formula, an integral formulation of the fluxes over the 

boundary of the control volume is then obtained. The fluxes on the boundary are discretized 

with respect to the discrete unknowns [54].  

The FVM, which returns to the balance equation form of the equations, where one level of 

spatial derivatives is removed, is the method of choice; always for the pressure equation and 

nearly always for the saturation equation. Commercial reservoir simulators are, with the 

exception of streamline simulators, entirely based on the finite volume method [34].  

Compared to the MFEM, FVM is computationally cheaper [67]. FVM has been developed in 

detail over the years considering its definite advantages in reservoir simulation over other 

methods, for e.g., [8], [27], [66], [61], [22], [39], [55] are some of the work which helped 

develop and support the current FVM formulation researched in this report.  
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Chapter 3 Problem Definition and Fundamentals of Grid 

Definition 

3.1 Introduction 

The ability to predict the behaviour of the reservoirs depends on how well the flow 

characteristics of the fluids in the reservoir are defined. Basic equations of flow in porous 

media for single phase flow and a brief overview of concepts like permeability, flow potential 

etc as well as the fundamentals of grid types are detailed in this chapter. This chapter gives a 

brief description of the pressure equation formulation used in the TPS physical space 

formulation. 

3.2 Flow in Porous Media 

As described in Chapter 1, porous media is a solid media with an interconnected network of 

pores which are filled with fluid. The measure of the ability of the porous media to transmit 

fluids is called permeability. The flow of fluid in a porous medium is defined by the Darcy’s 

Law [3]. Darcy’s Law gives a constitutive equation determined experimentally by Henry 

Darcy (1856) for flow of water through beds of sand. It is defined as:  

kQ
µ

P= − ∇                                                          (3.1) 

where,  is the permeability, k µ is the fluid viscosity and P∇ is the pressure gradient vector. 

 is the discharge volume per unit area and has dimensions of velocity (L/T). This is the 

fundamental equation used to solve for pressure in a reservoir. Equation (3.1) holds true for 

homogenous, single-phase fluids having laminar flow.  

Q

The primary objective of simulation is to numerically determine fluid pressure and velocity 

distribution in the reservoir. Therefore the problem is to find the pressure φ  satisfying  

 ( )K d Mφ τ
Ω

−∇ ∇ =∫                                                (3.2) 

where, Ω    : Domain in consideration 

 M    :  Specified flow rate  
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The permeability tensor K  is a symmetric full tensor in general (i.e. ). Since the 

pressure equation considered is elliptic, it follows that .  

12 21k k=

2
12 11 22k k k≤

We can define the same problem in a general curvilinear coordinate system that is defined 

with respect to a uniform dimensionless transform space coordinates ( , )ξ η . Equation (3.2) 

then becomes  

 ( )T d Mφ τ
Ω

− ∇ ∇ =∫ % % %  (3.3) 

where,  is the arbitrary control volume comprised of surfaces that are tangent to 

constant

Ω

( , )ξ η . Here, ,
ξ η

⎛ ⎞∂ ∂
∇ = ⎜ ∂ ∂⎝ ⎠
% ⎟and is the general tensor. T is a function of both 

geometry and Cartesian permeability tensors and its components are given by [16], 

T

 

( )
( )
( )
( )

2 2
11 11 22 12 21

12 12 21 11 22

21 12 21 11 22

2 2
22 11 22 12 21

( ) /

( )

( )

( ) /

T k y k x k k x y J

T k x y k x y k y y k x x

T k y x k y x k y y k x x J

T k y k x k k x y J

η η η η

ξ η η ξ ξ η ξ η

ξ η η ξ ξ η ξ η

ξ ξ ξ ξ

= + − +

= + − +

= + − +

= + − +

/

/

J
 (3.4) 

where, J x y y xξ η ξ= − η is the determinant of the Jacobian. Resolving the x, y components of 

velocity along the unit normals to the curvilinear coordinates ( , )ξ η gives rise to the general 

tensor flux components 

 
( )
( )

11 12

21 22

,

,

F T T d

G T T d

ξ η

ξ η

φ φ η

φ φ ξ

= − +

= − +

∫
∫

 (3.5) 

Thus the equation (3.3) can be written as 

 ( )F G d d Mξ η ξ η
Ω

∂ + ∂ =∫ %%  (3.6) 
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where, 11 12 21 22,F T T G T Tξ η ξ ηφ φ φ= + = +%% φ

T= T≤

. 

WhenT , it is seen that T T ensuring that (3.2) is elliptic in transform space. 12 21
2

12 11 22

The pressure φ in equation (3.2) is solved subject to certain boundary conditions. On domain 

boundary  and solid walls, Neumann boundary conditions specifies zero flux condition 

with ( )

∂Ω

ˆ 0K nφ∇ = , where is the unit outward normal vector. In at least one location within 

the domain, Dirichlet boundary condition specifies pressure, 

n̂

cφ φ= (sub-script c-denotes 

constant value). 

3.3 Fundamentals of Grid Definition 

As mentioned earlier it is important in reservoir simulation to choose the correct 

discretization method to ensure accuracy and credibility of the numerical results. In finite 

volume, the properties of the rock can be defined either at the cell centres or the cell vertices, 

which gives rise to the two types of grids, namely, cell-centered scheme (Block Centered 

Geometry) and cell vertex scheme (Corner Point Geometry) respectively.  

V2 

C1 

V3 V1 

Figure 3.1 A Sample Triangular
Element for FVM description. 

Consider Figure (3.1). In cell-centered scheme the properties of rock will be defined at the 

cell centroid (or the circumcenter) C1 of the triangular element i.e., in the cell centred 

approach the element mesh is used as a control volume and the centre of control volumes are 

considered as computational nodes. On the other hand, in cell vertex scheme, the rock 

properties will be defined about the 3 vertices of the triangular element, namely, V1, V2 and 

V3. i.e., the control volume is formed around each of the vertices or nodes by connecting the 

midpoints of the element faces and the centres of the elements and Shape functions are used 

to describe the variation of a variable within an element. Cell vertex scheme has certain 

obvious advantages over the cell centered scheme such as lesser number of unknowns in 

comparison. Cell-centered scheme is convenient compared to vertex-centered methods, when 
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considering discontinuous media properties combined with a quadrilateral or triangular 

primary mesh. In this case it is easy to align the grid edges, and hence, the control-volume 

boundaries with media discontinuities [29]. 

A number of schemes have been developed on the cell vertex based finite volume 

formulation, for e.g. [66], [67], [17]. Since, in this project, only cell centered scheme is used, 

it will be described in detail further using a sample 3 element mesh (Figure 3.2).  

K1 

K2 

K3 

Figure 3.2 Triangular 3 element sample mesh

Consider the figure 3.2. This sample mesh can be simply described as follows:  

Cluster Vertex: V2, Cluster Elements: 1, 2 & 3,  

Element 1: V1-V2-V3, Element 2: V4-V2-V1, Element 3: V3-V2-V4

Sub-cell 1: 1-A-V2-C, Sub-cell 2: 2-B-V2-A, Sub-cell 3: 3-C-V2-B.  

The different shades of colour represent the control volumes over which the rock properties 

are constant. The grid points are considered to be the cell centres and the values for pressures 

are to be found at these points. Either the centroid or the circumcenter of the triangle can be 

considered as the cell centres. When the cell centres of each element in the cluster are 

connected to the mid-points of the cell edges containing the cluster vertex, we obtain a 

polygon encompassing the cluster vertex which is the dual cell (for e.g. from figure 3.2, dual 

cell is the domain enclosed by 1-A-2-B-3-C-1). The cell edges between neighbouring 

elements in a cluster are called interfaces (for e.g. V1-V2, V3-V2 and V4-V2 from figure 3.2). 

These interfaces act as boundaries between varying properties assigned to each element. The 

edge points (for e.g. A, B and C in figure 3.2) divide the interfaces into two segments called 

sub-interfaces. Each sub-cell is separated from other sub-cells by these sub-interfaces (e.g. A-

V2, B-V2, and C-V2.). The sub-cells when being defined can have the points lying on the cell 

edges at either midpoints or at any other point between the cluster vertex and the cell edge 
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midpoint. This option of having varying regions of sub-cell based on the point where the 

interface pressures or flux continuity are assumed to be leads to a family of schemes with 

Quadrature point q varying from 0 to 1. q = 0 being the cluster vertex and q = 1 being the cell 

edge midpoint.  

When a cluster is considered, local flux continuity and pressure continuity needs to be 

defined. In case of TPS, pressure continuity is defined by assuming pressures at the right and 

left edge continuity points in the sub-cell. This is further explained in Chapter 4. In case of 

the recently developed Full Pressure Support scheme, pressure continuity is defined using 

pressures at the edge midpoints and an additional interface pressure is assigned to the cluster 

vertex [66].  

In short it can be summarised that, in this research work, only unstructured triangular grids 

are used. The finite volume formulation adopted is the cell-centered formulation. Fluid in the 

reservoir is assumed to be single-phase and homogenous and obeying Darcy’s Law.  
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Chapter 4 Triangular Pressure Support Scheme 

4.1 Introduction 

In the previous chapter, the basic problem to be solved in reservoir simulation has been 

defined. It is our aim to evaluate numerically the pressure in the reservoir. We have assumed 

the fluid to be in single-phase within the reservoir. In order to evaluate the pressure we thus 

have to solve the pressure equation that results from the Darcy’s law. In this chapter, a cell-

centered full tensor finite volume method of solving for the pressure is explained in detail and 

a simple outline of the MATLAB code algorithm created is presented here along with the 

computational examples and results.  

4.2 Triangular Pressure Support (TPS) Formulation 

In this scheme, for every cluster, the pressure within each triangular element in the cluster is 

considered to vary linearly over a triangular region within each sub-cell. It is necessary that 

for every sub-interface in the cluster, pressure continuity and flux continuity normal to the 

sub-interface be present. In order to ensure pressure continuity, interface pressures are 

introduced on each sub-interface (Figure 4.1). 

Figure 4.1 Interface pressures are indicated by 
squares and can be at any point between the cluster 
vertex and the cell edge midpoint. In this case, 
interface pressures are shown to be at points A, B 
and C. 

The interface pressures are denoted as , ,A B Cφ φ φ  in the figure 4.1. It is important to note that 

the interface pressures may be discontinuous when passing along a triangle edge from one 

cluster to neighbouring cluster, but they are always continuous in the normal direction by 

construction [19].  

The shaded regions in Figure 4.1 depict the regions in each sub-cell where the pressure 

assumes a local linear variation. These triangles, formed within each sub-cell, over which 
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pressure is linearly varying is called the pressure sub-triangles (e.g. 1-A-C, 2-B-A, 3-C-B). 

Pressure sub-triangles are essentially defined in each sub-cell with the cell grid point joined 

to the left and right triangle edge continuity points.  

Local flux continuity is imposed across each sub-interface at each continuity point (e.g. A, B, 

C from figure 4.1). For a cluster i containing Ni elements, the number of interface pressures 

will be Ni (if cluster vertex does not lie on the boundary, else if the cluster vertex lies on the 

boundary an additional interface pressure will exist.) and the number of cell centre pressures 

will be Ni (irrespective of the position of the cluster vertex in the mesh).  These Ni interface 

pressures within the dual cell can be expressed in terms of the Ni cell centre pressures using 

the corresponding Ni flux continuity conditions imposed on each sub-interface locally.  

Once the interface pressures are assumed, at each sub-interface, flux continuity equations are 

written in terms of the interface pressures and the cell-centre pressures. Taking all the flux 

continuity equations in the cluster and solving for interface pressures, the interface pressures 

can be written in terms of the cell centre pressures in the cluster. The discrete flux F across 

each cell sub-interface maybe then written as a linear combination of the cell centre pressure 

values  

 
i

j j
j N

F t
∈

= − Φ∑  (4.1) 

The coefficients jt are called transmissibilities associated with the flux interface. Since the 

flux must be zero when jΦ  is constant for all ij N∈ , all consistent discretization must satisfy 

the condition . 0
i

i
j N

t
∈

=∑

In the general curvilinear coordinate system, equation (3.3), after application of Gauss 

divergence theorem becomes,  

 ( ) tT n d M
δ

φ
Ω

− ∇ Γ =∫
r%  (4.2) 

where,  is the transform space normal vector and δΩ is the outer boundary of the cell in 

transform space. Thus, the discrete sub-interface flux can be defined as  

tnr

 
2

,
1

ji i j
j

F T ξφ
=

id= − ∑∫ Γ  (4.3) 
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where, φ  is the local piecewise linear approximation over each sub-triangle. 

1 2
,ξ ξ ξ ηφ φ φ φ= = are the local potential derivatives which are approximated by local potential 

differences between the interface pressures and cell-centered pressures. 

Considering a sample sub-triangle (1, A, C) from figure 4.1, 

 1

1

A

C

ξ

η

φ φ φ
φ φ φ

−⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟−⎝⎝ ⎠ ⎠

1C

⎞
⎟− ⎠

 (4.4)
 

 
 (4.5)

 1 1

1

,A A

C

x yx x y y
x yx x y y
ξ ξ

η η

− −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜−⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠

In Equation (4.4) and (4.5) we see that coordinates of the continuity points A and C are 

necessary to be found. The position of the continuity points depends on the Quadrature q 

briefly mentioned earlier. For TPS, q can vary between 1 and 0, with q =1 being the position 

at the edge midpoint and q = 0 being the cluster vertex. In practice, q is never equal to 0, 

therefore, 0<q≤1. Thus we can find the coordinates of the continuity points which are 

dependent on the parameter q as, 

 

1 2

2

1 2

2

( )
(1 ) ( )

2
( )

(1 ) ( )
2

v v
A v

v v
A v

x x
x q x q

y y
y q y q

+
= − +

+
= − +

 (4.6) 

Discrete Darcy velocity is given by  

 hv K hφ= − ∇  (4.7) 

Using equations (4.4) and (4.5), equation (4.7) becomes, 

111 12

121 22

1 A
h

C

y yk k
v

x xk k J
η ξ

η ξ

φ φ
φ φ

− −⎛ ⎞ ⎛ ⎞⎡ ⎤
= − ⎜ ⎟ ⎜ ⎟⎢ ⎥ − −⎣ ⎦ ⎝⎝ ⎠ ⎠

 

 11 12 11 12

21 22 21 22

( ) (1
( ) (h

k y k x k y k x
v

k y k x k y k xJ
ξ η η η ξ ξ

ξ η η η ξ ξ

φ φ
φ φ

− + + −⎡ ⎤
= ⎢ ⎥− + + −⎣ ⎦

)
)  (4.8)

 

The normal flux at the left hand side of sub-cell edge A-V2 is given by,  
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 11 12 11 12 2 11

21 22 21 22 2 1

( ) ( )1 1.
( ) ( ) (2

v v
A h A

v v

k y k x k y k x y y
F v dL

k y k x k y k x x xJ
ξ η η η ξ ξ

ξ η η η ξ ξ

φ φ
φ φ

− + + − −⎡ ⎤
)

⎡ ⎤
= = ⎢ ⎥ ⎢ ⎥− + + − − −⎣ ⎦⎣ ⎦  (4.9)

 

Equation (4.9) can be expanded to obtain the 1
AF  in terms of ,ξ ηφ φ and their coefficients as, 

 
1

11 2 1 12 2 1 21 2 1 2 1 22

11 2 1 12 2 1 21 2 1 22 2 1

1 { ( ( ) ( ) ( ) ( )
2

( ( ) ( ) ( ) ( ))}.

A v v v v v v v

v v v v v v v v

F k y y y k x y y k y x x x x k x
J

k y y y k x y y k y x x k x x x

)vξ η η η

η ξ ξ ξ ξ

φ

φ

= − − + − + − − −

+ − − − − − + −

η

  

    (4.10)

 

In terms of general tensor T, the same flux is expressed as, 

 
11 1 1

11 12(A )
A

F T Tξ ηφ φ= − +
 (4.11)

 

Equating equations (4.10) and (4.11) we obtain values for & . Similarly evaluating the 

normal flux on sub-cell edge V

1
11T 1

12T

2-C, we can obtain the values of & . Therefore, for TPS 

scheme, the physical space approximation of elements of the general tensor T is given by,  

1
21T 2

22T

 

1
11 11 2 1 22 2 1 12 2 1 21 2 1

1
12 11 2 1 22 2 1 12 2 1 21 2 1

1
21 11 2 3 22 2 3 12 2 3 21 2 3

1
22 11 2 3 22

1 ( )
2
1 ( )

2
1 ( )

2
1 (

2

v v v v v v v v

v v v v v v v v

v v v v v v v v

v v

T k y y k x x k x y k y x
J

T k y y k x x k x y k y x
J

T k y y k x x k x y k y x
J

T k y y k x
J

η η η η

ξ ξ ξ ξ

η η η η

ξ

= ∆ + ∆ − ∆ − ∆

= − ∆ − ∆ + ∆ + ∆

= − ∆ + ∆ − ∆ − ∆

= − − ∆ − 2 3 12 2 3 21 2 3)v v v v v vx k x y k y xξ ξ ξ∆ + ∆ + ∆
 (4.12) 

Using these, the flux continuity equations for the sample 3 cell cluster can be written as; 

 

 (4.13)

 

1 1 2 2
11 1 12 1 12 2 22 2

2 2 3 3
11 2 12 2 12 3 22 3

3 3 1 1
11 3 12 3 12 1 22 1

( )

( )

( )

A A C B

B B A C

C C B A

F T T T T

F T T T T

F T T T T

= − Φ + Φ = Φ + Φ

= − Φ + Φ = Φ + Φ

= − Φ + Φ = Φ + Φ

A

B

C

1where, 1A Aφ φΦ = − , and so on. AF  gives the flux leaving sub-cell 1 at continuity point A as 

well as the  flux entering the sub-cell 2 at continuity point A.  

Equation (4.13) contains 3 interface pressures [ ], ,A B Cφ φ φ  which can be written in terms of 

the cell centre pressures[ ]1 2 3, ,φ φ φ . Equation (4.13) basically can be written as, 
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  (4.14) 

1 1 2 2
11 1 12 1 12 2 22 2

2 2 3 3
11 2 12 2 12 3 22 3

3 3 1 1
11 3 12 3 12 1 22 1

( ) (

( ) (

( ) (

A C B A

B A C B

C B A C

T T T T

T T T T

T T T T

− Φ + Φ − Φ + Φ =

− Φ + Φ − Φ + Φ =

− Φ + Φ − Φ + Φ =

) 0

) 0

) 0

Equations (4.14) contain 3 interface pressures which can now be considered as the unknowns 

and solved using the 3 equations to obtain the interface pressures in terms of cell centre 

pressures. This will give the discrete flux at each continuity point in terms of the cell-centre 

pressure values in the cluster. Each of these local fluxes is then globally assembled to form 

the global discrete pressure equation.  

 A LΦ =  (4.15) 

where 1 2[ , ,..... ]nelemφ φ φΦ = , nelem is the total number of elements in the mesh. A is the 

coefficient matrix assembled from flux equations from each cluster. L is the load vector 

which is obtained by multiplying the elemental areas with the flow rates specified at the grid 

points.  

It is to be noted that when the value of parameter q is taken as 2
3

, i.e. when continuity point is 

taken as 2
3

of the half edge measured from cluster vertex, in the general tensor T (Equation 

(4.12), we find that . When q=1
12 21T T= 1 2

3
, the scheme is said to be the symmetric physical 

space scheme. Other values of q, with 0<q≤1, leads to non symmetric general tensor T within 

each sub-cell. This further result in a non-symmetric global system matrix. However, the 

resulting discrete matrix is still conditionally positive definite and the positive definite 

condition for discrete ellipticity of the physical space scheme is now defined by [19], 

  (4.16) 1 1 2 1
12 21 11 22(( ) / 2)T T T T+ ≤ 1

  4.3 Code Algorithm Outline  

The TPS scheme described so far has been coded in MATLAB. For each and every step care 

has been taken to keep the code simple by utilising many of MATLAB’s inbuilt functions 

and defined variables. A simple step by step outline of the coded scheme is shown in the 

following process chart;  
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The code developed is attached in the Appendix and contains extensive commentary for each 

step and is self explanatory. Since MATLAB does not require variable declaration like that in 

FORTRAN the code is comparatively simpler and shorter. Functions are used for certain 

repetitive steps to shorten the main application console code. A number of different examples 

were solved and results and convergence graphs plotted.  

The Mesh files are generated in MATLAB using a Delaunay Triangulation Algorithm. For a 

set P of points in a plane, triangulation DT(P) such that no point in P is inside the circum-

circle of any triangle in DT(P) is called Delaunay Triangulation. Detailed explanation of the 

concept can be found in [36]. The mesh and boundary files are then written as .txt files and 

read into the main code. 

4.4 Computational Examples 

The following examples are solved using the physical space formulation described above and 

for each case, convergence rates are graphed using the log to the base of 2 of L2 norms vs. 

square root of the total number of elements in the mesh. L2 norm is found as; 
1/22

,

2

( ( ) )
( )

i h i i
i

i
i

A
L

A

φ φ
φ

⎛ ⎞−
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑

where

 

,, ,i i h iA φ φ

 

are the area, analytical pressure solution, and 

numerical pressure respectively for element i. 
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Case 1: Constant Pressure Case 

Consider a square 2×2 domain. Let the permeability K and exact pressure φ  be as defined 

below; 

1 0
0 1

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2.5φ = . 

For constant pressure value evaluation it is found that the numerical result is equivalent to the 

exact solution for both sub-cell space transform scheme and physical space scheme. The L2 

norm for pressure is found to be around 1.4e-016. Figure 4.2 depicts the numerical solution 

plot with points ‘o’ and exact solution plot with points ‘×’. It is seen coincident at all points 

in the grid. This is just a test case done mainly for debugging purposes.  

Figure 4.2 Case 1 Solution Plot

Case 2: Linear Pressure Case  

The permeability K and exact pressure φ is taken as; 

1 0
0 1

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1x yφ = + +  

For linear pressure values, the numerical result obtained is equal to the exact solution with L2 

norms of around 1.2e-16. This is found for all cases of the sub-cell transform and physical 

space scheme. This is as expected, since, in the TPS numerical formulation, pressure is 

defined linearly in the pressure sub-triangle.    
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Figure 4.3 shows the numerical (‘o’) and exact (‘×’) solution to be coinciding at all points in 

a simple 48 element gird over a square [0, 1] domain.  

Figure 4.3 Case 2 Solution Plot

Case 3: Discontinuous Bilinear Case 

In this case, instead of having uniform permeability tensor throughout the unit square 

domain, we take different permeability tensors for x≤0.5 and x>0.5 on the Cartesian grid. 

This case allows us to observe the effect of internal boundary aligned cell centered triangular 

grid on the numerical solution. The permeabilities and the exact pressure values are taken as; 

Figure 4.4 Case 3 Solution Plot
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1 0.5
0.5 1

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 10 20xyφ = + , for 0.5x ≤ , 

10 2
2 100

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 10.75 1.5 9 2x y xyφ = − + + , for . 0.5x >

Specified flow rate or forcing term Q can be found usingQ ( )K φ= −∇ ∇ . In this case, we 

obtain Q = -20 for x ≤ 0.5 and Q = -8 for x > 0.5. The maximum norm and the L2 norms of 

the pressure are found. Figure 4.4 shows the numerical (‘o’) and exact (‘×’) solution of 

pressure as it varies over the domain for a 346 element mesh with Quadrature point at 2/3. 

The sudden change in pressure at x=0.5 is observable. The Figure 4.5 gives the convergence 

for different Quadrature points. It is clear from the obtained convergence graphs that the TPS 

scheme on an unstructured boundary aligned triangular grid converges at a higher rate for 

finer meshes. The table 4.1 below summarises the convergence rates for different Quadrature 

values. This example is taken from [67] where the convergence rate for cell vertex finite 

volume formulation of TPS scheme has been found on a uniform quadrilateral mesh, the 

values of which are also included in the table to compare the two schemes. The comparison 

shows us the advantage of using the cell centered scheme on an unstructured mesh for 

internal boundary (fractures etc) cases.  

 
Figure 4.5 Convergence graph for Case 3
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Table 4.1 Convergence rates for Case 3 

It is clear that for cases with internal discontinuity, cell-centered finite volume formulation of 

TPS scheme on an unstructured mesh gives a better convergence rate, the highest being that 

of q=2/3 with 2.16 for fine meshes. 

Case 4: Quadratic Pressure Case 

The permeability K and exact pressure φ  over the domain is taken as; 

1 0
0 1

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,   
2 2x yφ = +

This is a simple quadratic pressure case taken over a square domain [0, 1]. The forcing vector 

is found to be -4. Figure 4.6 shows the numerical (‘o’) and exact (‘×’) solution plot on a 48 

element mesh with quadrature point at 2/3. Table 4.2 gives the L2 norm and maximum norm 

values for pressure for the different Quadrature point cases and figure 4.7 shows the 

Flux Continuity Point 

q 

Coarse Unstructured 

mesh (<500 elements) 

Cell-Centered 

Fine Unstructured mesh 

(> 500 elements) 

Cell-Centered  

Fine Structured Mesh 

(>500 elements) 

Cell-Vertex   [67] 

0.1 1.8 1.94 1.010 

2/3 1.5 2.16 0.999 

1 1.4 1.74 0.984 

Figure 4.6 Case 4 Solution Plot
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convergence of the scheme for this quadratic case for different quadrature points plotted as 

log2 of L2 norm vs. log2 of square root of the total number of elements in the mesh. 

The convergence rate for all the 3 cases of quadrature point plotted for is similar and for all 

three cases, convergence rate is seen to tend to 2 with increase in number of elements.  

Figure 4.7 Convergence plot for Case 4

Table 4.2 L2 Norm and Maximum Norm for Pressure for Case 4 

L2 Norm Maximum Norm Number of Elements in 

Mesh q=0.1 q=2/3 q=1 q=0.1 q=2/3 q=1 

768 

1.34E-04 1.13E-04 9.36E-05 5.20E-04 4.68E-04 

4.51E-

04 

1092 

1.02E-04 9.65E-05 9.11E-05 3.53E-04 3.34E-04 

3.05E-

04 

2148 

5.69E-05 5.48E-05 5.26E-05 1.87E-04 1.62E-04 

1.55E-

04 

From the table 4.2 it can be concluded that for particular case of quadratic pressure function, 

flux continuity point at q=1 fares better than that at q= 2/3. As the number of elements 

increases (>1000), the convergence rates for q = 0.1, 2/3 and 1 is found to be 1.73, 1.67, 1.62 

respectively from the convergence graph plotted (Figure 4.7).  
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Case 5: Discontinuous Quadratic Pressure Case   

This case is taken from [16] where it has been solved using cell-centered quadratic mesh. 

This has a piece-wise quadratically varying pressure field with a discontinuity aligned at x = 

0.5. The domain considered is unit square domain [0, 1]. The permeability and exact pressure 

values are taken as; 

50 0
0 1

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  for 2 2
l lc x d yφ = + 0.5x < , 

1 0
0 10

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  for , where, 2 2
r r r ra b x c x d yφ = + + + 0.5x ≥

 

 

 

 

 

Figure 4.8 shows the numerical (‘o’) and exact (‘×’) solution of pressure as it varies over the 

domain for a 346 element mesh with Quadrature point at 2/3 (Physical Space Scheme).  
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Figure 4.8 Case 5 Solution Plot
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Figure 4.9 Convergence graph for Case 5

From plotting the convergence graph (Figure 4.9), it is found that the trend for convergence 

emerges clearly for finer mesh sizes. Convergence rates for q = 0.1, 2/3 and 1 are found to be 

2.2, 1.5 and 3 respectively. Here we find that the q=1 and q=0.1 show better convergence 

compared to q=2/3.  

Case 6: Large Anisotropy Case 

This example is taken from [16]. Like in [16], domain chosen here is unit square [0, 1]. Here, 

TPS scheme is evaluated on cell centered unstructured triangular mesh for a large anisotropy 

ratio problem. The permeability is taken as; 

2 2

2 2

(1 )
(1 )
y x xy

K
xy x y

ε ε
ε ε

⎡ ⎤+ − −
= ⎢ ⎥− − +⎣ ⎦

where, 0 1ε< ≤ . 1ε = makes the problem isotropic. Degree of 

anisotropy of the problem increases with decreasingε . 

sin( )sin( )x yφ π π= is the analytical solution of pressure and the forcing vector Q is found to 

be, 

2 2 2

2

2 2 2

{ 2 cos( ) sin( ) ( ) sin( ) sin( )) ( 1 ) sin( ) cos( )
2( 1 ) cos( ) cos( ) ( 1 ) cos( ) sin( ) 2 sin( ) cos( )
( )sin( ) sin( ) }.

Q x x y y x x y y x y
xy x y x x y y x y

x y x y

ε π π π ε π π π ε π π π

ε π π π ε π π π ε π π π

ε π π π

= − + + − − +

− − + − − + −

+ +
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 The computational solution has been found for ε=1, ε=0.1 and ε=0.01. For the physical space 

scheme, the numerical and exact solutions are shown in Figures 4.10, 4.11 and 4.12.  

Figure 4.10 Solution plot for Case 6: �=0.1, 
q=2/3 

Figure 4.11 Solution plot for Case 6: � =0.01, 
q=2/3 

Figure 4.12 Solution plot for Case 6: �=1, 
q=2/3 

 

The solution plots contain both the numerical ‘o’ and exact ‘x’ solutions. Overlapping of 

these two solutions are seen in all the cases.  

Figure 4.13 shows the convergence graph plotted for ε=0.1. In [16] for very fine mesh, 

convergence rate for this case has been found to be around 2.03. From the results obtained 

here, the convergence rates for q=0.1,0.5,2/3 and 0.95 are found to be 2.09, 2.18, 1.65 and 

1.75 respectively. 
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Figure 4.13 Convergence graph for Case 6: �=0.1

Figure 4.14 Convergence graph for Case 6: �=0.01

 

Figure 4.14 shows the convergence graph plotted for ε=0.01, i.e. with a higher degree of 

anisotropy in the problem.  Whereas from figure 4.13, it is evident that the numerical solution 

converges for lower degree of anisotropy, figure 4.14 shows that the numerical solution tends 

to be non-convergent for the physical space scheme. The computational solution for the same 

was also found to be non-convergent in case of physical space scheme in [16]. 
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For the above examples, the domain geometries and meshes used are generated in 

MATLAB’s interactive PDE TOOLBOX. Unit square domains were created and meshed 

using the inbuilt meshing function. The meshing is carried out using a Delaunay triangulation 

algorithm. The mesh size is determined from the shape of the geometry which in this case is a 

unit square for all the examples solved above. 

Case 7: Circular Region with Well  

This example is taken from [19]. In this case, we test a circular domain with a well included. 

The challenge in this case is the large difference in size of the domain and the size of the well 

which in reality maybe a difference of kilometres in case of reservoir domain to a 0.1 meter 

well.                                                                                                                                                                      

Figure 4.16 Well region in Case 7 

In this case the well is considered as a geometrical object with Dirichlet Boundary conditions. 

A homogenous circular domain of radius R = 0.5 with a circular well with radius r = 0.001 

placed at the centre of the domain is taken with permeability K; 

Figure 4.15 Unstructured Triangular Grid for 
Case 7 

1 0
0 1

K
⎡ ⎤

= ⎢
⎣ ⎦

⎥  and pressure equation has an analytical solution ; 

( ) log
log

w B
B

w

rr r R
R

φ φφ φ− ⎛ ⎞= +⎜ ⎟
⎝ ⎠

, where, 2 2( ), 1.0,B wr x y φ φ= + = = 2.0  and is the well radius. wr
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The Figure 4.15 shows the unstructured triangular grid used consisting of 1171 elements. The 

geometry and mesh both were generated using the PDE TOOLBOX in MATLAB. Figure 

4.16 shows the zoomed view of the well region around which the meshing is denser in order 

to obtain better numerical results.  

Figure 4.17 shows the exact solution plot for this case. It is evident that the pressure in the 

domain increases from 1 at the boundaries to 2 around the well geometry. The solution plots 

are for 1171 element grid shown in figure 4.15. Test runs were also done with lower number 

of element meshes which shows the numerical and exact solutions to be converging for finer 

meshes as expected.  

Figure 4.17 Exact Solution Plot for Case 7

 

Figure 4.18 Numerical Solution Plot for Case 7: q=2/3
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Figure 4.18 shows the numerical solution plot for q=2/3 for which the L2 norm for pressure is 

found to be 1.42×10-4 and maximum norm of pressure 7.75×10-4. Figure 4.19 shows the 

numerical solution plot for q=1 for which the L2 norm for pressure is found to be 2.12×10-4 

and maximum norm of pressure 1.4×10-3. The pressure contour plot for 1171 elements and 

q=1 for sub-cell transform scheme is shown in figure 4.20. 

Figure 4.19 Numerical Solution Plot for Case 7: q=1

 

Figure 4.20 Contour Plot of Pressure for Case 7 

 

33 
 



Case 8: Polar Case with Cartesian Grid 

This example is taken from [67], where it has been solved for FPS scheme on a uniform 

quadrilateral mesh. A unit square domain is considered with the exact solution taking the 

form of ( , ) ( sin( ) cos( ))i ir r a bαφ θ αθ= + αθ . The domain is divided into 4 regions with 

varying permeability tensors (Figure 4.20). The values of the permeability tensors are taken 

as; 

1 2 3 4

5 0 1 0 5 0 1 0
, , ,

0 5 0 1 0 5 0 1
K K K K

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  

Figure 4.22 Left: Unstructured triangular mesh aligned perfectly 
with the permeability discontinuity in domain, Right: Mesh 
unaligned with the permeability discontinuities. 

1K

4K  3K  

2K  
 

Figure 4.21 Permeability in the
Domain for Case 8 

The domain discontinuity shown in figure 4.21 has an internal angle 
2
πθ = . Figure 4.21 

shows a 470 element mesh completely aligned with the permeability discontinuities in the 

domain. The constants in the analytical solution are taken as;

 1 1

2 2

3 3

4 4

=0.53544095
a =  0.44721360  & b = 1.0
a =-0.74535599  & b = 2.33333333
a = -0.94411759 & b = 0.5555556
a = -2.40170264 & b = -0.481481481

α

       

 

Figure 4.23 shows the exact solution plotted on a 470 element grid with unstructured 

triangular elements aligned with the permeability field. From the exact solution plot, the 

permeability discontinuities in the domain are apparent. 
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The computational solution of this problem is shown to produce expected convergence 

behaviour. In this case, an effort is made to underline the importance of the alignment of the 

elements with respect to the permeability discontinuities by comparing the results of L2 norm 

and maximum norm for pressure obtained using an aligned unstructured grid and a non-

aligned unstructured grid both using cell-centered TPS formulation. Table 4.3 summarises the 

comparison.  

Table 4.3 Comparison of L2 norms for pressure for aligned and non-aligned unstructured grids 

L2 Norm 

Completely Aligned 

Grid 
Non-Aligned Grid Elements 

q=0.1 q=2/3 q=1 q=0.1 q=2/3 q=1 

82 0.0125 0.0099 0.0129 0.0175 0.0117 0.0128 

346 0.0019 0.0043 0.0059 0.0115 0.0071 0.0077 

516 0.0015 0.0037 0.0051 0.0071 0.0056 0.0064 

Table 4.4 Comparison of Maximum norms for pressure for aligned and non-aligned unstructured grids 

Maximum Norm 

Completely Aligned Grid Non-Aligned Grid Elements 

q=0.1 q=2/3 q=1 q=0.1 q=2/3 q=1 

82 0.0492 0.0391 0.0509 0.0726 0.0494 0.0572 

346 0.0284 0.0346 0.0491 0.0648 0.0486 0.0474 

516 0.0258 0.0317 0.0449 0.0470 0.0651 0.0692 

Figure 4.23 Exact Solution Plot for Case 8
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From the results table it is evident that the L2 norms are smaller for the grid aligned to the 

domain permeability discontinuities. Maximum norms are also smaller for the aligned grids 

in comparison.  This shows the need to use boundary (be it external or internal) aligned grids 

Figure 4.24 gives the pressure contour plot for the base sub-cell sp

while solving reservoir problems to ensure better numerical results.  

ace transform numerical 

Figure 4.24 Contour Plot of Pressure for Case 8

Figure 4.25 Convergence Graph for Case 8 

solution on a 470 element perfectly aligned mesh. The effect of variation in pressure due to 

the presence of permeability discontinuities in the domain is noticeable even on this coarse 
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mesh. Figure 4.25 shows the convergence of aligned coarse mesh (< 1000 elements). 

Convergence rates for q=0.1, 2/3 and 1 are found to be 2.3, 1.2 and 1.1 respectively.  

Case 9: Cartesian mesh to solve highly anisotropic φ = e(xy)

In this case, the permeability tensor is taken as 
750.25 432.58

0.001
432.58 250.75

K
⎡ ⎤

= ∗⎢ ⎥
⎣ ⎦

xyeφ = . The forcing vector is found to be 

and the exact 

pressure in the unit square domain is given by 

 

The exact solution, ‘x’, and the numerical solution, ‘o’, plots for the case is given in figures 

Case 10

2 (x*y) (x*y) y) 2 (x*y)Q=(3001/4*y *e +21629/25*e +21629/25*x +1003/4*x *e ) .  (x**y*e

Figure 4.26 Solution Plot for Case 9: q=2/3 Figure 4.27 Solution Plot f ase 9: q=0.1or C

4.26 and 4.27 for a 730 element mesh. For the flux continuity at q=2/3, the L2 norm is found 

to be 2.8×10-3 and the maximum pressure norm 0.012. When the flux continuity parameter q 

is 0.1, L2 norm is found to be 0.0112 and the maximum pressure norm 0.0475. Even for a 

coarse mesh such as this, a good conformance to the exact solution is obtained for such a 

highly anisotropic case. 

: Strongly Discontinuous Full Tensor Field (Zigzag Field) 

T  from [67] where it has been solved for structured 

ular case of q=1 for TPS 

his computational example is sourced

quadrilateral fine meshes using FPS schemes as well for a partic

scheme. Domain considered is a unit square with a source-sink pressure combination 

specified at the diagonally opposite corners of the domain. At the bottom left corner of the 

domain, pressure is taken at 0.0 whereas at the top right corner, pressure is taken at 200.0. 
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External boundary values of pressure are specified as 100.0 throughout. The permeability 

tensor is taken to be discontinuous in the domain (Figure 4.28).  

K3

K2

K1 1/3 

1/3 

1/3 

 

The permeabilities are taken as; 

 K

K

⎡ ⎤

⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

The computation was carried out with 2846 elements with flux continuity point q=2/3 and 

q=1 for the physical space formulation of TPS scheme. Figure 4.29 shows the numerical 

ain. As expected from literature [67], for TPS scheme 

Figure 4.28 Permeability 
Discontinuities in the Domain 

1K = ⎢ ⎥

2

3

2464.360020 + 1148.683643
+1148.683643 536.6399794

2464.360020 - 1148.683643
-1148.683643 536.6399794

2464.360020 + 1148.683643
+1148.683643 536.6399794

pressure field in the domain and figure 4.30 shows the contour plot of the numerical pressure 

solution in the domain.   

The numerical pressure solution plots clearly show the zigzag nature of the permeability field 

affecting the pressure in the dom

employed for this example, considerable oscillations are observed.  
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Figure 4.29 Numerical Solution Plot for Case 10: Left: q=2/3, Right: q=1 

Figure 4.30 Pressure Contour Plot for Case 10: Left: q=2/3, Right: q=1 

  

When the flux continuity point is specified by q=2/3, it is seen that the numerical solution 

obeys the maximum principle but the fails to satisfy the discrete maximum principle. When 

q=1, spurious oscillations increase considerably and even the maximum principle is shown 

not to be satisfied in this case. 
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Case 11: Square region with concentric permeability discontinuity and central source. 

In this case, the domain is considered to have varying permeability as shown in figure 4.31. 

Domain considered is a unit square domain with centre at (0, 0). A concentric square of 

0.5×0.5 is considered to be the region having permeability K2. 

Permeability K is taken in the different regions as; 

  
1

2

 2464.360020 -1148.683643
-1148.683643 536.6399794

 2464.360020 1148.683643
1148.683643 536.6399794

K

K

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

K1 K2 

  

Figure 4.31 Discontinuous Permeability 
Field for Case 11 

Figure 4.32 Domain Geometry and Aligned 
Mesh for Case 11 

At centre (0, 0) of the domain pressure is specified as 1.0 and at the boundary walls pressure 

is specified as 0.0 uniformly. A 2900 element unstructured triangular mesh (Figure 4.32) is 

used to analyse the pressure equation in the domain. The case was run for physical space TPS 

scheme with q=2/3 and q=1. Figure 4.32 shows the numerical solution of pressure plotted in 

the domain. Figure 4.33 shows the numerical pressure contour in the domain. The variation in 

permeability leads to the zigzag nature of the pressure field in the domain.  
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Figure 4.33 Numerical Solution Plot for Case 11: Left: q=2/3, Right: q=1 

From the contour plots it’s evident that the unsymmetrical physical space scheme with q=1, 

produces a lot of spurious oscillation rendering the approximation unreliable in this case. It 

can be concluded that for cases such as this, which has the presence of the source as well as 

domain permeability discontinuity, the physical space scheme with symmetrical 

approximation provides the better results when compared to the unsymmetrical 

approximations for same mesh refinement. 

Figure 4.34 Contour Plot for Pressure in the domain for Case 11: Left: q=2/3, Right: q=1 
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Chapter 5 Conclusions and Future Scope 

5.1 Research Conclusions 

In the previous chapter, the elliptic (Darcy velocity) pressure equation for single phase fluid 

flow has been successfully demonstrated using cell-centered finite volume formulation with 

triangular pressure support. This work mainly concentrated on the physical space 

formulation. The code developed was used to obtain the convergence plots for test cases for 

both symmetric approximation with q=2/3, and a number of non-symmetric approximation 

(q≠2/3, e.g. q=1) thus providing a comparison of performance of the physical space scheme. 

From the computational examples presented before, the following conclusions can be drawn; 

1. TPS with physical space formulation gives exact results for linearly varying and constant 

pressure cases for all 0<q≤1, where q is the parameter fixing the flux continuity between the 

cluster vertex and cell edge mid-point.  

2. For domains with discontinuous permeability, cell-centered TPS physical space 

formulation allows exact internal boundary alignment representation whereas cell-vertex TPS 

physical space formulation requires additional internal boundary alignment to ensure that the 

flow and rock properties within the control volume remain constant. 

3. Quadratic pressure cases show promising convergence rates even for the coarse grids (< 

2500 elements) used. Convergence rates are of order 1.7 for purely quadratic with unit 

permeability tensor whereas the convergence rates are of order 2 for discontinuous 

permeability case. From literature [19], the expected values of the convergence rate is of 

order 2 for fine meshes having more than 2500 elements in the domain. Hence, the code 

developed here is successfully conforming to the features of the TPS scheme. 

4. For large anisotropic ratio cases, with increase in the degree of anisotropy, TPS physical 

space scheme has been previously found to be non-converging [19]. Figure 4.14 which shows 

the convergence plot for a high degree of anisotropy case indicates this trend. For physical 

space formulation with q=0.1, 0.5 and 0.95, no convergence has been obtained. But for q=2/3 

which is the symmetric physical space scheme, which is in fact a particular member of the 

family of sub-cell transform space methods [19], the method is seen to be converging. 
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5. For challenging cases like case 7 which has the presence of a well region within the 

domain, the numerical solution obtained shows good conformance compared to the analytical 

solution in the region.  

6. For cases having discontinuous permeabilities in the domain as well as the presence of 

source and sink, the pressure contours (Figures 4.30, 4.34) obtained, depicts the expected 

zigzag character of the pressure field. The pressure values in the domain lie between the 

maximum and minimum specified pressures in the domain when symmetric approximation is 

used (i.e. q=2/3) and hence can be said to be conforming to the maximum principle. 

However, the discrete maximum principle is violated as is indicated by the presence of 

spurious oscillations (seen in contours and iso-surfaces). For the non-symmetric 

approximation with q=1, the maximum principle is not being obeyed.  

The code developed thus can be said to be working as expected from the principles of the 

scheme employed.  

5.2 Future Scope of Work 

Initial coding has already been carried out towards the end of this research work, using a 

similar algorithm in MATLAB, for the recently developed Full Pressure Support scheme 

[27], [66], [67], and [17], which are less likely to give spurious oscillations. The code 

requires further debugging and once done so, can be used to demonstrate the properties of 

this scheme for the unstructured cell-centered triangular finite volume formulation and can be 

compared with the current work.   

Moreover, the existing cell vertex based TPS code in FORTRAN [67] can be combined with 

the currently developed cell centered TPS code in MATLAB to create a new hybrid 

numerical simulator which will draw upon the benefits of both the schemes. This will help 

develop a scheme which can be predicted to increase the efficiency in solving for the flow in 

porous media for a region containing discontinuities. 
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APPENDIX 
A. Triangular pressure 

support application code 
a. Main File 

%   Entry point of console 
application. 
%   Code designed for study of 
Cell-centered Finite Volume Method 
numerical 
%   evaluation of Darcy's equation 
for flow in porous media. 
%   For unstructured triangular 
Mesh. 
%   Triangular Pressure Support 
Scheme. 
%   Physical Space Scheme. 
%   written by : Mary Abraham 
Eranackal 
%   Erasmus Mundus Masters in 
Computational Mechanics 2008-2010 
%   Civil & Computational 
Engineering Centre, University of 
Wales Swansea 
clear all 
clc 
display ('* Unstructured Cell 
Centered TPS FV Scheme *') 
display ('*      By Mary Abraham 
Eranackal         *') 
%*********************************
**********************************
****** 
%Input value of q ( q is the 
distance between the cluster 
vertex and cell 
%edge midpoint,with q=1 at the 
midpoint and q=0 at the cluster 
vertex) 
q = input('Please input the value 
of 0<q=<1 : '); % Flux Continuity 
at q 
%Ensuring value of q is within 
allowed limits 
while((q<=0)||(q>1)) 
    fprintf('Error. q must be 
between 0 & 1\n') 
    q = input('Re-Enter q: '); 
end 
%*********************************
**********************************
****** 
%Initialize variables 
casetype = 0; % Type of problem 
selected to be solved 
%*********************************
**********************************
****** 

%Display the casetypes (Types of 
Problems) 
display('1. Debug 1 phy = 2.5') 
display('2. Cartesian mesh to 
solve linear problem:Phi=x+y+1 
(diagonal tensor)') 
display('3. Discontinuous Bilinear 
Test Case') 
display('4. Quadratic case: 
x^2+y^2 with unit permeability') 
display('5. Discontinuous 
Quadratic Case') 
display('6. Test Case for Large 
Anisotropy Ratios. (taken from 
example 5 in PDFCS') 
display('7. Circular Region with 
Well') 
display('8. theta= pi/2,  alp= 
0.53544095,k1=k3=5,k2=k4=1') 
display('9. Cartesian mesh to 
solve highly anisotropic phi= 
exp(xy)') 
display('10. Zigzag Test case, 
with permeability of 3 domains and 
point source and sink') 
display('11. Square permeability 
discontinuity, highly anisotropic, 
source') 
%*********************************
**********************************
****** 
%Selecting the required casetype 
casetype = input('Please input the 
casetype number selecting from 
above display : '); 
%Ensuring casetype selected is 
within available types 
while ((casetype<1) || 
(casetype>40)) 
    fprintf('Error.casetype value 
must be between 1 and 40\n'); 
    casetype = input('Please enter 
again the casetype number 
selecting from above display : '); 
end 
%*********************************
**********************************
****** 
tic % Starting stopwatch to record 
simulation time 
%*********************************
**********************************
****** 
%Read the Grid Data from file 
%Opening the geometry file 
fid = fopen('D:\Master Project\My 
Matlab\Cellcenter\Trial\bin2.txt',
'r'); 
%Reads and displays the first text 
line of the file 

i 
 

str1 = native2unicode(fgetl(fid)); 



%Reads and displays/stores the 
values in the file 
A = fscanf(fid, '%f %f %f %f ',[1 
4]); 
npoint = A(1) % Number of Nodes 
nelem = A(2) % Number of Elements 
str2 = native2unicode(fgetl(fid)); 
% Reads the second text line in 
the file 
B = fscanf(fid,'%f %f %f',[3 
npoint]); % Reads the coordinates 
of nodes table from file 
B = B'; % B contains the nodes and 
their coordinates 
coordinate = []; % coordinates of 
each node point 
coordinate(:,1) = B(:,2); 
coordinate(:,2) = B(:,3); 
str3 = native2unicode(fgetl(fid)); 
str4 = native2unicode(fgetl(fid)); 
C = fscanf(fid,'%f %f %f %f %f ',[ 
5 , nelem]); % Reading the 
connectivity table 
C = C'; 
triangle = []; % connectivity of 
each triangle (3 vertices) 
triangle(:,1) = C(:,3); 
triangle(:,2) = C(:,4); 
triangle(:,3) = C(:,5); 
status = fclose(fid); % closing 
the geometry file 
%Opening the boundary file 
fid = fopen('D:\Master Project\My 
Matlab\Cellcenter\Trial\bb2.txt','
r'); 
%Reads and displays the first text 
line of the file 
strb1 = 
native2unicode(fgetl(fid)); 
nface = fscanf(fid,'%f') % number 
of boundary segments i.e. each 
element face which lies on the 
boundary of the geometry. 
strb2 = 
native2unicode(fgetl(fid)); 
D = fscanf(fid,'%f %f %f %f ',[ 4 
, nface]);%Reading the boundary 
elements and nodes 
D = D'; 
status = fclose(fid);%Closing the 
boundary file 
bryelems = [];%List of boundary 
elements (elements having atleast 
2 nodes on the boundary) 
bryelems = D (:,3); 
bryn1 = D(:,1); % Boundary node1 
bryn2 = D(:,2); % Boundary node2 
bryn = [bryn1;bryn2]; %Boundary 
nodes 
bryn = unique(bryn); %Nodes lying 
on the boundary 

intelems = [];%List of internal 
elements 
E = C(:,1); %Lists the element 
numbers 
intelems=setdiff(E,bryelems); % 
Gives the elements not listed in 
boundary element list,effectively 
giving us the internal elements. 
cfbc = []; 
for sa = 1: nelem 
    sano = triangle(sa,:); 
    ashi = intersect(sano,bryn); 
    mizu = numel(ashi); 
    if (mizu > 0) 
        cfbc = [cfbc;sa];%Stores 
all the elements having boundary 
nodes 
    end 
end 
%*********************************
**********************************
****** 
%Calculation of Area Parameters 
%Area calculation - Start 
area(:,3) = 0.0; % Initialize area 
of each of the 3 subcells per 
triangle to 0.0 
for i=1:nelem 
    lmd(i,2)=0;% List of midpoints 
of the elements or in this case 
grid points. 
    extr = triangle(i,:); % 
extracting the connecting nodes of 
the element,i.e; vertex nodes 
    % x & y coordinates of the 
vertices of the element 
    xv1 = coordinate(extr(1),1); 
    xv2 = coordinate(extr(2),1); 
    xv3 = coordinate(extr(3),1); 
    yv1 = coordinate(extr(1),2); 
    yv2 = coordinate(extr(2),2); 
    yv3 = coordinate(extr(3),2); 
    % x & y coordinate of the mid-
point of the element 
    x1 = (xv1+xv2+xv3)/3.0; 
    y1 = (yv1+yv2+yv3)/3.0; 
    % x & y coordinates of the 
triangle edge mid-points 
    xe = (0.50)*( xv1 + xv2); 
    xn = (0.50)*( xv2 + xv3); 
    xs = (0.50)*( xv3 + xv1); 
    ye = (0.50)*( yv1 + yv2); 
    yn = (0.50)*( yv2 + yv3); 
    ys = (0.50)*( yv3 + yv1); 
    %List the midpoints 
    lmd(i,1) = x1; 
    lmd(i,2) = y1; 
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    %Finding the subcell areas of 
each triangle 



    area(i,1) = 
area_sub(xv3,xs,x1,xn,yv3,ys,y1,yn
); 
    area(i,2) = 
area_sub(xs,xv1,xe,x1,ys,yv1,ye,y1
); 
    area(i,3) = 
area_sub(xv2,xn,x1,xe,yv2,yn,y1,ye
); 
end 
%Finding the cluster area 
associated with each vertex 
for i = 1:npoint 
    ad(i)=0; % counts the number 
of elements associated with each 
vertex 
    clusterarea(i)=0.0; % area 
associated with each cluster 
    for k = 1:nelem 
        if ((triangle(k,1) == 
i)||(triangle(k,2) == 
i)||(triangle(k,3) == i)) 
            ad(i)=ad(i)+1; 
            clusterarea(i) = 
clusterarea(i) + area(k,1);% Gives 
the cluster area associated with 
each vertex i 
        end 
    end 
end 
%Displaying the Cell Centered 
Scheme Control Volumes for each 
vertex 
for P=1:npoint 
    fprintf('For node 
%d,associated number of triangular 
elements are: %d\n',P,ad(P)); 
    fprintf('Control Volume for 
node %d is : %f 
\n',P,clusterarea(P)); 
end 
%Finding the total area of all the 
elements in the geometry 
totarea = 0.0; %Total geometry 
area 
for i = 1:npoint 
    totarea = totarea + 
clusterarea(i); 
end 
fprintf('Total Area of the 
Geometry is : %f\n',totarea); 
%Area calculation - End 
%*********************************
**********************************
******* 
%Assign the Permeability and Start 
Permeability calculation 
unitI = [1.0 0.0 0.0 1.0]; 
switch casetype 
    case (1) 
        for I = 1:nelem 

            permk(I,:)=[1,0,0,1]; 
        end 
    case (2) 
        for I = 1:nelem 
            permk(I,:)=[1,0,0,1]; 
        end 
    case (3) 
        for I=1:nelem 
            if (lmd(I,1)<=0.5) 
                
permk(I,:)=[1,0.5,0.5,1]; 
            elseif (lmd(I,1)>0.5) 
                
permk(I,:)=[10,2,2,100]; 
            end 
        end 
    case (4) 
        for I = 1:nelem 
            permk(I,:) = unitI; 
        end 
    case (5) 
        for I=1:nelem 
            if (lmd(I,1)<0.5) 
                permk(I,:) = 
[50,0,0,1]; 
            elseif (lmd(I,1)>=0.5) 
                
permk(I,:)=[1,0,0,10]; 
            end 
        end 
    case (6) 
        %co = constant as defined 
in the problem. For anisotropic 
problem, 
        %co lies between 0 and 
1.At co= 1, problem becomes 
isotropic.As co 
        %decreases, degree of 
anisotropy increases. 
        %co=1; 
        %         co=0.1; 
        co=0.01; 
        for I = 1:nelem 
            permk(I,:) = 
[(lmd(I,2)^2+co*(lmd(I,1)^2)),-(1-
co)*lmd(I,1)*lmd(I,2),-(1-
co)*lmd(I,1)*lmd(I,2),(lmd(I,1)^2+
co*(lmd(I,2)^2))]; 
        end 
    case (7) 
        for I = 1:nelem 
            permk(I,:) = unitI; 
        end 
    case (8) 
        for i = 1:nelem 
            rx(i) = lmd(i,1)-0.5; 
            ry(i) = lmd(i,2)-0.5; 
            ra(i) = sqrt(rx(i)^2 
+ry(i)^2); 

iii 
 

            theta(i) = 
atan2(ry(i),rx(i)); 



            if ( ry(i) < 0.0 ) 
                theta(i) = 
theta(i)+ pi*2; 
            end 
        end 
        for I = 1:nelem 
            if ((theta(I) <pi*0.5) 
& (theta(I) >= 0.0) ) 
                permk(I,:) = 5.0 * 
unitI; 
            elseif ((theta(I) >= 
pi*0.5) & (theta(I) < pi) ) 
                permk(I,:) = 
unitI; 
            elseif ((theta(I) >= 
pi) & (theta(I) < pi*(3/2)) ) 
                permk(I,:) = 5.0* 
unitI; 
            elseif ((theta(I) >= 
pi*(3/2)) & (theta(I) < pi*2) ) 
                permk(I,:) = 
unitI; 
            end 
        end 
    case(9) 
        for I = 1:nelem 
            permk(I,:) = 
[750.25,432.58, 432.58,250.75]; 
        end 
    case (10) 
        for I = 1:nelem 
            if(( lmd(I,2) < 
0.333333) || (lmd(I,2) > 
0.6666666667) ) 
                permk(I,:)=[ 
2464.360020, 1148.683643, 
1148.683643, 536.6399794]; 
            else 
                permk(I,:)=[ 
2464.360020, -1148.683643, -
1148.683643, 536.6399794]; 
            end 
        end 
    case (11) 
        for I=1:nelem 
            if ((lmd(I,1)>-0.25) 
&& (lmd(I,1)<0.25) && (lmd(I,2)>-
0.25) && (lmd(I,2)<0.25)) 
                permk(I,:)=[ 
2464.360020, -1148.683643, -
1148.683643, 536.6399794]; 
            else 
                permk(I,:)=[ 
2464.360020, 1148.683643, 
1148.683643, 536.6399794]; 
            end 
        end 
  
end 
%End of permeability matrix 
assignment 

%*********************************
**********************************
****** 
%Assigning the values of pressures 
at the cell centers for each 
casetype 
%Defines the analytical pressure 
values at the centre of each 
triangular element since it is a 
cell centered scheme 
switch casetype 
    case (1) 
        Phi_exact(1:nelem) =2.50; 
        Load_vector(1:nelem) = 
0.0; 
    case (2) 
        for I = 1:nelem 
            Phi_exact(I) = 
lmd(I,1) + lmd(I,2) +1.0; 
        end 
        Load_vector(1:nelem) = 0; 
    case (3) 
        for j=1:nelem 
            Area(j)= 
area(j,1)+area(j,2)+area(j,3); 
            if (lmd(j,1)<=0.5) 
                Phi_exact(j) = 
10+20*lmd(j,1)*lmd(j,2); 
                Load_vector(j) = 
20*Area(j); 
            elseif (lmd(j,1)>0.5) 
                Phi_exact(j) = 
10.75-
1.5*lmd(j,1)+9*lmd(j,2)+2*lmd(j,1)
*lmd(j,2); 
                Load_vector(j) = 
8*Area(j); 
            end 
        end 
    case (4) 
        for I = 1:nelem 
            Phi_exact(I) = 
lmd(I,1)^2+lmd(I,2)^2; 
            Area(I)= 
area(I,1)+area(I,2)+area(I,3); 
            Load_vector(I) = 
4*Area(I); 
        end 
    case (5) 
        qw = 1/50; 
        er = 1/10; 
        rt = 1; 
        ty = 4*rt/((qw-2)*er+1); 
        yu = (er-1)*ty; 
        ui = ty; 
        io = -ui*(1/10); 
        cl = qw*er*ui; 
        dl = io; 
        for j=1:nelem 
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            Area(j)= 
area(j,1)+area(j,2)+area(j,3); 



            if (lmd(j,1)<0.5) 
                Phi_exact(j) = 
cl*(lmd(j,1))^2+dl*(lmd(j,2))^2; 
                Load_vector(j) = 
0*Area(j); 
            elseif (lmd(j,1)>=0.5) 
                Phi_exact(j) = 
rt+yu*lmd(j,1)+ui*(lmd(j,1))^2+io*
(lmd(j,2))^2; 
                Load_vector(j) = 
0*Area(j); 
            end 
        end 
    case (6) 
        for I = 1:nelem 
            Phi_exact(I) = 
sin(pi*lmd(I,1))*sin(pi*lmd(I,2)); 
            Area(I)= 
area(I,1)+area(I,2)+area(I,3); 
            Load_vector(I) = -
1*Area(I)*(-
2*co*lmd(I,1)*cos(pi*lmd(I,1))*pi*
sin(pi*lmd(I,2))+(lmd(I,2)^2+co*lm
d(I,1)^2)*sin(pi*lmd(I,1))*pi^2*si
n(pi*lmd(I,2))-(-
1+co)*lmd(I,2)*sin(pi*lmd(I,1))*co
s(pi*lmd(I,2))*pi-2*(-
1+co)*lmd(I,1)*lmd(I,2)*cos(pi*lmd
(I,1))*pi^2*cos(pi*lmd(I,2))-(-
1+co)*lmd(I,1)*cos(pi*lmd(I,1))*pi
*sin(pi*lmd(I,2))-
2*co*lmd(I,2)*sin(pi*lmd(I,1))*cos
(pi*lmd(I,2))*pi+(lmd(I,1)^2+co*lm
d(I,2)^2)*sin(pi*lmd(I,1))*sin(pi*
lmd(I,2))*pi^2); 
        end 
    case (7) 
        for I=1:nelem 
            Phi_exact(I)=(2-
1)*(log((sqrt(((lmd(I,1))^2+(lmd(I
,2))^2)/0.5))))/log(0.001/0.5)+1; 
            Area(I)= 
area(I,1)+area(I,2)+area(I,3); 
            
Load_vector(I)=Area(I)*(.32182/((l
md(I,1))^2+(lmd(I,2))^2)^2*(lmd(I,
1))^2-
.32182/((lmd(I,1))^2+(lmd(I,2))^2)
+.32182/((lmd(I,1))^2+(lmd(I,2))^2
)^2*(lmd(I,2))^2); 
        end 
    case (8)     % this case is 
for Pi/2 , 
        for I = 1:nelem 
            rx(I) = lmd(I,1)-0.5; 
            ry(I) = lmd(I,2)-0.5; 
            ra(I) = sqrt(rx(I)^2 + 
ry(I)^2 ); 
            ptheta(I) = 
atan2(ry(I),rx(I)); 
            if ( ry(I) < 0.0 ) 

                ptheta(I) = 
ptheta(I)+ pi*2; 
            end 
        end 
       alp  =  0.53544095;            
% k1=k3=5; k2=k4=1; 
        delt_alp = alp -1.0; 
        for I = 1:nelem 
            if ((ptheta(I) 
<pi*0.5) & (ptheta(I) >= 0.0) )  % 
K1 
                m1 = 0.44721360; 
                m2 = 1.0; 
            elseif ((ptheta(I) >= 
pi*0.5) & (ptheta(I) < pi) ) % K2 
                m1 = -0.74535599; 
                m2 = 2.33333333; 
            elseif ((ptheta(I) >= 
pi) & (ptheta(I) < pi*(3/2)) ) % 
K3 
                m1 = -0.94411759; 
                m2 =  0.5555556; 
            elseif ((ptheta(I) >= 
pi*(3/2)) & (ptheta(I) < pi*2) ) % 
K4 
                m1 = -2.40170246; 
                m2 = -0.481481481; 
            end 
            Phi_exact(I) = (ra(I) 
^ alp)*( m1* sin(alp*ptheta(I)) + 
m2* cos(alp*ptheta(I))) ; 
        end 
        Load_vector(1:nelem) = 
0.0; 
    case (9) 
        for I =1:nelem 
            Phi_exact(I) = 
exp(lmd(I,1)*lmd(I,2)); 
            Area(I)= 
area(I,1)+area(I,2)+area(I,3); 
            Load_vector(I)= 
Area(I)*(3001/4*lmd(I,2)^2*exp(lmd
(I,1)*lmd(I,2))+21629/25*exp(lmd(I
,1)*lmd(I,2))+21629/25*lmd(I,1)*lm
d(I,2)*exp(lmd(I,1)*lmd(I,2))+1003
/4*lmd(I,1)^2*exp(lmd(I,1)*lmd(I,2
))); 
        end 
    case (10) 
        Phi_exact(1:nelem)= 100.0; 
        Phi_exact(615) = 0.0; 
        Phi_exact(538) = 200.0; 
     Load_vector(1:nelem) = 0.0  ; 
    case (11) 
        Phi_exact(1:nelem) = 0; 
        Phi_exact(648) = 1.0; 
     Load_vector(1:nelem) = 0.0  ; 
end 
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%End of exact cell center pressure 
value assignment 



%*********************************
**********************************
****** 
%Start calculation of Flux 
equations at each continuity point 
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<<<< 
%Finding the elements associated 
with each cluster vertex 
for i = 1:npoint 
    ad(i)=0; % counts the number 
of elements associated with each 
vertex 
    for k = 1:nelem 
        if ((triangle(k,1) == 
i)||(triangle(k,2) == 
i)||(triangle(k,3) == i)) 
            ad(i)=ad(i)+1; 
            adel(i,ad(i)) = 
k;%stores the associated elements 
in a npoint row matrix 
        end 
    end 
end 
elmofv = sparse(adel);% Gives the 
associated elements for each of 
the npoint nodes. 
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>> 
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<<<< 
% Using external function to 
obtain the neighbouring elements 
% Create the triangle neighbour 
array. 
triangle_order = 3; 
triangle_neighbor = 
triangulation_neighbor_triangles ( 
triangle_order,nelem,triangle); 
ham = triangle_neighbor'; 
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>> 
%Initialising local parameters 
Amat = zeros(nelem); %Global 
Coefficient Matrix 
Fmat = Load_vector'; %Global Force 
Vector 
%Starting calculations cluster by 
cluster 
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<<<< 
for i=1:npoint 
    
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<< 
    %Ordering adjacent elements in 
cluster i 
    Wam=[];%Stores neighbouring 
elements of each cluster in anti-
clockwise direction. 
    if (ad(i)>2) 

        for h = 1:ad(i) 
            seth = 
elmofv(i,:);%Locally extracting 
associated elements 
            jam = seth(1,h); 
            dam = ham(jam,:); 
            dam(dam == 0) = []; 
            sam = 
intersect(dam,seth); 
            tam = size(sam); 
            if (tam(1,2)==2) 
                wam = [sam(1,1) 
jam sam(1,2)]; 
                if (ad(i)>3) 
                    break 
                end 
            else 
                continue 
            end 
            Wam = [Wam wam]; 
        end 
        if (ad(i)>3) 
            for n=3:ad(i) 
                rat = wam(end); 
                dam = ham(rat,:); 
                dam(dam == 0) = 
[]; 
                sam = 
intersect(dam,seth); 
                tam = size(sam); 
                if (tam(1,2)==2) 
                    if 
(sam(1,1)==wam(1,n-1)); 
                        wam = [wam 
sam(1,2)]; 
                    else 
                        wam = [wam 
sam(1,1)]; 
                    end 
                end 
                Wam = [Wam wam]; 
            end 
        end 
    elseif (ad(i)==2) 
        wama = elmofv(i,1); 
        wamb = elmofv(i,2); 
        Wam = [Wam wama wamb]; 
    elseif (ad(i)==1) 
        Wam = elmofv(i,:); 
    end 
    if (ad(i)>2) 
        ani = ad(i)-1; 
        Wam= Wam(end-(ani):end); 
    end 
    if (ad(i)>1) 
        moch = 
mordc(i,Wam,coordinate,triangle,q,
nelem,lmd,npoint); 
        if (moch==1) 
            Wam=Wam(end:-1:1); 

vi 
 

        end 



        %         newa = Wam; 
    end 
    
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>> 
    %Initialising Variables 
    %     elco = []; 
    Tl = []; 
    Tr = []; 
    
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<< 
    %Calculating local general 
tensor T 
    for j = 1:ad(i) 
        elma = Wam(j); % Element 1 
to Element ad(i) in the cluster 
taken separately 
        Kel(1,:) = 
permk(elma,:);%local element 
permeability 
        [T11 T12a T12b T22 aref]= 
flux(i,elma,coordinate,triangle,q,
nelem,lmd,npoint,Kel); 
        %         elco(j,:) = [T11 
T12a T12b T22];%Lists the 
coefficients of pressures in each 
subcell 
        Tl(j,:) = [T11 T12a]; 
        Tr(j,:) = [T12b T22]; 
    end 
    
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>> 
    
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<< 
    %Creating symbolic phy vector. 
    phy = sym(zeros(1, ad(i))); 
    for j = 1:ad(i) 
        dal = Wam(j); 
        phy(j) = 
sym(sprintf('phy%d', dal)); 
    end 
    
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>> 
    
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<< 
    %Creating symbolic interface 
pressure value vector for the 
cluster i 
    brchk=ismember(bryn,i);%Does 
node i belong to boundary nodes? 
    brchk = any(brchk); 
    if (brchk ==1) 
        phyI = 
sym(zeros(1,(ad(i)+1))); 
        for j = 1:(ad(i)+1) 

            phyI(j) = 
sym(sprintf('phyI%d', j)); 
        end 
    else 
        phyI = sym(zeros(1, 
ad(i))); 
        for j = 1:(ad(i)) 
            phyI(j) = 
sym(sprintf('phyI%d', j)); 
        end 
    end 
    
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>> 
    Jazz=[]; % array of flux 
equations in a cluster 
    if (ad(i)>2) 
        if (brchk==0) 
            for j = 1:ad(i) 
                r=j+1; 
                if (j==1) 
                    syms a b c d e 
f g h z y x l 
                    jazze = (-
1*(a*(b-c) + d*(e-f)))-(g*(h-z) + 
y*(x-l)); % Starting Flux in the 
cluster 
                    jazze = 
subs(jazze,[a,d,g,y],[Tl(j,1),Tl(j
,2),Tr(r,1),Tr(r,2)]); 
                    jazze = 
subs(jazze,[b,c,e,f,h,z,x,l],[phyI
(j),phy(j),phyI(ad(i)),phy(j),phyI
(r),phy(r),phyI(j),phy(r)]); 
                    Jazz = 
[Jazz;jazze]; 
                elseif(j<ad(i)) 
                    syms a b c d e 
f g h z y x l 
                    jazz = (-
1*(a*(b-c) + d*(e-f)))-(g*(h-z) + 
y*(x-l)); %Middle flux terms in 
the cluster 
                    jazz = 
subs(jazz,[a,d,g,y],[Tl(j,1),Tl(j,
2),Tr(r,1),Tr(r,2)]); 
                    jazz = 
subs(jazz,[b,c,e,f,h,z,x,l],[phyI(
j),phy(j),phyI(j-
1),phy(j),phyI(r),phy(r),phyI(j),p
hy(r)]); 
                    Jazz = 
[Jazz;jazz]; 
                elseif(j==ad(i)) 
                    syms a b c d e 
f g h z y x l 
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                    jazzw = (-
1*(a*(b-c) + d*(e-f)))-(g*(h-z) + 
y*(x-l)); % Last flux in the 
cluster 



                    jazzw = 
subs(jazzw,[a,d,g,y],[Tl(j,1),Tl(j
,2),Tr(1,1),Tr(1,2)]); 
                    jazzw = 
subs(jazzw,[b,c,e,f,h,z,x,l],[phyI
(j),phy(j),phyI(j-
1),phy(j),phyI(1),phy(1),phyI(j),p
hy(1)]); 
                    Jazz = 
[Jazz;jazzw]; 
                end 
            end 
        elseif(brchk==1) 
            for j = 1:(ad(i)+1) 
                r = j+1; 
                if (j==1) 
                    syms a b c d e 
f g h z y x l 
                    jazze = 
((a*(b-c) + d*(e-f))); % Starting 
Flux in the cluster 
                    jazze = 
subs(jazze,[a,d],[Tr(j,1),Tr(j,2)]
); 
                    jazze = 
subs(jazze,[b,c,e,f],[phyI(r),phy(
j),phyI(j),phy(j)]); 
                    Jazz = 
[Jazz;jazze]; 
                elseif 
(j<(ad(i)+1)) 
                    if (j==ad(i)) 
                        syms a b c 
d e f g h z y x l 
                        jazz = (-
1*(a*(b-c) + d*(e-f)))-(g*(h-z) + 
y*(x-l)); %Middle flux terms in 
the cluster 
                        jazz = 
subs(jazz,[a,d,g,y],[Tl((j-
1),1),Tl((j-
1),2),Tr(j,1),Tr(j,2)]); 
                        jazz = 
subs(jazz,[b,c,e,f,h,z,x,l],[phyI(
j),phy(j-1),phyI(j-1),phy(j-
1),phyI(r),phy(j),phyI(j),phy(j)])
; 
                        Jazz = 
[Jazz;jazz]; 
                    else 
                        syms a b c 
d e f g h z y x l 
                        jazz = (-
1*(a*(b-c) + d*(e-f)))-(g*(h-z) + 
y*(x-l)); %Middle flux terms in 
the cluster 
                        jazz = 
subs(jazz,[a,d,g,y],[Tl((j-
1),1),Tl((j-
1),2),Tr(j,1),Tr(j,2)]); 

                        jazz = 
subs(jazz,[b,c,e,f,h,z,x,l],[phyI(
j),phy(j-1),phyI(j-1),phy(j-
1),phyI(r),phy(j),phyI(j),phy(j)])
; 
                        Jazz = 
[Jazz;jazz]; 
                    end 
                elseif 
(j==(ad(i)+1)) 
                    syms a b c d e 
f g h z y x l 
                    jazzw = (-
1*(a*(b-c) + d*(e-f))); % Closing 
Flux in the cluster 
                    jazzw = 
subs(jazzw,[a,d],[Tl((j-
1),1),Tl((j-1),2)]); 
                    jazzw = 
subs(jazzw,[b,c,e,f],[phyI(j),phy(
j-1),phyI(j-1),phy(j-1)]); 
                    Jazz = 
[Jazz;jazzw]; 
                end 
            end 
        end 
    elseif (ad(i)==2) 
        syms a b c d e f g h z y x 
l 
        jazz = (-1*(a*(b-c) + 
d*(e-f)))+(g*(h-z) + y*(x-l)); 
        jazz = 
subs(jazz,[a,d,g,y],[Tl(1,1),Tl(1,
2),Tr(2,1),Tr(2,2)]); 
        jazz = 
subs(jazz,[b,c,e,f,h,z,x,l],[phyI(
2),phy(1),phyI(1),phy(1),phyI(3),p
hy(2),phyI(2),phy(2)]); 
        jazz1 = (-1*(a*(b-c) + 
d*(e-f))); %Flux Leaving 
        jazzw = (g*(h-z) + y*(x-
l)); % Flux Entering 
        jazz1 = 
subs(jazz1,[a,d],[Tl(2,1),Tl(2,2)]
); 
        jazz1 = 
subs(jazz1,[b,c,e,f],[phyI(3),phy(
2),phyI(2),phy(2)]); 
        jazzw = 
subs(jazzw,[g,y],[Tr(1,1),Tr(1,2)]
); 
        jazzw = 
subs(jazzw,[h,z,x,l],[phyI(2),phy(
1),phyI(1),phy(1)]); 
        jazz = [jazzw;jazz;jazz1]; 
        Jazz=[Jazz;jazz]; 
    elseif (ad(i)==1) 
        syms a b c d e f g h z y x 
l 
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        jazz1 = (-1*(a*(b-c) + 
d*(e-f))); %Flux Leaving 



        jazzw = (g*(h-z) + y*(x-
l)); % Flux Entering 
        jazz1 = 
subs(jazz1,[a,d],[Tl(1,1),Tl(1,2)]
); 
        jazz1 = 
subs(jazz1,[b,c,e,f],[phyI(2),phy(
1),phyI(1),phy(1)]); 
        jazzw = 
subs(jazzw,[g,y],[Tr(1,1),Tr(1,2)]
); 
        jazzw = 
subs(jazzw,[h,z,x,l],[phyI(2),phy(
1),phyI(1),phy(1)]); 
        jazz = [jazzw;jazz1]; 
        Jazz=[Jazz;jazz]; 
    end 
    
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<< 
    %Solving for interface 
pressures in terms of nodal 
pressures. 
    nochk = numel(Jazz); %Number 
Check 
    if (nochk==2) 
        chat = 
solve(Jazz(1,1),Jazz(2,1),phyI(1),
phyI(2)); 
        itnc = 
[chat.phyI1;chat.phyI2]; 
    elseif (nochk==3) 
        chat = 
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),phyI(1),phyI(2),phyI(3)); 
        itnc = 
[chat.phyI1;chat.phyI2;chat.phyI3]
; 
            elseif (nochk==4) 
        chat = 
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),phyI(1),phyI(2),phyI(3
),phyI(4)); 
        itnc 
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4]; 
    elseif (nochk==5) 
        chat = 
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),Jazz(5,1),phyI(1),phyI
(2),phyI(3),phyI(4),phyI(5)); 
        itnc 
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4;chat.phyI5]; 
    elseif (nochk==6) 
        chat = 
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),Jazz(5,1),Jazz(6,1),ph
yI(1),phyI(2),phyI(3),phyI(4),phyI
(5),phyI(6)); 

        itnc 
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4;chat.phyI5;chat.phyI6]
; 
    elseif (nochk==7) 
        chat = 
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),Jazz(5,1),Jazz(6,1),Ja
zz(7,1),phyI(1),phyI(2),phyI(3),ph
yI(4),phyI(5),phyI(6),phyI(7)); 
        itnc 
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4;chat.phyI5;chat.phyI6;
chat.phyI7]; 
    elseif (nochk==8) 
        chat = 
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),Jazz(5,1),Jazz(6,1),Ja
zz(7,1),Jazz(8,1),phyI(1),phyI(2),
phyI(3),phyI(4),phyI(5),phyI(6),ph
yI(7),phyI(8)); 
        itnc 
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4;chat.phyI5;chat.phyI6;
chat.phyI7;chat.phyI8]; 
    elseif (nochk==9) 
        chat = 
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),Jazz(5,1),Jazz(6,1),Ja
zz(7,1),Jazz(8,1),Jazz(9,1),phyI(1
),phyI(2),phyI(3),phyI(4),phyI(5),
phyI(6),phyI(7),phyI(8),phyI(9)); 
        itnc 
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4;chat.phyI5;chat.phyI6;
chat.phyI7;chat.phyI8;chat.phyI9]; 
    elseif (nochk==10) 
        chat = 
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),Jazz(5,1),Jazz(6,1),Ja
zz(7,1),Jazz(8,1),Jazz(9,1),Jazz(1
0,1),phyI(1),phyI(2),phyI(3),phyI(
4),phyI(5),phyI(6),phyI(7),phyI(8)
,phyI(9),phyI(10)); 
        itnc 
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4;chat.phyI5;chat.phyI6;
chat.phyI7;chat.phyI8;chat.phyI9,c
hat.phyI10]; 
    end 
    
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>> 
    
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<< 
    %Defining the unknown flux 
equations at each continuity point 
in 
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    %cluster. 



    Fluxv=[]; % array of flux 
values at the interfaces in a 
cluster 
    if (ad(i)>2) 
        if (brchk==0) 
            for j = 1:ad(i) 
                r=j+1; 
                if (j==1) 
                    syms a b c d e 
f g h z y x l 
                    fluxv = (-
1*(a*(b-c) + d*(e-f))); % Starting 
Flux in the cluster 
                    fluxv = 
subs(fluxv,[a,d],[Tl(j,1),Tl(j,2)]
); 
                    fluxv = 
subs(fluxv,[b,c,e,f],[itnc(j),phy(
j),itnc(ad(i)),phy(j)]); 
                    Fluxv = 
[Fluxv;fluxv]; 
                elseif(j<ad(i)) 
                    syms a b c d e 
f g h z y x l 
                    fluxv = (-
1*(a*(b-c) + d*(e-f))); %Middle 
flux terms in the cluster 
                    fluxv = 
subs(fluxv,[a,d],[Tl(j,1),Tl(j,2)]
); 
                    fluxv = 
subs(fluxv,[b,c,e,f],[itnc(j),phy(
j),itnc(j-1),phy(j)]); 
                    Fluxv = 
[Fluxv;fluxv]; 
                elseif(j==ad(i)) 
                    syms a b c d e 
f g h z y x l 
                    fluxvw = (-
1*(a*(b-c) + d*(e-f))); % Last 
flux in the cluster 
                    fluxvw = 
subs(fluxvw,[a,d],[Tl(j,1),Tl(j,2)
]); 
                    fluxvw = 
subs(fluxvw,[b,c,e,f],[itnc(j),phy
(j),itnc(j-1),phy(j)]); 
                    Fluxv = 
[Fluxv;fluxvw]; 
                end 
            end 
        elseif(brchk==1) 
            for j = 1:(ad(i)+1) 
                r = j+1; 
                if (j==1) 
                    syms a b c d e 
f g h z y x l 
                    fluxve = 
((a*(b-c) + d*(e-f))); % Starting 
Flux in the cluster 

                    fluxve = 
subs(fluxve,[a,d],[Tr(j,1),Tr(j,2)
]); 
                    fluxve = 
subs(fluxve,[b,c,e,f],[itnc(r),phy
(j),itnc(j),phy(j)]); 
                    Fluxv = 
[Fluxv;fluxve]; 
                elseif 
(j<(ad(i)+1)) 
                    syms a b c d e 
f g h z y x l 
                    fluxv = (-
1*(a*(b-c) + d*(e-f))); %Middle 
flux terms in the cluster 
                    fluxv = 
subs(fluxv,[a,d],[Tl((j-
1),1),Tl((j-1),2)]); 
                    fluxv = 
subs(fluxv,[b,c,e,f],[itnc(j),phy(
j-1),itnc(j-1),phy(j-1)]); 
                    Fluxv = 
[Fluxv;fluxv]; 
                elseif 
(j==(ad(i)+1)) 
                    syms a b c d e 
f g h z y x l 
                    fluxvw = (-
1*(a*(b-c) + d*(e-f))); % Closing 
Flux in the cluster 
                    fluxvw = 
subs(fluxvw,[a,d],[Tl((j-
1),1),Tl((j-1),2)]); 
                    fluxvw = 
subs(fluxvw,[b,c,e,f],[itnc(j),phy
(j-1),itnc(j-1),phy(j-1)]); 
                    Fluxv = 
[Fluxv;fluxvw]; 
                end 
            end 
        end 
    elseif (ad(i)==2) 
        syms a b c d e f g h z y x 
l 
        fluxv = (-1*(a*(b-c) + 
d*(e-f))); 
        fluxv = 
subs(fluxv,[a,d],[Tl(1,1),Tl(1,2)]
); 
        fluxv = 
subs(fluxv,[b,c,e,f],[itnc(2),phy(
1),itnc(1),phy(1)]); 
        fluxv1 = (-1*(a*(b-c) + 
d*(e-f))); %Flux Leaving 
        fluxvw = (g*(h-z) + y*(x-
l)); % Flux Entering 
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        fluxv1 = 
subs(fluxv1,[a,d],[Tl(2,1),Tl(2,2)
]); 



        fluxv1 = 
subs(fluxv1,[b,c,e,f],[itnc(3),phy
(2),itnc(2),phy(2)]); 
        fluxvw = 
subs(fluxvw,[g,y],[Tr(1,1),Tr(1,2)
]); 
        fluxvw = 
subs(fluxvw,[h,z,x,l],[itnc(2),phy
(1),itnc(1),phy(1)]); 
        fluxv = 
[fluxvw;fluxv;fluxv1]; 
        Fluxv=[Fluxv;fluxv]; 
    elseif (ad(i)==1) 
        syms a b c d e f g h z y x 
l 
        fluxv1 = (-1*(a*(b-c) + 
d*(e-f))); %Flux Leaving 
        fluxvw = (g*(h-z) + y*(x-
l)); % Flux Entering 
        fluxv1 = 
subs(fluxv1,[a,d],[Tl(1,1),Tl(1,2)
]); 
        fluxv1 = 
subs(fluxv1,[b,c,e,f],[itnc(2),phy
(1),itnc(1),phy(1)]); 
        fluxvw = 
subs(fluxvw,[g,y],[Tr(1,1),Tr(1,2)
]); 
        fluxvw = 
subs(fluxvw,[h,z,x,l],[itnc(2),phy
(1),itnc(1),phy(1)]); 
        fluxv = [fluxvw;fluxv1]; 
        Fluxv=[Fluxv;fluxv]; 
    end 
    Fluxv = vpa(Fluxv,25); 
    
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>> 
    keol = numel(Fluxv); %Number 
of flux equations in each cluster 
    %     fnox(i) = keol; %For 
external use. 
    
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<< 
    %Extracting local cluster 
coeffs to global coeff matrix. 
    for g=1:keol % taking all the 
flux equations in each cluster one 
by one 
        for r= 1:ad(i) % 
considering all the elemental 
pressure values one by one eg phy1 
,phy13 etc 
            amat = zeros(nelem); % 
initialising the coeff matrix 
taken locally to zeros 
            if (Fluxv(g,1)~=0) 
                [go,mi] = 
coeffs(Fluxv(g,1),phy(r)); % 
extracting the coefficients of 

each pressure in the flux eqn 
being considered 
                if (numel(mi) == 
2) % if the flux equation 
considered is not merely a zero 
                    if (brchk == 
0) % If the cluster vertex is not 
on the boundary, number of 
elements == number of equations 
                        % => keol 
= ad(i) 
                        if 
(g+1<=ad(i)) 
                            
amat(Wam(g+1),Wam(r))=go(1,2); 
                            
amat(Wam(g),Wam(r)) = -1 * 
go(1,2); 
                            Amat = 
Amat+amat; 
                        elseif (g 
== ad(i)) 
                            
amat(Wam(g),Wam(r))=-go(1,2); 
                            
amat(Wam(1),Wam(r)) =  go(1,2); 
                            Amat = 
Amat+amat; 
                        end 
                    elseif (brchk 
== 1) % If the cluster contains 
boundary elements, keol = ad(i)+1 
                        if (g==1) 
                            
amat(Wam(g),Wam(r)) = go(1,2); 
                            Amat = 
Amat+amat; 
                        elseif 
(g<=ad(i)) 
                            
amat(Wam(g),Wam(r)) = go(1,2); 
                            
amat(Wam(g-1),Wam(r)) = -
1*go(1,2); 
                            Amat = 
Amat + amat; 
                        elseif (g 
== ad(i)+1) 
                            
amat(Wam(ad(i)),Wam(r)) = -
1*go(1,2); 
                            Amat = 
Amat + amat; 
                        end 
                    end 
                else 
                    continue 
                end 
            end 
        end 
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    end 



    
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>> 
end 
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>> 
% chkmat = Amat; 
% cfmat = Fmat; 
%Initialise approximate pressure 
vector 
for d = 1 : nelem 
    pmat(d,1) =  
sym(sprintf('phy%d', d)); 
end 
%*********************************
**********************************
******* 
% Inputting Boundary Condition 
% Zeros and ones 
for w = 1:nelem 
    brchk=ismember(cfbc,w); 
    brchk = any(brchk); 
    if (brchk ==1) 
        Amat(w,:) = 0; 
        Amat(w,w) = 1; 
        Fmat(w,1) = 
Phi_exact(1,w); 
    end 
end 
% Input Source or Sink Condition 
within the domain 
% Amat(648,:)=0; 
% Amat(648,648)=1; 
% Fmat(648,1)=Phi_exact(1,648); 
%*********************************
**********************************
****** 
%Solving for pressure values 
pmat = Amat\Fmat; 
% pmat = gmres(Amat,Fmat); 
%*********************************
**********************************
****** 
toc 
%*********************************
**********************************
****** 
%Postprocessing 
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<<<< 
%Contour Mapping of Pressure 
figure(1) 
X = lmd(:,1); 
Y = lmd(:,2); 
Zh = pmat; 
[XI,YI] = 
meshgrid(linspace(min(coordinate(:
,1)),max(coordinate(:,1)),nelem),l
inspace(min(coordinate(:,2)),max(c
oordinate(:,2)),nelem)); 
ZI = griddata(X,Y,Zh,XI,YI); 

mesh(XI,YI,ZI), hold on 
plot3(X,Y,Zh,'o'), hold on % 
Numerical solution Plot 
xlabel('X') 
ylabel('Y') 
zlabel('Pressure') 
Z = Phi_exact'; 
[XI,YI] = 
meshgrid(linspace(min(coordinate(:
,1)),max(coordinate(:,1)),nelem),l
inspace(min(coordinate(:,2)),max(c
oordinate(:,2)),nelem)); 
ZI = griddata(X,Y,Z,XI,YI); 
mesh(XI,YI,ZI), hold on 
plot3(X,Y,Z,'x') % Exact solution 
Plot 
hold off 
figure(2) 
[XI,YI] = 
meshgrid(linspace(min(coordinate(:
,1)),max(coordinate(:,1)),nelem),l
inspace(min(coordinate(:,2)),max(c
oordinate(:,2)),nelem)); 
ZI = griddata(X,Y,Zh,XI,YI); 
contour(XI,YI,ZI) 
xlabel('X') 
ylabel('Y') 
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>> 
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<<<< 
% %Plotting Obtained approximate 
pressure values and exact pressure 
values. 
figure(3) 
plot(pmat,('o-r')) 
hold on 
plot(Phi_exact,'x-b') 
% 
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>> 
% 
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<<<< 
% %L2 Norm and Max-Norm 
Pe = Phi_exact'; 
numer = 0; 
mxnorm = 0; 
for c= 1: nelem 
    Lerr(c)= (pmat(c)-Pe(c))^2; 
    Area(c)= 
area(c,1)+area(c,2)+area(c,3); 
    numerL(c) = Lerr(c)*Area(c); 
    numer = numer+numerL(c); 
    mntemp = abs(pmat(c)-Pe(c)); % 
Temporarily store the norms 
    if (mntemp>mxnorm) 
        mxnorm = mntemp; 
    end 
end 
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L2norm = sqrt(numer/totarea) 



mxnorm 
% 
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>> 
 

b. Function Files 
i. To calculate the sub-cell areas 
function [ar] = 
area_sub(x1,x2,x3,x4,y1,y2,y3,y4) 
%Function to calculate the quad 
area of each subcell in a 
triangle. 
%gives the resultant area 'ar' for 
given input of 4 quad corner point 
coordinates 
var1 = 0.0; 
var2 = 0.0; 
var1 = 0.5d0*( (x1-x3)*(y2-y3) - 
(x2-x3)*(y1-y3)); 
var2 = 0.5d0*( (x1-x4)*(y3-y4) - 
(x3-x4)*(y1-y4)); 
if (var1 < 0.0) 
    display('Area Calculation 
error,--var1--- the grid is not 
arranged anti-clockwise!!!'); 
end 
if (var2 < 0.0) 
    display('Area Calculation 
error,--var2--- the grid is not 
arranged anti-clockwise!!!'); 
end 
ar = var1 + var2; 
 

ii. To determine the neighbouring 
elements 

External MATLAB code used. 
Author : John Burkardt. The code 
used is distributed under the GNU 
LGPL license. 
 

iii. To determine the order and assign 
anti-clockwise direction to cluster 
element order 

function moch = mordc( 
i,Wam,coordinate,nelem,lmd) 
%to check the counter clockwise 
order of cluster 
% find x1*y2 - y1*x2 
% where (x1, y1) is the difference 
calculated for point 1 
% similarly for point 2, 3, etc. 
% the basic idea is, no two 
consecutive points project an 
angle greater than 180 at the mid-
point 
% so, if they're in counter-
clockwise order, the cross product 
would be in positive z direction 

cv = [coordinate(i,1) 
coordinate(i,2)]; 
ch = [(cv(1,1)-lmd(Wam(1),1)) 
cv(1,2)-lmd(Wam(1),2);... 
    (cv(1,1)-lmd(Wam(2),1)) 
cv(1,2)-lmd(Wam(2),2);... 
    ]; 
nah12 = ch(1,1)*ch(2,2) - ch(1,2)* 
ch(2,1); 
if (nah12 > 0) 
    moch = 0; 
elseif (nah12 < 0) 
    moch =1; 
end 
 

iv. To generate the general tensor 
components 

function [T11 T12a T12b T22 aref] 
= 
flux(i,elma,coordinate,triangle,q,
nelem,lmd,npoint,Kel) 
%Function code to calculate 
subcell fluxes at the continuity 
points on the subinterfaces. 
conn = []; 
conn = triangle(elma,:); % 
connectivity of element 
arrcord(:,:) = 
coordinate(conn,:);% arranged 
coordinates 
% Ensuring vertex2 is the cluster 
vertex always. 
if (arrcord(1,:) == 
coordinate(i,:)) 
    c(1,:)=arrcord(1,:); 
    b(1,:)=arrcord(2,:); 
    arrcord(1,:)=arrcord(3,:); 
    arrcord(2,:)=c(1,:); 
    arrcord(3,:) = b(1,:); 
elseif (arrcord(3,:) == 
coordinate(i,:)) 
    c(1,:)=arrcord(2,:); 
    b(1,:)=arrcord(1,:); 
    arrcord(2,:)=arrcord(3,:); 
    arrcord(1,:)=c(1,:); 
    arrcord(3,:)=b(1,:); 
end 
dq =1.0 - q; 
xv1 = arrcord(1,1); 
xv2 = arrcord(2,1); 
xv3 = arrcord(3,1); 
yv1 = arrcord(1,2); 
yv2 = arrcord(2,2); 
yv3 = arrcord(3,2); 
x1 = lmd(elma,1); 
x2 = (xv1+xv2)/2; 
x3 = xv2; 
x4 = (xv2+xv3)/2; 
y1 = lmd(elma,2); 

xiii 
 

y2 = (yv1+yv2)/2; 



y3 = yv2; 
y4 = (yv2+yv3)/2; 
%!Finding the coordinates of the 
point of continuity using division 
of segment internally form 
%   !For right edge flux 
continuity 
xa = dq * x3 + q * x2; 
ya = dq * y3 + q * y2; 
%   !For left edge flux continuity 
xb = dq * x3 + q * x4; 
yb = dq * y3 + q * y4; 
%Inserting code for effective area 
calculation  
aref = abs((x1*(yb-ya)+xb*(ya-
y1)+xa*(y1-yb))/2); 
% !Finding dy/dxi,dy/deta,dx/dxi 
and dx/deta 
%   !u = xi, v = eta 
dx_v = xb - x1; 
dy_v = yb - y1; 
dx_u = xa - x1; 
dy_u = ya - y1; 
%Finding the Jacobian 
% J = dx/dxi * dy/deta - dx/deta * 
dy/dxi 
Jaco1 = dx_u * dy_v - dx_v * dy_u; 
%Warning generation for low 
Jacobian 
if( abs(Jaco1) < 1.0E-14) 
    display('Warning, The Jacobi 
is less than 1.0E-14') 
    display(Jaco1) 
end 
%Fluxes in the cell are 
% at continuity point A, FA1 = -
T11*PhiA1 -T12*PhiC1 for element 1 
[left of A] 
% at continuity point C, FC1 = -
T12*PhiA1 -T22*PhiC1 for element 1 
[right of C] 
T11  = 
(0.5/Jaco1)*(Kel(1,1)*dy_v*(yv2-
yv1)+Kel(1,4)*dx_v*(xv2-xv1)-
Kel(1,2)*dx_v*(yv2-yv1)-
Kel(1,3)*dy_v*(xv2-xv1)); 
T12a = 
(0.5/Jaco1)*(Kel(1,2)*dx_u*(yv2-
yv1)+Kel(1,3)*dy_u*(xv2-xv1)-
Kel(1,1)*dy_u*(yv2-yv1)-
Kel(1,4)*dx_u*(xv2-xv1)); 
T12b = (-
0.5/Jaco1)*(Kel(1,1)*dy_v*(yv2-
yv3)+Kel(1,4)*dx_v*(xv2-xv3)-
Kel(1,2)*dx_v*(yv2-yv3)-
Kel(1,3)*dy_v*(xv2-xv3)); 
T22  = (-
0.5/Jaco1)*(Kel(1,2)*dx_u*(yv2-
yv3)+Kel(1,3)*dy_u*(xv2-xv3)-
Kel(1,1)*dy_u*(yv2-yv3)-
Kel(1,4)*dx_u*(xv2-xv3)); 
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