
Boundary Aligned Grids for Flow in

Porous Media

A theoretical study and practical approach using MATLAB

Mary Abraham Eranackal

Student Number: 530137

Erasmus Mundus Masters Research Project

June 2010

“Project Dissertation submitted to Swansea University in Partial

Fulfilment for the Degree of Master of Science”

Supervisor:

Prof. Michael G Edwards

BSc, PhD

School of Engineering, Swansea

MSc Computational Mechanics, Department of Civil and Computational

Engineering, Swansea University

DECLARATION

This work has not previously been accepted in substance for any degree and is not being

currently submitted in candidature for any degree.

STATEMENT 1

This dissertation is being submitted in partial fulfilment of the requirements for the degree of

MSc.

Date: ..Signature:

STATEMENT 2

This dissertation is the result of my own independent work/investigation, except where

otherwise stated. Other sources are acknowledged by giving explicit references. A

bibliography is appended.

Date: ..Signature:

STATEMENT 3

I hereby give consent for my dissertation, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside

organisations.

Date: ..Signature:

ACKNOWLEDGEMENTS

During the academic year of 2009-2010, I had the opportunity to work on this project which

goes towards my MSc research project fulfilment. I would like to take this opportunity to

thank my project supervisor Prof. Michael G Edwards for firstly, offering such an interesting

and challenging topic in reservoir modelling for research work. I thank him for all the time he

spent helping me understand the nuances of each and every topic and for his continued

support throughout the period. It has been an enriching and fruitful time that I got to spend on

this project work which has taught me a lot about a subject which I have previously not been

much informed about. I thank him sincerely for all the motivation and inspiration in

challenging me to better myself during this project.

I also thank my course supervisor Dr. Antonio J. Gil for all the advice and support he has

given during this time. I would also like to thank my senior Hongwen Zheng for his help and

suggestions. I thank my family and friends for all their support in various ways.

I sincerely hope the work I carried out, which is detailed in this report, will do its own small

bit towards this exciting field full of possibilities and challenges.

...

TABLE OF CONTENTS

Summary...1

1.Introduction...2

1.1 Petroleum reservoirs...2

1.2 Reservoir modelling ...4

1.3 MATLAB ...5

1.4 Scope of work ..6

1.5 Organization of the report ..6

2.Literature review and overview of current discretization methods.................................7

2.1 Literature review of reservoir modelling methods ..7

2.2 Numerical Discretization Methods ..8

2.2.1 Finite Difference Method ...8

2.2.2 Finite Element Method (FEM) ...9

2.2.3 Mixed Finite Element Method (MFEM) ..9

2.2.4 Finite Volume Method (FVM) ...10

3. Problem definition and fundamentals of grid definition ...11

3.1 Introduction ..11

3.2 Flow in porous media ...11

3.3 Fundamentals of grid definition ...13

4.Triangular pressure support scheme ..16

4.1 Introduction ...16

4.2 Triangular pressure support formulation..16

4.3 Code algorithm outline...20

1.4 Computational examples ...21

5.Conclusions and future scope ...42

5.1 Research conclusions ..42

5.2 Future scope of work ...43

References ...44

Appendix

A. Triangular pressure support application code...i

a. Main File..i

b. Function Files...xiii
i. To calculate the sub-cell areas..xiii

ii. To determine the neighbouring elements ..xiii

iii. To determine the order and assign anti-clockwise direction to cluster

element order..xiii

iv. To generate the general tensor components.......................................xiii

LIST OF FIGURES

Figure 1.1 A sample physical reservoir model..3
Figure 1.2 Simplified reservoir model...3
Figure 3.1 A Sample Triangular Element for FVM description..13
Figure 3.2 Triangular 3 element sample mesh...14
Figure 4.1 3 Element cluster with TPS..16
Figure 4.2 Case 1 Solution Plot...22
Figure 4.3 Case 2 Solution Plot...23
Figure 4.4 Case 3 Solution Plot...23
Figure 4.5 Convergence graph for Case 3...24
Figure 4.6 Case 4 Solution Plot...25
Figure 4.7 Convergence plot for Case 4..26
Figure 4.8 Case 5 Solution Plot...27
Figure 4.9 Convergence graph for Case 5...28
Figure 4.10 Solution plot for Case 6: �=0.1,
q=2/3...29
Figure 4.11 Solution plot for Case 6: � =0.01,
q=2/3..29
Figure 4.12 Solution plot for Case 6: �=1,
q=2/3..29
Figure 4.13 Convergence graph for Case 6:
�=0.1..30
Figure 4.14 Convergence graph for Case 6:
�=0.01..30
Figure 4.15 Unstructured Triangular Grid for Case 7 ...31
Figure 4.16 Well region in Case 7...31
Figure 4.17 Exact Solution Plot for Case 7...32
Figure 4.18 Numerical Solution Plot for Case 7: q=2/3..32
Figure 4.19 Numerical Solution Plot for Case 7: q=1...33
Figure 4.20 Contour Plot of Pressure for Case 7...33
Figure 4.21 Permeability in the Domain for Case 8..34
Figure 4.22 Unstructured triangular meshes for Case 8: aligned and non-aligned34
Figure 4.23 Exact Solution Plot for Case 8...35
Figure 4.24 Contour Plot of Pressure for Case 8...36
Figure 4.25 Convergence Graph for Case 8 ...36
Figure 4.26 Solution Plot for Case 9: q=2/3..37
Figure 4.27 Solution Plot for Case 9: q=0.1..37
Figure 4.28 Permeability Discontinuities in the Domain..38
Figure 4.29 Numerical Solution Plots for Case 10..39
Figure 4.30 Pressure Contour Plots for Case 10..39
Figure 4.31 Discontinuous Permeability Field for Case 11...40
Figure 4.32 Domain Geometry and Aligned Mesh for Case 11..40
Figure 4.33 Numerical Solution Plots for Case 11..41
Figure 4.34 Contour Plots for Pressure in the domain for Case 11...41

LIST OF TABLES

Table 4.1 Convergence rates for Case 3...25

Table 4.2 L2 Norm and Maximum Norm for Pressure for Case 4...26

Table 4.3 Comparison of L2 norms for pressure for aligned and non-aligned unstructured
grids..35

Table 4.4 Comparison of Maximum norms for pressure for aligned and non-aligned
unstructured grids...35

LIST OF SYMBOLS

hv Discrete Darcy velocity
Ω Domain
∂Ω Domain boundary
F Flux
q Flux continuity parameter
Q Forcing term or Flow rate
T General tensor defined via the Piola transform
∇ Gradient operator
J Jacobian

AdL Outward normal vector to edge containing point A
K Permeability tensor
φ Pressure
(,)ξ η Transform space coordinates

LIST OF ABBREVIATIONS
FDM Finite Difference Method

FEM Finite Element Method

FPS Full Pressure Support

FVM Finite Volume Method

MFEM Mixed Finite Element Method

TPS Triangular Pressure Support

Summary

With new petroleum reservoirs becoming rarer in the past few decades, the necessity to

extract oil from the existing ones more efficiently has never before been more important. This

work introduces the reader to the basic concepts of reservoirs and summarises the currently

existing numerical techniques in reservoir modelling process that were researched during the

project. The existing discretization techniques for modelling Darcy flow in porous media

were researched extensively leading up to the most recent advancements and suggested

techniques in this field. The topic in interest, that is, utilising cell centred finite volume

discretization of the reservoir, is then taken up and explained in depth. The advantages and

disadvantages of this scheme are critically evaluated in this thesis.

This work concentrates on development of a MATLAB application code for the physical

space formulation of flux-continuous, full tensor finite volume schemes on unstructured cell-

centered triangular grids. The results, typically convergence rates, show a close conformance

with the expected values. The examples highlighted in this report have been chosen so for

their specific types and actual application similarity. The results obtained show that the

scheme works best when the symmetric approximation with the flux continuity parameter

q=2/3 is used as opposed to other non-symmetric approximations (q≠2/3, for e.g. q=1).

Comparing the L2 norms of pressure obtained for grids completely aligned with L2 norms for

pressure obtained for grids non-aligned to the permeability discontinuities in the domain, it is

seen that the aligned grids give a more accurate representation of the reservoir, hence

confirming the need for boundary aligned grids. Evaluation of a strongly discontinuous full

tensor field with the presence of a source or a sink in the domain is shown to be most

accurate when q=2/3 for the scheme as opposed to other non-symmetric approximations.

Scope of this project is limited to the triangular pressure support scheme (TPS). Further work

can be done by developing the MATLAB application code for full pressure support scheme

(FPS) using the currently developed TPS code. The developed code can also be combined

with the existing cell-vertex based application code developed in FORTRAN [67] to create a

simple application code for a hybrid gridding method which is currently showing promise in

the field of reservoir simulation.

1

Chapter 1 Introduction

In nature some of the common porous media one encounters are the rocks, biological tissues

etc. Porous media can be simply defined as a solid media with an interconnected network of

pores which are filled with fluid (gaseous or liquid). The ability of porous media to contain

fluid is often exploited in nature, for example, the living creature Sponge, which mainly

depends on efficient cross flow of water through its body, maximises the efficiency of water

flow using porous body structure. Also, fossil fuels are found in porous rocks buried deep

within the earth. It is of economic importance to understand the flow of fluid through the

pores of a solid material for a variety of reasons such as for developing oil recovery

strategies, assessment of aquifer remediation strategies and carbon sequestration strategies.

This research work concentrates on the science of flow in porous media with specific

application to petroleum reservoirs. This chapter introduces the reader to the physical aspects

of petroleum reservoirs and also gives a brief introduction to reservoir modelling and its

objectives.

1.1 Petroleum Reservoirs

Formation

Petroleum reservoirs are hydrocarbon pools, located about 1,000 to 30,000 feet beneath the

earth’s surface, in porous rock structures. They may extend over hundreds of kilometres and

vary in its composition of the rock, type of fuel content etc. The formation of these reservoirs

can be succinctly told to be as a result of deep burial of plankton and algae matter under sand

and mud followed by pressure cooking and hydrocarbon migration from the source to the

reservoir rock and finally being trapped by impermeable rock. Figure 1.1 shows the typical

structure of a reservoir.

The structure shown clearly depicts the reservoir abutting a salt dome, which has trapped a

layer of oil and natural gas between itself and nonporous rock. A simplified outlook of the

same is depicted in figure 1.2. The lower layer is usually the source rock rich in

hydrocarbons. The oil which has migrated and filled the porous rock over this layer forms the

oil reservoir. The uppermost part of this layer contains the lesser dense natural gas. This layer

is topped by an impervious rock which traps the oil in its porous reservoir.

2

Impermeable Rock (Trap)

Surface Rock/Sand/Water

Natural Gas (Porous Rock)

Oil Reservoir (Porous Rock)

Hydrocarbon rich source rock

l
Figure 1.1 A sample reservoir physical
model*

Because they have no place to expand, the gas and cru

trapped under the impervious rock.

Exploration

Search for petroleum reservoirs, by geologists, is do

methods to confirm the presence of the reservoir. Mainly

maps of sub-surface rock layers which can be distingu

extensive surface and sub-surface surveys geologists can

high probability of reservoir existence. Once this is

physically check for the presence of oil at the region. Th

confirming the true nature of the sub-surface features and

Primary Production

Since the oil and natural gas trapped under the impermea

a well bore is drilled into the reservoir porous rock, the

low-pressure sink created by the well bore and will s

surface. This process continues on until the pressure diff

Figure 1.2 Simplified reservoir mode
de oil are under high pressure when

ne by using a number of different

, seismic surveys are used to develop

ished by their density difference. By

 localise the regions where there is a

done, exploratory wells are dug to

e exploratory wells dug also helps in

 quality of the fuel present etc [7].

ble rock is already pressurised, when

 oil and natural gas expands into the

teadily move upwards to the earth’s

erential exists.
*Source:http://www.emt-india.net/process/petrochemical/Petroleum.htm
3

Enhanced Oil Recovery

Once the pressure differential in the reservoir ceases to support the flow of the oil through the

well bore to the surface, water or steam is injected into the reservoir to simultaneously,

maintain the pressure differential by increasing the reservoir pressure and also to displace the

oil and in case of steam, it further reduces the viscosity of oil favourably.

1.2 Reservoir Modelling

“Reservoir modelling involves the construction of a computer model of a petroleum

reservoir, for the purposes of improving estimation of reserves and making decisions

regarding the development of the field. A reservoir model represents the physical space of the

reservoir by an array of discrete cells, delineated by a grid which may be regular or

irregular.” [60]

Reservoir modelling maybe done during the exploration for providing geological description

of the reservoir prior to the production start and again during the production to evaluate flow

properties of the oil within the reservoir. The process of reservoir modelling to determine the

fuel flow properties within the porous media of the reservoir using numerical methods is

specifically termed as reservoir simulation.

Advantages and Disadvantages of Reservoir Simulation

Reservoir simulation possesses the following apparent advantages;

• Simple and complex problems that otherwise cannot be solved can be easily solved.

• Reduces the overall exploration and reservoir management costs.

• Helps in deciding the optimum positioning of wells.

• Helps in analysing the effect of changed variables over the production period.

• Ease of updating the input variables when changes are found during actual production

process helps in real-time production scheduling [13].

Cost of study, time required to do the study and the amount of input data required are the

main disadvantages of reservoir simulation.

A typical reservoir simulation study consists of the following major steps [43]:

• Problem definition – reservoir performance problem and associated operating

problem are to be defined clearly.

4

• Data review – data needed to construct the model must be reviewed and reorganised

once they are collected.

• Data acquisition – continuous collection and updating of required data.

• Selection of approach – selecting the appropriate simulator for the defined problem.

• Reservoir description and model design – describing the region of reservoir to be

modelled based on the study objective and designing the model.

• Programming support – editing the simulator program as per specific requirements

and analysis of the obtained results.

• History matching – validating the obtained results by comparing it with historical

production, injection data and actual reservoir performance.

• Prediction – predicting the future performance of the field.

• Reporting – assembling results and conclusion in a report.

Reservoir simulation can be tailored to each need, budget time frame etc. It is an important

tool in efficient oil recovery and reservoir management now.

1.3 MATLAB

MATLAB is a high-level computer language for scientific computing and data visualization

built around an interactive programming environment [37]. MATLAB was created in the late

1970s by Cleve Moler and is currently developed and sold by The MathWorks which was

founded in 1984. In academia, MATLAB has gradually taken over most of the scientific

programming work with its interactive easy to use features. It allows both "programming in

the small" to rapidly create quick and dirty throw-away programs, and "programming in the

large" to create large and complex application programs [42].

 MATLAB, being an interactive tool, allows users to debug the codes faster and lets the user

concentrate on the principles being coded rather than the code programming. MATLAB

allows users to call predefined functions to carry out a number of tasks, for e.g., MATLAB

allows users to access the software libraries LINPACK and EISPACK that are written in

FORTRAN for numerical computation. Another distinctive advantage of MATLAB is that

since all numerical objects are treated as double-precision arrays, there is no need to declare

data types and carry out type conversions [32]. MATLAB not only provides the user with a

number of solvers, for e.g. fixed-step, variable-step, continuous, discrete etc, it also provides

users with a number of graphical output options.

5

Syntax of MATLAB is quite similar to FORTRAN. In fact, MATLAB allows users to run the

codes written C and FORTRAN within its environment. This feature is often useful in

developing on already written codes in FORTRAN or C using MATLAB.MATLAB also

possesses the ability to carry out symbolic computation using the kernel of Maple.

The user stories in the MATLAB official product site shows an indication of how MATLAB

is being gradually accepted in and used in various industries as well. It is being widely

recognised for its easy interface and time saving features. Reservoir Modelling is also being

carried out using MATLAB now [57].

1.4 Scope of Work

The objective of this research work is to understand the current discretization techniques for

modelling Darcy flow in porous media and to develop a code to investigate the boundary

aligned grid generation. The aim is to investigate and extend the current range of existing

methods to more general subsurface reservoir features such as faults and fractures using cell-

centered finite volume formulation.

The programming language used to code the boundary aligned scheme is MATLAB. The

scheme coded for is triangular pressure support (TPS), physical space formulation of flux

continuous full-tensor finite volume scheme on unstructured cell-centered triangular grids. A

number of application examples have been solved. The results obtained have been compared

with the sub-cell tensor formulation for cell centered finite volume scheme as well as cell

vertex based TPS schemes found in [16], [19], [67].

1.5 Organisation of the Report

Chapter 2 gives an overview of the existing research work on numerical reservoir simulation,

tracing it through its history to the most recent developments. The different numerical

methods employed in Reservoir simulation are also briefly discussed in Chapter 2. Chapter 3

gives a brief mathematical description of the problem as well the fundamentals of grid

definition. Chapter 4 focuses on the Physical Space formulation of TPS cell centered scheme

on unstructured triangular grids. Description of the scheme, simple application code

algorithm and computational examples with results are presented in this chapter. Chapter 5

summarises the work done in this research giving concluding remarks and also outlines the

future scope of work. The application codes created are presented in the Appendix.

6

Chapter 2 Literature Review and Overview of Current

Discretization Methods
2.1 Literature review of reservoir modelling methods

The potential of numerical reservoir simulation was recognised in the late 1940’s and early

1950’s by a number of companies. After the early research and development, crude, but

useful simulators were available by 1950’s [43]. Reliability of the reservoir simulation is an

important aspect in its continued and developing use within the petroleum industry. The focus

has forever been on developing more accurate and efficient forms of numerical simulation.

When it comes to large-scale real life reservoir modelling it is necessary to ensure that the

simulator used is cost effective for its objective as well as produce highly accurate results.

The partial differential equations that describe fluid flow in a reservoir cannot be solved

analytically hence we use the reservoir simulator to solve these equations numerically. In

order to carry out numerical evaluation of these partial differential equations, it is necessary

to consider the reservoir region as a composition of discrete volume elements. The precision

with which the reservoir can be described in a model and the accuracy with which the flow of

reservoirs can be calculated will depend on the number and type of these discrete volume

elements. [43], [24].

The faults and fractures often present in a reservoir are difficult to model using the uniform

structured grids. Discretization of a region containing internal fractures (constraints) or

sudden large variations in permeability etc, using uniform structured grids might lead to

variation of rock properties within each element, which will lead to poorer accuracy. It is

recognised that the discretization of the field requires some organisation for the numerical

solution thereon to be efficient, i.e., it must be possible to readily identify the cells

neighbouring the computation sites, also it must conform to the boundaries of the region such

that the boundary conditions are accurately represented.[59]

Research over the years [1], [2], [14], [28], [30], [31] has shown it beneficial to use

unstructured grids for treating discontinuous and anisotropic permeability fields. Finite

volume schemes such as control volume distributed (CVD) and multi-point flux

approximation (MPFA) [16], [15] have gained popularity in recent years. The main focus of

this study, i.e., symmetric positive definite (SPD) flux continuous, full tensor, finite volume

7

schemes on unstructured cell-centered triangular girds is explained in detail in [19]. The

paper details the triangular pressure support scheme for general unstructured grids in 2D for

both physical space and sub-cell transform space formulation. The cell centered TPS scheme

on 2D quadrilateral grids for full tensor pressure equation is discussed in [17]. The sample

application runs to obtain convergence rates have been based on the examples from [17],

[16], [19] and [67].

Whereas the TPS schemes are only point-wise continuous in pressure and flux, the need for

pressure and flux continuity over full control volume sub-faces is realised using the Full

Pressure Support (FPS) scheme. The family of full pressure support scheme was first

explained in detail in [17]. These schemes have full pressure continuity imposed across

control-volume faces, in contrast to the earlier families of flux-continuous schemes with

point-wise continuity in pressure and flux.

This study focuses on the physical space formulation of the triangular pressure support finite

volume scheme on cell-centered, unstructured triangular grids. The physical space

formulation was developed by Edwards et al. [19] as a member of the sub-cell transform

space family of schemes.

2.2 Numerical Discretization Methods

Numerical discretization methods refer to the methods adopted to solve complex continuous

mathematical problems by creating discrete models of the problem and generating a system

of algebraic equations which are solved to obtain the solution for the initially considered

complex problem. There are a number of ways in which the discretization of the continuous

model can be. Based on the differences in the discretization the different types of numerical

analysis are:

2.2.1 Finite Difference Method

The finite difference method (FDM) was first developed by A. Thom in the 1920s under the

title “the method of square” to solve nonlinear hydrodynamic equations [58]. FDM involves,

dividing the problem domain into grids containing nodes and approximating the given

differential equation by its finite difference equivalence at grid points. The difference

equations so obtained over the domain is then subjected to the prescribed boundary

conditions and/or initial conditions and solved to obtain the approximate solution over the

8

domain. Taylor series expansions are used to derive the finite difference equations for

approximating the derivatives [25]. Whereas FDM is simple and effective as well as easy to

derive, it is also limited to structured meshes.

Though FDM has been used widely in conventional reservoir simulation [51], [23], [53] its

inability to accurately solve for irregular boundaries and internal constraints [39] is a major

drawback since reservoir simulation usually consists of such complexities.

2.2.2 Finite Element Method (FEM)

Finite Element Method involves dividing the problem domain into a number of small, simple

elements containing nodes at the connecting points between these defined elements. A field

quantity is then interpolated over each element, i.e. piecewise polynomial interpolation is

carried out. At the nodes, the adjacent elements share the degree of freedom and the field

quantity thus becomes interpolated over the entire structure in piecewise fashion. This results

in a set of simultaneous algebraic equations at the nodes which can be solved to obtain the

unknown variables. Since the early 1960s, engineers used the method for approximate

solutions of problems in stress analysis, fluid flow, heat transfer, and other areas. The most

widely used weighted residual for the finite element method is the Galerkin Method.

FEM possesses a number of advantages over the FDM. It can readily handle the complex

geometries and restraints as well as complex loading. FEM, for these reasons began to be

widely used in reservoir simulation [41], [9], [26], [68]. Unfortunately, standard FEM lacks

local flux continuity which is essential in reservoir simulation due to sudden changes in rock

properties [67], [40]. Though still widely used in reservoir simulation, research focus is

gradually being shifted to mixed finite element method and finite volume methods due to

their ability to describe the reservoir model more accurately.

2.2.3 Mixed Finite Element Method (MFEM)

Finite Element Methods in which two spaces are used to approximate two different variables

are called the mixed finite element methods [4]. In case of flow in porous media, the two

variables will be pressure and velocity. In the classical Finite element method only potential

is taken as the primary variable and velocity is obtained via a post-processing procedure

using an approximation of Darcy's Law. This direct approach leads to lower-order

approximations for velocity compared to potential and, additionally, the corresponding

balance equation is satisfied in an extremely weak sense [12].

9

Mixed finite element methods while having the property to simultaneously evaluate both

pressure and velocity, also possesses the advantages of the classical finite element methods in

complex geometry description. Mixed finite element methods have found use in solving

Darcy flow, i.e., use in reservoir simulation in the recent years [9], [10]. Extensive research

work, [15], [26], [41], [45], has been carried out to adapt the favourable properties of this

method to provide better simulation models.

2.2.4 Finite Volume Method (FVM)

The finite volume method is a numerical method for solving partial differential equations that

calculates the values of the conserved variables averaged across a volume. The finite volume

method is a discretization method which is well suited for the numerical simulation of various

types (elliptic, parabolic or hyperbolic, for instance) of conservation laws; it has been

extensively used in several engineering fields, such as fluid mechanics, heat and mass

transfer or petroleum engineering [54].FVM can easily be used for unstructured meshes and

hence description of geometry even in complex cases does not pose a difficulty. FVM is a

locally conservative method. The numerical flux is conserved from one discretization cell to

its neighbour. The finite volume method is locally conservative because it is based on a

“balance” approach: a local balance is written on each discretization cell which is often called

“control volume”; by the divergence formula, an integral formulation of the fluxes over the

boundary of the control volume is then obtained. The fluxes on the boundary are discretized

with respect to the discrete unknowns [54].

The FVM, which returns to the balance equation form of the equations, where one level of

spatial derivatives is removed, is the method of choice; always for the pressure equation and

nearly always for the saturation equation. Commercial reservoir simulators are, with the

exception of streamline simulators, entirely based on the finite volume method [34].

Compared to the MFEM, FVM is computationally cheaper [67]. FVM has been developed in

detail over the years considering its definite advantages in reservoir simulation over other

methods, for e.g., [8], [27], [66], [61], [22], [39], [55] are some of the work which helped

develop and support the current FVM formulation researched in this report.

10

Chapter 3 Problem Definition and Fundamentals of Grid

Definition

3.1 Introduction

The ability to predict the behaviour of the reservoirs depends on how well the flow

characteristics of the fluids in the reservoir are defined. Basic equations of flow in porous

media for single phase flow and a brief overview of concepts like permeability, flow potential

etc as well as the fundamentals of grid types are detailed in this chapter. This chapter gives a

brief description of the pressure equation formulation used in the TPS physical space

formulation.

3.2 Flow in Porous Media

As described in Chapter 1, porous media is a solid media with an interconnected network of

pores which are filled with fluid. The measure of the ability of the porous media to transmit

fluids is called permeability. The flow of fluid in a porous medium is defined by the Darcy’s

Law [3]. Darcy’s Law gives a constitutive equation determined experimentally by Henry

Darcy (1856) for flow of water through beds of sand. It is defined as:

kQ
µ

P= − ∇ (3.1)

where, is the permeability, k µ is the fluid viscosity and P∇ is the pressure gradient vector.

 is the discharge volume per unit area and has dimensions of velocity (L/T). This is the

fundamental equation used to solve for pressure in a reservoir. Equation (3.1) holds true for

homogenous, single-phase fluids having laminar flow.

Q

The primary objective of simulation is to numerically determine fluid pressure and velocity

distribution in the reservoir. Therefore the problem is to find the pressure φ satisfying

 ()K d Mφ τ
Ω

−∇ ∇ =∫ (3.2)

where, Ω : Domain in consideration

 M : Specified flow rate

11

 : Permeability tensor 11 12

21 22

k k
K

k k
⎡ ⎤

= ⎢
⎣ ⎦

⎥

 : ∇ ,
x y

⎛ ⎞∂ ∂
⎜ ⎟∂ ∂⎝ ⎠

The permeability tensor K is a symmetric full tensor in general (i.e.). Since the

pressure equation considered is elliptic, it follows that .

12 21k k=

2
12 11 22k k k≤

We can define the same problem in a general curvilinear coordinate system that is defined

with respect to a uniform dimensionless transform space coordinates (,)ξ η . Equation (3.2)

then becomes

 ()T d Mφ τ
Ω

− ∇ ∇ =∫ % % % (3.3)

where, is the arbitrary control volume comprised of surfaces that are tangent to

constant

Ω

(,)ξ η . Here, ,
ξ η

⎛ ⎞∂ ∂
∇ = ⎜ ∂ ∂⎝ ⎠
% ⎟and is the general tensor. T is a function of both

geometry and Cartesian permeability tensors and its components are given by [16],

T

()
()
()
()

2 2
11 11 22 12 21

12 12 21 11 22

21 12 21 11 22

2 2
22 11 22 12 21

() /

()

()

() /

T k y k x k k x y J

T k x y k x y k y y k x x

T k y x k y x k y y k x x J

T k y k x k k x y J

η η η η

ξ η η ξ ξ η ξ η

ξ η η ξ ξ η ξ η

ξ ξ ξ ξ

= + − +

= + − +

= + − +

= + − +

/

/

J
 (3.4)

where, J x y y xξ η ξ= − η is the determinant of the Jacobian. Resolving the x, y components of

velocity along the unit normals to the curvilinear coordinates (,)ξ η gives rise to the general

tensor flux components

()
()

11 12

21 22

,

,

F T T d

G T T d

ξ η

ξ η

φ φ η

φ φ ξ

= − +

= − +

∫
∫

 (3.5)

Thus the equation (3.3) can be written as

 ()F G d d Mξ η ξ η
Ω

∂ + ∂ =∫ %% (3.6)

12

where, 11 12 21 22,F T T G T Tξ η ξ ηφ φ φ= + = +%% φ

T= T≤

.

WhenT , it is seen that T T ensuring that (3.2) is elliptic in transform space. 12 21
2

12 11 22

The pressure φ in equation (3.2) is solved subject to certain boundary conditions. On domain

boundary and solid walls, Neumann boundary conditions specifies zero flux condition

with ()

∂Ω

ˆ 0K nφ∇ = , where is the unit outward normal vector. In at least one location within

the domain, Dirichlet boundary condition specifies pressure,

n̂

cφ φ= (sub-script c-denotes

constant value).

3.3 Fundamentals of Grid Definition

As mentioned earlier it is important in reservoir simulation to choose the correct

discretization method to ensure accuracy and credibility of the numerical results. In finite

volume, the properties of the rock can be defined either at the cell centres or the cell vertices,

which gives rise to the two types of grids, namely, cell-centered scheme (Block Centered

Geometry) and cell vertex scheme (Corner Point Geometry) respectively.

V2

C1

V3 V1

Figure 3.1 A Sample Triangular
Element for FVM description.

Consider Figure (3.1). In cell-centered scheme the properties of rock will be defined at the

cell centroid (or the circumcenter) C1 of the triangular element i.e., in the cell centred

approach the element mesh is used as a control volume and the centre of control volumes are

considered as computational nodes. On the other hand, in cell vertex scheme, the rock

properties will be defined about the 3 vertices of the triangular element, namely, V1, V2 and

V3. i.e., the control volume is formed around each of the vertices or nodes by connecting the

midpoints of the element faces and the centres of the elements and Shape functions are used

to describe the variation of a variable within an element. Cell vertex scheme has certain

obvious advantages over the cell centered scheme such as lesser number of unknowns in

comparison. Cell-centered scheme is convenient compared to vertex-centered methods, when

13

considering discontinuous media properties combined with a quadrilateral or triangular

primary mesh. In this case it is easy to align the grid edges, and hence, the control-volume

boundaries with media discontinuities [29].

A number of schemes have been developed on the cell vertex based finite volume

formulation, for e.g. [66], [67], [17]. Since, in this project, only cell centered scheme is used,

it will be described in detail further using a sample 3 element mesh (Figure 3.2).

K1

K2

K3

Figure 3.2 Triangular 3 element sample mesh

Consider the figure 3.2. This sample mesh can be simply described as follows:

Cluster Vertex: V2, Cluster Elements: 1, 2 & 3,

Element 1: V1-V2-V3, Element 2: V4-V2-V1, Element 3: V3-V2-V4

Sub-cell 1: 1-A-V2-C, Sub-cell 2: 2-B-V2-A, Sub-cell 3: 3-C-V2-B.

The different shades of colour represent the control volumes over which the rock properties

are constant. The grid points are considered to be the cell centres and the values for pressures

are to be found at these points. Either the centroid or the circumcenter of the triangle can be

considered as the cell centres. When the cell centres of each element in the cluster are

connected to the mid-points of the cell edges containing the cluster vertex, we obtain a

polygon encompassing the cluster vertex which is the dual cell (for e.g. from figure 3.2, dual

cell is the domain enclosed by 1-A-2-B-3-C-1). The cell edges between neighbouring

elements in a cluster are called interfaces (for e.g. V1-V2, V3-V2 and V4-V2 from figure 3.2).

These interfaces act as boundaries between varying properties assigned to each element. The

edge points (for e.g. A, B and C in figure 3.2) divide the interfaces into two segments called

sub-interfaces. Each sub-cell is separated from other sub-cells by these sub-interfaces (e.g. A-

V2, B-V2, and C-V2.). The sub-cells when being defined can have the points lying on the cell

edges at either midpoints or at any other point between the cluster vertex and the cell edge

14

midpoint. This option of having varying regions of sub-cell based on the point where the

interface pressures or flux continuity are assumed to be leads to a family of schemes with

Quadrature point q varying from 0 to 1. q = 0 being the cluster vertex and q = 1 being the cell

edge midpoint.

When a cluster is considered, local flux continuity and pressure continuity needs to be

defined. In case of TPS, pressure continuity is defined by assuming pressures at the right and

left edge continuity points in the sub-cell. This is further explained in Chapter 4. In case of

the recently developed Full Pressure Support scheme, pressure continuity is defined using

pressures at the edge midpoints and an additional interface pressure is assigned to the cluster

vertex [66].

In short it can be summarised that, in this research work, only unstructured triangular grids

are used. The finite volume formulation adopted is the cell-centered formulation. Fluid in the

reservoir is assumed to be single-phase and homogenous and obeying Darcy’s Law.

15

Chapter 4 Triangular Pressure Support Scheme

4.1 Introduction

In the previous chapter, the basic problem to be solved in reservoir simulation has been

defined. It is our aim to evaluate numerically the pressure in the reservoir. We have assumed

the fluid to be in single-phase within the reservoir. In order to evaluate the pressure we thus

have to solve the pressure equation that results from the Darcy’s law. In this chapter, a cell-

centered full tensor finite volume method of solving for the pressure is explained in detail and

a simple outline of the MATLAB code algorithm created is presented here along with the

computational examples and results.

4.2 Triangular Pressure Support (TPS) Formulation

In this scheme, for every cluster, the pressure within each triangular element in the cluster is

considered to vary linearly over a triangular region within each sub-cell. It is necessary that

for every sub-interface in the cluster, pressure continuity and flux continuity normal to the

sub-interface be present. In order to ensure pressure continuity, interface pressures are

introduced on each sub-interface (Figure 4.1).

Figure 4.1 Interface pressures are indicated by
squares and can be at any point between the cluster
vertex and the cell edge midpoint. In this case,
interface pressures are shown to be at points A, B
and C.

The interface pressures are denoted as , ,A B Cφ φ φ in the figure 4.1. It is important to note that

the interface pressures may be discontinuous when passing along a triangle edge from one

cluster to neighbouring cluster, but they are always continuous in the normal direction by

construction [19].

The shaded regions in Figure 4.1 depict the regions in each sub-cell where the pressure

assumes a local linear variation. These triangles, formed within each sub-cell, over which

16

pressure is linearly varying is called the pressure sub-triangles (e.g. 1-A-C, 2-B-A, 3-C-B).

Pressure sub-triangles are essentially defined in each sub-cell with the cell grid point joined

to the left and right triangle edge continuity points.

Local flux continuity is imposed across each sub-interface at each continuity point (e.g. A, B,

C from figure 4.1). For a cluster i containing Ni elements, the number of interface pressures

will be Ni (if cluster vertex does not lie on the boundary, else if the cluster vertex lies on the

boundary an additional interface pressure will exist.) and the number of cell centre pressures

will be Ni (irrespective of the position of the cluster vertex in the mesh). These Ni interface

pressures within the dual cell can be expressed in terms of the Ni cell centre pressures using

the corresponding Ni flux continuity conditions imposed on each sub-interface locally.

Once the interface pressures are assumed, at each sub-interface, flux continuity equations are

written in terms of the interface pressures and the cell-centre pressures. Taking all the flux

continuity equations in the cluster and solving for interface pressures, the interface pressures

can be written in terms of the cell centre pressures in the cluster. The discrete flux F across

each cell sub-interface maybe then written as a linear combination of the cell centre pressure

values

i

j j
j N

F t
∈

= − Φ∑ (4.1)

The coefficients jt are called transmissibilities associated with the flux interface. Since the

flux must be zero when jΦ is constant for all ij N∈ , all consistent discretization must satisfy

the condition . 0
i

i
j N

t
∈

=∑

In the general curvilinear coordinate system, equation (3.3), after application of Gauss

divergence theorem becomes,

 () tT n d M
δ

φ
Ω

− ∇ Γ =∫
r% (4.2)

where, is the transform space normal vector and δΩ is the outer boundary of the cell in

transform space. Thus, the discrete sub-interface flux can be defined as

tnr

2

,
1

ji i j
j

F T ξφ
=

id= − ∑∫ Γ (4.3)

17

where, φ is the local piecewise linear approximation over each sub-triangle.

1 2
,ξ ξ ξ ηφ φ φ φ= = are the local potential derivatives which are approximated by local potential

differences between the interface pressures and cell-centered pressures.

Considering a sample sub-triangle (1, A, C) from figure 4.1,

 1

1

A

C

ξ

η

φ φ φ
φ φ φ

−⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟−⎝⎝ ⎠ ⎠

1C

⎞
⎟− ⎠

 (4.4)

 (4.5)

 1 1

1

,A A

C

x yx x y y
x yx x y y
ξ ξ

η η

− −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜−⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠

In Equation (4.4) and (4.5) we see that coordinates of the continuity points A and C are

necessary to be found. The position of the continuity points depends on the Quadrature q

briefly mentioned earlier. For TPS, q can vary between 1 and 0, with q =1 being the position

at the edge midpoint and q = 0 being the cluster vertex. In practice, q is never equal to 0,

therefore, 0<q≤1. Thus we can find the coordinates of the continuity points which are

dependent on the parameter q as,

1 2

2

1 2

2

()
(1) ()

2
()

(1) ()
2

v v
A v

v v
A v

x x
x q x q

y y
y q y q

+
= − +

+
= − +

 (4.6)

Discrete Darcy velocity is given by

 hv K hφ= − ∇ (4.7)

Using equations (4.4) and (4.5), equation (4.7) becomes,

111 12

121 22

1 A
h

C

y yk k
v

x xk k J
η ξ

η ξ

φ φ
φ φ

− −⎛ ⎞ ⎛ ⎞⎡ ⎤
= − ⎜ ⎟ ⎜ ⎟⎢ ⎥ − −⎣ ⎦ ⎝⎝ ⎠ ⎠

 11 12 11 12

21 22 21 22

() (1
() (h

k y k x k y k x
v

k y k x k y k xJ
ξ η η η ξ ξ

ξ η η η ξ ξ

φ φ
φ φ

− + + −⎡ ⎤
= ⎢ ⎥− + + −⎣ ⎦

)
) (4.8)

The normal flux at the left hand side of sub-cell edge A-V2 is given by,

18

 11 12 11 12 2 11

21 22 21 22 2 1

() ()1 1.
() () (2

v v
A h A

v v

k y k x k y k x y y
F v dL

k y k x k y k x x xJ
ξ η η η ξ ξ

ξ η η η ξ ξ

φ φ
φ φ

− + + − −⎡ ⎤
)

⎡ ⎤
= = ⎢ ⎥ ⎢ ⎥− + + − − −⎣ ⎦⎣ ⎦ (4.9)

Equation (4.9) can be expanded to obtain the 1
AF in terms of ,ξ ηφ φ and their coefficients as,

1

11 2 1 12 2 1 21 2 1 2 1 22

11 2 1 12 2 1 21 2 1 22 2 1

1 { (() () () ()
2

(() () () ())}.

A v v v v v v v

v v v v v v v v

F k y y y k x y y k y x x x x k x
J

k y y y k x y y k y x x k x x x

)vξ η η η

η ξ ξ ξ ξ

φ

φ

= − − + − + − − −

+ − − − − − + −

η

 (4.10)

In terms of general tensor T, the same flux is expressed as,

11 1 1

11 12(A)
A

F T Tξ ηφ φ= − +
 (4.11)

Equating equations (4.10) and (4.11) we obtain values for & . Similarly evaluating the

normal flux on sub-cell edge V

1
11T 1

12T

2-C, we can obtain the values of & . Therefore, for TPS

scheme, the physical space approximation of elements of the general tensor T is given by,

1
21T 2

22T

1
11 11 2 1 22 2 1 12 2 1 21 2 1

1
12 11 2 1 22 2 1 12 2 1 21 2 1

1
21 11 2 3 22 2 3 12 2 3 21 2 3

1
22 11 2 3 22

1 ()
2
1 ()

2
1 ()

2
1 (

2

v v v v v v v v

v v v v v v v v

v v v v v v v v

v v

T k y y k x x k x y k y x
J

T k y y k x x k x y k y x
J

T k y y k x x k x y k y x
J

T k y y k x
J

η η η η

ξ ξ ξ ξ

η η η η

ξ

= ∆ + ∆ − ∆ − ∆

= − ∆ − ∆ + ∆ + ∆

= − ∆ + ∆ − ∆ − ∆

= − − ∆ − 2 3 12 2 3 21 2 3)v v v v v vx k x y k y xξ ξ ξ∆ + ∆ + ∆
 (4.12)

Using these, the flux continuity equations for the sample 3 cell cluster can be written as;

 (4.13)

1 1 2 2
11 1 12 1 12 2 22 2

2 2 3 3
11 2 12 2 12 3 22 3

3 3 1 1
11 3 12 3 12 1 22 1

()

()

()

A A C B

B B A C

C C B A

F T T T T

F T T T T

F T T T T

= − Φ + Φ = Φ + Φ

= − Φ + Φ = Φ + Φ

= − Φ + Φ = Φ + Φ

A

B

C

1where, 1A Aφ φΦ = − , and so on. AF gives the flux leaving sub-cell 1 at continuity point A as

well as the flux entering the sub-cell 2 at continuity point A.

Equation (4.13) contains 3 interface pressures [], ,A B Cφ φ φ which can be written in terms of

the cell centre pressures[]1 2 3, ,φ φ φ . Equation (4.13) basically can be written as,

19

 (4.14)

1 1 2 2
11 1 12 1 12 2 22 2

2 2 3 3
11 2 12 2 12 3 22 3

3 3 1 1
11 3 12 3 12 1 22 1

() (

() (

() (

A C B A

B A C B

C B A C

T T T T

T T T T

T T T T

− Φ + Φ − Φ + Φ =

− Φ + Φ − Φ + Φ =

− Φ + Φ − Φ + Φ =

) 0

) 0

) 0

Equations (4.14) contain 3 interface pressures which can now be considered as the unknowns

and solved using the 3 equations to obtain the interface pressures in terms of cell centre

pressures. This will give the discrete flux at each continuity point in terms of the cell-centre

pressure values in the cluster. Each of these local fluxes is then globally assembled to form

the global discrete pressure equation.

 A LΦ = (4.15)

where 1 2[, ,.....]nelemφ φ φΦ = , nelem is the total number of elements in the mesh. A is the

coefficient matrix assembled from flux equations from each cluster. L is the load vector

which is obtained by multiplying the elemental areas with the flow rates specified at the grid

points.

It is to be noted that when the value of parameter q is taken as 2
3

, i.e. when continuity point is

taken as 2
3

of the half edge measured from cluster vertex, in the general tensor T (Equation

(4.12), we find that . When q=1
12 21T T= 1 2

3
, the scheme is said to be the symmetric physical

space scheme. Other values of q, with 0<q≤1, leads to non symmetric general tensor T within

each sub-cell. This further result in a non-symmetric global system matrix. However, the

resulting discrete matrix is still conditionally positive definite and the positive definite

condition for discrete ellipticity of the physical space scheme is now defined by [19],

 (4.16) 1 1 2 1
12 21 11 22(() / 2)T T T T+ ≤ 1

 4.3 Code Algorithm Outline

The TPS scheme described so far has been coded in MATLAB. For each and every step care

has been taken to keep the code simple by utilising many of MATLAB’s inbuilt functions

and defined variables. A simple step by step outline of the coded scheme is shown in the

following process chart;

20

The code developed is attached in the Appendix and contains extensive commentary for each

step and is self explanatory. Since MATLAB does not require variable declaration like that in

FORTRAN the code is comparatively simpler and shorter. Functions are used for certain

repetitive steps to shorten the main application console code. A number of different examples

were solved and results and convergence graphs plotted.

The Mesh files are generated in MATLAB using a Delaunay Triangulation Algorithm. For a

set P of points in a plane, triangulation DT(P) such that no point in P is inside the circum-

circle of any triangle in DT(P) is called Delaunay Triangulation. Detailed explanation of the

concept can be found in [36]. The mesh and boundary files are then written as .txt files and

read into the main code.

4.4 Computational Examples

The following examples are solved using the physical space formulation described above and

for each case, convergence rates are graphed using the log to the base of 2 of L2 norms vs.

square root of the total number of elements in the mesh. L2 norm is found as;
1/22

,

2

(())
()

i h i i
i

i
i

A
L

A

φ φ
φ

⎛ ⎞−
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑

where

,, ,i i h iA φ φ

are the area, analytical pressure solution, and

numerical pressure respectively for element i.

21

Case 1: Constant Pressure Case

Consider a square 2×2 domain. Let the permeability K and exact pressure φ be as defined

below;

1 0
0 1

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2.5φ = .

For constant pressure value evaluation it is found that the numerical result is equivalent to the

exact solution for both sub-cell space transform scheme and physical space scheme. The L2

norm for pressure is found to be around 1.4e-016. Figure 4.2 depicts the numerical solution

plot with points ‘o’ and exact solution plot with points ‘×’. It is seen coincident at all points

in the grid. This is just a test case done mainly for debugging purposes.

Figure 4.2 Case 1 Solution Plot

Case 2: Linear Pressure Case

The permeability K and exact pressure φ is taken as;

1 0
0 1

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1x yφ = + +

For linear pressure values, the numerical result obtained is equal to the exact solution with L2

norms of around 1.2e-16. This is found for all cases of the sub-cell transform and physical

space scheme. This is as expected, since, in the TPS numerical formulation, pressure is

defined linearly in the pressure sub-triangle.

22

Figure 4.3 shows the numerical (‘o’) and exact (‘×’) solution to be coinciding at all points in

a simple 48 element gird over a square [0, 1] domain.

Figure 4.3 Case 2 Solution Plot

Case 3: Discontinuous Bilinear Case

In this case, instead of having uniform permeability tensor throughout the unit square

domain, we take different permeability tensors for x≤0.5 and x>0.5 on the Cartesian grid.

This case allows us to observe the effect of internal boundary aligned cell centered triangular

grid on the numerical solution. The permeabilities and the exact pressure values are taken as;

Figure 4.4 Case 3 Solution Plot

23

1 0.5
0.5 1

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 10 20xyφ = + , for 0.5x ≤ ,

10 2
2 100

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 10.75 1.5 9 2x y xyφ = − + + , for . 0.5x >

Specified flow rate or forcing term Q can be found usingQ ()K φ= −∇ ∇ . In this case, we

obtain Q = -20 for x ≤ 0.5 and Q = -8 for x > 0.5. The maximum norm and the L2 norms of

the pressure are found. Figure 4.4 shows the numerical (‘o’) and exact (‘×’) solution of

pressure as it varies over the domain for a 346 element mesh with Quadrature point at 2/3.

The sudden change in pressure at x=0.5 is observable. The Figure 4.5 gives the convergence

for different Quadrature points. It is clear from the obtained convergence graphs that the TPS

scheme on an unstructured boundary aligned triangular grid converges at a higher rate for

finer meshes. The table 4.1 below summarises the convergence rates for different Quadrature

values. This example is taken from [67] where the convergence rate for cell vertex finite

volume formulation of TPS scheme has been found on a uniform quadrilateral mesh, the

values of which are also included in the table to compare the two schemes. The comparison

shows us the advantage of using the cell centered scheme on an unstructured mesh for

internal boundary (fractures etc) cases.

Figure 4.5 Convergence graph for Case 3

24

Table 4.1 Convergence rates for Case 3

It is clear that for cases with internal discontinuity, cell-centered finite volume formulation of

TPS scheme on an unstructured mesh gives a better convergence rate, the highest being that

of q=2/3 with 2.16 for fine meshes.

Case 4: Quadratic Pressure Case

The permeability K and exact pressure φ over the domain is taken as;

1 0
0 1

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,
2 2x yφ = +

This is a simple quadratic pressure case taken over a square domain [0, 1]. The forcing vector

is found to be -4. Figure 4.6 shows the numerical (‘o’) and exact (‘×’) solution plot on a 48

element mesh with quadrature point at 2/3. Table 4.2 gives the L2 norm and maximum norm

values for pressure for the different Quadrature point cases and figure 4.7 shows the

Flux Continuity Point

q

Coarse Unstructured

mesh (<500 elements)

Cell-Centered

Fine Unstructured mesh

(> 500 elements)

Cell-Centered

Fine Structured Mesh

(>500 elements)

Cell-Vertex [67]

0.1 1.8 1.94 1.010

2/3 1.5 2.16 0.999

1 1.4 1.74 0.984

Figure 4.6 Case 4 Solution Plot

25

convergence of the scheme for this quadratic case for different quadrature points plotted as

log2 of L2 norm vs. log2 of square root of the total number of elements in the mesh.

The convergence rate for all the 3 cases of quadrature point plotted for is similar and for all

three cases, convergence rate is seen to tend to 2 with increase in number of elements.

Figure 4.7 Convergence plot for Case 4

Table 4.2 L2 Norm and Maximum Norm for Pressure for Case 4

L2 Norm Maximum Norm Number of Elements in

Mesh q=0.1 q=2/3 q=1 q=0.1 q=2/3 q=1

768

1.34E-04 1.13E-04 9.36E-05 5.20E-04 4.68E-04

4.51E-

04

1092

1.02E-04 9.65E-05 9.11E-05 3.53E-04 3.34E-04

3.05E-

04

2148

5.69E-05 5.48E-05 5.26E-05 1.87E-04 1.62E-04

1.55E-

04

From the table 4.2 it can be concluded that for particular case of quadratic pressure function,

flux continuity point at q=1 fares better than that at q= 2/3. As the number of elements

increases (>1000), the convergence rates for q = 0.1, 2/3 and 1 is found to be 1.73, 1.67, 1.62

respectively from the convergence graph plotted (Figure 4.7).

26

Case 5: Discontinuous Quadratic Pressure Case

This case is taken from [16] where it has been solved using cell-centered quadratic mesh.

This has a piece-wise quadratically varying pressure field with a discontinuity aligned at x =

0.5. The domain considered is unit square domain [0, 1]. The permeability and exact pressure

values are taken as;

50 0
0 1

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, for 2 2
l lc x d yφ = + 0.5x < ,

1 0
0 10

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, for , where, 2 2
r r r ra b x c x d yφ = + + + 0.5x ≥

Figure 4.8 shows the numerical (‘o’) and exact (‘×’) solution of pressure as it varies over the

domain for a 346 element mesh with Quadrature point at 2/3 (Physical Space Scheme).

/ , / ,

1,
4 / ((2) 1),
(1) ,

,

/ ,

,
.

r l l r

r

r

r

r

r r r r

l r

l r

K K K K

a
f a
b f
c f

d c K K

c c
d d

αα αα ββ ββ

αα ββ

α β

α β
β

αβ

= =

=
= − +
= −
=

= −

=
=

Figure 4.8 Case 5 Solution Plot

27

Figure 4.9 Convergence graph for Case 5

From plotting the convergence graph (Figure 4.9), it is found that the trend for convergence

emerges clearly for finer mesh sizes. Convergence rates for q = 0.1, 2/3 and 1 are found to be

2.2, 1.5 and 3 respectively. Here we find that the q=1 and q=0.1 show better convergence

compared to q=2/3.

Case 6: Large Anisotropy Case

This example is taken from [16]. Like in [16], domain chosen here is unit square [0, 1]. Here,

TPS scheme is evaluated on cell centered unstructured triangular mesh for a large anisotropy

ratio problem. The permeability is taken as;

2 2

2 2

(1)
(1)
y x xy

K
xy x y

ε ε
ε ε

⎡ ⎤+ − −
= ⎢ ⎥− − +⎣ ⎦

where, 0 1ε< ≤ . 1ε = makes the problem isotropic. Degree of

anisotropy of the problem increases with decreasingε .

sin()sin()x yφ π π= is the analytical solution of pressure and the forcing vector Q is found to

be,

2 2 2

2

2 2 2

{ 2 cos() sin() () sin() sin()) (1) sin() cos()
2(1) cos() cos() (1) cos() sin() 2 sin() cos()
()sin() sin() }.

Q x x y y x x y y x y
xy x y x x y y x y

x y x y

ε π π π ε π π π ε π π π

ε π π π ε π π π ε π π π

ε π π π

= − + + − − +

− − + − − + −

+ +

28

 The computational solution has been found for ε=1, ε=0.1 and ε=0.01. For the physical space

scheme, the numerical and exact solutions are shown in Figures 4.10, 4.11 and 4.12.

Figure 4.10 Solution plot for Case 6: �=0.1,
q=2/3

Figure 4.11 Solution plot for Case 6: � =0.01,
q=2/3

Figure 4.12 Solution plot for Case 6: �=1,
q=2/3

The solution plots contain both the numerical ‘o’ and exact ‘x’ solutions. Overlapping of

these two solutions are seen in all the cases.

Figure 4.13 shows the convergence graph plotted for ε=0.1. In [16] for very fine mesh,

convergence rate for this case has been found to be around 2.03. From the results obtained

here, the convergence rates for q=0.1,0.5,2/3 and 0.95 are found to be 2.09, 2.18, 1.65 and

1.75 respectively.

29

Figure 4.13 Convergence graph for Case 6: �=0.1

Figure 4.14 Convergence graph for Case 6: �=0.01

Figure 4.14 shows the convergence graph plotted for ε=0.01, i.e. with a higher degree of

anisotropy in the problem. Whereas from figure 4.13, it is evident that the numerical solution

converges for lower degree of anisotropy, figure 4.14 shows that the numerical solution tends

to be non-convergent for the physical space scheme. The computational solution for the same

was also found to be non-convergent in case of physical space scheme in [16].

30

For the above examples, the domain geometries and meshes used are generated in

MATLAB’s interactive PDE TOOLBOX. Unit square domains were created and meshed

using the inbuilt meshing function. The meshing is carried out using a Delaunay triangulation

algorithm. The mesh size is determined from the shape of the geometry which in this case is a

unit square for all the examples solved above.

Case 7: Circular Region with Well

This example is taken from [19]. In this case, we test a circular domain with a well included.

The challenge in this case is the large difference in size of the domain and the size of the well

which in reality maybe a difference of kilometres in case of reservoir domain to a 0.1 meter

well.

Figure 4.16 Well region in Case 7

In this case the well is considered as a geometrical object with Dirichlet Boundary conditions.

A homogenous circular domain of radius R = 0.5 with a circular well with radius r = 0.001

placed at the centre of the domain is taken with permeability K;

Figure 4.15 Unstructured Triangular Grid for
Case 7

1 0
0 1

K
⎡ ⎤

= ⎢
⎣ ⎦

⎥ and pressure equation has an analytical solution ;

() log
log

w B
B

w

rr r R
R

φ φφ φ− ⎛ ⎞= +⎜ ⎟
⎝ ⎠

, where, 2 2(), 1.0,B wr x y φ φ= + = = 2.0 and is the well radius. wr

31

The Figure 4.15 shows the unstructured triangular grid used consisting of 1171 elements. The

geometry and mesh both were generated using the PDE TOOLBOX in MATLAB. Figure

4.16 shows the zoomed view of the well region around which the meshing is denser in order

to obtain better numerical results.

Figure 4.17 shows the exact solution plot for this case. It is evident that the pressure in the

domain increases from 1 at the boundaries to 2 around the well geometry. The solution plots

are for 1171 element grid shown in figure 4.15. Test runs were also done with lower number

of element meshes which shows the numerical and exact solutions to be converging for finer

meshes as expected.

Figure 4.17 Exact Solution Plot for Case 7

Figure 4.18 Numerical Solution Plot for Case 7: q=2/3

32

Figure 4.18 shows the numerical solution plot for q=2/3 for which the L2 norm for pressure is

found to be 1.42×10-4 and maximum norm of pressure 7.75×10-4. Figure 4.19 shows the

numerical solution plot for q=1 for which the L2 norm for pressure is found to be 2.12×10-4

and maximum norm of pressure 1.4×10-3. The pressure contour plot for 1171 elements and

q=1 for sub-cell transform scheme is shown in figure 4.20.

Figure 4.19 Numerical Solution Plot for Case 7: q=1

Figure 4.20 Contour Plot of Pressure for Case 7

33

Case 8: Polar Case with Cartesian Grid

This example is taken from [67], where it has been solved for FPS scheme on a uniform

quadrilateral mesh. A unit square domain is considered with the exact solution taking the

form of (,) (sin() cos())i ir r a bαφ θ αθ= + αθ . The domain is divided into 4 regions with

varying permeability tensors (Figure 4.20). The values of the permeability tensors are taken

as;

1 2 3 4

5 0 1 0 5 0 1 0
, , ,

0 5 0 1 0 5 0 1
K K K K

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Figure 4.22 Left: Unstructured triangular mesh aligned perfectly
with the permeability discontinuity in domain, Right: Mesh
unaligned with the permeability discontinuities.

1K

4K 3K

2K

Figure 4.21 Permeability in the
Domain for Case 8

The domain discontinuity shown in figure 4.21 has an internal angle
2
πθ = . Figure 4.21

shows a 470 element mesh completely aligned with the permeability discontinuities in the

domain. The constants in the analytical solution are taken as;

 1 1

2 2

3 3

4 4

=0.53544095
a = 0.44721360 & b = 1.0
a =-0.74535599 & b = 2.33333333
a = -0.94411759 & b = 0.5555556
a = -2.40170264 & b = -0.481481481

α

Figure 4.23 shows the exact solution plotted on a 470 element grid with unstructured

triangular elements aligned with the permeability field. From the exact solution plot, the

permeability discontinuities in the domain are apparent.

34

The computational solution of this problem is shown to produce expected convergence

behaviour. In this case, an effort is made to underline the importance of the alignment of the

elements with respect to the permeability discontinuities by comparing the results of L2 norm

and maximum norm for pressure obtained using an aligned unstructured grid and a non-

aligned unstructured grid both using cell-centered TPS formulation. Table 4.3 summarises the

comparison.

Table 4.3 Comparison of L2 norms for pressure for aligned and non-aligned unstructured grids

L2 Norm

Completely Aligned

Grid
Non-Aligned Grid Elements

q=0.1 q=2/3 q=1 q=0.1 q=2/3 q=1

82 0.0125 0.0099 0.0129 0.0175 0.0117 0.0128

346 0.0019 0.0043 0.0059 0.0115 0.0071 0.0077

516 0.0015 0.0037 0.0051 0.0071 0.0056 0.0064

Table 4.4 Comparison of Maximum norms for pressure for aligned and non-aligned unstructured grids

Maximum Norm

Completely Aligned Grid Non-Aligned Grid Elements

q=0.1 q=2/3 q=1 q=0.1 q=2/3 q=1

82 0.0492 0.0391 0.0509 0.0726 0.0494 0.0572

346 0.0284 0.0346 0.0491 0.0648 0.0486 0.0474

516 0.0258 0.0317 0.0449 0.0470 0.0651 0.0692

Figure 4.23 Exact Solution Plot for Case 8

35

From the results table it is evident that the L2 norms are smaller for the grid aligned to the

domain permeability discontinuities. Maximum norms are also smaller for the aligned grids

in comparison. This shows the need to use boundary (be it external or internal) aligned grids

Figure 4.24 gives the pressure contour plot for the base sub-cell sp

while solving reservoir problems to ensure better numerical results.

ace transform numerical

Figure 4.24 Contour Plot of Pressure for Case 8

Figure 4.25 Convergence Graph for Case 8

solution on a 470 element perfectly aligned mesh. The effect of variation in pressure due to

the presence of permeability discontinuities in the domain is noticeable even on this coarse

36

mesh. Figure 4.25 shows the convergence of aligned coarse mesh (< 1000 elements).

Convergence rates for q=0.1, 2/3 and 1 are found to be 2.3, 1.2 and 1.1 respectively.

Case 9: Cartesian mesh to solve highly anisotropic φ = e(xy)

In this case, the permeability tensor is taken as
750.25 432.58

0.001
432.58 250.75

K
⎡ ⎤

= ∗⎢ ⎥
⎣ ⎦

xyeφ = . The forcing vector is found to be

and the exact

pressure in the unit square domain is given by

The exact solution, ‘x’, and the numerical solution, ‘o’, plots for the case is given in figures

Case 10

2 (x*y) (x*y) y) 2 (x*y)Q=(3001/4*y *e +21629/25*e +21629/25*x +1003/4*x *e) . (x**y*e

Figure 4.26 Solution Plot for Case 9: q=2/3 Figure 4.27 Solution Plot f ase 9: q=0.1or C

4.26 and 4.27 for a 730 element mesh. For the flux continuity at q=2/3, the L2 norm is found

to be 2.8×10-3 and the maximum pressure norm 0.012. When the flux continuity parameter q

is 0.1, L2 norm is found to be 0.0112 and the maximum pressure norm 0.0475. Even for a

coarse mesh such as this, a good conformance to the exact solution is obtained for such a

highly anisotropic case.

: Strongly Discontinuous Full Tensor Field (Zigzag Field)

T from [67] where it has been solved for structured

ular case of q=1 for TPS

his computational example is sourced

quadrilateral fine meshes using FPS schemes as well for a partic

scheme. Domain considered is a unit square with a source-sink pressure combination

specified at the diagonally opposite corners of the domain. At the bottom left corner of the

domain, pressure is taken at 0.0 whereas at the top right corner, pressure is taken at 200.0.

37

External boundary values of pressure are specified as 100.0 throughout. The permeability

tensor is taken to be discontinuous in the domain (Figure 4.28).

K3

K2

K1 1/3

1/3

1/3

The permeabilities are taken as;

 K

K

⎡ ⎤

⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

The computation was carried out with 2846 elements with flux continuity point q=2/3 and

q=1 for the physical space formulation of TPS scheme. Figure 4.29 shows the numerical

ain. As expected from literature [67], for TPS scheme

Figure 4.28 Permeability
Discontinuities in the Domain

1K = ⎢ ⎥

2

3

2464.360020 + 1148.683643
+1148.683643 536.6399794

2464.360020 - 1148.683643
-1148.683643 536.6399794

2464.360020 + 1148.683643
+1148.683643 536.6399794

pressure field in the domain and figure 4.30 shows the contour plot of the numerical pressure

solution in the domain.

The numerical pressure solution plots clearly show the zigzag nature of the permeability field

affecting the pressure in the dom

employed for this example, considerable oscillations are observed.

38

Figure 4.29 Numerical Solution Plot for Case 10: Left: q=2/3, Right: q=1

Figure 4.30 Pressure Contour Plot for Case 10: Left: q=2/3, Right: q=1

When the flux continuity point is specified by q=2/3, it is seen that the numerical solution

obeys the maximum principle but the fails to satisfy the discrete maximum principle. When

q=1, spurious oscillations increase considerably and even the maximum principle is shown

not to be satisfied in this case.

39

Case 11: Square region with concentric permeability discontinuity and central source.

In this case, the domain is considered to have varying permeability as shown in figure 4.31.

Domain considered is a unit square domain with centre at (0, 0). A concentric square of

0.5×0.5 is considered to be the region having permeability K2.

Permeability K is taken in the different regions as;

1

2

 2464.360020 -1148.683643
-1148.683643 536.6399794

 2464.360020 1148.683643
1148.683643 536.6399794

K

K

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

K1 K2

Figure 4.31 Discontinuous Permeability
Field for Case 11

Figure 4.32 Domain Geometry and Aligned
Mesh for Case 11

At centre (0, 0) of the domain pressure is specified as 1.0 and at the boundary walls pressure

is specified as 0.0 uniformly. A 2900 element unstructured triangular mesh (Figure 4.32) is

used to analyse the pressure equation in the domain. The case was run for physical space TPS

scheme with q=2/3 and q=1. Figure 4.32 shows the numerical solution of pressure plotted in

the domain. Figure 4.33 shows the numerical pressure contour in the domain. The variation in

permeability leads to the zigzag nature of the pressure field in the domain.

40

Figure 4.33 Numerical Solution Plot for Case 11: Left: q=2/3, Right: q=1

From the contour plots it’s evident that the unsymmetrical physical space scheme with q=1,

produces a lot of spurious oscillation rendering the approximation unreliable in this case. It

can be concluded that for cases such as this, which has the presence of the source as well as

domain permeability discontinuity, the physical space scheme with symmetrical

approximation provides the better results when compared to the unsymmetrical

approximations for same mesh refinement.

Figure 4.34 Contour Plot for Pressure in the domain for Case 11: Left: q=2/3, Right: q=1

41

Chapter 5 Conclusions and Future Scope

5.1 Research Conclusions

In the previous chapter, the elliptic (Darcy velocity) pressure equation for single phase fluid

flow has been successfully demonstrated using cell-centered finite volume formulation with

triangular pressure support. This work mainly concentrated on the physical space

formulation. The code developed was used to obtain the convergence plots for test cases for

both symmetric approximation with q=2/3, and a number of non-symmetric approximation

(q≠2/3, e.g. q=1) thus providing a comparison of performance of the physical space scheme.

From the computational examples presented before, the following conclusions can be drawn;

1. TPS with physical space formulation gives exact results for linearly varying and constant

pressure cases for all 0<q≤1, where q is the parameter fixing the flux continuity between the

cluster vertex and cell edge mid-point.

2. For domains with discontinuous permeability, cell-centered TPS physical space

formulation allows exact internal boundary alignment representation whereas cell-vertex TPS

physical space formulation requires additional internal boundary alignment to ensure that the

flow and rock properties within the control volume remain constant.

3. Quadratic pressure cases show promising convergence rates even for the coarse grids (<

2500 elements) used. Convergence rates are of order 1.7 for purely quadratic with unit

permeability tensor whereas the convergence rates are of order 2 for discontinuous

permeability case. From literature [19], the expected values of the convergence rate is of

order 2 for fine meshes having more than 2500 elements in the domain. Hence, the code

developed here is successfully conforming to the features of the TPS scheme.

4. For large anisotropic ratio cases, with increase in the degree of anisotropy, TPS physical

space scheme has been previously found to be non-converging [19]. Figure 4.14 which shows

the convergence plot for a high degree of anisotropy case indicates this trend. For physical

space formulation with q=0.1, 0.5 and 0.95, no convergence has been obtained. But for q=2/3

which is the symmetric physical space scheme, which is in fact a particular member of the

family of sub-cell transform space methods [19], the method is seen to be converging.

42

5. For challenging cases like case 7 which has the presence of a well region within the

domain, the numerical solution obtained shows good conformance compared to the analytical

solution in the region.

6. For cases having discontinuous permeabilities in the domain as well as the presence of

source and sink, the pressure contours (Figures 4.30, 4.34) obtained, depicts the expected

zigzag character of the pressure field. The pressure values in the domain lie between the

maximum and minimum specified pressures in the domain when symmetric approximation is

used (i.e. q=2/3) and hence can be said to be conforming to the maximum principle.

However, the discrete maximum principle is violated as is indicated by the presence of

spurious oscillations (seen in contours and iso-surfaces). For the non-symmetric

approximation with q=1, the maximum principle is not being obeyed.

The code developed thus can be said to be working as expected from the principles of the

scheme employed.

5.2 Future Scope of Work

Initial coding has already been carried out towards the end of this research work, using a

similar algorithm in MATLAB, for the recently developed Full Pressure Support scheme

[27], [66], [67], and [17], which are less likely to give spurious oscillations. The code

requires further debugging and once done so, can be used to demonstrate the properties of

this scheme for the unstructured cell-centered triangular finite volume formulation and can be

compared with the current work.

Moreover, the existing cell vertex based TPS code in FORTRAN [67] can be combined with

the currently developed cell centered TPS code in MATLAB to create a new hybrid

numerical simulator which will draw upon the benefits of both the schemes. This will help

develop a scheme which can be predicted to increase the efficiency in solving for the flow in

porous media for a region containing discontinuities.

43

References

[1] Aavatsmark, I., Barkve, T., Boe, O., & Mannseth, T., Discretization on Unstructured

Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods, Siam J.

Sci. Comput. 19, 1998

[2] Aavatsmark, I., Barkve, T., Boe, O., & Mannseth, T., Discretization on Unstructured

Grids for Inhomogeneous, Anisotropic Media. Part II: Discussion and Numerical Results,

Siam J. Sci. Comput. 19, 1998

[3] Bear, J., Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972.

[4] Boffi, D., and Gastaldi, L., Mixed finite elements, compatibility conditions, and

applications: lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June

26 - July 1, 2006, Springer, 2008.

[5] Branets, L.V., Ghai, S.S., Lyons, S.L, & Wu, X., Exxon Mobil Upstream Research

Company , Efficient and accurate reservoir modelling using adaptive gridding with

global scale up, SPE, 2009.

[6] Breil, J., and Maire, P., A cell-centered diffusion scheme on two-dimensional unstructured

meshes, Journal of Computational Physics 224, 2007.

[7] Carlson, M.R., Practical reservoir simulation: using, assessing, and developing results,

PennWell Books, 2003.

[8] Chavent, G., Jaffre, J., and Roberts J.E., Generalized cell-centered finite volume methods:

application to two-phase flow in porous media, 1997.

[9] Chavent, G., Jaffré, J., Mathematical models and finite elements for reservoir simulation:

single phase, multiphase, and multi-component flows through porous media, Elsevier,

1986.

[10] Chen, Z., Huan, G., Ma, Y., Computational methods for multiphase flows in porous

media, SIAM, 2006.

[11] Chen, Z., Reservoir simulation: mathematical techniques in oil recovery, Cambridge

University Press, 2007.

[12] Correa, M.R., and Loula, A.F.D., Unconditionally stable mixed finite element methods for

Darcy flow, Comput. Methods Appl. Mech. Engrg. 197, 2008.

[13] Crichlow, H.B., Modern Reservoir Engineering – A simulation Approach, Prentice-Hall,

Inc. 1977.

[14] Durlofsky, L.J and Aziz, K., Advanced Techniques for Reservoir Simulation and

Modeling of Non-conventional Wells, Stanford University, 2004.

44

[15] Edwards, M.G., and Pal, M., Positive definite q-families of continuous sub-cell Darcy flux

CVD(MPFA) Finite volume schemes and the mixed Finite element method, International

Journal for Numerical Methods in Fluids, Volume 57; Number 4, 2008. pg 355-387

[16] Edwards, M.G., and Rogers, C.F., Finite volume discretization with imposed flux

continuity for the general tensor pressure equation, Computational Geosciences, Volume

2, Number 4, 1998. pg 259-290

[17] Edwards, M.G., and Zheng, H., A quasi positive family of continuous Darcy-flux finite-

volume schemes with full pressure support, J. Comput. Phys 227, 2008, pg 9333-9364.

[18] Edwards, M.G., Elimination of adaptive grid interface errors in the discrete cell centered

pressure equation, J. Comput. Phys. 126, 1996.

[19] Edwards, M.G., Friis, H.A., and Mykkeltveit, J., Symmetric Positive Definite Flux-

Continuous Full-Tensor Finite-Volume Schemes on Unstructured Cell-Centered

Triangular Grids, SIAM Journal on Scientific Computing, Volume 31, Issue 2, 2008. pg

1192-1220.

[20] Edwards, M.G., M-matrix flux splitting for general full tensor discretization operators on

structured and unstructured grids, J. Comput. Phys. 160, 2000.

[21] Edwards M.G., and Zheng H., Double-families of Quasi-Positive Darcy-Flux

Approximations with Highly Anisotropic Tensors on Structured and Unstructured Grids”

J. Comput. Phys 229, 2010, 594-625 doi:10.1016/j.jcp.2009.09.037.

[22] Edwards, M.G., Unstructured, control-volume distributed, full-tensor finite-volume

schemes with flow based grids, Computational Geosciences 6, 2002.

[23] Ertekin, T., Abou-Kassem, J.H., & King, G.R., Basic Applied Reservoir Simulation, SPE

Textbook Volume 10, 2001.

[24] Fanchi, J.R., Principles of Applied Reservoir Simulation, Houston, Tex, Gulf Pub, 1997.

[25] Finite Difference Methods, 31-05-2010,

<http://ltl.iams.sinica.edu.tw/document/training_lectures/2006/SH_Chen/Finite_Differenc

e_Methods.pdf>

[26] Forsyth, P., A control-volume finite element method for local mesh refinement in thermal

reservoir simulation, SPERE, 1990.

[27] Friis, H.A., and Edwards, M.G., A family of MPFA Finite-volume schemes with full

pressure support for the general tensor pressure equation on cell-centered triangular

grids, 2010.

[28] Gunasekera, D., Cox, J., and Lindsey, P., The Generation and Application of K-

Orthogonal Grid Systems, SPE 37998, Texas, 1997.

45

[29] Hægland, H., Assteerawatt, A., Dahle, H.K., Eigestad, G.T., & Helmig, R., Comparison

of cell- and vertex-centered discretization methods for flow in a two-dimensional

discrete-fracture–matrix system, Advances in Water Resources Volume 32, Issue 12,

December 2009.

[30] Heinemann, Z. E., & Leoben, M.U., Interactive Generation of Irregular Simulation Grids

and its Practical Applications, SPE 27998, University of Tulsa Centennial Petroleum

Engineering Symposium, 1994.

[31] Heinemann, Z.E., Brand, C.W., Munka, Margit, and Chen, Y.M., Modelling Reservoir

Geometry with Irregular Grids, SPE Reservoir Engineering, Volume 6, Number 2, 1991.

pg 225-232

[32] Hunt B., Lipsman, R., Rosenberg, J., Coombes, K., Osborn, J., Stuck, G., A Guide to

MATLAB for Beginners and Experienced Users, Cambridge University Press, 2001.

[33] Ian D. Chivers and Jane Sleightholme, Introduction to Programming with FORTRAN,

Springer-Verlag London Limited, 2006.

[34] Iske, A., & Randen, T., Mathematical methods and modelling in hydrocarbon exploration

and production, Springer, 2005.

[35] Jamtveit, B., Yardley, B.W.D., Fluid flow and transport in rocks: mechanisms and

effects, Springer, 1997.

[36] Katzmayr, M., & Ganzer, L., An Iterative Algorithm for generating constrained Voronoi

grids, SPE, 2009.

[37] Kiusalaas, J., Numerical Methods in Engineering with MATLAB, Cambridge University

Press, 2005.

[38] Kuzmin, D, Introduction to CFD, 31-05-2010, http://www.mathematik.uni-

dortmund.de/~kuzmin/cfdintro/cfd.html

[39] LeVeque, R.J., Finite volume methods for hyperbolic problems, Cambridge University

Press, 2002.

[40] Masud, A., Hughes, T.J.R. and Wan, J., A stabilized mixed discontinuous Galerkin

method for Darcy flow, Computer Methods in Applied Mechanics and Engineering, vol.

195, 3347-3381, 2006.

[41] Masud, A., & Hughes, T.J.R., A stabilized mixed finite element method for Darcy flow,

Computer Methods in Applied Mechanics and Engineering, Volume 191, Issues 39-40,

2002.

[42] MATLAB V 7.1, Full Product Family Help, The MathWorks, Inc., 2005.

46

[43] Mattax, C.C., & Dalton R.L, Reservoir Simulation. SPE Monograph Volume 13,

Richardson, TX, 1990.

[44] Morton, K.W., & Suli, E., Finite volume methods and their analysis, IMA J. Numer.

Anal., 11, 1991.

[45] Nakshatrala.K.B., Turner, D.Z., Hjelmstad, K.D., Masud, A., A stabilized mixed finite

element method for Darcy flow based on a multi-scale decomposition of the solution,

Computer Methods in Applied Mechanics and Engineering, Volume 195, Issues 33-36,

2006.

[46] NaturalGas.org, Exploration, 31-05-2010,

<http://naturalgas.org/naturalgas/exploration.asp>

[47] Norman J. Hyne, Nontechnical guide to petroleum geology, exploration, drilling, and

production, PennWell Books, 2001

[48] Otto, S.R., & Denier, J.P., An Introduction to Programming and Numerical Methods in

MATLAB, Springer, 2005.

[49] Pal M., & Edwards M.G., Non-linear flux-splitting schemes with imposed discrete

maximum principle for elliptic equations with highly anisotropic coefficients,

doi:10.1002/fld.2258 to appear Int. J. Numer Meth, Fluids.

[50] Pal, M., & Edwards, M.G., Flux-Splitting Schemes for Improved Monotonicity of Discrete

Solutions of Elliptic Equations with Highly Anisotropic Coefficients, ECCOMAS CFD

2006.

[51] Peaceman, D.W., Fundamentals of numerical reservoir simulation, Elsevier, 1977.5

[52] Persson, P., & Strang, G., A Simple Mesh Generator in MATLAB, Society for Industrial

and Applied Mathematics, 2004.

[53] Recktenwald, G.W., The Control-Volume Finite-Difference Approximation to the

Diffusion Equation, 2003

[54] Robert Eymard, Thierry Gallouet and Raphaele Herbin,’ Finite Volume Methods’, 31-

05-2010, <http://www.cmi.univ-mrs.fr/~herbin/PUBLI/bookevol.pdf>, 2006

[55] Shamsai and Vosoughifar, H.R., Finite Volume Discretization of Flow in Porous Media

by the MATLAB System, Scientia Iranica, Vol. 11, Nos. 1&2, 2004.

[56] Staggs, H.M., & Herbeck, E.F., Reservoir Simulation Models – An Engineering

Overview, JPT, 1971.

[57] The MathWorks, Inc., ‘User Stories by Industry’, 31-05-2010,

<http://www.mathworks.com/company/user_stories/industry.html>

47

[58] Thom and Apelt, C.J., Field Computations in Engineering and Physics. London: D. Van

Nostrand, 1961.

[59] Thompson, J.F., Warsi, Z.U.A. & Mastin, C.W., Numerical Grid Generation –

Foundations and Applications, Elsevier Science Publishing Co., Inc, 1985.

[60] Tyson, S., An Introduction to Reservoir Modelling. San Francisco: Ignatius Press, 2009.

[61] Versteeg, H.K., & Malalasekera, W., An introduction to computational fluid dynamics:

the finite volume method, Pearson Education, 2007.

[62] Wadsley, W.A., Modelling Reservoir Geometry with Non-Rectangular Coordinate Grid,

SPE Annual Technical Conference and Exhibition, 1980.

[63] Weck, O.D and Kim, I.Y, Finite Element Method, 12-01-2004, 31-05-2010,

<http://web.mit.edu/16.810/www/16.810_L4_CAE.pdf>

[64] Wheeler, M.F., & Peszynska, M., Computational engineering and science methodologies

for modelling and simulation of subsurface applications, Advances in Water Resources

25, 2002.

[65] White R.E., Computational Mathematics: Models, Methods and Analysis with MATLAB

and MPI, CRC Press, 2003.

[66] Zheng, H., Edwards, M.G., & Pal, M., Flux Continuous Finite Volume Schemes with Full

Pressure Continuity, Civil-Comp Press, 2007.

[67] Zheng, H., Quasi-Positive Families of Flux Continuous Finite Volumes Schemes in Two

and Three Dimensions, Swansea University, 2010.

[68] Zheng, Y., Burridge, R., & Burns, D., Reservoir Simulation with the Finite Element

Method Using Biot Poroelastic Approach, Earth Resources Laboratory, MIT, Cambridge,

MA 02139.

48

APPENDIX
A. Triangular pressure

support application code
a. Main File

% Entry point of console
application.
% Code designed for study of
Cell-centered Finite Volume Method
numerical
% evaluation of Darcy's equation
for flow in porous media.
% For unstructured triangular
Mesh.
% Triangular Pressure Support
Scheme.
% Physical Space Scheme.
% written by : Mary Abraham
Eranackal
% Erasmus Mundus Masters in
Computational Mechanics 2008-2010
% Civil & Computational
Engineering Centre, University of
Wales Swansea
clear all
clc
display ('* Unstructured Cell
Centered TPS FV Scheme *')
display ('* By Mary Abraham
Eranackal *')
%*********************************

%Input value of q (q is the
distance between the cluster
vertex and cell
%edge midpoint,with q=1 at the
midpoint and q=0 at the cluster
vertex)
q = input('Please input the value
of 0<q=<1 : '); % Flux Continuity
at q
%Ensuring value of q is within
allowed limits
while((q<=0)||(q>1))
 fprintf('Error. q must be
between 0 & 1\n')
 q = input('Re-Enter q: ');
end
%*********************************

%Initialize variables
casetype = 0; % Type of problem
selected to be solved
%*********************************

%Display the casetypes (Types of
Problems)
display('1. Debug 1 phy = 2.5')
display('2. Cartesian mesh to
solve linear problem:Phi=x+y+1
(diagonal tensor)')
display('3. Discontinuous Bilinear
Test Case')
display('4. Quadratic case:
x^2+y^2 with unit permeability')
display('5. Discontinuous
Quadratic Case')
display('6. Test Case for Large
Anisotropy Ratios. (taken from
example 5 in PDFCS')
display('7. Circular Region with
Well')
display('8. theta= pi/2, alp=
0.53544095,k1=k3=5,k2=k4=1')
display('9. Cartesian mesh to
solve highly anisotropic phi=
exp(xy)')
display('10. Zigzag Test case,
with permeability of 3 domains and
point source and sink')
display('11. Square permeability
discontinuity, highly anisotropic,
source')
%*********************************

%Selecting the required casetype
casetype = input('Please input the
casetype number selecting from
above display : ');
%Ensuring casetype selected is
within available types
while ((casetype<1) ||
(casetype>40))
 fprintf('Error.casetype value
must be between 1 and 40\n');
 casetype = input('Please enter
again the casetype number
selecting from above display : ');
end
%*********************************

tic % Starting stopwatch to record
simulation time
%*********************************

%Read the Grid Data from file
%Opening the geometry file
fid = fopen('D:\Master Project\My
Matlab\Cellcenter\Trial\bin2.txt',
'r');
%Reads and displays the first text
line of the file

i

str1 = native2unicode(fgetl(fid));

%Reads and displays/stores the
values in the file
A = fscanf(fid, '%f %f %f %f ',[1
4]);
npoint = A(1) % Number of Nodes
nelem = A(2) % Number of Elements
str2 = native2unicode(fgetl(fid));
% Reads the second text line in
the file
B = fscanf(fid,'%f %f %f',[3
npoint]); % Reads the coordinates
of nodes table from file
B = B'; % B contains the nodes and
their coordinates
coordinate = []; % coordinates of
each node point
coordinate(:,1) = B(:,2);
coordinate(:,2) = B(:,3);
str3 = native2unicode(fgetl(fid));
str4 = native2unicode(fgetl(fid));
C = fscanf(fid,'%f %f %f %f %f ',[
5 , nelem]); % Reading the
connectivity table
C = C';
triangle = []; % connectivity of
each triangle (3 vertices)
triangle(:,1) = C(:,3);
triangle(:,2) = C(:,4);
triangle(:,3) = C(:,5);
status = fclose(fid); % closing
the geometry file
%Opening the boundary file
fid = fopen('D:\Master Project\My
Matlab\Cellcenter\Trial\bb2.txt','
r');
%Reads and displays the first text
line of the file
strb1 =
native2unicode(fgetl(fid));
nface = fscanf(fid,'%f') % number
of boundary segments i.e. each
element face which lies on the
boundary of the geometry.
strb2 =
native2unicode(fgetl(fid));
D = fscanf(fid,'%f %f %f %f ',[4
, nface]);%Reading the boundary
elements and nodes
D = D';
status = fclose(fid);%Closing the
boundary file
bryelems = [];%List of boundary
elements (elements having atleast
2 nodes on the boundary)
bryelems = D (:,3);
bryn1 = D(:,1); % Boundary node1
bryn2 = D(:,2); % Boundary node2
bryn = [bryn1;bryn2]; %Boundary
nodes
bryn = unique(bryn); %Nodes lying
on the boundary

intelems = [];%List of internal
elements
E = C(:,1); %Lists the element
numbers
intelems=setdiff(E,bryelems); %
Gives the elements not listed in
boundary element list,effectively
giving us the internal elements.
cfbc = [];
for sa = 1: nelem
 sano = triangle(sa,:);
 ashi = intersect(sano,bryn);
 mizu = numel(ashi);
 if (mizu > 0)
 cfbc = [cfbc;sa];%Stores
all the elements having boundary
nodes
 end
end
%*********************************

%Calculation of Area Parameters
%Area calculation - Start
area(:,3) = 0.0; % Initialize area
of each of the 3 subcells per
triangle to 0.0
for i=1:nelem
 lmd(i,2)=0;% List of midpoints
of the elements or in this case
grid points.
 extr = triangle(i,:); %
extracting the connecting nodes of
the element,i.e; vertex nodes
 % x & y coordinates of the
vertices of the element
 xv1 = coordinate(extr(1),1);
 xv2 = coordinate(extr(2),1);
 xv3 = coordinate(extr(3),1);
 yv1 = coordinate(extr(1),2);
 yv2 = coordinate(extr(2),2);
 yv3 = coordinate(extr(3),2);
 % x & y coordinate of the mid-
point of the element
 x1 = (xv1+xv2+xv3)/3.0;
 y1 = (yv1+yv2+yv3)/3.0;
 % x & y coordinates of the
triangle edge mid-points
 xe = (0.50)*(xv1 + xv2);
 xn = (0.50)*(xv2 + xv3);
 xs = (0.50)*(xv3 + xv1);
 ye = (0.50)*(yv1 + yv2);
 yn = (0.50)*(yv2 + yv3);
 ys = (0.50)*(yv3 + yv1);
 %List the midpoints
 lmd(i,1) = x1;
 lmd(i,2) = y1;

ii

 %Finding the subcell areas of
each triangle

 area(i,1) =
area_sub(xv3,xs,x1,xn,yv3,ys,y1,yn
);
 area(i,2) =
area_sub(xs,xv1,xe,x1,ys,yv1,ye,y1
);
 area(i,3) =
area_sub(xv2,xn,x1,xe,yv2,yn,y1,ye
);
end
%Finding the cluster area
associated with each vertex
for i = 1:npoint
 ad(i)=0; % counts the number
of elements associated with each
vertex
 clusterarea(i)=0.0; % area
associated with each cluster
 for k = 1:nelem
 if ((triangle(k,1) ==
i)||(triangle(k,2) ==
i)||(triangle(k,3) == i))
 ad(i)=ad(i)+1;
 clusterarea(i) =
clusterarea(i) + area(k,1);% Gives
the cluster area associated with
each vertex i
 end
 end
end
%Displaying the Cell Centered
Scheme Control Volumes for each
vertex
for P=1:npoint
 fprintf('For node
%d,associated number of triangular
elements are: %d\n',P,ad(P));
 fprintf('Control Volume for
node %d is : %f
\n',P,clusterarea(P));
end
%Finding the total area of all the
elements in the geometry
totarea = 0.0; %Total geometry
area
for i = 1:npoint
 totarea = totarea +
clusterarea(i);
end
fprintf('Total Area of the
Geometry is : %f\n',totarea);
%Area calculation - End
%*********************************

%Assign the Permeability and Start
Permeability calculation
unitI = [1.0 0.0 0.0 1.0];
switch casetype
 case (1)
 for I = 1:nelem

 permk(I,:)=[1,0,0,1];
 end
 case (2)
 for I = 1:nelem
 permk(I,:)=[1,0,0,1];
 end
 case (3)
 for I=1:nelem
 if (lmd(I,1)<=0.5)

permk(I,:)=[1,0.5,0.5,1];
 elseif (lmd(I,1)>0.5)

permk(I,:)=[10,2,2,100];
 end
 end
 case (4)
 for I = 1:nelem
 permk(I,:) = unitI;
 end
 case (5)
 for I=1:nelem
 if (lmd(I,1)<0.5)
 permk(I,:) =
[50,0,0,1];
 elseif (lmd(I,1)>=0.5)

permk(I,:)=[1,0,0,10];
 end
 end
 case (6)
 %co = constant as defined
in the problem. For anisotropic
problem,
 %co lies between 0 and
1.At co= 1, problem becomes
isotropic.As co
 %decreases, degree of
anisotropy increases.
 %co=1;
 % co=0.1;
 co=0.01;
 for I = 1:nelem
 permk(I,:) =
[(lmd(I,2)^2+co*(lmd(I,1)^2)),-(1-
co)*lmd(I,1)*lmd(I,2),-(1-
co)*lmd(I,1)*lmd(I,2),(lmd(I,1)^2+
co*(lmd(I,2)^2))];
 end
 case (7)
 for I = 1:nelem
 permk(I,:) = unitI;
 end
 case (8)
 for i = 1:nelem
 rx(i) = lmd(i,1)-0.5;
 ry(i) = lmd(i,2)-0.5;
 ra(i) = sqrt(rx(i)^2
+ry(i)^2);

iii

 theta(i) =
atan2(ry(i),rx(i));

 if (ry(i) < 0.0)
 theta(i) =
theta(i)+ pi*2;
 end
 end
 for I = 1:nelem
 if ((theta(I) <pi*0.5)
& (theta(I) >= 0.0))
 permk(I,:) = 5.0 *
unitI;
 elseif ((theta(I) >=
pi*0.5) & (theta(I) < pi))
 permk(I,:) =
unitI;
 elseif ((theta(I) >=
pi) & (theta(I) < pi*(3/2)))
 permk(I,:) = 5.0*
unitI;
 elseif ((theta(I) >=
pi*(3/2)) & (theta(I) < pi*2))
 permk(I,:) =
unitI;
 end
 end
 case(9)
 for I = 1:nelem
 permk(I,:) =
[750.25,432.58, 432.58,250.75];
 end
 case (10)
 for I = 1:nelem
 if((lmd(I,2) <
0.333333) || (lmd(I,2) >
0.6666666667))
 permk(I,:)=[
2464.360020, 1148.683643,
1148.683643, 536.6399794];
 else
 permk(I,:)=[
2464.360020, -1148.683643, -
1148.683643, 536.6399794];
 end
 end
 case (11)
 for I=1:nelem
 if ((lmd(I,1)>-0.25)
&& (lmd(I,1)<0.25) && (lmd(I,2)>-
0.25) && (lmd(I,2)<0.25))
 permk(I,:)=[
2464.360020, -1148.683643, -
1148.683643, 536.6399794];
 else
 permk(I,:)=[
2464.360020, 1148.683643,
1148.683643, 536.6399794];
 end
 end

end
%End of permeability matrix
assignment

%*********************************

%Assigning the values of pressures
at the cell centers for each
casetype
%Defines the analytical pressure
values at the centre of each
triangular element since it is a
cell centered scheme
switch casetype
 case (1)
 Phi_exact(1:nelem) =2.50;
 Load_vector(1:nelem) =
0.0;
 case (2)
 for I = 1:nelem
 Phi_exact(I) =
lmd(I,1) + lmd(I,2) +1.0;
 end
 Load_vector(1:nelem) = 0;
 case (3)
 for j=1:nelem
 Area(j)=
area(j,1)+area(j,2)+area(j,3);
 if (lmd(j,1)<=0.5)
 Phi_exact(j) =
10+20*lmd(j,1)*lmd(j,2);
 Load_vector(j) =
20*Area(j);
 elseif (lmd(j,1)>0.5)
 Phi_exact(j) =
10.75-
1.5*lmd(j,1)+9*lmd(j,2)+2*lmd(j,1)
*lmd(j,2);
 Load_vector(j) =
8*Area(j);
 end
 end
 case (4)
 for I = 1:nelem
 Phi_exact(I) =
lmd(I,1)^2+lmd(I,2)^2;
 Area(I)=
area(I,1)+area(I,2)+area(I,3);
 Load_vector(I) =
4*Area(I);
 end
 case (5)
 qw = 1/50;
 er = 1/10;
 rt = 1;
 ty = 4*rt/((qw-2)*er+1);
 yu = (er-1)*ty;
 ui = ty;
 io = -ui*(1/10);
 cl = qw*er*ui;
 dl = io;
 for j=1:nelem

iv

 Area(j)=
area(j,1)+area(j,2)+area(j,3);

 if (lmd(j,1)<0.5)
 Phi_exact(j) =
cl*(lmd(j,1))^2+dl*(lmd(j,2))^2;
 Load_vector(j) =
0*Area(j);
 elseif (lmd(j,1)>=0.5)
 Phi_exact(j) =
rt+yu*lmd(j,1)+ui*(lmd(j,1))^2+io*
(lmd(j,2))^2;
 Load_vector(j) =
0*Area(j);
 end
 end
 case (6)
 for I = 1:nelem
 Phi_exact(I) =
sin(pi*lmd(I,1))*sin(pi*lmd(I,2));
 Area(I)=
area(I,1)+area(I,2)+area(I,3);
 Load_vector(I) = -
1*Area(I)*(-
2*co*lmd(I,1)*cos(pi*lmd(I,1))*pi*
sin(pi*lmd(I,2))+(lmd(I,2)^2+co*lm
d(I,1)^2)*sin(pi*lmd(I,1))*pi^2*si
n(pi*lmd(I,2))-(-
1+co)*lmd(I,2)*sin(pi*lmd(I,1))*co
s(pi*lmd(I,2))*pi-2*(-
1+co)*lmd(I,1)*lmd(I,2)*cos(pi*lmd
(I,1))*pi^2*cos(pi*lmd(I,2))-(-
1+co)*lmd(I,1)*cos(pi*lmd(I,1))*pi
*sin(pi*lmd(I,2))-
2*co*lmd(I,2)*sin(pi*lmd(I,1))*cos
(pi*lmd(I,2))*pi+(lmd(I,1)^2+co*lm
d(I,2)^2)*sin(pi*lmd(I,1))*sin(pi*
lmd(I,2))*pi^2);
 end
 case (7)
 for I=1:nelem
 Phi_exact(I)=(2-
1)*(log((sqrt(((lmd(I,1))^2+(lmd(I
,2))^2)/0.5))))/log(0.001/0.5)+1;
 Area(I)=
area(I,1)+area(I,2)+area(I,3);

Load_vector(I)=Area(I)*(.32182/((l
md(I,1))^2+(lmd(I,2))^2)^2*(lmd(I,
1))^2-
.32182/((lmd(I,1))^2+(lmd(I,2))^2)
+.32182/((lmd(I,1))^2+(lmd(I,2))^2
)^2*(lmd(I,2))^2);
 end
 case (8) % this case is
for Pi/2 ,
 for I = 1:nelem
 rx(I) = lmd(I,1)-0.5;
 ry(I) = lmd(I,2)-0.5;
 ra(I) = sqrt(rx(I)^2 +
ry(I)^2);
 ptheta(I) =
atan2(ry(I),rx(I));
 if (ry(I) < 0.0)

 ptheta(I) =
ptheta(I)+ pi*2;
 end
 end
 alp = 0.53544095;
% k1=k3=5; k2=k4=1;
 delt_alp = alp -1.0;
 for I = 1:nelem
 if ((ptheta(I)
<pi*0.5) & (ptheta(I) >= 0.0)) %
K1
 m1 = 0.44721360;
 m2 = 1.0;
 elseif ((ptheta(I) >=
pi*0.5) & (ptheta(I) < pi)) % K2
 m1 = -0.74535599;
 m2 = 2.33333333;
 elseif ((ptheta(I) >=
pi) & (ptheta(I) < pi*(3/2))) %
K3
 m1 = -0.94411759;
 m2 = 0.5555556;
 elseif ((ptheta(I) >=
pi*(3/2)) & (ptheta(I) < pi*2)) %
K4
 m1 = -2.40170246;
 m2 = -0.481481481;
 end
 Phi_exact(I) = (ra(I)
^ alp)*(m1* sin(alp*ptheta(I)) +
m2* cos(alp*ptheta(I))) ;
 end
 Load_vector(1:nelem) =
0.0;
 case (9)
 for I =1:nelem
 Phi_exact(I) =
exp(lmd(I,1)*lmd(I,2));
 Area(I)=
area(I,1)+area(I,2)+area(I,3);
 Load_vector(I)=
Area(I)*(3001/4*lmd(I,2)^2*exp(lmd
(I,1)*lmd(I,2))+21629/25*exp(lmd(I
,1)*lmd(I,2))+21629/25*lmd(I,1)*lm
d(I,2)*exp(lmd(I,1)*lmd(I,2))+1003
/4*lmd(I,1)^2*exp(lmd(I,1)*lmd(I,2
)));
 end
 case (10)
 Phi_exact(1:nelem)= 100.0;
 Phi_exact(615) = 0.0;
 Phi_exact(538) = 200.0;
 Load_vector(1:nelem) = 0.0 ;
 case (11)
 Phi_exact(1:nelem) = 0;
 Phi_exact(648) = 1.0;
 Load_vector(1:nelem) = 0.0 ;
end

v

%End of exact cell center pressure
value assignment

%*********************************

%Start calculation of Flux
equations at each continuity point
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<<<<
%Finding the elements associated
with each cluster vertex
for i = 1:npoint
 ad(i)=0; % counts the number
of elements associated with each
vertex
 for k = 1:nelem
 if ((triangle(k,1) ==
i)||(triangle(k,2) ==
i)||(triangle(k,3) == i))
 ad(i)=ad(i)+1;
 adel(i,ad(i)) =
k;%stores the associated elements
in a npoint row matrix
 end
 end
end
elmofv = sparse(adel);% Gives the
associated elements for each of
the npoint nodes.
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<<<<
% Using external function to
obtain the neighbouring elements
% Create the triangle neighbour
array.
triangle_order = 3;
triangle_neighbor =
triangulation_neighbor_triangles (
triangle_order,nelem,triangle);
ham = triangle_neighbor';
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
%Initialising local parameters
Amat = zeros(nelem); %Global
Coefficient Matrix
Fmat = Load_vector'; %Global Force
Vector
%Starting calculations cluster by
cluster
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<<<<
for i=1:npoint

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<
 %Ordering adjacent elements in
cluster i
 Wam=[];%Stores neighbouring
elements of each cluster in anti-
clockwise direction.
 if (ad(i)>2)

 for h = 1:ad(i)
 seth =
elmofv(i,:);%Locally extracting
associated elements
 jam = seth(1,h);
 dam = ham(jam,:);
 dam(dam == 0) = [];
 sam =
intersect(dam,seth);
 tam = size(sam);
 if (tam(1,2)==2)
 wam = [sam(1,1)
jam sam(1,2)];
 if (ad(i)>3)
 break
 end
 else
 continue
 end
 Wam = [Wam wam];
 end
 if (ad(i)>3)
 for n=3:ad(i)
 rat = wam(end);
 dam = ham(rat,:);
 dam(dam == 0) =
[];
 sam =
intersect(dam,seth);
 tam = size(sam);
 if (tam(1,2)==2)
 if
(sam(1,1)==wam(1,n-1));
 wam = [wam
sam(1,2)];
 else
 wam = [wam
sam(1,1)];
 end
 end
 Wam = [Wam wam];
 end
 end
 elseif (ad(i)==2)
 wama = elmofv(i,1);
 wamb = elmofv(i,2);
 Wam = [Wam wama wamb];
 elseif (ad(i)==1)
 Wam = elmofv(i,:);
 end
 if (ad(i)>2)
 ani = ad(i)-1;
 Wam= Wam(end-(ani):end);
 end
 if (ad(i)>1)
 moch =
mordc(i,Wam,coordinate,triangle,q,
nelem,lmd,npoint);
 if (moch==1)
 Wam=Wam(end:-1:1);

vi

 end

 % newa = Wam;
 end

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>
 %Initialising Variables
 % elco = [];
 Tl = [];
 Tr = [];

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<
 %Calculating local general
tensor T
 for j = 1:ad(i)
 elma = Wam(j); % Element 1
to Element ad(i) in the cluster
taken separately
 Kel(1,:) =
permk(elma,:);%local element
permeability
 [T11 T12a T12b T22 aref]=
flux(i,elma,coordinate,triangle,q,
nelem,lmd,npoint,Kel);
 % elco(j,:) = [T11
T12a T12b T22];%Lists the
coefficients of pressures in each
subcell
 Tl(j,:) = [T11 T12a];
 Tr(j,:) = [T12b T22];
 end

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<
 %Creating symbolic phy vector.
 phy = sym(zeros(1, ad(i)));
 for j = 1:ad(i)
 dal = Wam(j);
 phy(j) =
sym(sprintf('phy%d', dal));
 end

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<
 %Creating symbolic interface
pressure value vector for the
cluster i
 brchk=ismember(bryn,i);%Does
node i belong to boundary nodes?
 brchk = any(brchk);
 if (brchk ==1)
 phyI =
sym(zeros(1,(ad(i)+1)));
 for j = 1:(ad(i)+1)

 phyI(j) =
sym(sprintf('phyI%d', j));
 end
 else
 phyI = sym(zeros(1,
ad(i)));
 for j = 1:(ad(i))
 phyI(j) =
sym(sprintf('phyI%d', j));
 end
 end

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>
 Jazz=[]; % array of flux
equations in a cluster
 if (ad(i)>2)
 if (brchk==0)
 for j = 1:ad(i)
 r=j+1;
 if (j==1)
 syms a b c d e
f g h z y x l
 jazze = (-
1*(a*(b-c) + d*(e-f)))-(g*(h-z) +
y*(x-l)); % Starting Flux in the
cluster
 jazze =
subs(jazze,[a,d,g,y],[Tl(j,1),Tl(j
,2),Tr(r,1),Tr(r,2)]);
 jazze =
subs(jazze,[b,c,e,f,h,z,x,l],[phyI
(j),phy(j),phyI(ad(i)),phy(j),phyI
(r),phy(r),phyI(j),phy(r)]);
 Jazz =
[Jazz;jazze];
 elseif(j<ad(i))
 syms a b c d e
f g h z y x l
 jazz = (-
1*(a*(b-c) + d*(e-f)))-(g*(h-z) +
y*(x-l)); %Middle flux terms in
the cluster
 jazz =
subs(jazz,[a,d,g,y],[Tl(j,1),Tl(j,
2),Tr(r,1),Tr(r,2)]);
 jazz =
subs(jazz,[b,c,e,f,h,z,x,l],[phyI(
j),phy(j),phyI(j-
1),phy(j),phyI(r),phy(r),phyI(j),p
hy(r)]);
 Jazz =
[Jazz;jazz];
 elseif(j==ad(i))
 syms a b c d e
f g h z y x l

vii

 jazzw = (-
1*(a*(b-c) + d*(e-f)))-(g*(h-z) +
y*(x-l)); % Last flux in the
cluster

 jazzw =
subs(jazzw,[a,d,g,y],[Tl(j,1),Tl(j
,2),Tr(1,1),Tr(1,2)]);
 jazzw =
subs(jazzw,[b,c,e,f,h,z,x,l],[phyI
(j),phy(j),phyI(j-
1),phy(j),phyI(1),phy(1),phyI(j),p
hy(1)]);
 Jazz =
[Jazz;jazzw];
 end
 end
 elseif(brchk==1)
 for j = 1:(ad(i)+1)
 r = j+1;
 if (j==1)
 syms a b c d e
f g h z y x l
 jazze =
((a*(b-c) + d*(e-f))); % Starting
Flux in the cluster
 jazze =
subs(jazze,[a,d],[Tr(j,1),Tr(j,2)]
);
 jazze =
subs(jazze,[b,c,e,f],[phyI(r),phy(
j),phyI(j),phy(j)]);
 Jazz =
[Jazz;jazze];
 elseif
(j<(ad(i)+1))
 if (j==ad(i))
 syms a b c
d e f g h z y x l
 jazz = (-
1*(a*(b-c) + d*(e-f)))-(g*(h-z) +
y*(x-l)); %Middle flux terms in
the cluster
 jazz =
subs(jazz,[a,d,g,y],[Tl((j-
1),1),Tl((j-
1),2),Tr(j,1),Tr(j,2)]);
 jazz =
subs(jazz,[b,c,e,f,h,z,x,l],[phyI(
j),phy(j-1),phyI(j-1),phy(j-
1),phyI(r),phy(j),phyI(j),phy(j)])
;
 Jazz =
[Jazz;jazz];
 else
 syms a b c
d e f g h z y x l
 jazz = (-
1*(a*(b-c) + d*(e-f)))-(g*(h-z) +
y*(x-l)); %Middle flux terms in
the cluster
 jazz =
subs(jazz,[a,d,g,y],[Tl((j-
1),1),Tl((j-
1),2),Tr(j,1),Tr(j,2)]);

 jazz =
subs(jazz,[b,c,e,f,h,z,x,l],[phyI(
j),phy(j-1),phyI(j-1),phy(j-
1),phyI(r),phy(j),phyI(j),phy(j)])
;
 Jazz =
[Jazz;jazz];
 end
 elseif
(j==(ad(i)+1))
 syms a b c d e
f g h z y x l
 jazzw = (-
1*(a*(b-c) + d*(e-f))); % Closing
Flux in the cluster
 jazzw =
subs(jazzw,[a,d],[Tl((j-
1),1),Tl((j-1),2)]);
 jazzw =
subs(jazzw,[b,c,e,f],[phyI(j),phy(
j-1),phyI(j-1),phy(j-1)]);
 Jazz =
[Jazz;jazzw];
 end
 end
 end
 elseif (ad(i)==2)
 syms a b c d e f g h z y x
l
 jazz = (-1*(a*(b-c) +
d*(e-f)))+(g*(h-z) + y*(x-l));
 jazz =
subs(jazz,[a,d,g,y],[Tl(1,1),Tl(1,
2),Tr(2,1),Tr(2,2)]);
 jazz =
subs(jazz,[b,c,e,f,h,z,x,l],[phyI(
2),phy(1),phyI(1),phy(1),phyI(3),p
hy(2),phyI(2),phy(2)]);
 jazz1 = (-1*(a*(b-c) +
d*(e-f))); %Flux Leaving
 jazzw = (g*(h-z) + y*(x-
l)); % Flux Entering
 jazz1 =
subs(jazz1,[a,d],[Tl(2,1),Tl(2,2)]
);
 jazz1 =
subs(jazz1,[b,c,e,f],[phyI(3),phy(
2),phyI(2),phy(2)]);
 jazzw =
subs(jazzw,[g,y],[Tr(1,1),Tr(1,2)]
);
 jazzw =
subs(jazzw,[h,z,x,l],[phyI(2),phy(
1),phyI(1),phy(1)]);
 jazz = [jazzw;jazz;jazz1];
 Jazz=[Jazz;jazz];
 elseif (ad(i)==1)
 syms a b c d e f g h z y x
l

viii

 jazz1 = (-1*(a*(b-c) +
d*(e-f))); %Flux Leaving

 jazzw = (g*(h-z) + y*(x-
l)); % Flux Entering
 jazz1 =
subs(jazz1,[a,d],[Tl(1,1),Tl(1,2)]
);
 jazz1 =
subs(jazz1,[b,c,e,f],[phyI(2),phy(
1),phyI(1),phy(1)]);
 jazzw =
subs(jazzw,[g,y],[Tr(1,1),Tr(1,2)]
);
 jazzw =
subs(jazzw,[h,z,x,l],[phyI(2),phy(
1),phyI(1),phy(1)]);
 jazz = [jazzw;jazz1];
 Jazz=[Jazz;jazz];
 end

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<
 %Solving for interface
pressures in terms of nodal
pressures.
 nochk = numel(Jazz); %Number
Check
 if (nochk==2)
 chat =
solve(Jazz(1,1),Jazz(2,1),phyI(1),
phyI(2));
 itnc =
[chat.phyI1;chat.phyI2];
 elseif (nochk==3)
 chat =
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),phyI(1),phyI(2),phyI(3));
 itnc =
[chat.phyI1;chat.phyI2;chat.phyI3]
;
 elseif (nochk==4)
 chat =
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),phyI(1),phyI(2),phyI(3
),phyI(4));
 itnc
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4];
 elseif (nochk==5)
 chat =
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),Jazz(5,1),phyI(1),phyI
(2),phyI(3),phyI(4),phyI(5));
 itnc
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4;chat.phyI5];
 elseif (nochk==6)
 chat =
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),Jazz(5,1),Jazz(6,1),ph
yI(1),phyI(2),phyI(3),phyI(4),phyI
(5),phyI(6));

 itnc
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4;chat.phyI5;chat.phyI6]
;
 elseif (nochk==7)
 chat =
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),Jazz(5,1),Jazz(6,1),Ja
zz(7,1),phyI(1),phyI(2),phyI(3),ph
yI(4),phyI(5),phyI(6),phyI(7));
 itnc
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4;chat.phyI5;chat.phyI6;
chat.phyI7];
 elseif (nochk==8)
 chat =
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),Jazz(5,1),Jazz(6,1),Ja
zz(7,1),Jazz(8,1),phyI(1),phyI(2),
phyI(3),phyI(4),phyI(5),phyI(6),ph
yI(7),phyI(8));
 itnc
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4;chat.phyI5;chat.phyI6;
chat.phyI7;chat.phyI8];
 elseif (nochk==9)
 chat =
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),Jazz(5,1),Jazz(6,1),Ja
zz(7,1),Jazz(8,1),Jazz(9,1),phyI(1
),phyI(2),phyI(3),phyI(4),phyI(5),
phyI(6),phyI(7),phyI(8),phyI(9));
 itnc
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4;chat.phyI5;chat.phyI6;
chat.phyI7;chat.phyI8;chat.phyI9];
 elseif (nochk==10)
 chat =
solve(Jazz(1,1),Jazz(2,1),Jazz(3,1
),Jazz(4,1),Jazz(5,1),Jazz(6,1),Ja
zz(7,1),Jazz(8,1),Jazz(9,1),Jazz(1
0,1),phyI(1),phyI(2),phyI(3),phyI(
4),phyI(5),phyI(6),phyI(7),phyI(8)
,phyI(9),phyI(10));
 itnc
=[chat.phyI1;chat.phyI2;chat.phyI3
;chat.phyI4;chat.phyI5;chat.phyI6;
chat.phyI7;chat.phyI8;chat.phyI9,c
hat.phyI10];
 end

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<
 %Defining the unknown flux
equations at each continuity point
in

ix

 %cluster.

 Fluxv=[]; % array of flux
values at the interfaces in a
cluster
 if (ad(i)>2)
 if (brchk==0)
 for j = 1:ad(i)
 r=j+1;
 if (j==1)
 syms a b c d e
f g h z y x l
 fluxv = (-
1*(a*(b-c) + d*(e-f))); % Starting
Flux in the cluster
 fluxv =
subs(fluxv,[a,d],[Tl(j,1),Tl(j,2)]
);
 fluxv =
subs(fluxv,[b,c,e,f],[itnc(j),phy(
j),itnc(ad(i)),phy(j)]);
 Fluxv =
[Fluxv;fluxv];
 elseif(j<ad(i))
 syms a b c d e
f g h z y x l
 fluxv = (-
1*(a*(b-c) + d*(e-f))); %Middle
flux terms in the cluster
 fluxv =
subs(fluxv,[a,d],[Tl(j,1),Tl(j,2)]
);
 fluxv =
subs(fluxv,[b,c,e,f],[itnc(j),phy(
j),itnc(j-1),phy(j)]);
 Fluxv =
[Fluxv;fluxv];
 elseif(j==ad(i))
 syms a b c d e
f g h z y x l
 fluxvw = (-
1*(a*(b-c) + d*(e-f))); % Last
flux in the cluster
 fluxvw =
subs(fluxvw,[a,d],[Tl(j,1),Tl(j,2)
]);
 fluxvw =
subs(fluxvw,[b,c,e,f],[itnc(j),phy
(j),itnc(j-1),phy(j)]);
 Fluxv =
[Fluxv;fluxvw];
 end
 end
 elseif(brchk==1)
 for j = 1:(ad(i)+1)
 r = j+1;
 if (j==1)
 syms a b c d e
f g h z y x l
 fluxve =
((a*(b-c) + d*(e-f))); % Starting
Flux in the cluster

 fluxve =
subs(fluxve,[a,d],[Tr(j,1),Tr(j,2)
]);
 fluxve =
subs(fluxve,[b,c,e,f],[itnc(r),phy
(j),itnc(j),phy(j)]);
 Fluxv =
[Fluxv;fluxve];
 elseif
(j<(ad(i)+1))
 syms a b c d e
f g h z y x l
 fluxv = (-
1*(a*(b-c) + d*(e-f))); %Middle
flux terms in the cluster
 fluxv =
subs(fluxv,[a,d],[Tl((j-
1),1),Tl((j-1),2)]);
 fluxv =
subs(fluxv,[b,c,e,f],[itnc(j),phy(
j-1),itnc(j-1),phy(j-1)]);
 Fluxv =
[Fluxv;fluxv];
 elseif
(j==(ad(i)+1))
 syms a b c d e
f g h z y x l
 fluxvw = (-
1*(a*(b-c) + d*(e-f))); % Closing
Flux in the cluster
 fluxvw =
subs(fluxvw,[a,d],[Tl((j-
1),1),Tl((j-1),2)]);
 fluxvw =
subs(fluxvw,[b,c,e,f],[itnc(j),phy
(j-1),itnc(j-1),phy(j-1)]);
 Fluxv =
[Fluxv;fluxvw];
 end
 end
 end
 elseif (ad(i)==2)
 syms a b c d e f g h z y x
l
 fluxv = (-1*(a*(b-c) +
d*(e-f)));
 fluxv =
subs(fluxv,[a,d],[Tl(1,1),Tl(1,2)]
);
 fluxv =
subs(fluxv,[b,c,e,f],[itnc(2),phy(
1),itnc(1),phy(1)]);
 fluxv1 = (-1*(a*(b-c) +
d*(e-f))); %Flux Leaving
 fluxvw = (g*(h-z) + y*(x-
l)); % Flux Entering

x

 fluxv1 =
subs(fluxv1,[a,d],[Tl(2,1),Tl(2,2)
]);

 fluxv1 =
subs(fluxv1,[b,c,e,f],[itnc(3),phy
(2),itnc(2),phy(2)]);
 fluxvw =
subs(fluxvw,[g,y],[Tr(1,1),Tr(1,2)
]);
 fluxvw =
subs(fluxvw,[h,z,x,l],[itnc(2),phy
(1),itnc(1),phy(1)]);
 fluxv =
[fluxvw;fluxv;fluxv1];
 Fluxv=[Fluxv;fluxv];
 elseif (ad(i)==1)
 syms a b c d e f g h z y x
l
 fluxv1 = (-1*(a*(b-c) +
d*(e-f))); %Flux Leaving
 fluxvw = (g*(h-z) + y*(x-
l)); % Flux Entering
 fluxv1 =
subs(fluxv1,[a,d],[Tl(1,1),Tl(1,2)
]);
 fluxv1 =
subs(fluxv1,[b,c,e,f],[itnc(2),phy
(1),itnc(1),phy(1)]);
 fluxvw =
subs(fluxvw,[g,y],[Tr(1,1),Tr(1,2)
]);
 fluxvw =
subs(fluxvw,[h,z,x,l],[itnc(2),phy
(1),itnc(1),phy(1)]);
 fluxv = [fluxvw;fluxv1];
 Fluxv=[Fluxv;fluxv];
 end
 Fluxv = vpa(Fluxv,25);

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>
 keol = numel(Fluxv); %Number
of flux equations in each cluster
 % fnox(i) = keol; %For
external use.

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<
 %Extracting local cluster
coeffs to global coeff matrix.
 for g=1:keol % taking all the
flux equations in each cluster one
by one
 for r= 1:ad(i) %
considering all the elemental
pressure values one by one eg phy1
,phy13 etc
 amat = zeros(nelem); %
initialising the coeff matrix
taken locally to zeros
 if (Fluxv(g,1)~=0)
 [go,mi] =
coeffs(Fluxv(g,1),phy(r)); %
extracting the coefficients of

each pressure in the flux eqn
being considered
 if (numel(mi) ==
2) % if the flux equation
considered is not merely a zero
 if (brchk ==
0) % If the cluster vertex is not
on the boundary, number of
elements == number of equations
 % => keol
= ad(i)
 if
(g+1<=ad(i))

amat(Wam(g+1),Wam(r))=go(1,2);

amat(Wam(g),Wam(r)) = -1 *
go(1,2);
 Amat =
Amat+amat;
 elseif (g
== ad(i))

amat(Wam(g),Wam(r))=-go(1,2);

amat(Wam(1),Wam(r)) = go(1,2);
 Amat =
Amat+amat;
 end
 elseif (brchk
== 1) % If the cluster contains
boundary elements, keol = ad(i)+1
 if (g==1)

amat(Wam(g),Wam(r)) = go(1,2);
 Amat =
Amat+amat;
 elseif
(g<=ad(i))

amat(Wam(g),Wam(r)) = go(1,2);

amat(Wam(g-1),Wam(r)) = -
1*go(1,2);
 Amat =
Amat + amat;
 elseif (g
== ad(i)+1)

amat(Wam(ad(i)),Wam(r)) = -
1*go(1,2);
 Amat =
Amat + amat;
 end
 end
 else
 continue
 end
 end
 end

xi

 end

%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>
end
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
% chkmat = Amat;
% cfmat = Fmat;
%Initialise approximate pressure
vector
for d = 1 : nelem
 pmat(d,1) =
sym(sprintf('phy%d', d));
end
%*********************************

% Inputting Boundary Condition
% Zeros and ones
for w = 1:nelem
 brchk=ismember(cfbc,w);
 brchk = any(brchk);
 if (brchk ==1)
 Amat(w,:) = 0;
 Amat(w,w) = 1;
 Fmat(w,1) =
Phi_exact(1,w);
 end
end
% Input Source or Sink Condition
within the domain
% Amat(648,:)=0;
% Amat(648,648)=1;
% Fmat(648,1)=Phi_exact(1,648);
%*********************************

%Solving for pressure values
pmat = Amat\Fmat;
% pmat = gmres(Amat,Fmat);
%*********************************

toc
%*********************************

%Postprocessing
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<<<<
%Contour Mapping of Pressure
figure(1)
X = lmd(:,1);
Y = lmd(:,2);
Zh = pmat;
[XI,YI] =
meshgrid(linspace(min(coordinate(:
,1)),max(coordinate(:,1)),nelem),l
inspace(min(coordinate(:,2)),max(c
oordinate(:,2)),nelem));
ZI = griddata(X,Y,Zh,XI,YI);

mesh(XI,YI,ZI), hold on
plot3(X,Y,Zh,'o'), hold on %
Numerical solution Plot
xlabel('X')
ylabel('Y')
zlabel('Pressure')
Z = Phi_exact';
[XI,YI] =
meshgrid(linspace(min(coordinate(:
,1)),max(coordinate(:,1)),nelem),l
inspace(min(coordinate(:,2)),max(c
oordinate(:,2)),nelem));
ZI = griddata(X,Y,Z,XI,YI);
mesh(XI,YI,ZI), hold on
plot3(X,Y,Z,'x') % Exact solution
Plot
hold off
figure(2)
[XI,YI] =
meshgrid(linspace(min(coordinate(:
,1)),max(coordinate(:,1)),nelem),l
inspace(min(coordinate(:,2)),max(c
oordinate(:,2)),nelem));
ZI = griddata(X,Y,Zh,XI,YI);
contour(XI,YI,ZI)
xlabel('X')
ylabel('Y')
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<<<<
% %Plotting Obtained approximate
pressure values and exact pressure
values.
figure(3)
plot(pmat,('o-r'))
hold on
plot(Phi_exact,'x-b')
%
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>
%
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
<<<<<<<<<<<<<<<<<<<<<<<
% %L2 Norm and Max-Norm
Pe = Phi_exact';
numer = 0;
mxnorm = 0;
for c= 1: nelem
 Lerr(c)= (pmat(c)-Pe(c))^2;
 Area(c)=
area(c,1)+area(c,2)+area(c,3);
 numerL(c) = Lerr(c)*Area(c);
 numer = numer+numerL(c);
 mntemp = abs(pmat(c)-Pe(c)); %
Temporarily store the norms
 if (mntemp>mxnorm)
 mxnorm = mntemp;
 end
end

xii

L2norm = sqrt(numer/totarea)

mxnorm
%
%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
>>>>>>>>>>>>>>>>>>>>>>>

b. Function Files
i. To calculate the sub-cell areas
function [ar] =
area_sub(x1,x2,x3,x4,y1,y2,y3,y4)
%Function to calculate the quad
area of each subcell in a
triangle.
%gives the resultant area 'ar' for
given input of 4 quad corner point
coordinates
var1 = 0.0;
var2 = 0.0;
var1 = 0.5d0*((x1-x3)*(y2-y3) -
(x2-x3)*(y1-y3));
var2 = 0.5d0*((x1-x4)*(y3-y4) -
(x3-x4)*(y1-y4));
if (var1 < 0.0)
 display('Area Calculation
error,--var1--- the grid is not
arranged anti-clockwise!!!');
end
if (var2 < 0.0)
 display('Area Calculation
error,--var2--- the grid is not
arranged anti-clockwise!!!');
end
ar = var1 + var2;

ii. To determine the neighbouring
elements

External MATLAB code used.
Author : John Burkardt. The code
used is distributed under the GNU
LGPL license.

iii. To determine the order and assign
anti-clockwise direction to cluster
element order

function moch = mordc(
i,Wam,coordinate,nelem,lmd)
%to check the counter clockwise
order of cluster
% find x1*y2 - y1*x2
% where (x1, y1) is the difference
calculated for point 1
% similarly for point 2, 3, etc.
% the basic idea is, no two
consecutive points project an
angle greater than 180 at the mid-
point
% so, if they're in counter-
clockwise order, the cross product
would be in positive z direction

cv = [coordinate(i,1)
coordinate(i,2)];
ch = [(cv(1,1)-lmd(Wam(1),1))
cv(1,2)-lmd(Wam(1),2);...
 (cv(1,1)-lmd(Wam(2),1))
cv(1,2)-lmd(Wam(2),2);...
];
nah12 = ch(1,1)*ch(2,2) - ch(1,2)*
ch(2,1);
if (nah12 > 0)
 moch = 0;
elseif (nah12 < 0)
 moch =1;
end

iv. To generate the general tensor
components

function [T11 T12a T12b T22 aref]
=
flux(i,elma,coordinate,triangle,q,
nelem,lmd,npoint,Kel)
%Function code to calculate
subcell fluxes at the continuity
points on the subinterfaces.
conn = [];
conn = triangle(elma,:); %
connectivity of element
arrcord(:,:) =
coordinate(conn,:);% arranged
coordinates
% Ensuring vertex2 is the cluster
vertex always.
if (arrcord(1,:) ==
coordinate(i,:))
 c(1,:)=arrcord(1,:);
 b(1,:)=arrcord(2,:);
 arrcord(1,:)=arrcord(3,:);
 arrcord(2,:)=c(1,:);
 arrcord(3,:) = b(1,:);
elseif (arrcord(3,:) ==
coordinate(i,:))
 c(1,:)=arrcord(2,:);
 b(1,:)=arrcord(1,:);
 arrcord(2,:)=arrcord(3,:);
 arrcord(1,:)=c(1,:);
 arrcord(3,:)=b(1,:);
end
dq =1.0 - q;
xv1 = arrcord(1,1);
xv2 = arrcord(2,1);
xv3 = arrcord(3,1);
yv1 = arrcord(1,2);
yv2 = arrcord(2,2);
yv3 = arrcord(3,2);
x1 = lmd(elma,1);
x2 = (xv1+xv2)/2;
x3 = xv2;
x4 = (xv2+xv3)/2;
y1 = lmd(elma,2);

xiii

y2 = (yv1+yv2)/2;

y3 = yv2;
y4 = (yv2+yv3)/2;
%!Finding the coordinates of the
point of continuity using division
of segment internally form
% !For right edge flux
continuity
xa = dq * x3 + q * x2;
ya = dq * y3 + q * y2;
% !For left edge flux continuity
xb = dq * x3 + q * x4;
yb = dq * y3 + q * y4;
%Inserting code for effective area
calculation
aref = abs((x1*(yb-ya)+xb*(ya-
y1)+xa*(y1-yb))/2);
% !Finding dy/dxi,dy/deta,dx/dxi
and dx/deta
% !u = xi, v = eta
dx_v = xb - x1;
dy_v = yb - y1;
dx_u = xa - x1;
dy_u = ya - y1;
%Finding the Jacobian
% J = dx/dxi * dy/deta - dx/deta *
dy/dxi
Jaco1 = dx_u * dy_v - dx_v * dy_u;
%Warning generation for low
Jacobian
if(abs(Jaco1) < 1.0E-14)
 display('Warning, The Jacobi
is less than 1.0E-14')
 display(Jaco1)
end
%Fluxes in the cell are
% at continuity point A, FA1 = -
T11*PhiA1 -T12*PhiC1 for element 1
[left of A]
% at continuity point C, FC1 = -
T12*PhiA1 -T22*PhiC1 for element 1
[right of C]
T11 =
(0.5/Jaco1)*(Kel(1,1)*dy_v*(yv2-
yv1)+Kel(1,4)*dx_v*(xv2-xv1)-
Kel(1,2)*dx_v*(yv2-yv1)-
Kel(1,3)*dy_v*(xv2-xv1));
T12a =
(0.5/Jaco1)*(Kel(1,2)*dx_u*(yv2-
yv1)+Kel(1,3)*dy_u*(xv2-xv1)-
Kel(1,1)*dy_u*(yv2-yv1)-
Kel(1,4)*dx_u*(xv2-xv1));
T12b = (-
0.5/Jaco1)*(Kel(1,1)*dy_v*(yv2-
yv3)+Kel(1,4)*dx_v*(xv2-xv3)-
Kel(1,2)*dx_v*(yv2-yv3)-
Kel(1,3)*dy_v*(xv2-xv3));
T22 = (-
0.5/Jaco1)*(Kel(1,2)*dx_u*(yv2-
yv3)+Kel(1,3)*dy_u*(xv2-xv3)-
Kel(1,1)*dy_u*(yv2-yv3)-
Kel(1,4)*dx_u*(xv2-xv3));

xiv

